
APCOM & ISCM  
11-14th December, 2013, Singapore 

Design Optimization of Structures using A Nodal Density-Based SIMP Method 

*Y. Wang, Z. Luo, and N. Zhang 
School of Electrical, Mechanical and Mechatronic System, University of Technology Sydney  

Sydney, NSW 2007, Australia 

*Corresponding author: Yu.Wang-11@student.uts.edu.au 

 

This paper proposes an alternative topology optimization method for the optimal design of 
continuum structures, which involves a multilevel nodal density-based approximant based on the 
concept of conventional SIMP (solid isotropic material with penalization) model. First, to construct 
a material density field with global smoothness over the design domain, a family of Shepard 
interpolation scheme is applied as a non-local nodal density interpolation. The new nodal density 
field possesses non-negative and range-bounded properties to ensure a physically meaningful 
approximation of topology optimization design. Second, the density variables at the nodes of finite 
elements are used to interpolate elemental densities, as well as corresponding element material 
properties. In this way, the nodal density field by using the non-local Shepard function method is 
transformed to a practical elemental density field via a local interpolation with the elemental shape 
function. The low-order finite elements are utilized to evaluate the displacement and strain fields, 
due to their numerical efficiency and implementation easiness. So, the proposed topology 
optimization method is expected to be efficient in finite element implementation, and effective in 
the elimination of numerical instabilities, e.g. checkerboards and mesh-dependency. A benchmark 
numerical example in topology optimization is employed to demonstrate the effectiveness of the 
proposed method. 
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Introduction 

In the area of structural optimization, topology optimization has experienced considerable 
development over the past two decades with a wide range of engineering applications (Bendsøe and 
Sigmund 1999). Topology optimization is essentially a systematic design methodology, which 
involves a numerical process to iteratively re-distribute a given amount of material inside the design 
domain subject to loads and boundary conditions, until a prescribed design objective is optimized 
under specified design constraints. Topology optimization has been recognised as the most 
promising but the most challenging approach in the conceptual stage of structural optimization. 
Many different methods have been developed for topology optimization of structures, including the 
homogenization method (Bendsøe and Kikuchi 1988), SIMP method (Zhou and Rozvany 1991; 
Mlejnek 1992; Bendsøe and Sigmund 1999), and level set-based methods (Sethian and Wiegman 
2000; Wang et al. 2003; Allaire et al. 2004; Luo et al. 2008). 

Topology optimization of continuum structures essentially belongs to a set of integer programming 
problems with a large number of discrete(0, 1) design variables. More efficient gradient-based 
optimization algorithms cannot be directly applied to solve such large-scale optimization problems 
due to the well-known combinational problem. To this end, the homogenization and SIMP methods 
have been widely employed to relax the discrete topology optimization problem, allowing the 
design variables taking intermediate densities from 0 and 1. In doing so, the original optimization 
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problem is changed to a regularized optimization problem with range-bounded continuous design 
variables. In particular, the SIMP, as an extension of the homogenization method, has won great 
popularity in topology optimization of solid mechanics problem, due to its conceptual simplicity 
and implementation easiness. In SIMP-based topology optimization methods, a ‘power-law’ 
criterion (Bendsøe and Sigmund 1999) is usually applied to penalize the intermediate densities of 
elements, to ensure the solution of the regularized 0-1 design close to the original binary (0,1) 
design as much as possible. In addition, numerical schemes such as filtering schemes (Sigmund 
2001; Bourdin 2001; Luo et al. 2005) are required to be incorporated to eliminate numerical 
instabilities, e.g. the checkerboards and mesh-dependence (Sigmund 2001), in order to make a 
physically meaningful solution for topology optimization of continuum structures. 

It can be found that most of the current SIMP approaches are based on element-wise design 
variables (Bendsøe and Sigmund 2003), which means that both the topological geometry of material 
distribution and the physical fields would be evaluated via elemental density variables which are 
piecewise constant. In topology optimization of continuum structures, the element-wise variables 
may be one of the reasons for the occurrence of numerical instabilities (Sigmund 2001), including 
checkerboards, local minima, and mesh-dependency. Moreover, the element-based topology 
optimization method may lead to zigzag non-smooth boundary. As a result, to overcome the 
shortcomings of conventional element-wise SIMP methods, several alternative methods have been 
proposed. More recently, there have been several approaches based on point-wise design variables 
(Rahmatalla and Swan 2004; Matsui and Terada 2004; Guest et al. 2004; Paulino and Le 2009; 
Kang and Wang 2011; Wang et al. 2012). According to these approaches, nodal densities of the 
finite elements are normally considered as the design variables, and subsequent element material 
properties are obtained in terms of nodal densities via interpolation schemes. For instance, 
Rahmatalla and Swan (2004) proposed several options to implement the point-wise interpolation for 
material density fields, although “layering” or “islanding” type numerical instabilities occurred in 
the design. Matsui and Terada (2004) studied a so-called CAMD (continuous approximation of 
material distribution) method based on the homogenization method, in which element material 
densities were interpolated via the nodal density values (design variables). Guest and et al. (2004) 
introduced nodal design variables and projection schemes into topology optimization to achieve 
minimum length-scale control and checkerboard-free characteristics. Nodal material densities are 
regarded as the design variables to calculate the element material densities and element stiffness 
matrices. Paulino and Le (2009) proposed a kind of hybrid low-order finite elements, in which the 
nodes for design variable vector are inconsistent with the nodes for displacement vector. Kang and 
Wang (2011) proposed a nodal density based topology optimization method, in which a non-local 
Shepard interpolation scheme and higher-order elements are applied to eliminate the numerical 
instabilities such as checkerboards. 

