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Abstract 

Turbulent natural convection in an enclosed cavity with two differentially heated opposite walls is 

investigated numerically by means of large-eddy simulation (LES). The dynamic global-coefficient 

subgrid-scale (SGS) model based on the “global equilibrium” approach for weakly compressible 

flows is applied. It can be shown that the physical mechanisms of the transition phenomena could 

be adequately captured. Tollmien-Schlichting waves persist along the hot and cold vertical walls. 

Nevertheless, the onset of transition occurs much earlier along the hot vertical wall in comparison to 

the cold vertical wall. Relaminarization flow regimes along the horizontal adiabatic top and bottom 

walls have been found to be distinctly different. 

Keywords: Transition phenomena, turbulent natural convective flow, large eddy simulation, 

dynamic global model. 

Introduction 

Turbulent natural convection in tall cavities with two differentially heated opposite walls has been 

the subject of numerous numerical studies due to its wide application in diverse industries. For 

example, cooling of electronic components or solar energy applications. In such configurations, two 

distinct patterns are usually observed in the flow structure – the boundary layers along the walls and 

the recirculating motion in the core. As succinctly indicated by Paolucci and Chenoweth (1989), the 

transition from a laminar to turbulent flow occurs at the critical Rayleigh number between 107 and 

108. A further increase in the Rayleigh number leads to a highly-turbulent motion in which wave-

like structures may be found in the boundary layers (Paolucci, 1990, Trias et al., 2007). 
 
One important feature of a buoyant flow in a tall cavity is the concurrent occurrence of laminar, 

transitional and turbulent regimes along the vertical walls as pointed out by Betts and Bokhari 

(2000) who have performed a number of experiments to investigate the buoyancy-driven flow in a 

rectangular cavity with an aspect ratio of 28. It was shown that the flow became fully turbulent in 

the downstream edges along both the heated and cooled vertical walls. Physical mechanisms 

involved in the transition process have been detailed by Paolucci (1990). Travelling waves in the 

distinctive “hook” pattern have been found to precede the transition process; a finding consistent 

with a number of experimental studies by Elder (1965) and Jaluria and Gebhart (1977). These 

characteristic folding waves have been found to closely resemble the Tollmien-Schlichting waves in 

forced convection boundary layers. 

 

In this present study, the transition phenomena of turbulent natural convection in a tall cavity is 

elucidated via the consideration of the LES and SGS modeling of the dynamic procedure based on 
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“global equilibrium”. The concurrent occurrence of laminar, transitional and turbulent regimes 

along the vertical walls and relaminarization regimes along the horizontal walls are discussed. 
 

Mathematical Formulation 

Governing Equations 

In LES, scale separation between large-scale structures and small-scale eddies can be achieved by 

spatially filtering the conservation equations of the mass, momentum and energy which in the 

present case are assumed to have variable transport properties. Adopting Favre averaging and 

neglecting acoustic waves, the fluid motion can be described by the filtered continuity, momentum, 

and energy equations for a weakly compressible flow as 

    
 

0
j

j

u

t x

 
 

 
     (1) 

    
   

 j i j ij ij

ref i

i j i i

u u u p
g

t x x x x

   
 

   
      

    
     (2) 

    
   p p i p i

i i i i

C T C u T C hT

t x x Pr x x

       
   

     
     (3) 

where   and T
~

 are the filtered density and temperature respectively, ref  is the reference density 

at reference temperature refT , iu~  and ig  are the respective filtered velocity and gravitational 

vectors, p  is the filtered pressure, Pr is the Prandtl number and μ is the dynamic viscosity. 

  

In Eq. (2), ij~  is determined by the Stoke’s hypothesis as 
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while the dynamic viscosity in Eq. (3) is calculated according to 
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where C is the Sutherland constant. For air, C and Pr are 120 and 0.71 respectively. The unresolved 

turbulent SGS momentum stress tensor  ij i j i ju u u u    in Eq. (2) is modelled through an SGS-

viscosity model as 
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where sgs  is the SGS viscosity and   2ij i j j iS u x u x     . As detailed by Erlebacher et al. 

(1992), kk  is assumed to be negligible for natural convective flows in which the effect of acoustic 

waves is considered to be small. The SGS thermal flux vector ih  is modelled by the SGS Prandtl 

number Prsgs as outlined by Eidson (1985): 
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It is noted that variation of the SGS thermal flux as represented by Eq. (7) accounts for variable 

thermal diffusion due to changing SGS viscosity. 

