
APCOM & ISCM  
11-14th December, 2013, Singapore 

 

1 
 

Large-Scale Tsunami Simulation Based on  
Three-Dimensional Parallel SUPG-VOF Method 

*Taiki Fumuro¹, Seizo Tanaka2, and Kazuo Kashiyama1 
1Department of Civil and Environmental Engineering, Chuo University, Japan 

2Earthquake Research Institute, University of Tokyo, Japan 

*Corresponding author: fumuro@civil.chuo-u.ac.jp 

Abstract 
This paper presents a large-scale tsunami simulation based on the three-dimensional parallel SUPG-
VOF method. The three-dimensional Navier-Stokes equation and continuity equation are employed 
for solving velocity and pressure. The advection equation is employed for solving interface function 
between air and water. The stabilized finite element method based on unstructured grid is employed 
for the discretization for governing equations. In order to handle the large-scale tsunami simulations, 
several parallel implementations are designed by using MPI, OpenMP and hybrid method with 
MPI/OpenMP. The presented method is applied to several tsunami wave problems to show the 
validity and efficiency. 

Keywords: Tsunami simulation, Stabilized finite element method, SUPG-VOF method, Parallel 
computing, Three-dimensional Navier-Stokes equation  

Introduction 
The huge tsunami wave generated by the Great East Japan Earthquake (March 11, 2011) damaged 
the coastal area, and it is recognized that the tsunami cause the enormous damage to the human life 
and economic activities. There have been presented a number of numerical methods for tsunami 
simulation. The shallow water equation and Boussinesq equation are normally used for the 
governing equations. However, in order to predict the damage of structures, the three-dimensional 
simulation based on Navier-Stokes equation is required. There have been presented a number of 
numerical methods for Navier-Stokes equation with free surface. Based on the frame of reference 
used, these approaches can be classified into two categories: interface-capturing method using 
Eulerian stationary mesh and interface-tracking method using Lagrangian moving mesh. The 
interface-capturing method generally utilizes the VOF method (Hirt and Nichols (1981)) and level 
set method (Sussman et al. (1994)). On the other hand, the interface-tracking method generally 
utilizes the ALE method (Hughes et al. (1981)) and space-time method (Behr and Tezduyar (1993)). 
In the case of the three-dimensional Navier-Stokes equation, the simulation becomes quite large-
scale and it is essential to use the parallel computing techniques. Parallel computing techniques are 
classified into three methods (Pacheco (1997), Changra et al. (2001)): process parallelism using 
MPI, thread parallelism using OpenMP, and hybrid parallelism combined these two methods.  
 
This paper investigates three types of parallel computing methods for three-dimensional tsunami 
simulation. Each of the method is executed on a supercomputer CRAY XE6. Three-dimensional 
Navier-Stokes equation with the incompressibility condition is employed as the governing equation. 
The interface-capturing approach based on VOF method is employed because the method is robust 
in the applicability: for example, the method can be usefully applied to the complicated phenomena 
involving breaking waves. The stabilized finite element method based on SUPG/PSPG (Tezduyar 
(1992)) using P1/P1 element is employed for the spatial discretization. The full implicit scheme 
based on Crank-Nicolson method is used for the temporal discretization. 
  
In Section 2, we describe the governing equations. The stabilized formulations are described in 
Section 3. Parallel implementation is described in Section 4. The present method is applied to 
numerical examples in Section 5. The conclusions are stated in Section 6. 



2 
 

Governing Equations 

To model a free surface flow, we consider two immiscible fluids, A and B, with densities A  and 

B  and viscosities A  and B . An interface function   serves a marker identifying fluids A and B 
with the definition  = {1 for fluid A, 0 for fluid B and 0.5 for two-fluid interfaces}, as shown in 
Fig. 1. In this context, the density and viscosity,   and  , are defined as 
 

  BA   1                                                                 (1) 
  BA   1                                                                 (2) 

 
The evolution of the interface function is governed by a time-dependent advection equation as 
 

0







i
i x

u
t

     on                                                                (3) 

 
where   denotes the space domain. The velocity, iu , is obtained from the solution of the unsteady 
Navier-Stokes equations under the incompressibility condition as 
 

0












































i

j

j

i

ji
i

j

i
j

i

x
u

x
u

xx
pf

x
uu

t
u

     on                                  (4) 

0



i

i

x
u     on                                                                      (5) 

 
where p  is the pressure and if  is the external force. The following conditions are imposed at the 
boundary. 
 

ii gu     on   g                                                                   (6) 

ij
i

j

j

i
ij hn

x
u

x
up 
































     on   h                                            (7) 

 
where g  and h  denote the Dirichlet and Neumann boundaries. ij  is the Kronecker delta. 
 

 
Figure. 1 Distribution of interface function 



3 
 

Finite Element Formulations 

The stabilized finite element method based on the SUPG/PSPG method with shock capturing is 
employed for the governing equations. The stabilized formulation of Eqs. (4) and (5) can be written 
as follows. 

