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Abstract 

Many methods for reliability analysis and reliability-based design optimization have 
been developed since the last decades. However, for most of these methods predicting 
the reliability, stochastic information of the variables has to be assumed as parameters 
like the mean (location parameter) and variance (scale parameter). This assumption 
cannot guarantee the accuracy of the reliability when information is limited. In this 
paper, we propose a nonparametric RBDO using sign test that does not consider the 
parameter but requires limited discrete information, like only sample data. We define 
the uncertainty of the reliability as the decision error of nonparametric hypothesis test 
due to limited information. We examine the tendency of the solution with respect to 
the reliability of a system and the uncertainty of the reliability through an example. 

Keywords: Reliability analysis, Reliability-based design optimization, Uncertainty of 
reliability, Reliability error, Sign test, Limited discrete information  

Introduction 

In deterministic design optimization, since uncertainty of input variables does not 
considered, the reliability of a system cannot be evaluated. Thus, a safety factor has 
been employed to guarantee the reliability. To consider the reliability of a system, 
stochastic design optimization such as reliability-based design optimization (RBDO) 
has been developed. RBDO can provide an optimum point satisfying target the 
reliability of a system by using stochastic information of input variables. 
 
There are many methods for reliability analysis such as the first and second order 
reliability method (Cornell, 1969; Breitung, 1984), moment-based method (Lee and 
Kwak, 2006; Rahman and Xu, 2004) and its implementation to RBDO (Shetty et al., 
1998; Shan and Wang, 2007). Generally, in reliability analysis, uncertainty of a 
system is caused by uncertainty of input variables. In these methods, to treat the 
uncertainty, distribution of input variables has to be assumed as parameter such as 
statistical moments. However, in practical problems, information of input variables is 
often limited and discrete. Thus, the reliability of a system also has uncertainty 
because of the lack of information. Therefore, to treat the limited discrete information, 
we should consider the reliability of a system as well as the uncertainty of the 
reliability.  
 
Recently, RBDO with confidence level under input model uncertainty is suggested 
(Noh et al., 2011). They assume that the uncertainty of the reliability is due to 
uncertainty of parameters of input variables and considered as a confidence level of 
the parameters. However, the method cannot quantify the uncertainty of the reliability 
but provides qualitative trends of the uncertainty of the reliability. 
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In this paper, we propose a new approach for nonparametric RBDO (NRBDO) using 
sign test. We assume that the uncertainty of the reliability is caused by the limited 
discrete information. A reliability analysis method, for instance, Akaike information 
criterion (AIC)-based reliability analysis method (Lim and Lee, 2012) is adopted to 
estimate the reliability of a system for discrete information. With the estimated 
reliability, we estimate the uncertainty of the reliability by using nonparametric sign 
test for limited discrete information. The proposed method can quantify the reliability 
of a system as well as the uncertainty of the reliability. For convenience, we name the 
reliability of a system and the uncertainty of the reliability as the first and second 
reliabilities, respectively. Using an example of RBDO with limited and discrete 
information of input variables, we evaluate the first and second target reliabilities.  
 
We introduce AIC and sign test, then we formulate NRBDO in the second section. In 
the third section, we illustrate and compare deterministic design optimization (DDO), 
RBDO and NRBDO for a mathematical example. In the last section conclusions are 
summarized. When information of input variables is limited and discrete, the 
proposed method can obtain optimum point considering the reliability of a system as 
well as the uncertainty of the reliability.  

Nonparametric Reliability-based Design Optimization 

In this section, we introduce AIC and sign test. AIC is adopted to estimate the 
reliability using discrete information. Then, considering limited discrete information, 
sign test is used to decide whether the second reliability namely the uncertainty of the 
reliability is acceptable or not. Combining these two concepts, we achieve an 
optimum result satisfying the first as well as the second reliabilities for limited 
discrete information. 

