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Abstract 

Direct approach was extended beyond the scope of elastic shakedown to determine the 

parameters (strain increments and stress state) of an arbitrary steady elasto-plastic cycle 

under prescribed loading in ratcheting, alternating flow or in combination of the both. 

The resulting convex constrained optimization problem was formulated making use of 

finite element discretization. The object function equals to the work of fictitious elastic 

stresses on the plastic strains subtracted from the energy dissipation, with both terms 

being integrated over the cycle time and spatially over the body. The constraint system 

includes equality constraints of plastic strain incompressibility, cycle closure and initial 

residual stress self-balance, which are enforced by means of quadratic penalties; and 

inequality ones ensuring that the total stress is admissible. For testing purposes the Bree 

problem was solved employing the optimization formulation, with the resulting plastic 

strains over each half-cycle agreeing well with the analytical solution to the problem, 

even though a cycle was discretized only by two time instants. 

Keywords: Direct computation, Finite elements, Steady cycle, Plastic ratcheting, 

Inelastic shakedown 

Introduction 

Elastic shakedown theory can be thought of as an extension of limit state theorems. The 

former allows determining the boundary between zone II of the Bree diagram (Bree 

1967), shown in Fig. 1, and zones III–V. The further extension is the theory of steady 

inelastic structural response under repeated loadings (the response can be alternating 

flow – zone III, plastic ratcheting – zone V or the combination of the both – IV). 

Whereas in zone II of the Bree diagram a structure usually shakes down to purely 

elastic deformation over a relatively small number of cycles, stabilization to a steady 

cycle in excess of shakedown can proceed quite slowly and take many tens of cycles, 

with the structural behavior in steady condition being crucial for structural life 

assessments. The computations over loading history show that a slow stabilization 

usually occurs in severe alternating flow combined with incremental collapse (Abramov, 

Gadenin et al, 2011), which corresponds to the zone IV of in Fig. 1. In such case the 

whole stress-strain history can be very hard to compute using the step-by-step approach, 

with long loading history – not the amount of the degree of freedom unknowns – 

becoming the main trouble. This fact necessitates the development of an approach 

capable to find the steady cycle parameters (strain range and increment) directly. 

Although effective procedures for elastic shakedown have already been proposed and 

implemented, there are only few approaches being under development for steady 

plastic response, such as the algorithm by Chen and Ponter (2001), which is capable to 

capture the plastic shakedown boundary between zones III and IV, and the technique by 
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Spiliopoulos and Panagiotou (2012) 

employing the residual stress 

decomposition method to determine 

response for any kind of steady 

cycle.  

 

In order to find the solution to a 

steady cycle problem, these 

approaches iteratively adjust either 

elastic constants or residual stress 

field. On the other hand, the problem 

of determining steady plastic 

response under prescribed cyclic 

loading can also be formulated as a 

convex constrained optimization 

problem (Gokhfeld and Cherniavsky, 

1980). So the aim of the present study 

is to extend a mathematical 

optimization approach combined with 

finite element discretization to steady 

cycle problem so as to steady cycle 

state parameters for any region of the 

Bree diagram could be obtained. 

Mathematical optimization problem formulation 

The system of expressions describing the deformation process in a steady state in 

terms of continuum mechanics can be written in the following way. The total stress is 

constituted by the fictitious elastic 
e
 and residual  stresses, with the latter including 

the initial residual stresses 0 at the beginning of a cycle and the residual stress 

increment accumulated since then over time : 






0

0 dee
ρρσρσσ  . (1) 

The total strain rate is constituted by the elastic strain rate eε part, which is caused by 

the change in the fictitious elastic stress 
e
, and the parts due to the residual stress rate 

ρ and the plastic strain rate "ε : 

"1 ερEεε   e , (2) 

with E standing for the elastic stiffness matrix of the material. 