 

  

 

   

  

 

   
















































































































el

e

el

e

n

e
iie

j

j

i

i
C

n

e
e

i
i

j

i
j

i

k
P

k

i
kS

i

i

i

j

j

i

j

i

i

i
i

j

i
j

i
i

dhwd
x
u

x
w

d
x
pf

x
uu

t
u

x
q

x
wu

d
x
uqd

x
u

x
u

x
wpd

x
wdf

x
uu

t
uw

1

1

1










            (8) 

 
where iw  and q  denote weighting functions, S , P  and  C  are stabilization parameters given by 
 

2
1

2

2

2
2 422
















































ee

e
i

S hh
u

t
                                                      (9) 

SP                                                                               (10) 

 e
e
i

e
C uh Re

2
                                                                    (11) 

 
where 
 

   








3Re,1
3Re,3Re

Re
e

ee
e

　　　　　

　　　
                                                       (12) 

 
 / , t  is the time increment, eh  is the element length and eRe  is the element Reynolds 

number. 
 
In Eq. (8), the first four integrals, together with the right-hand side, represent the Galerkin 
formulation of Eq. (4) and Eq. (5). The first series of element-level integrals in the formulation are 
the SUPG and PSPG stabilization terms. The second series of element-level integrals are the shock 
capturing terms.  
 
The stabilized formulation of Eq. (3) can be written as follows. 
 

0
1 1




















































   
   

el el

ee

n

e

n

e
e

ji
e

i
i

j
jS

i
i d

xx
wd

x
u

tx
wud

x
u

t
w 

            (13) 

 
where S  and   are the stabilization parameters given by 
 



4 
 

2
1

2
2 22







































e

e
i

S h
u

t
                                                           (14) 

e
i

e uh
2

                                                                       (15) 

 
In Eq. (13), the first integral represents the Galerkin formulation of Eq. (3). The first series of 
element-level integrals in the formulation are the SUPG stabilization terms. The second series of 
element-level integrals are the discontinuity capturing terms. 

 
The linear tetrahedral element is employed for the discretization in space and the Crank-Nicolson 
method is employed for the discretization in time. The advection speed is approximated on the basis 
of the second-order Adams-Bashforth method. The GPBi-CG method is employed for solving the 
simultaneous linear equations. Also, the interface-sharpening/mass-conservation algorithm 
(Aliabadi and Tezduyar (2000)) is employed in order to express the interface clearly and conserve 
the mass for each fluid. In this approach, the interface function   which is calculated from the 
simultaneous liner equations is replaced by ̂  as follows. 
 

aac   1ˆ ,                    c0                                                  (16) 
   aac    111ˆ 1 ,          1c                                                  (17) 

 ˆ                                                                            (18) 
 
where a  is a sharpning parameter, and 10  c  is a mass conservation level. 

Parallel Implementation 

Parallel implementation is a technique for fast computation and realization of large-scale computing. 
Parallel computing techniques are classified into three methods of program parallelism: process 
parallelism, thread parallelism, and hybrid parallelism combined these two methods. MPI is used 
for the process parallelism and OpenMP is used for the thread parallelism. To minimize the amount 
of interprocessor communication, the automatic mesh decomposer, METIS, is employed. 
 
Table 1 shows the specifications of the parallel supercomputer. Fig. 2 shows the architecture of the 
CPUs and memories in a node for CRAY XE6. In this paper, four type of parallel computing 
methods are investigated, as shown in Fig. 3. 
 
Table 1. Specifications of the parallel supercomputer 

 used to calculate 
 

CRAY XE6 
 

CPU 
Memory size (1 Node) 
Number of cores 
O.S. 
Compiler 

AMD Opteron 6238 (2.9GHz) 
64GB 
16cores2CPUs940nodes 
SUSE Linux Enterprise Server 11 
Intel Composer XE2011 

 
                                                                                                     Figure 2. Architecture of the CPUs 

and  memories in a node 



5 
 

 
Figure 3. The four type of parallel computing methods 

 

Numerical Examples 

The four type of parallel computing methods are applied to two numerical examples: the dam-break 
problem and large-scale tsunami simulation. 

Dam-Break Problem 

The parallel computing methods are applied to the dam-break problem, as shown in Fig. 4. The 
computational domain was discretized by a uniform finite element mesh with 233   40   190 
elements ( zyx   direction). The total number of nodes and elements are 1,832,454 and 
10,624,800, respectively. The density/viscosity of water and air are assumed as 1000.0kg/m3 / 
1.010-3Pa  s and 1.293kg/m3 / 1.810-5Pa  s. The slip condition is employed at the wall boundary 
condition. The time increment t  is assumed to be 0.0001 s. 
 
