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Abstract 

Liquid-solid two-phase flow with heat transfer is directly simulated to investigate the effect of 

temperature gradient within the solid objects. The interaction between fluid and particles is solved 

by our original immersed solid approach on a rectangular grid system. And a discrete element 

model with soft-sphere collision is applied for particle-particle interaction. A new heat conduction 

model is proposed for the heat conduction at the solid-liquid interface by considering the interface 

direction. The method is applied to liquid-solid two-phase flows in a confined square domain with 

a hot bottom plate and a cold top plane under a relatively low Rayleigh number. In dense condition, 

the particles of high heat conductivity induce strong convection and promote the heat transfer, while 

the particles of low heat conductivity depress the incoming heat flux from the bottom wall, resulting 

in low Nusselt number. The above simulation results highlight the importance of temperature 

distributions within the particles and liquid. 

Keywords: Multiphase flow, Solid dispersion, Immersed solid object, Thermal flow, Heat 

conductivity 

 Introduction 

Solid-dispersed two phase flows often involve heat (and mass) transfer through the interface. 

Temperature distributions in both fluid and solid phases play important roles on the fluid-solid 

interaction. 

For numerical simulation of heat transfer problem in a flow including multiple solid objects, an 

immersed boundary method has an advantage. Kim et al. (2001) and Kim and Choi (2004) proposed 

a heat source/sink method for imposing iso-thermal and iso-heat-flux boundary conditions at the 

immersed boundary of a fixed particle. Similar approaches were proposed by Pacheco and co-

workers (Pacheco, Pacheco-Vega, Rodić and Peck, 2005; Pacheco-Vega, Pacheco, Rodić, 2007) 

with a successive determination algorithm of the temperatures inside the body to match the iso-

thermal and iso-heat-flux conditions at the immersed boundary. Ren et al. (2012) proposed an 

implicit formulation of the momentum and heat source/sink approach. The boundary force and heat 

flux are solved implicitly so that the no-slip and fixed temperature conditions are enforced on the 

immersed boundary. 

The above researchers simplify the problem by imposing a boundary condition of either constant 

temperature or constant flux. And, there are few previous studies that deal with a conjugate heat 

transfer problem (convective and conductive heat transfers) in a two-phase flow including freely-

moving particles (Yu, Shao and Wachs, 2006; Ueyama, Moriya,Nakamura and Kajishima, 2011). 

In the present work, we study a heat transfer problem in a multiphase flow of dispersed solid 

particles including the effect of local heat flux at the liquid-solid surface (and therefore temperature 

gradient within the solid object). To facilitate the treatment of interaction problem between the fluid 

and a large number of relatively moving particles, a fixed grid approach is adopted. 
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The interaction between fluid and particles is solved with our original immersed solid approach 

(Kajishima, Takiguchi, Hamasaki and Miyake, 2001; Yuki, Takeuchi and Kajishima, 2007) on a 

rectangular grid system. The method employs a simple procedure for the momentum-exchange by 

imposing a volume force (as an interaction force) on both solid and fluid phases. The method has 

been applied for studying a clustering process with a total of 1000 spherical particles in a turbulent 

flow (Kajishima, Takiguchi, Hamasaki and Miyake, 2001; Kajishima and Takiguchi, 2002; 

Kajishima, 2004). Also the usefulness of our method has been demonstrated by Nishiura et al. 

(Nishiura Shimosaka, Shirakawa, and Hidaka, 2006) through the analysis of sedimentation process 

employing a total of  spherical particles. In the present study, to include the effect of conjugate 

heat transfer in a liquid-solid interaction problem, a heat flux decomposition model is proposed for 

the heat conduction at the liquid-solid interface. The model employs a procedure for solving the 

temperature field in an Eulerian frame by considering the interface direction. 

The present method is applied to a direct numerical simulation of laminar natural convection of 

relatively low Rayleigh number in a confined square domain including multiple particles of round 

shape. By including the particles of different ratios of heat conductivity (solid to liquid), we look 

into the effect of the solid temperature distribution on the behaviour of the particles, and the heat 

transfer mechanism is studied in the solid-dispersed two-phase flow field. 

Governing Equations and numerical Methods 

Governing equations 

The governing equations for fluid are the equations of continuity, momentum and energy: 

 

  , (1)  

  , (2)  

  . (3)  

 

Here, an incompressible fluid is assumed and Boussinesq approximation is employed to include the 

effect of density fluctuation. In the following, viscous coefficient ( ), heat capacity per unit 

volume ( ) and thermal conductivity ( ) are assumed to be constant. 

