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Abstract 

The transient dynamics of a high speed rotor assembly of a gas turbine is presented in this paper 
demonstrates that the blade loss will significantly influence to the rotor. To theoretically investigate 
the motion stability of the system, a reduced rigid Jeffcott rotor model with symmetrical short 
bearings is presented. The equations of motion are derived considering the nonlinear lubricant 
forces of bearings. The transient response of the rotor is numerically obtained through the Runge-
Kutta scheme with adaptable step-sizes. It is shown that the equilibrium of the rotor is disturbed due 
to the sudden loss of mass. However, the stability of motion can be restored. Bifurcation diagrams 
are constructed to investigate the responses of the rotor at various the rotation speeds at a specific 
eccentricity. The largest Lyapunov exponent (LLE) diagram has been presented to indicate when 
the system evolves into chaos.  
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Introduction 

Rotors of gas turbines are required to operate at supercritical speeds. Structurally, most modern gas 
turbines are in form of twin spools and are composed of an axial compressor and a power turbine 
that rotates with different speeds and is supported by rolling bearings as well as intermediate 
bearings. Due to the complexity in both structure and loading of the rotor, it is very hard to obtain 
analytical solution of the rotor assembly. The transient response of the rotor is influenced by many 
loading effects. The most dominant of them is the loss of blades of the impellers. In practical 
operations of the gas turbine, there is a possibility that one blade of impellers breaks off which 
causes a sudden loss of mass. Consequently, an impulsive imbalance of mass is generated in the 
transverse direction of the rotor shafts. This unbalance leads to unexpected large motions. Hence, a 
detailed blade loss transient response of the rotor system should be conducted. 
 
Since it is time consuming to obtain the dynamical characteristics of the rotor by performing 
various transient response analyses, the rotor is reduced to a 2-DOF Jeffcott system (Jing, 2004) in 
this study to obtain the essential dynamical properties of the system. The transient nonlinear 
lubricant force is necessary for obtaining transient response of the rotor system. The available 
approximate methods for the slide bearing can be classified as follows. The direct methods, such as 
difference or finite element method, tackle with the Reynolds equation directly to get the pressure 
distribution, and the transient oil film force can be obtained by integrating the acquired pressure of 
oil film. Based on variational method, the variational model (Xia and Qiao, 2009) has relatively 
high accuracy, but lots of variational iterations are needed to get the proper boundaries which will 
great reduce the efficiency. The approximate analytic methods claims simple and high accuracy for 
bearings with small length-to-diameter ratio and the Capone model (Adiletta, 1996) has been widely 
accepted which will also be implemented in this study. 
 
In this paper, the dynamics of a dual rotor system is presented with specified unbalanced mass 
distribution on the rotor impellers. To simulate the situation of sudden loss of mass of blade, a 
concentrated mass imbalance is created and placed on the third impeller of the compressor. The 
Runge-Kutta method with adaptable step size is implemented to perform the numerical integration 
of the governing equation. It is demonstrated that the motion of the rotor system will be asymptotic 
stable when it is disturbed from the equilibrium position. With the journal center staying at the 
balanced position, a sudden step or ramp unbalance load is applied on the rotor, respectively, and 
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the motions of the system are investigated subsequently. The results show that in both cases a 
periodic orbit corresponding to a limit cycle will be generated with a slight difference between them. 
Bifurcation diagrams are generated based on the Poincaré section to present the responses of the 
rotor with varying rotational speeds. The results indicate that the system will enter the state of chaos 
through a complicate route when the rotation speed increases high enough. The largest Lyapunov 
exponent diagram has been presented to indicate when the motion of the system evolves into chaos. 

Transient response of a twin spool rotor 

The twin-spool rotor of the gas turbine is shown in Fig.1(a), which was first studied by 

(Guangyoung and Palazzolo, 2008). The rotor is supported by six rolling element bearings 

numbered as #0 through #5 and composed of two parts, inner power turbine and outer compressor. 

Two intermediate bearings, i.e. IDB 1 and IDB 2 are used to connect the power turbine with the 

compressor. The parameters of stiffness and damping of the bearings are listed in Table 1.Fig.1(b) 

shows the finite element model created with software SAMCEF/Rotor using two dimensional 

axisymmetric elements. The total numbers of element and node are 477 and 269, respectively. 

Three concentrated masses are placed on points 1, 2 and 3 to represent the mass unbalances on the 

first three blades of the compressor. The place where the blade loss occurs coincides with the third 

mass unbalance. Their values are assigned in Table 2.  