Fig. 5 shows the time history of the waterfront line. The computed result obtained by the present 
method is good agreement with the experimental results (Koshizuka et al. (1995) and Martin, 
Moyce (1952)). Fig. 6(a) and 6(b) show the speed-up ratio and parallel efficiency versus the total 
number of cores/nodes. In this figures the normalization are performed using the flat MPI using 1 
node. From the results of parallel performance, it can be seen that the good parallel efficiency are 
obtained in all approaches and the significant difference is not appeared. 

 
 



6 
 

 
Figure 4. Computational domain and           Figure 5. The time history of 
                  initial condition                                      the waterfront line 

 

 
Figure 6. Comparison of speed-up and efficiency 

 

Large-scale Tsunami Simulation 

The parallel computing methods are applied to the large-scale tsunami simulation. Fig. 7 shows the 
initial condition and the finite element mesh. The total number of nodes and elements are 6,738,732 
and 37,560,556, respectively. The minimum mesh size is assumed to be 0.50m around the water 
surface and structures. The density and viscosity of water and air are same as the dam-break 
problem. The slip boundary condition is employed at solid boundary. The time increment t  is set 
to be 0.050 s. 
 
Fig. 8 shows the computed results at t 30.0s and 45.0s. Fig. 9(a) and 9(b) show the speed-up ratio 
and parallel efficiency versus the total number of cores/nodes. In this figures, the normalization are 
performed using the flat MPI using 2 nodes. From the result of parallel performance, it can be seen 
that the result by flat MPI shows a better parallel efficiency compared with those using Hybrid A 
and Hybrid B, and the result by Hybrid-B is better than that by Hybrid-A by the effect of the 
conflict of memory access. Fig. 10 shows the mass conservation ratio versus the time. From this 
figure, it can be seen that the mass of each fluid is conserved. 



7 
 

 

 
Figure 7. Initial condition and the finite element mesh 

 
 

 
Figure 8. Computed results 

 
 

 
Figure 9. Comparison of speed-up and efficiency 

 



8 
 

 
Figure 10. Mass conservation ratio 

Conclusions 

A parallel computational methods using MPI, OpenMP and hybrid method with MPI/OpenMP are 
investigated for three dimensional tsunami simulation based on SUPG/VOF method. The following 
conclusions can be made: 
 
 The good parallel efficiency is obtained in all approaches and the significant difference is not 

appeared in the small-scale simulation example. 
 The good parallel efficiency is obtained in flat MPI compared with those using Hybrid-A and 

Hybrid-B in the large-scale simulation example, and the result by Hybrid-B is better than that 
by Hybrid-A by the effect of the conflict of memory access. 

 
From the results obtained in this paper, it can be concluded that the proposed computational 

method with MPI parallelization is a useful and powerful tool for the large-scale tsunami simulation. 

References 

Hirt, C. W. and Nichols, B. D. (1981), Volume of fluid(VOF) method for the dynamics of free boundaries. Journal of 
Computational Physics, 39, pp. 201-225. 

Sussman, M., Smereca, P. and Osher, S. (1994), A level set approach for computing solutions for incompressible two-
phase flow. Journal of Computational Physics, 144, pp. 146-159. 

Hughes, T. J. R., Liu, W. K., Zimmermann, T. K. (1981), Lagrangian-Eulerian finite-element formulation for 
incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29, pp. 329-349. 

Behr, M. and Tezduyar, T. E. (1993), Finite element solution strategies for large-scale flow simulations, Computer 
Methods in Applied Mechanics and Engineering, 112, pp. 3-24. 

Pacheco, P. S. (1997), Parallel Programming with MPI, Morgan Kaufmann 
Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R. (2001), Parallel Programming in OpenMP, 

Morgan Kaufmann. 
Tezduyar, T. E. (1992), Stabilized finite element formulations for incompressible flow computations. Advance in 

Applied Mechanics, 28, pp. 1-44. 
Aliabadi, S. and Tezduyar, T. E. (2000), Stabilized-finite-element/interface-capturing technique for parallel 

computation of unsteady flows with interface. Computer Methods in Applied Mechanics and Engineering, 190, pp. 
243-261. 

Koshizuka, S., Tamako, H. and Oka, Y. (1995), A particle method for incompressible viscous flow with fluid 
fragmentation. Computational Fluid Dynamics Journal, 4, No. 1, pp. 29-46. 

Martin, J. C. and Moyce, W. J. (1952), An experimental study of the collapse of liquid columns on a rigid horizontal 
plane. Philosophical Transactions of the Royal Society of London, Series A, vol. 244, p. 312. 

Hord, R. M. (1999), Understanding Parallel Supercomputing, p. 356, IEEE Press. 
Kumar, V., Grama, A., Gupta, A. and Karypis, G. (1994), Introduction to Parallel Computing, Design and Analysis of 

Algorithms, p. 597, The Benjamin/Cummings Publishing Company, Inc. 
Karypis, G. and Kumar, V. (1998), Multilevel k-way partitioning scheme for irregular graphs, Journal of Parallel and 

Distributed Computing, 48, No. 1, pp. 96-129. 


