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Abstract 
This paper describes computational method with finite element method in fixed mesh for flexible 
solid-fluid interaction problems. Finite element method in fixed mesh can treat large deformation 
without mesh failure and contact between different materials. This paper describes governing 
equation in strong form with mixture theory and capturing method of free-moving material 
interfaces. In addition, after verification of the above computational method in simple example, we 
apply the proposed procedure to practical solid-fluid interaction behavior such as functional design 
of component. 
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Introduction 
Recent years, high performance computing is developed dramatically. Various simulations can be 
performed by the high performance computing. A dynamics phenomenon has few phenomena to 
occur by the motion of single solid and fluid. There is more solid-fluid interaction phenomenon.  
Therefore, not only solid analysis and fluid analysis, but also solid-fluid interaction analysis is 
essential. Various studies have been performed about solid-fluid interaction analysis. The present 
approach establishes one governing equation for both solid and fluid models using mixture theory 
assuming incompressibility in the full Eulerian framework. Hyperelasticity for solid and Newtonian 
fluid are employed in the constitutive equations. A discretization of the proposed formulation for 
solid-fluid interaction dynamics is based on an explicit finite element method. The explicit finite 
element method reduces computational cost, except that the finite different method instead of the 
finite element method is used to solve Poisson and advective equations.  
In this study, we focus on solid-fluid interaction analysis for automotive rubber bush. In the 
analyses, the strain velocity affects the stiffness. It is one of a characteristic of rubber bush so-called 
the velocity dependence. Our final goal is to simulate the rubber bush considering the mechanical 
characteristic. 
Mixture government equations 
The present formulation treats interaction problem of shaft, 
rubber and viscous fluid for the rubber bush analysis. Fig. 1 
is a representative volume with solid and fluid. In the 
Eulerian formulation, the one computational mesh contains 
different plural materials.  In this section, we formulate the 
Eulerian mixture governing equations using volume fraction 
(Drew and Passman 1998).  
 
 

Figure 1.  Representative volume with solid and fluid 
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For the following discussion, the subscripts 1, 2 and f indicate quantities of solid1, solid2 and fluid 
respectively. The equations of motion for three materials are as follows, 
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Where  is density, v is velocity and  is Cauchy stress. We assume that body force b is identical for 
volume. The equations of continuity for incompressibility are as follow, 

 0=⋅∇ 1v         (4) 

 0=⋅∇ 2v         (5) 

 0=⋅∇ fv         (6) 

We make the equation of motion and continuity volume average. The mixture equation of motion 
and continuity are as follow, 
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The index mix is meant mixture, and mixture physical quantity is satisfied with follow equation. 

 332211 vvvv φφφ ++=mix         (9) 

 332211 ρφρφρφρ ++=mix         (10) 

 332211 σσσσ φφφ ++=mix         (11) 

     is volume rate function of materials. Total of volume rate function are always 1 shown in the 
following. 

 1321 =++ φφφ         (12) 

By solving the mixture equation, it is possible to be analyzed a unified way without solving to 
discriminate equations for each material. 

Computational flow 
The mixture stress mix in Eq. (7) is divided into deviatoric stress and pressure.  Where  is the 
second order unit tensor. 

 Iσσ mixmix p−′= 1         (13) 

The mixture deviatoric stress  is evaluated with respective volume fractions.  On the other hand, 
the mixture pressure  can be calculated with SMAC method.  The following subsections review 
computational flow.  For details, see references (Okazawa, Terasawa, Kurumatani, Terada and 
Kashiyama, 2010; Okazawa, Kashiyama and  Kaneko, 2007; Benson and Okazawa, 2004). 

iφ
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Intermediate velocity 
We discretize spatially the mixture governing Eq. (7) by finite element method without advection 
term (Chorin, 1980).  The present study employs 8-node isoparametric element for 3-dimensional 
analysis.  For numerical integration, we use selective reduced integration to avoid volumetric 
locking.  The explicit method with the central difference method is used to advance time.  The 
discretized equation is as follows 

 ( )intextt FFMvv −∆+= −∗ 1         (14) 

M is mass matrix, v is velocity vector at current time and v* is intermediate velocity vector. Fint is 
internal force and Fext is external force. We adopt the lumped mass matrix.  is time increment. 