 

 
 

 

(a) (b) 

Figure 1 (a) Scheme of a twin spool rotor; (b) FEM model of the rotor. 

 

The operating speeds of the power turbine and the compressor are 13,000rpm and 20,000 rpm, 

respectively. To get the transient response, a set of unbalanced masses are assigned to the impellers 

which are shown in Table 1 and their locations can be found as numbered points 1, 2, and 3 in 

Fig.1(b). 

 

Table 1 Stiffness and damping coefficients of bearings 

Bearing No. Stiffness (10
8 

N/m) Damping(10
3 

Ns/m) 

#0~#5 1.75 1.75 

IDB1 0.875 3.502 

IDB2 0.875 3.502 

 

Table 2 Unbalanced masses on impellers. “B.L.” means blade loss. 

Unbalance No. Mass(kg) Eccentricity (mm) Phase (degree) 

1 1.41 0.635 45 

2 1.21 0.635 45 

3 1.11 0.635 45 

B.L. 1.11 3.175 45 

 

Fig.2(a) shows the operation speed profiles of start-up of the power turbine and compressor for 

creating the load of transient analysis. The speed profile is approximated by a series of straight lines 

for simplicity. Herein, it is assumed that the normal operation speed of the rotor remains unchanged 

1 
2 3&blade loss 
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after the occurring of blade loss. The blade loss will result in a time-varying redistribution of the 

unbalances of the rotor system. An impulsive unbalance of mass is imposed on the rotor to simulate 

this process whose continuous effect to the system is achieved through the change of rotation speed 

with a different speed profile from the one of rotor. 
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Figure 2: (a) Profile of engine start-up and operation; (b) Profile of blade loss during start-up. 

Δt represents the duration of blade loss 

 

The transient response with Δt=0.01s compared to the case of without blade loss case is shown in 

Fig.3. The maximum amplitude of the transient response of the system occurs at 0.97s. The motion 

will decay to a steady state after a transient fluctuation. One can observe that the blade loss has 

generated a large amplitude transient response; hence it is of great importance to perform the blade 

loss response analyses for the rotor system.  
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Figure 3 Transient responses at Δt=0.01s. The shadowy area represent the duration of the 

blade loss. 

Transient response of a Jeffcott rotor 
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Figure 4: (a) Rotor system with short journal bearings; (b) Cross-section of the journal. 
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Generally, it is time consuming to obtain the dynamical characteristics of the rotor by performing 

various transient response analyses; the rotor is reduced to a 2-DOF Jeffcott system in this study.  

The mass of the rotor is 120kg, the first order critical speed 1w =152Hz. Hence, the equivalent 

stiffness of the rotor is 
2

1ek mw =1.1×10
8 

N/m. The slide oil film bearings are included in the 

simplified model to investigate the transient dynamics of the system with nonlinear bearing forces. 

Fig.4(a) presents the rotor supported by symmetric bearings which is subjected to both static 

unbalance and external load. The equations of the motion of the journal center Oj are  
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where 1P  and 2P  are gravity loads, xF  and
yF  are supporting forces to the rotor considering both the 

reaction force from the bending shaft and the oil-film forces from the bearings. The dimensionless 

form Eq.(3) of Eq. (1) can be obtained with the following substitutions: 

 

 

 
2 2

2

2
222 2

, , , , ,, ,

, , , ,,
yx e

x y

X Y X Y
t x y x y

C C C C

X Y
x y

C C

FF km Cg
f G m k

e
f

C P P C

 w
w w w w


w

  w  w

 

 


    

  


 


 (2) 

 

In this situation, xf  and
yf  are dimensionless Journal supporting forces. The analytical form of the 

nonlinear journal force of the short bearing model proposed by Capone (Adiletta, 1996) is adopted 

in this study.  
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The Runge-Kutta method with adaptable step size is implemented to perform the numerical 

integration of the governing equation. 

 

The parameters listed in Table 3 are used to compute the transient responses of the rotor 

impulsively loaded by a step and a ramp mass unbalance load, respectively. The profiles of loads 

are given by Fig.5. Similar to the previous 2D case, the blade loss process is simulated by the 

continuous redistribution of the unbalance mass ρ with time , where the dimensional time is 10/π≈
3.2s.  