Dynamic Model Based on Global Equilibrium 

The dynamic global-coefficient model proposed by You and Moin (2007) which is based on “global 

equilibrium” between the SGS dissipation and viscous dissipation requires only a single-level test 

filtering procedure. In formulating this model, the test-filtered resolved-scale turbulent kinetic 

energy equation can be obtained as Subtracting test-filtered resolved-scale turbulent kinetic energy 

equation from the test-filtered total turbulent kinetic energy equation yields a transport equation for 

ˆ ˆ ˆ ˆ
ii i i i iT u u u u   and invoking the Germano identity, a transport equation for iiiiii TL ̂  is 

derived as 
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For a weakly compressible flow, the pressure dilatation term in Eq. (9) can be neglected following 

the observation of Vreman et al. (1995). Also, as detailed by Lee et al. (2010), the time variation 

term can be taken to be negligible in statistically steady turbulent flows. By taking volume 

averaging of Eq. (9) and assuming “global equilibrium”, the model coefficient CDVME can be 

obtained as 
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The SGS Prandtl number could also be determined dynamically using the “global equilibrium” 

hypothesis. Subtracting the transport equation for the Favre-filtered resolved temperature variance 
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from the Favre-filtered total temperature variance equation and the test-filtered transport equation 

for resolved temperature variance from test-filtered total temperature variance equation results in 

the transport equations for  j TT TT    and 
ˆ ˆˆ

j TT TT     which they can be expressed as 
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The transport equation for ˆ
j

    is derived as 
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Assuming that time variation and redistribution terms are negligible, a global integration of Eq. (15) 

results in a dynamic evaluation of DVMEPr :  
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For convenience, this model is termed DVME in the present article. 

Numerical Model 

Turbulent natural convective flow is simulated in an enclosed cavity with two differentially heated 

opposite walls. The geometry is shown in Figure 1 which corresponds to the experimental apparatus 

used by King (1989) with an aspect ratio of H/W = 5. A hot wall (x = 0) and a cold wall (x = W) 

were maintained isothermal giving a temperature difference of 45.8oC. No-slip boundary condition 

is used for the velocities at all solid walls while Dirichlet boundary condition is applied at the hot 

and cold walls where THot = 77.2oC and TCold = 31.4oC. This yields a Rayleigh number based on the 

cavity width as Ra = 4.56 × 1010. For the insulated walls, Neumann boundary condition is applied, 

i.e. ∂T/∂n = 0, where n is the direction perpendicular to the wall. The predicted temperature field is 

validated against wall temperatures that have been measured via twenty thermocouples with an 

accuracy of ±0.2 K. The predicted velocity field is validated against Laser Doppler Anemometer 

(LDA) measurements with uncertainty of the velocity measurements approximated to be about 

±0.02 m/s. 

 
Figure 1.  Geometry of the cavity. 

 

Finite volume formulation is utilized to discretize the filtered equations on a collocated grid. The 

convective terms are approximated using the fourth-order central differencing scheme while the 

diffusion terms and other spatial derivatives are approximated using the second-order central 

differencing scheme. The numerical solution is advanced in time using an explicit two-step 

predictor-corrector approach. It involves a second-order Adams-Bashforth time integration scheme 

for the predictor stage and a second-order quasi Crank-Nicolson integration scheme for the 

corrector stage. Pressure correction steps which are incorporated in both the predictor and corrector 

stages involve the inversion of pressure correction Poisson equations and are solved by means of 

Krylov methods. Detailed derivation and implementation of the numerical method can be found in 

Lau et al. (2011). 

 

Three grid resolutions are tested and their details are presented in Table 1 in wall units. From Table 

1, it is clear that even the coarse mesh (DVME1) is sufficient to resolve the development of 

boundary layer in turbulent natural convection since the first mesh point lies within x+ < 1.1, 
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implying that viscous sublayer of the turbulent boundary layer is sufficiently resolved. It has been 

found that at least 6 mesh points are allocated in regions close to the wall to sufficiently capture 

formation of the turbulent structures in the cavity. A non-uniform mesh is applied where further 

from the walls the grid points are stretched geometrically toward the core of the cavity where the 

flow is expected to be highly stratified. Differences between the mean velocity profiles in the coarse 

(DVME1), medium (DVME2) and fine (DVME3) grid resolutions have been found to be small and 

do not exceed 4.2%. Thus in the following, numerical results are presented for the fine mesh unless 

mentioned otherwise. All simulations are carried out for approximately 25 000 time steps to allow 

initial transients to develop in the cavity before data are gathered from additional 100 000 time steps 

to satisfactorily capture the turbulent statistics. Stability of the numerical algorithm is ensured by 

employing a maximum Courant–Friedrichs–Lewy (CFL) criterion of 0.35 in all simulations. 