Reliability Analysis Using Akaike Information Criterion 

Akaike information criterion was introduced in 1973 by Akaike (Akaike, 1973) and 
has been developed and implemented on various fields of science such as statistics, 
ecology, engineering and reliability analysis (Lim and Lee, 2012; Hurvich et al., 1998; 
Pan, 2001; Spendelow et al., 1995; Al-Rubaie et al., 2007; Go et al., 2011).  
 
AIC is a method that selects the best estimated distribution from candidate 
distributions provided by a user. The AIC is defined as follows (Sakamoto et al., 
1986): 

    	߮ ൌ െ2൫ ௠݂௟ െ ݊௙௥௘௘൯     (1) 

where ௠݂௟ is maximum log likelihood of a candidate distribution, and ݊௙௥௘௘ stands for 
the number of parameters of a candidate distribution. 
 
In this paper, we use six types of distribution: normal distribution, log-normal 
distribution, Gamma distribution, Weibull distribution, exponential distribution and 
generalized extreme value distribution. When the likelihood of a candidate 
distribution is approaching maximum, the probability of estimation becomes the 
highest. Hence, we choose the best estimated distribution with the smallest ߮. Then 
we estimate the first reliability by integrating its probability density function. 
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Second Reliability Analysis Using a Sign Test 

The sign test is one of the oldest nonparametric hypothesis tests. In order to make a 
decision, whether to reject the null hypothesis or not, a binomial distribution is used 
to calculate the rejection or critical region (Conover, 1980). 
 
Let ܲሺ൅ሻ	and	ܲሺെሻ be the ratio of success and failure, respectively. Then the null 
and alternative hypothesis of sign test is given as follows: 

:଴ܪ	     ܲሺ൅ሻ ൒ ܲሺെሻ     (2) 

:௔ܪ	     ܲሺെሻ ൏ ܲሺ൅ሻ 

As the number of successes increases, i.e., ܲሺ൅ሻ increases, decreasing the chances of 
rejection of the null hypothesis. When we undertake a hypothesis test, a decision error 
always exists. In this case, there is a type II error since we do not reject null 
hypothesis. We decide a hypothesis using critical region calculated by integrating the 
binomial distribution. The probability mass function of binomial distribution is of 
form as follows: 

,௧݊|ݔሺݕ	     ሻ݌ ൌ ቀ
݊௧
ݔ ቁ ݌

௫ሺ1 െ  ሻ௡೟ି௫     (3)݌

where ݊௧ is the number of trials, ݌ stands for success probability, and ݔ is the number 
of successes which is a non-negative integer. 
The critical region can be calculated by a summation of Eq. (3). The summation is of 
form as follows: 

    	ܴଶ ൌ ∑ ,ሺ݅|݊௧ݕ ሻ݌
௡ೞ
௜ୀ଴  for non-negative integer ݅      (4) 

where ݊௦ is the number of success and ܴଶ stands for the second reliability. Also we 
can treat Eq. (3) on non-negative real number by using Gamma function. Then Eqs. 
(3) and (4) can be rewritten as follows: 

,௧݊|ݔሺݕ	     ሻ݌ ൌ
௰ሺ௡೟ାଵሻ

௰ሺ௡೟ି௫ାଵሻ௰ሺ௫ାଵሻ
௫ሺ1݌ െ  ሻ௡೟ି௫      (5)݌

    	ܴଶ ൌ ׬ ,௧݊|ݔሺݕ ݔሻ݀݌
௡ೞ
଴  for non-negative real number (6)      ݔ 

We can estimate the first reliability using Akaike information criterion, and then 
estimate the number of success by Eq. (7). 

    	݊௦ ൌ ܴଵ݊௧      (7) 

where ܴଵ is the first reliability, the reliability of a system. Then, the second reliability 
using Eq. (6) can be estimated and a decision not to reject the null hypothesis if the 
second reliability is greater than the second target reliability can then be made. 