Fluid-solid interaction model: Immersed solid approach 

Momentum exchange at the fluid-solid interface is solved by an immersed solid approach 

developed by Kajishima and the co-workers (Kajishima, Takiguchi, Hamasaki and Miyake, 2001; 

Kajishima and Takiguchi, 2002; Kajishima, 2004), on a uniformly distributed fixed grid system. 

This is briefly described below. 

A velocity field  is established through volume-averaging the local fluid velocity  and the local 

particle velocity  in a cell: 

 

  , (4)  

 

where  ( ) is the local solid volume fraction in the cell. The particle velocity  is 

decomposed into translating and rotating components as . This mixture velocity 

field  is assumed to obey the following equation: 

 

  . (5)  
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Interaction term  works to assign the mixture velocity that satisfies the non-slip boundary 

condition at the interface (Kajishima, Takiguchi, Hamasaki and Miyake, 2001; Kajishima and 

Takiguchi, 2002; Kajishima, 2004). For time-update, the 2nd-order Adams-Bashforth and Crank-

Nicolson methods are employed for the convective and viscous terms, respectively. The pressure 

gradient term in Eq. (5) is treated implicitly by a fractional step method. With the corrected velocity 

field , the fluid-solid interaction term  is modelled as: 

 

  , (6)  

 

where  is the time increment. 

For motion of the particles, Newton’s equations for momentum and angular momentum are solved. 

The same force as Eq. (6) applies to the fraction of the solid in the cell with the opposite sign. The 

surface integration of the hydrodynamic forces is changed to the integration of  over the volume 

of the particle : 

 

 
 , 

(7)  

 
 . 

(8)  

 

The above replacement from surface to volume integrations considerably facilitates the computation 

of the solid motion, and also the use of the same body force  for both (fluid and particle) phases 

in a shared Cartesian cell ensures no leakage of momentum between the phases. Eqs. (7) and (8) are 

solved with a predictor-corrector method (Ueyama, Moriya,Nakamura and Kajishima, 2011). 

Temperature field and interfacial heat conduction 

Temperature field is treated in an Eulerian way irrespective of the substance occupying the cell. The 

numerical simulation are conducted under  and . The following equation 

is solved with heat flux : 
 

  . (9)  

 

In the present work,  is given by a single equation that covers both phases as well as the interface. 

The discretised temperature gradient  at  cell is decomposed into surface-normal 

component  and tangential component . In an interfacial cell partially 

occupied by the solid object (local solid volume fraction ), the following mean heat conductivities 

are defined in the surface normal and tangential directions, respectively: 

 

  , (10)  

  . (11)  

 

Assuming that the solid and fluid temperatures match with each other at the interface, the heat flux 

(covering the interfacial cell)  is given by the following formula: 

 

  . (12)  
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Eq. (9) is time-updated with the Crank-Nicolson method for diffusion term with the treatment of Eq. 

(12). This semi-implicit scheme stabilises the computation and enables simulation with particles of 

very high/low heat conductivities. 

Interparticle and particle-wall collision model 

A soft-sphere model is used to allow multiple-body collisions for interparticle and particle-wall 

collisions. A spring and dashpot model is employed to calculate the contact forces. In the present 

study, the same parameter values as Tsuji et al. (1993) are used for the spring constant, restitution 

coefficient and friction coefficient. 

Tsuji et al. (1993) suggested the following condition for determining the time increment to 

sufficiently resolve the eigen oscillation of the mass-spring system: 

 

 
 . 

(13)  

 

In the present study, the smallest value of the right hand side of the above equation is found to be 

 for the smallest  employed in the following section. Considering the numerical 

accuracy of the momentum and energy equations from our preliminary study, the time increment is 

fixed to , hereafter. 

In the present study, no heat exchange or heat source is modelled in the interparticle collisions. 

Results and discussion 

Solid-dispersed two-phase flow under natural convection is studied for different heat conductivity 

ratios (solid to fluid). The non-dimensional numbers used are Rayleigh number ( ) and Prandtl 

number ( ). 

In the present work, the computational domain is a square shape of side length , and the particles 

are initially arranged regularly in the domain. Temperature difference between the top and bottom 

wall is kept constant ( ), and no heat flux is given at the lateral walls. The non-slip condition 

and the Neumann condition are applied for the velocity and pressure, respectively, on the solid 

walls. The equations are non-dimensionalised with the reference length , the reference velocity 

, the reference pressure  and the characteristic temperature difference . To 

investigate the natural convection on the particles behaviour and heat transfer, Prandtl number, 

density ratio, and specific heat ratio are set to unity. 

In the following, interaction between the fluid and particles is simulated with different ratios of heat 

conductivity. 

Dense case with bulk solid volume fraction 38.5% (2-D) 

Table1: Simulation parameters. 
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Figure 1: Schematic of arrangement of particles. 