Pressure and Modification of Velocity 
After calculating pressure with conventional SMAC method, the intermediate velocity is modified 
(A. Amsden and F. Harlow, 2007). The corrective pressure is calculated in center of all 
computational mesh.  By using the corrective pressure, we modify velocity to satisfy Eq. (8). 

Advective calculation and interface capturing 
Because the above calculation for the intermediate velocity excludes advective term, we advect the 
physical quantities with the 1st order upwind difference method.  The advected quantities are 
velocity and left Cauchy-Green deformation tensor.  Also regarding accurate mass advection, we 
employ PLIC (Piecewise Linear Interface Calculation) method (D.L. Youngs, 1982; Rider, and 
Kothe 1998). The PLIC method linear approximate to the interface of the mesh from the volume rate 
as Fig. 2. We calculate a volume flux using the interfacial information like Fig. 3. By using the PLIC 
method, it is possible to capture of free-moving material interfaces. 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Material interface in PLIC method       Figure 3.  Volume flux with PLIC method 

Numerical simulation 
We apply the described Eulerian formulation using mixture theory to rubber bush analysis. Fig. 4, 
Fig. 5 is computational models. We treat three materials, shaft, rubber and viscous fluid. As for 
computational model 2, the duct of fluid is narrow. Therefore, the influence of fluid becomes strong. 
We give a frequency 200Hz~400Hz and a displacement ±5mm to the shaft. The shaft is rigid body. 
We calculate the internal force of x-direction component of the rubber and fluid part.  
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Figure 4.  Computational model 1                         Figure 5.  Computational model 2 
 
 
 
t=0.0 (model1)                                                             
 
 
 
 

t=0.0 (model1)                                                            t=0.0 (model2) 
 
 
 
 
 
 

t=0.025 (model1)                                                        t=0.025 (model2) 
 
 
 
 
 
 

t=0.05 (model1)                                                          t=0.025 (model2) 
 
 
 
 
 
 

t=0.075 (model1)                                                        t=0.075 (model2) 
 

Figure 6.  Velocity line of each model 
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                                  Table 1. Material Parameters  

                                                                                Shaft       Rubber      Fluid 
 

Young’s Modulus (MPa)      300          300              - 

Poisson Ration (-)                  0.5           0.5              - 

Density (10-6 kg/mm3)           5.0           1.0             0.5  

Viscosity (10-3 Pa・s)             -               -               7.7  
 
Fig.6 shows velocity line. We confirm that velocity line changes with solid movement. We compare 
the result of analysis computational model 1 and computational model 2. In computational model 2, 
the duct of fluid is narrow. Flow velocity of computational model 2 is faster than computational 
model 1. Therefore, it is thought that the influence of fluid is strong with computational model 2. 
 
 
 
 
 
 
 
 
 
 

Computational model 1                                         Computational model 2  
Figure 7.  Internal force of rubber and viscous fluid 

Fig.7 shows the internal force of rubber and viscous fluid. We confirm that the gradient of graph is 
increasing both computational model 1 and computational model 2. In addition, the path of graph is 
different in the forward and return. The graph of computational model 2 is the large oval.  Therefore, 
we think that viscous fluid is affects the path of graph.  
Next, we perform a parameter identification of stiffness coefficient ‘K’ and damping coefficient ‘C’ 
using a least squares method. The equations of approximation are as follows, 

 CvKxF +=         (15) 

Where x is displacement of the shaft and v is applied velocity.  
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Stiffness coefficient ’K’                  Figure 9.  Damping coefficient ’C’ 
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We confirm that the stiffness coefficient ’K’ has increased by the vibration frequency. The 
computational model 2 indicates a large value. The stiffness coefficient ‘K’ depends on the gradient 
of graph of Fig.7. Fig.9 shows the damping coefficient ‘C’. The computational model 2 indicates a 
larger value than the computational model 1. The computational model 2 is strongly influenced by 
the viscous fluid. Therefore, we consider the damping coefficient ‘C’ is larger in the computational 
model 2. As a result, the stiffness coefficient is dependent on the gradient of graph of Fig.7. The 
damping coefficient is dependent on the area of graph of Fig.7. 

Conclusions 

The present paper have described the mixture Eulerian formulation and the vibration simulation of 
the automotive rubber bush. We performed a parameter identification of stiffness coefficient ‘K’ 
and damping coefficient ‘C’ using a least squares method. The future study, we improve the 
computational model. We apply the digital data such as voxel data to the computational model. 
Therefore, it is possible to simulate the rubber bush analysis with high accuracy.  
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