Mathematical Example 

We choose an example for optimization (Noh et al., 2011; Youn and Choi, 2004; 
Youn and Wang, 2008; Lee et al., 2013) consisting of two design variables and three 
constraint functions. The optimization formulation of the example is of form in Eq. (8) 
 
Firstly, we find the optimum point using DDO. Secondly, we find the optimum point 
using RBDO with respect to target reliability. Finally, we find the optimum point 
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using NRBDO with respect to the reliability of a system and the uncertainty of the 
reliability. In this section, each of the results is illustrated.  

 Find	ݔଵ,  ଶ      (8)ݔ

 to	minimize	݂ሺ࢞ሻ ൌ െݔଵ ൅   ଶݔ

 subject	to	݃ଵሺ࢞ሻ ൌ 1 െ ௫భ
మ௫మ
ଶ଴

  

    ݃ଶሺ࢞ሻ ൌ 1 െ
ሺ௫భା௫మିହሻమ

ଷ଴
൅

ሺ௫భି௫మିଵଶሻమ

ଵଶ଴
  

    	݃ଷሺ࢞ሻ ൌ 1 െ ଼଴

൫௫భ
మା଼௫మାହ൯

  

Deterministic Design Optimization 

DDO problem is formulated in Eq. (8). It is easy to obtain the optimum point. We use 
‘fmincon’ in MATLAB to solve the optimization problem. We can obtain minimum 
value of -5.9955 at ࢞ ൌ ሺ7.7883, 1.7928ሻ . The active constraint functions are 
݃ଶሺ࢞ሻ	and	݃ଷሺ࢞ሻ  at the optimum point. However, DDO cannot consider the 
uncertainty of the input variables. Therefore, the optimum point can exist in infeasible 
region if any uncertainty of the input variables occurs. 

Reliability-based Design Optimization 

RBDO formulation is of form as follows: 

 Find	ݔଵ,  ଶ      (9)ݔ

 to	minimize	݂ ൌ െݔଵ ൅   ଶݔ

 subject	to	Prൣܩ௝ሺࢄሻ ൑ 0൧ ൒ ܴଵ
୲ୟ୰୥ୣ୲, j ൌ 1,2,3  

ሻࢄଵሺܩ  ൌ 1 െ ௑భ
మ௑మ
ଶ଴

  

ሻࢄଶሺܩ  ൌ 1 െ
ሺ௑భା௑మିହሻమ

ଷ଴
൅

ሺ௑భି௑మିଵଶሻమ

ଵଶ଴
  

ሻࢄଷሺܩ  ൌ 1 െ ଼଴

൫௑భ
మା଼௑మାହ൯

  

 
Generally, in deterministic design optimization, the uncertainty of the input variables 
cannot be considered. Therefore, to treat the uncertainty, we assume distribution of 
the input variables as the normal distribution, and then obtain 106 random samples 
from the distribution. The assumed distribution is as follows: 

 ௜ܺ~ܰሺݔ௜, ,ଶሻߪ ݅ ൌ 1,2, ߪ ൌ 0.3      (10) 

We use Monte Carlo simulation to estimate the reliability of a system using 106 
samples. A genetic algorithm is used as the optimization algorithm.  
 
When the first target reliability is 0.5, the result is similar to that of DDO. Because we 
assume the distribution of the input variables as the normal distribution, the 
probability of success is almost 1/2. However, if the first target reliability changes, 
the optimum point obviously changes. The results of optimum point and its objective 
value with respect to the first target reliability are shown in Table 1. If the design 
requires higher reliability, then the objective function should have a higher value. 
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Nonparametric Reliability-based Design Optimization 

Using hypothesis test, NRBDO formulation can be written as follows: 

 Find	ݔଵ,  ଶ      (11)ݔ

 to	minimize	݂ ൌ െݔଵ ൅    ଶݔ

 subject	to	do	not	reject	ܪ଴:	Prൣܩ௝ሺࢄሻ ൑ 0൧ ൒ ܴଵ
୲ୟ୰୥ୣ୲	with	ܴଶ

୲ୟ୰୥ୣ୲, j ൌ 1,2,3   

 ܴଶ
୲ୟ୰୥ୣ୲ ൌ 1 െ type	II	error   

ሻࢄଵሺܩ  ൌ 1 െ ௑భ
మ௑మ
ଶ଴

   

