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Abstract 

In this paper we present a graph grammar based multi-frontal direct solvers resulting in 90 percent 
speedup in a multi-scale simulations of the Step and Flash Imprint Lithography (SFIL) a modern 
patterning process. The multi-scale simulation involves nano-scale Molecular Statics model coupled 
with macro-scale linear elasticity with thermal expansion coefficient. The simulations involves the 
densification of the liquied polimer inside the feature resulting from the photopolimerization, as 
well as shrinkage of the feature after removal of the template. The macro-scale domain is solved 
with a new version of multi-frontal direct solver with the graph grammar based mechanism for the 
reuse of the sub-domains with similar geometries and similar material properties. The graph 
grammar model enables for automatic localization of the sub-domain that can be reuse in our solver 
algorithm. We show that the new solver enables for 90 percent speedup of the numerical solution.  

Keywords: Multi-frontal solver, nanolithography, molecular statics, linear elasticity with thermal 

expansion coefficient, multi-scale modeling 

Introduction 

The paper presents the multi-scale modeling of the Step-and-Flash Imprint Lithography (SFIL), a 
modern pattering process utilizing photopolymerization in order to replicate a template onto a 
substrate (Colburn et al. 2001). The SFIL process can be simulated by macro-scale model as linear 
elasticity with thermal expansion coefficient (Hughes 2000), however in some areas of the domain 
e.g. on the interface between the feature and the template, the nano-scale model, namely the 
molecular statics model must be included (Paszynski et al. 2005). The three dimensional finite 
element method simulations are expensive (Demkowicz at al. 2007), and thus we propose a multi-
frontal solver algorithm with the reuse technique. The multi-frontal solvers are most advanced 
direct solvers used to solve the linear systems of equations (Duff and Reid 1983, Duff and Reid 
1984, Geng et al. 2006). In our previous works we already modeled the mesh generation and multi-
frontal solvers by graph grammar (Paszynska et al. 2012a, Paszynska et al. 2012b, Paszynska et al. 
2008, Paszynski et. al 2009a, Paszynski et al. 2009b, Paszynski et al. 2010, Paszynski and Schaefer 
2010). However in this work we introduce a new graph grammar model allowing for efficient reuse 
of identical sub-branches of the elimination tree. 

Step-and-Flash Imprint Lithography 

The major processing steps of SFIL include (compare Figure 1): depositing a low viscosity, silicon 

containing, photocurable etch barrier on to a substrate; bringing the template into contact with the 

etch barrier; curing the etch barrier solution through UV exposure; releasing the template, while 

leaving high-resolution features behind; a short, halogen break-through etch; and finally an 

anisotropic oxygen reactive ion etch to yield high aspect ratio, high resolution features. 

Photopolymerization, however, is often accompanied by densification (see Fig. 1a). The average 

distance between molecules decreases and causes volumetric contraction. Densification of the SFIL 

photopolymer (the etch barrier) may affect both the cross sectional shape of the feature and the 

placement of relief patterns. 
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Macro scale model 

The macro-scale model is based on the adaptive Finite Element Method (FEM) discretization of 

linear elasticity with thermal expansion coefficient. The FEM model can be summarized as follows:  

Find Vu  such that  
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Figure 1.  Step and Flash Imprint Lithography 

Molecular statics model 

The molecular statics nano-scale model can be summarized as follows:  

Find the equillibrium configuration of particles satisfying       

  


0Fαβ
     (2) 

where 

   

αβ

αβ

αβ
xx

xx
F






o
rrrk 

     (3) 

is the force between interacting particles   and  , 
k  is the w spring stiffness coefficient, 

αβ xx   rr  is the length of the spring in the equillibrium configuration, 
βα x,x  represents the 

(unknown) equillibrium configuration of particles, 0

r  is the length of the unstretched spring. The 

spring stiffness coefficients are obtained from Monte Carlo simulations concerning the 

photopolimerization of the feature (Colburn et. al. 2001) 



3 

 

Coupling between the models 

The coupling between the macro-scale and non-scale model is done through identification of 

particles located on the interface of the nano-scale domain with nodes of the finite element mesh. 

In such the case over the nano-scale model we solve the molecular statics equations, over the 

macro-scale model we solve discretized variational formulation for finite element method for linear 

elasticity with thermal expansion coefficient, however the interface between domains we treat in a 

special way. The variables from the interface are treated by the nano-scale model as particles 

represented by their relative change of location  pxp ~~~  , but from the macro-scale FEM 

model the variables are treated as degrees of freedom of finite elemet mesh u~ . This is equivalent to 

identification of these two variables 

 
 up ~~       (4) 

for each particles (or finite element degrees of freedom)    located on the interface. In practice it is 

not necessary to add these new equations to the system, we can just aggregate the nano-scale and 

macro-scale entries to the same row of the global matrix. 

Graph grammar based solver with reuse technique 

In this section we describe a graph grammar based multi-frontal solver with reuse technique.  

The first step of the solver algorithm is to generate the computational mesh. It is done by executing 

a sequence of graph grammar productions, generating a graph structure representing computational 

mesh. The first graph grammar production is presented on left panel in Figure 2. The productions 

replaces the starting graph containing only a single vertex S with a graph representing a single 

hexahedral element with eight nodes. The following graph grammar productions replaces some 

nodes by sub-graphs representing smaller elements. The graph nodes as well as graph grammar 

productions are attributed by the location over the rectangular domain. The graph grammar 

production (P)
TNW

 from right panel in Figure 2 is actually replicated for different locations, for 

{TNW,TNE,TSW,TSE,BNW,BNE,BSW,BSE} where T and B stands for top and bottom, and N, 

S, W, E stand for north, south, west, east.  

