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Abstract 

For the finite volume method, the reconstruction step is employed to obtain the states for the 
calculation of numerical fluxes at the faces. To remove the non-physical oscillations, a limiting 
procedure is required. This limiting procedure is so important that it not only influence the 
numerical accuracy in the smooth regions but also affect the robustness of the solver. For the 
unstructured meshes, the design of the limiting procedure is not trivial. The well-known and wide-
used limiting procedure is proposed by Barth and Jespersen in 1989 and lately improved by 
Venkatakrishnan in 1993. However, this method is too dissipative and the overshoot or undershoot 
phenomenon can still be observed. In this paper, a new limiter for hybrid grid is proposed. It limits 
the state variables of a face directly from the corresponding variables of this face’s neighbor cells. It 
is so simple that it can be easily adopted in many solvers based on unstructured grid. 

Keywords: finite volume, multi-dimensional limiter, hybrid grid.  

Introduction 

A main computational challenge with nonlinear hyperbolic equations is the resolution of 
discontinuities. However, any linear scheme higher than first order accuracy cannot generate 
monotonic solutions. Hence, the non-linear limiting function is introduced to avoid numerical 
oscillations [1-5].  
 
A good limiting function should be able to remove the non-physical oscillations nearby the shock 
and can also preserve the numerical accuracy in the smooth regions. Moreover, the limiter function 
should not affect the convergence to the steady state. Barth and Jespersen (1989) introduced the first 
limiter for unstructured grids. The Barth and Jespersen limiter is used to enforce a monotone 
solution. The main idea of their work is to avoid introducing oscillation is that no new local extrema 
are formed during reconstruction. The scheme consists of finding a value in each control-volume 
that will limit the gradient in the piecewise linear reconstruction of the solution. However, their 
method is rather dissipative which leads to smear discontinuities. Furthermore, the limiter may be 
active in smooth flow regions due to the numerical noise, which causes difficulties for steady state 
convergence. To improve the convergence, Venkatakrishnan (1993) proposed a smooth 
differentiable alternative of the minimum function in Barth-Jespersen. However, it does not 
preserve strict monotonicity, slight oscillations can be observed near shock discontinuities. 
Moreover, similar to Barth and Jespersen (1989), it is quite dissipative that predicted accuracy also 
cannot be guaranteed with the fixed stencil when these limiters are used.  
 
In this work, a new multidimensional limiting procedure is proposed to limit the gradient in each 
direction independently. For each face of one cell, only the gradient along the direction between the 
two centroids is limited. This will reproduce a limited difference for each face. After having these 
limited differences, the unlimited differences and the limited differences for each face are limited 
secondly. This produces a new limited difference which is multidimensional in its very nature. The 
rest of paper is organized as follows. The governing equation and numerical method are described 
in section 2 and section 3 respectively. The numerical result and discussion is presented in section 4. 
The final section gives a summary about the main work of the paper. 
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Governing equations 

 

In this paper, the steady Farve-averaged Navier–Stokes equations with the two equation k-ω 

turbulence model are considered, 
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Where U  and  Ξ are the state vectors, F and H are the normal flux vectors. They can be expressed 

as  
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Here, ρ is the density, u is the velocity, E is the total energy, P is the pressure, [I] is the identity 

tensor, q is the heat flux, [τ] is the stress tensor, 
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Numerical Method and Limiters 

 

The numerical semi-discretization of Eq. (1) is, 
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To increase the solution accuracy in space, the left and right states are constructed from 

extrapolated values from cell centers to cell interfaces and then used to construct fluxes (van Lear, 

1979), 
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In order to make the solution be monotonic, the slope limiters are enforced in the extrapolation. For 

example, Barth-Jespersen’s reconstruction (Barth and Jespersen, 1989) and limiter reads, 
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with, 
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In BJ’s method (Barth and Jespersen, 1989), they use a non-differential limiter ψ(1,y)=min(1,y). 

This adversely affects the convergence properties of the solver. For this reason, Venkatakrishnan 

(1993) introduces a smooth alternative of the minimum function in Barth-Jespersen procedure, 
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Although the Venkatakrishnan limiter is used to prevent the non-physical oscillations nearby the 

shock region, the overshoot or undershoot phenomenon can still be observed. Moreover, the 

numerical accuracy is degraded by using Venkatakrishnan limiter. Besides, it could be easily 

observed that the gradient in Barth-Jespersen’s and Venkatakrishnan version is limited by multi-

plying a scalar limiter ϕ. That is, the limiter is the same for each direction. This shows they may be 

too dissipative. 

 

Hence, in this paper, a new multidimensional limiting procedure is proposed to limit the gradient in 

each direction independently. The main idea is to limit the gradient normal to the face direction for 

each face. For each face of one cell, only the difference along the direction between the two 

centroids is limited, 
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This will reproduce a limited difference for each face. After having these limited differences, the 

unlimited differences and the limited differences for each face are limited secondly 

  ,lim ,k k k     .     (13) 

 

Results and Discussion 

 

To assess the performance of the proposed limiter, the case of flow around the transonic RAE2822 

airfoil is chosen in this section. It is well known that the RAE 2822 airfoil is a supercritical airfoil. 

The measurements have been done for a variety of flow conditions by Cook et al. (1979). Hence, 

there are a lot of results for validation.  

 

Here, case number 6 is considered. For this case, the Reynolds number based on a unit chord length 

is 6.5 million, the Mach number is 0.729, and the angle of attack is 2.31 degrees. It is a transonic 

speed case with a thin boundary layer attached to the aerofoil surface. The flow separation is not 
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expected. In this particular case, the results are expected to be primarily dictated by the RANS 

solver. The first grid spacing off the wall is about 1 · 10
−5

 chord length. The flow is assumed to be 

fully turbulent, i.e. transition is not specifically imposed. For the presented simulation, the Green-

Gauss reconstruction technique is employed. The convective fluxes are based on the ROE scheme. 

A viscous wall boundary condition used over the surface of the airfoil, and a free-stream boundary 

condition used at the outer edge of the domain where the flow is everywhere subsonic. The flow is 

initialized using free stream values. 

 
(a)                                                               (b) 

Figure 1.  A plate 

 

The distributions of the pressure coefficient and of the friction coefficient on the airfoil surface are 

plotted in figures 1 and 2. Both results agree well with the experimental data of Cook et al. (1979).  

 
Figure 2.  A plate 
 

Besides, from Fig. 1, it is found that the distribution of Cp by present limiter is better than that by 

BJ limiter as compared to the experimental result. This can be clearly observed in Fig. 1 (b). The 

aerodynamic lift coefficient and the drag coefficient are predicted very accurately.  This can be 

easily found in Table 1. The present results are better than those by BJ limiter as compared with the 

experimental data.  All in all, the results show good performance the proposed limiter. 
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Table 1.  The aerodynamic Coefficients      

                          

                        CL                              CD 

    

  Exp               0.743                            0.0127     

  Present          0.753                            0.0131    

  BJ                  0.725                           0.0144     

 

Conclusions 

In this paper, a new limiter for hybrid grid is proposed. It is so simple that it can be easily adopted 

in many solvers based on unstructured grid. The numerical result around RAE2822 shows that it is 

less dissipative than BJ method.  
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