ሻࢄଶሺܩ  ൌ 1 െ
ሺ௑భା௑మିହሻమ

ଷ଴
൅

ሺ௑భି௑మିଵଶሻమ

ଵଶ଴
   

ሻࢄଷሺܩ  ൌ 1 െ ଼଴

൫௑భ
మା଼௑మାହ൯

  

In NRBDO, we obtain 50 random samples from Eq. (10). As explained above, if the 
number of samples is small, we cannot assure that the reliability of a system is 
accurate. Therefore, the uncertainty of the reliability must be considered due to 
limited information.  
 
Results of NRBDO are summarized and illustrated in Table 2 and Figure 1, 
respectively. For	 the cases 1, 2 and 3, from the point of view of DDO, these optimum 
points are in infeasible region since the first target reliability is 0.1. For cases 2, 5 and 
8, the second target reliability is 0.5, so results of these cases are similar to those of 
RBDO. For cases 4, 5 and 6, the first target reliability is 0.5 and the second target 
reliabilities are different. For case 4, optimum point is in infeasible region because the 
second reliability guarantees probability of 0.1. However, for case 6, optimum point 
is in feasible region because the second reliability guarantees probability of 0.9. From 
the result of optimum point, we can show the trend with respect to the first and 
second target reliabilities. Note that as the target reliability increases, objective value 
also increases. 
 
Results of DDO, RBDO and NRBDO are shown in Table 3 with the first and second 
reliabilities of 0.5. When distribution of input variables is symmetric and the first 
target reliability is 0.5, RBDO result is similar to DDO result. However, in RBDO, 
since we do not consider the number of samples to estimate the distribution of input 
variables, we cannot quantify the uncertainty of the reliability. In NRBDO, since we 
consider the number of samples and the second target reliability as 0.5, NRBDO 
result is similar to RBDO result. So these result shows that the proposed method is 
slightly more feasible than other methods. 

Table 1. Comparison of RBDO results with respect to ࡾ૚
 ܜ܍܏ܚ܉ܜ

ܴଵ
୲ୟ୰୥ୣ୲ 0.1 0.5 0.9 
 ଵ 8.7014 7.7907 6.9316ݔ
 ଶ 0.8139 1.7866 2.5821ݔ
݂ሺ࢞ሻ -7.8874 -6.0041 -4.3495 
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reliability as well as the reliability of a system should be considered. In order to 
consider the uncertainty of the reliability, we proposed a new method of NRBDO. 
 
We consider the reliability of a system and the uncertainty of the reliability as the first 
and second reliabilities, respectively. To estimate the first reliability, we adopt AIC. 
In AIC, we use six types of candidate distributions, and then we select the best 
estimated distribution by maximizing the likelihood function of each candidate 
distribution. Using the best estimated distribution, we estimate the first reliability. To 
treat the uncertainty of the reliability, we perform nonparametric hypothesis test using 
sign test. In the sign test, the rejection region is calculated from binomial probability 
mass function.  
 
To verify the proposed method, we use a mathematical example. Firstly, deterministic 
design optimization is performed without stochastic information of input variables. 
Secondly, RBDO is performed with respect to the first target reliability of 0.1, 0.5 and 
0.9, respectively. The optimum point of RBDO with the first target reliability of 0.5 
converges to DDO result. Finally, NRBDO is performed with respect to the first and 
second target reliabilities of 0.1, 0.5 and 0.9. The NRBDO result converges to RBDO 
and DDO results if the first and second target reliabilities are 0.5. The result shows 
that the optimum point tends to exist in infeasible region if the first target reliability is 
less than half. Also, the result shows that if the second target reliability is less than 
half and the first target reliability is 0.5, the optimum point tends to exist in infeasible 
region. The proposed method finds the optimum point by considering the reliability 
of a system as well as the uncertainty of the reliability when the information of the 
input variables is given in a limited discrete form. 
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