The equilibrium for the fictitious elastic stress 
e
 holds naturally. For the residual 

stress field , equilibrium over a body and at the part of its surface Sp with prescribed 

tractions can be stated as follows: 

;at  ,in  00 pSnV 0ρ0ρ   (3) 

pSnV at  ,in  0ρ0ρ   . (4) 
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Figure 1. Bree problem 
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Since the total strain rate and the elastic rate fields in Eq. (2) are compatible, the 

plastic strain rate field and the strain rate field caused by the residual stresses are also 

compatible to a displacement rate 


u  field at every time moment: 

)(
2

11" 



uuρEε  . (5) 

At each time instant in every material point the total stress is admissible: it lies inside 

or at the yield surface defined through a yield function f(): 

0)( σf . (6) 

The associated flow rule holds for plastic strain with a non-negative plastic multiplier  ≥ 0: 

),(σε f       (7a) 

0)( σf , (7b) 

0)( 


σf . (7c) 

Steady cycle condition may be enforced either in terms of residual stresses by making 

them exactly repeat every steady cycle () = ( + T), with T – cycle time period: 

  ,0
0

 
T

dT ρρ    (8a) 

or, equivalently, in terms of strains by ensuring the plastic strain field increment 
"ε  

over a cycle to be compatible with displacement field increment u: 

),)()((
2

1
)(  uuε

" T  .)(
0

dT

T

 ""
εε   (8b) 

Making use of Drucker’s postulate, the system of equations and constraints (1–8) may 

be recast according to (Gokhfeld and Cherniavsky, 1980) to a convex mathematical 

optimization problem by retaining Eqs. (1–6,8) as a system of equality and inequality 

constraints and searching for the minimum of the functional J, which can be proved 

to be zero at the exact minimizer, in the optimization field variables 
"ε ,  and u:  

  ,
0

dVdJ
V

e
T

"εσσ     (9) 

with 
"ε  associated to σ  by the flow rule (7a,b).  

 

Let us make time discretization, as Fig. 2 shows, 

where time instant k is in the range from the 

beginning of a cycle (k = 0) to its end (k = m), with 

the both coinciding by the fact the cycle is closed. 

The strain k, displacement uk, residual stress k 

( mk ,1 ) have the meaning of increment, 0 is 

initial residual stress, and the elastic stress k
e
 

corresponds to the k-th instant.  

 

Employing finite element spatial discretization, the 
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self-equilibrium condition (3) for the initial residual stress can be formulated as: 

0ρBρB 


NG

i

i

T

ii

T w
1

00
, (10a) 

where NG is the total number of the Gauss integration points, wi is the integration 

weight of point i. From now on all vectors and matrices indexed by i or j imply local 

ones for the i-th or j-th point, whereas not indexed matrices – global ones. E.g., 

Hook’s relation between the stress and strain for point i at time instant k is e

iki

e

ik εEσ  , 

with }222{ ik

zx

ik

yz

ik

xy

ik

z

ik

y

ik

x

T

ik ε , but the global relation is e

k

e

k Eεσ  . 

 

Having plastic strain increment 
"

kε , in place of Eq. (5) one obtains the displacements induced 

uk by solving for the FE problem with global stiffness K and deformation B matrices: 

"1

k

V

T

k dVεEBKu 
 , (10b) 

and then restores the residual stresses: 

 "

kkk εBuEρ  . (10c) 

The total stress (1) evolves through the cycle points as Fig. 2 illustrates: 





k

l

ili

e

ikik

1

0  ρρσσ . (10d) 

The cycle closure condition (8a) takes the form of 

0ρ 


m

k

ik

1

, (10e) 

and the stress admissibility condition (6) is required to be satisfied for mk ,1 , NGi ,1 : 

0)( ikf σ . (10f) 

Accepting von Mises yield condition the functional J becomes: 


 









m

k

NG

i

ik

Te

ikiiki

T

ikyi wwJ
1 1

"""2 εσεDε , (10g) 

where y is the yield shear stress, }2/12/12/1111{Diagi D . 

Thus, the statement of mathematical optimization problem becomes: J
uρε

" ,,

minimize  

subject to Eqs. (10a–f) satisfied for mk ,1 , NGi ,1 , in addition to which, one 

has to impose incompressibility constraints on plastic strains: 

0εD "

ikVi , mk ,1 , NGi ,1 , (10h) 

where DVi is the diad projecting to the spherical part of tensor: 

   000111000111
3

1 T

Vi D . 
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In order to eliminate displacements, by substitution Eq. (10b) to Eq. (10c) one gets to: 

"

kk EPερ  , mk ,1  (11) 

with the matrix dV
V

T


 EBBKIP

1 projecting an arbitrary strain to the subspace of 

self-equilibrated strains. 