We look into the effect of the heat conductivity ratio on the particle motion in a natural convection 

of Rayleigh number . The particles are initially arranged regularly in the domain as illustrated in 

Figure 1. The other parameters are summarised in Table 1. The bulk solid volume fraction is 38.5%. 

Figure 2 shows instantaneous flow and temperature fields at t = 1000 by employing the particles of 

and . In both cases, the particles and fluid are found to constantly circulate in one 

direction around the domain centre after the initial developing stage. However, the local 

concentrations of the particles and time-averaged flow fields are different for the two cases. Figure 

3 and 4 compare the time-averaged temperature and velocity fields and the time-averaged local 

solid volume fraction in each cell, respectively, for the two heat conductivity ratios. 

For the particles of , as shown in Figure 2(a), temperature gradient within the particle 

hardly re-distributes within the particle or to the fluid. From Figures 3(a) and 4(a), the concentrated 

isothermal lines and a region of high number density of the particles is found near the top and 

bottom walls. These suggest that, once a layer of particles is formed in those regions, the particles 

of poor-conductivity intercept the heat exchange with the walls. Therefore, low heat conduction in 

the particle could cause weak fluid convection and low Nusselt number. 

On the other hand, for the case of , the particles efficiently transfer the heat to ambient 

fluid and generate temperature gradient in the fluid phase, resulting in strong fluid convection as 

observed in Figure 3(b). It is also characteristic, from Figure 4(b), that a region of low number 

density of the particles is found near the domain centre due to high rotating speed of the particulate 

flow and number density of the particles is distributed evenly except for the domain centre. 

The heat transfer rate in two-phase natural convection system is compared for different particle 

conductivities. For evaluating heat transfer rate, the following Nusselt number is used with the heat 

flux at the hot (bottom) wall: 

 

  . (14)  

 

Figure 5 compares the time evolutions of Nusselt number for five different  cases. The average 

level of the Nusselt number is found to increase as the heat conductivity ratio increases. 

The above results show that the solid heat conductivity largely influences the flow pattern in solid 

dispersed two-phase flows and that the circulation of the particles enhances the heat transfer rate by 

transporting the heat from bottom to top. 



6 

 

  
(a)  (b)  

Figure 2: Instantaneous flow field and contours of temperature for different heat conductivities. 

Rayleigh number is  and bulk solid volume fraction is 38.5%. Colour shows the magnitude of 

the fluid velocity and iso-contour of temperature. 

 

  
™(a)  (b)  

Figure 3: Time-averaged temperature and velocity fields for different heat conductivities. 

Rayleigh number is . Average is taken between t = 500 and 1500. Magnitude the fluid 

velocity are levelled by colour, and iso-contours of temperature are plotted at constant intervals. 

 

  
(a)  (b)  

Figure 4: Time-average local solid volume fraction in a cell for different heat conductivities. 

Average is taken between t = 500 and 1500. 
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Figure 5: Comparison of time evolutions of Nusselt number for different ratios of heat conductivity. 

Solid volume fraction is 38.5%. 

Dilute case with bulk solid volume fraction 6.54% (3-D) 

Our method is extended to 3-D liquid-solid two-phase flow of Rayleigh number . Figure 6 is an 

example of an instantaneous flow field including  spherical particles of  in a cubic 

domain. The other parameters are summarised in Table 2. The bulk solid volume fraction is 6.54%. 

The particles and fluid move randomly in the initial developing stage. After that, the particles and 

fluid are found to constantly circulate in one direction around the domain centre. Our preliminary 

study shows that, for different  and Rayleigh numbers, characteristic flow behaviours (such as 

circulating mode and weak oscillating mode) are observed. 

Table2: Simulation parameters. 

 

 
Figure 6: Instantaneous flow field and contours of temperature for different heat conductivities. 

Rayleigh number is  and bulk solid volume fraction is 6.54%. Temperature distribution on the 

surface of each particle and velocity vectors in a vertical cross section. 
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Conclusions 

To simulate solid-dispersed two-phase flow with heat transfer, a method considering the effects of 

temperature distribution within a particle was developed based on our original immersed solid and a 

discrete-element methods. 

The method is applied to 2-D and 3-D liquid-solid two-phase flow under a relatively low Rayleigh 

number. In the dense condition (2-D), the particles of a high heat conductivity induce the heat 

convection of the fluid, and promote the heat transfer of the system. On the other hand, for the low 

heat conductivity case, the particles concentrate in the near-wall regions and intercept the heat 

transfer from the hot wall to the fluid, resulting in low Nusselt number. 

These results highlight the effect of temperature distributions within the particles as well as liquid 

on the overall heat transfer performance in the multiphase flow. 
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