 

Table 1. Mesh Specification of Cases Simulated in Present Study 

Case Grid Points (x,y,z) x+ Δy+ Δz+ 

DVME1 (75,163,78) ≤ 1.01 ≤ 41 ≤ 43 

DVME2 (112,204,94) ≤ 0.67 ≤ 34 ≤ 39 

DVME3 (131,245,119) ≤ 0.32 ≤ 26 ≤ 34 

     

Results and Discussion 

For validating the numerical model, Figs. 2 and 3 compare the evolution of time-averaged velocity 

and mean non-dimensional temperature    /Cold Hot ColdT T T T    profiles along the height of the 

cavity in the central x-y plane. Overall, good agreement is achieved between the predicted and 

measured profiles. Nevertheless, predicted temperatures are observed to be higher than the 

experimental data at y/H = 0.5. This discrepancy is consistent with the LES simulations performed 

by Barhaghi and Davidson (2007) on the same geometry where possibly heat loss could have occur 

in the experimental apparatus especially in the upper section of the cavity due to the imperfect 

insulation along the walls. 

     
 Figure 2.  Velocity profiles  Figure 3. Temperature profiles. 
 

In order to describe the transition phenomena of turbulent natural convective flow in the cavity, the 

onset of transition is primarily triggered by disturbances which propagate in hook-like structures 

along the boundary layer in the form of Tollmein-Schlichting waves. Figs. 4 and 5 depict the 

 
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formation of coherent structures are represented by iso-surfaces of the Q-criterion as was detailed 

by Hunt et al. (1988) for the hot and cold vertical walls respectively. Flow in the beginning portion 

of the hot wall is clearly laminar for a shorter period due to the absence of vortices in the height 

section 0 < y/H < 0.2. However, the flow in the beginning portion of the cold wall remains rather 

laminar for a longer period due to the absence of vortices in the height section 0.5 < y/H < 1.0. As 

the flow travels upwards along the hot vertical wall and downwards along the cold vertical wall, 

propagation of Tollmein-Schlichting waves which resemble the characteristic hook-like structures 

in the instantaneous isotherms ensues as disturbances began to amplify in the boundary layer. This 

distinctive hook pattern may be recognized as a series of vortex rolls in which faster moving fluid in 

the inner region of the waves are thrown out into the stratified core, leaving behind a region of 

lower pressure. As a result, fluid from the exterior whose temperature is lower than that in the inner 

region is decelerated and thereby entrained toward the wall, triggering a folding mechanism which 

progresses as the waves propagate. As time proceeds further, vorticity within these structures 

becomes excessively large that certain segments along a vortex roll starts to lift off from the wall, 

thereby disrupting the boundary layer and resulting in structures which are mostly irregular and 

disorganized 

 

  
Figure 4.  Coherent structures near the  Figure 5.  Coherent structures near the 

 hot wall.  cold wall. 
 

The transition phenomena due to relaminarization can also co-exist for turbulent natural convective 

flow in the cavity especially at the corners between hot and top walls and between cold and bottom 

walls. Figs. 6 and 7 illustrate the instantaneous isotherms of z-vorticity accompanied by the velocity 

vectors of the flow fields near these two regions. It can be clearly seen that the relaminarization 

behavior of the flow near the top horizontal adiabatic wall is distinctly different from the flow near 

the bottom horizontal adiabatic wall. Breakdown of coherent structures as the upward flow along 

the hot vertical wall hits the top horizontal adiabatic wall appears to be more gradual while the 

downward flow along the cold vertical wall hitting the bottom horizontal adiabatic wall augmented 

by the gravitational acceleration appears to be more abrupt.  
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Figure 6.  Relaminarization flow structures  Figure 7.  Relaminarization flow structures  

 near the top wall.  near the bottom wall. 
 

Conclusions 

The dynamic procedure based on “global equilibrium” to determine the model coefficient of the 

Vreman SGS model in LES is applied to simulate the characteristics of turbulent natural convection 

in an enclosed cavity. The onset of transition of different flow regimes of the boundary layer is 

found to be prevalent along the hot and cold vertical walls as well as the flow turns at the top and 

bottom horizontal adiabatic walls. Essentially, propagation of Tollmein-Schlichting waves 

recognized as a series of vortex rolls exist along the hot and cold walls. The relaminarization 

behaviour is characterised by the breaking down of the coherent structures which occurs at the top 

and bottom horizontal adiabatic walls. 
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