 

For convenience’s sake, let us accept the notation from Vu and Yan et al (2004), 

which simplifies energy relations: 
ikiik w εDe

2/1  – for strain increment vector; 

iiii w BDB
^

2/1  – for deformation matrix, so that uBe
^

i

m

k

ik 
1

; e

ikiik σDt
2/1  and 

ikiik ρDβ
2/1 – for stress vectors. In these definitions Di

-1/2
 and Di

1/2
 are diagonal 

symmetric matrices such that: Di
 -1/2

 = (Di
1/2

)
–1

 and Di = Di
1/2

Di
1/2

. 

 

Von Mises yield condition (10f) can be presented in the form of Euclidian norm:  

  y

k

l

iliikVii 2
1

0 







 



ββtDI . (12) 

Let us define the matrix G a component Gij of which relates plastic strain at point j to 

the induced residual stress at point i: 

jkijik eGβ  , mk ,1 , NGji ,1,  , (13) 

where ijjwiijwj

T
jiwiiij 2/1

_

2/11

_

^
1

^

_

1   DEDDEBKBEDG  (ij = 1 if i = j, ij = 0 if 

i ≠ j; 
iiiw w EE )1(_  ). In the new terms the optimization problem simplifies to: 


 






 

NG

i

m

k

ik

T

ikik

T

iky
iik 1 1

2

02minimize
0

etee
β,e

  (14a) 

  e)14(,02
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NG
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l

jlijiik

iki

NG

j

m

k

jkij

i

T
i

f

ts

teGβDIteGβ

0eD

0eG

0βB

V

^

for mkNGi ,1,,1  . 

 

According to Vu and Yan et al (2004) a small regularization parameter 0 was 

introduced to Eq. (14a) in order to make it differentiable at eik = 0. 

Test problem 

Since the Bree problem of pressurized thin-walled tube under repeated thermal 

loading has an analytical solution (Bree, 1967), it was used to prove the optimization 
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formulation (14) is capable of yielding the solution. If Tresca yield criterion is implied, 

the Bree problem is equivalent to the plain stress problem corresponding to a cross 

section of the tube under the same time-varying thermal stress t and the constant stress 

p equal to the hoop stress in the former problem caused by pressure. The structure was 

discretized with rectangular quadratic finite elements as Fig. 3a shows (0y points along a 

radial direction, 0x – in a hoop one), each having nine integration points. The ux 

displacement at the left edge is restrained, and all the nodes at the right edge have an 

identical value of ux. In a cycle, temperature varies from uniform distribution at time 

point k = 1 to a linear distribution with the gradient directed along 0y axis at the end of a 

cycle (k = 2) (see Fig. 3b). The constant applied stress p amounts to 0.75y, the maximal 

thermal stress t = 2y. The corresponding state is depicted by point A in the Bree 

diagram Fig. 1, at which pure incremental collapse is expected.  

Solution technique 

The conditions of plastic incompressibility (14d), cycle closure (14c) and initial 

residual stress self-balance (14b) are enforced by means of quadratic penalties in an 

extended object function: 

     



   

  
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
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







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^^



, (15)  

where c1,c2,c3 are penalty coefficients, Le – typical element size.

 An unconstrained mathematical optimization problem is formulated using logarithmic 

barrier functions for the inequality constraints (14e):  

0
0

minimize F
iik β,e

, (16) 

H 

 

  

 

  

Analytical: 

 

   

   

    

    

p  

k 
T = 0 

  

x 

y 

uix = 

= ujx 

(a)    (b) 

Figure 3. Problem sketch (a), temperature distribution (b), a comparison of computed and 

analytical plastic strains (c) and total stresses (d) 
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in which 
 


NG

i

m

k

ikf
t

fF
1 1

00 )log(
1

. 

Having denoted f – the vector constituted by all the inequality constraint functions (14e), 

one obtains the stationary condition of F0 as central path conditions: 

,)/1()(

,
1 10

0Ifλdiag

0



   

t

ff
NG

i

m

k ikik  (17) 

or, from another viewpoint, as the modified Karush-Khun-Tucker equations of the 

problem of minimization functional (15) subject to (14e) (Boyd and Vandenberghe, 

2004), with the gradients being taken with respect to the primal variables (e,), and  

being the dual variable vector. So solving Eqs. (17) one applies a simple primal-dual 

interior-point approach; and the greater the parameter t, the closer the solution of 

Eq. (17) to the solution to the original problem given by Eqs. (14a-e). 