 

 
Figure 2.Exemplary graph grammar productions for generating of the structure of the mesh  
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The exemplary derivation of eight finite element mesh is presented in Figure 3. In the first step of 

the derivation, production (P1) is executed, in the second step, productions (P)
TNW

 - (P)
TNE

 - (P)
TSW

 

- (P)
TSE

 - (P)
BNW

 - (P)
BNE

 - (P)
BSW

 - (P)
BSE

 are executed to obtain the eight finite element mesh. 

The graph representing the mesh has hierarchical tree-like structure storing the history of graph 

grammar productions derivation. To obtain larger meshes, it is necessary to add graph grammar 

productions for locations like {T,B,N,S,W,E,TN,TS,TW,TE,BN,BS,BW,BE,NE,NW,SE,SW}, 

compare labels of the left bottom sub-graph at Figure 3. 

 
Figure 3. Derivation of eight finite element mesh 

 
Figure 4. Graph grammar productions for identification of macro- and nano-scale elements 

 

The next step of the solver algorithm is the identification of macro-scale and nano-scale elements. 

Notice that graph nodes labeled with N actually represents particles (over nano-scale elements) or 

finite element method nodes (over macro-scale elements). Thus, the elements are represented by 
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patches of eight nodes. In our exemplary mesh presented in Figure 3 we have eight elements 

denoted by different colors. 

This identification is performed by graph grammar production presented in Figure 4. The macro-

scale elements are attributed by Young modulus and Poisson ratio values. The nano-scale elements 

are attributed by parameters of the spring force parameters 
k .  

 
Figure 5. Exemplary graph grammar production for identification of macro-scale elements 

with identical material data 

 
Figure 6. Exemplary graph grammar production for partial identification of macro-scale  

with identical material data 
 

The resulting tree structure can be directly utilized by the multi-frontal solver algorithm (Paszynski 

et al. 2010, Paszynski and Schaefer 2010) 

The third step of the solver algorithm is the identification of identical sub-branches of the 

elimination tree, for the reuse of partially LU factorized matrices. The exemplary graph grammar 

production for such the identification is presented in Figure 5. Such the graph grammar production 

checks if all eight son elements are macro-scale elements and if corresponding Young modulus and 

Poisson ratios are identical. If this is the case, the eight son element nodes are reduced to one 

representative node, so the LU factorization can be performed only once and father node can merge 

eight identical matrices from the same representative son node. 

Another more complicated case for the identification is presented in Figure 6. In this example only 

four son elements are macro-scale elements with identical Young modulus and Poisson ratio values. 

The four identical macro-scale elements are reduced to one representative elements, however the 

nano-scale elements are stochastic in their nature and cannot be reduce to one representative 

element. 

Finally, on the modified elimination tree we can execute the multi-frontal solver algorithm – 

namely the forward elimination 
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1 function forward elimination(node) 

2 if new_schur_matrix already computed for the node then 

3 return schur_matrix 

4 if node is a leaf then 

5   generate local system assigned to node 

6   excluding boundary conditions 

7 else 

8   loop through son_nodes 

9     schur_matrix = forward_elimination(son_node) 

10     merge schur_matrix into new_system 
11   end loop 
12 end if 
13 find fully assembled nodes and eliminate them 
14 return new_schur_matrix 
15 end function 

 

Notice that in case of representative nodes in line 9 we actually call the same node of the 

elimination tree many times and line 2 prevents from recomputing the identical Schur complement 

matrices many times. The forward elimination algorithm is followed by analogous backward 

substitution. 

Numerical results 

In this paper we consider two simulations. The first simulation concerns the  multi-scale simulations 

of the feature inside the template, where the interior of the domain is modeled by the macro-scale 

model, but the boundary layers where the interactions between the feature and the template must be 

well captured the nano-scale model is utilized, compare Figure 7. 

The second simulation concerns the macro-scale model for the feature outside the template, 

compare Figure 8. 

In both cases the graph grammar based reuse technique can be utilized. In the second example we 

are able to reuse all of the matrices at each level of the elimination tree. In the first case, we are also 

able to reuse all the matrices from the macro-scale domain, however the boundary nano-scale layers 

must be process at the very end. 

 

 
Figure 7.  Nano-scale simulations of the feature inside the template 

Left panel: Boundary layers modeled by molecular statics 

Other panels: X, Y and Z components of the displacement vector field for the interior 

modeled by linear elastictity with thermal expansion coefficient 
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Figure 8.  Macro-scale simulations of the feature outside the template.  

 

 
Figure 9. Left panel: Execution time of the solver without reuse 

Right panel: Execution time of the solver with reuse 

 
Figure 10. Speedup of the reuse solver 
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We conclude the numerical results section with comparison of the execution times of the graph 

grammar based multi-frontal solver with and without the reuse technique. The results presented in 

Figure 9 concerns computational grids with different number of elements in each direction  

(n parameter) as well as different polynomial orders of approximations utilized over the macro-

scale domain (p parameter). The resulting speedup of the reuse solver algorithm is presented in 

Figure 10. 

Conclusions 

In this paper we presented a fast multi-frontal solver algorithm enabling for speed-up up to 90% of 

the solution over the macro-scale domain in the multi-scale nanolithography simulations. The direct 

solver algorithm utilized the graph grammar model and the efficient reuse of identical sub-branches 

of the elimination tree. 
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