 

For the case ρ=0, where the system only bear the gravity load under a specific speed, the orbit is 

illustrated in Fig.6(a). It is observed that the equilibrium positions of 1m  and 2m  are (0.4256, -

0.3702) and (0.4256, -0.3824), from which we have 1 2x x . In light of Eq. (3), the x-acceleration is 

equal to zero and xf  should be and indeed is zero which ensures that 2m is in a balanced state. The 

fact that 1y  and 2y  are not equal is intended to generate lubricant forces to balance the gravity loads. 
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Figure 5 (a) Profile of step load, (b) Profile of ramp load 

 

Table 3 Parameters of the rotor under gravity loads at a specific rotation speed 

Item Value 

Rotor mass(kg) 114.4 

Diameter(m) 0.08 

Length(m) 0.03 

Oil film gap(m) 0.0002 

Kinetic oil viscosity( Pa⋅s) 0.0115 

Rotation angular speed(rad/s) 100π 

Computing time (dimensionless) 1000 

Eccentricity ρ of the load case 0.1 

Stiffness of  half shaft(N/m) 1.1×10
8
 

Initial coordinate ( 1 1 2 2, , ,x y x y  )(dimensionless) 0.1, 0.1 ,0.15, 0.15 

Initial velocity ( 1 1 2 2, , ,x y x y )(dimensionless) -0.1, 0.1 ,-0.1 ,0.1 

 

From Fig.6(a) it is observed that the two orbits of 1m  and 2m  are almost overlap, hence in the 

following study only the orbit of  1m  is selected as the research object. Fig.6(b) and (c) show the 

trajectories of the journal center when a sudden unbalance step or ramp load is applied after the 

journal converges to its equilibrium. The two load profiles are given by Fig.5(a). The unbalance 

force will push the journal away from the equilibrium center and eventually drives it to an orbit of 

stable limit cycle. Naturally, the ramp load case needs a longer time to progress to the limit cycle. 

From Fig.7, it is observed that the maximum transient amplitude of the step load be a little larger 

than the one of the ramp load and the rotor in both cases will evolve into an identical orbit in the 

end. 

 

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0
 y

1

 y
2

Equilibrium

y

x
 

(a) 

0.0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0.0

0.2

y
1

x
1

y
1

Limit Cycle

 

(b) 

0.0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0.0

0.2
 y

1

Limit Cycle

x
1

y
1
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Figure 6 Results under different loads: (a) Orbit under gravity load; (b) Orbit under step 

load; (c) Orbit under ramp load. 
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Figure 7 Comparison of the transient response of the step load and ramp load 

 

At ρ=0.1, the LLE diagram (Fig.8(a)) is generated with the Benettin method (Benettin, G. and L. 

Galgani, 1980). The rotor is in chaotic state at the corresponding speed when the LLE is large than 

zero. It can be observed that the LLE diagram coincides with the two bifurcation diagrams. Two 

bifurcation diagrams shown in Fig.8(b) and (c) are designated to investigate the responses of the 

rotor with varying rotation speeds. The results show that the rotor undergoes small amplitude period 

motions orbiting around the equilibrium when the speeds less than 540 rad/s. After a short period of 

quasi-periodic evolution in the interval (540,556) rad/s, the rotor goes into a double-period orbit 

when the speed reaches 556 rad/s. After the speed rises up to 630rad/s, the rotor suddenly enters 

chaotic state at 680rad/s. Then, the rotor undergoes a short period of double period again before it 

evolves into another chaotic state at 768rad/s.  On the whole, it is observed that the route of the state 

of the system from period motion to chaos is very complicated.  
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Figure 8 Results of variation rotation speeds, (a) Largest Lyapunov exponent diagram; (b) 

bifurcation diagram of x1; (c) bifurcation diagram of y1. 

Conclusions 

In this paper, two transient analyses of both a real engine rotor and a theoretical Jeffcott rotor have 

been conducted. A transient response analysis is conducted for start-up of the twin spool rotor 

shows that the blade loss will significantly influence the maximum transient response of the rotor.  

 

Next, considering it is time consuming to perform lots of transient analysis with the 2D FEM model 

to get the dynamical properties of the rotor, a reduced Jeffcott rotor model supported by 

symmetrical slide bearings under step and ramp sudden unbalance loads has been investigated. The 

results show that the system will recover to a stable motion after undergoing unbalance impacts 

while the maximum amplitude resulting from the step load is larger than the one from ramp load. At 

a specific eccentricity, Poincaré sections have been constructed to investigate the responses of the 

rotor when the rotation speed changes. The bifurcation diagrams of displacements show that the 

route of the system evolves into chaos are complicated. The largest Lyapunov exponent diagram 

shows a good correspondence of the bifurcation diagram in indicating when the rotor evolves into 

chaos.  
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