 

However, before solving Eqs. (17), one has to find a feasible point (e,) satisfying all 

the inequality constraints (14e). This was done by means of a phase I method: 

.

,,1,,1,)(
..

 minimize

0

0

0

MF

mkNGiSf
ts

S

iikik

iik



β,e

β,e

 (18) 

For initialization S was taken such as to strictly satisfy all the inequality constraints, and 

M ≈ 10|f0(e = 0, = 0)|. Having started with 0 = 10
-4

, and small ci = 10
-5

 so as not to 

pay much of attention to the equality constraints of the original problem (Eqs. (14b-d)) 

at this stage, the phase I method converges quite rapidly as inequality constraint 

functions expressed by Eqs. (14e) are quadratic, and the algorithm based on Newton’s 

method described below performs at quadratically convergent stage immediately. 

 

Eqs. (17) were solved by means of Newton’s method using the analytical expressions 

of first and second derivatives to get primal and dual variable increments ((e,) 

and ). At the second stage exact line search was employed, as without line search, 

Newton’s method experiences convergence difficulties when ||eik|| ≥ 0. The line 

search uses the extended object function F0 as a merit function and ensures    0 and 

the incremented value of (e,,) to be feasible. Basing on the value of surrogate 

duality gap  = –f
T
 the parameter t was determined in each iteration as: 

t = ·NG·m/; the more  is, the more aggressively t increases. 

 

Convergence difficulties entailed by the sum of Euclidian norms term in the object 

function F0 were remedied by the proper choice of  value, combined with adjusting 

the regularization parameter 0 and the penalty coefficients ci. In general, the object 

function reduces successfully when  has a relatively small value of 1–5, and all of 

the four terms in Eq. (15) have nearly the same order of magnitude. However, 

approaching the boundary defined by inequality constraints Eqs. (14e), the method 

can drastically slow down (Wright, 1997). This obstacle was dealt with by a temporal 

reduction of  for several iterations to about 0.05, after which the point becomes 

repelled enough form the boundary for the object function to be reduced further. 
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At the end of the convergence process, 0 was adjusted to be 10
–5

–10
–6

 (2-3 order of 

magnitude less than maximal ||eik||), and the coefficients ci amounted to 10
5
–10

10
 for 

the constraints given by Eqs. (14b-d) to be fulfilled well. 

Results 

Three mesh patterns were used to solve the problem: 5 elements in column and 2 in row, as 

Fig. 3a depicts, 10×1 elements, and 5×1 elements. Only two instances were considered over 

cycle period (m = 2) correspondent to no temperature applied and to the full thermal load. 

 

The convergence process and results obtained in different cases of mesh patterns are 

nearly the same. One has to admit that in spite of the fact that the penalty coefficients 

ci were increased gradually, and the regularization coefficient 0 appearing in the sum 

of norms term was also reduced gradually, the convergence was neither fast nor stable 

since Newton’s method is naturally not suited for the sum of norms problem. So it 

required about a hundred of iterations to converge. 

 

Nevertheless, in spite of the fact that the cycle was discretized over time only by two 

time points, one can see a good agreement between the numerical solution (solid 

lines) and the analytical one (dashed lines) shown in Figs. 3c,d for strain x” and total 

stress x distributions along 0y axis (the stresses are normalized by the Young 

modulus E, e.g. the yield stress y = 0.001). Figure 3c also shows that the strain 

increment over the cycle is compatible, and the checks performed confirm that the 

residual stress 0 is self-balanced, and the plastic strain is deviatoric, which means the 

constraints presented by Eqs. 14b-d are satisfied. 

Conclusion 

It has been shown that the general problem of steady cycle can be solved directly by 

stating it as a convex mathematical optimization problem with the use of finite 

element discretization.  

This formulation has been proved to be able, in principle, to capture the proper results 

for all the parameters of a steady cycle such as plastic strains and residual stresses, 

even though the simple computational approach implemented in the study was used 

for demonstration only and is not claimed to be efficient for the real problem. 
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