This paper will propose a multilevel nodal density-based approximation scheme for topology 
optimization of continuum structures, based on the concept of SIMP method. In this study, regular 
Q4 (quadrilateral four-node) finite elements are applied to evaluate the displacement field vector, 
and the nodal densities of each Q4 element are considered as design variables. A family of Shepard 
functions is employed to implement a non-local density approximant with enhanced smoothness 
over the entire design domain. At the same time, nodal design variables are used to evaluate 
practical material properties of the finite elements. 

Non-local Nodal Density Approximant 

The regular Q4 (4-node quadrilateral) element is considered for all implementations in this paper. A 
family of Shepard interpolation scheme is employed in this study in a form where performed as a 
non-local nodal density interpolation to construct a material density field with global smoothness 
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over the entire design space. Via this interpolation scheme, the density field includes both the 
contribution of the design variables of nodes with one element and the nodes related to the 
neighbouring nodes within an influential support. The Shepard interpolation method is introduced, 
firstly. Let H( 1, 2,   n ) i iϕ = … denote a set of  non-negative data values at the associated sampling 
points      ( ,  )i i ix X Y= within the support radius  of an arbitrary point. ( ,  )i iX Y defines the th point 
location in the given Cartesian coordinate system. The approximation of the Shepard function 
method is stated as 

( ) ( )
Hn
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i
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=

= Θ∑       (1) 

Where Hn is the number of the nodes that is within the support radius r  of the i th point. The 
Shepard function ( )i xΘ  is expressed as a normalized formulation 
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 is the weight function, in the study which is a radially linear ‘hat’ function defined by 
[Bourdin (2001)], where ix x−  is the radial distance from point x to   ix . 
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The weight function is zero outside the domain of influential support, and decays linearly with the 
distance from the interest point x . It means that only nearby points are considered in computing any 
approximated value. In this way, the cost of computation is greatly saved by eliminating 
calculations with distant data points. The Shepard function ( )i xΘ possesses the properties: 
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It is apparent that the Shepard function has a mechanism similar to the smoothing effect of the 
density filtering schemes (Bourdin 2001; Luo et al. 2005). Meanwhile, the approximated values via 
the Shepard function are bounded between lower and upper values of the sampling points, which is 
essential property for a physically meaningful density field approximant in topology optimization. 

Local Nodal Density Interpolation Scheme 

Here, a local nodal density-based interpolation will be presented to convert the nodal design 
variables into the elemental densities. In this study, the standard Lagrangian shape function in the 
finite element method is used to interpolate elemental material properties. The local nodal density-
based interpolant is stated as 

( )
Hn

1 1 1
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where eρ  is the elemental density, en is the number of the nodes of each element(4 in Q4 element), 
and  nN is the standard Lagrangian shape function. For simplicity, 2×2 Gaussian points are utilized 
to compute the practical material properties and determine the displacement field. 
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Furthermore, elemental material properties, such as Young’s modules and elasticity constant, can 
then be expressed according to the proposed the multi-level approximation scheme, respectively, as 
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From the above discussion, it can be found that the proposed multi-level interpolation scheme can 
be easily implemented and is numerically effective, due to the application of the standard low-order 
rather than the higher-order finite elements. The obtained nodal variables via the interpolant are 
bounded between [0, 1], which is crucial for generating a physically meaningful density field. 

Topology optimization problem 

According to the well-established theory proposed by Bendsoe and Sigmund (2003), the following 
structural mean compliance design is used for design sensitivity analysis. In the study, the topology 
optimization problem is stated as 

    (7) 

Where the objective function J is to be minimized, U  is the displacement vector and K  is the 
global stiffness matrix, F  is the external vector. eN is the number of total elements, eu is the 
elemental displacement vector, and ek  is the elemental stiffness matrix. p  is the penalty factor 
( p =3 in this study). V  is the actual material volume and vf  is the specified volume fraction ratio, 
and 0V is the volume of the design domain. min 0.0     001ρ =  is the lower bound of elemental densities 
to avoid singularity in numerical implementation. The derivative of the objective function with 
respect to the nodal design variables is expressed as 
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Where in  is an index set containing indices of all the elements connected to the th point (Kang 
2011).  

Numerical ExampleS and Discussions 

To have an equitable assessment of the performance of the new interpolation scheme, the well-
established minimum compliance problem is chosen (Bendsøe and Sigmund 2003). Fig.1 is the 
design domain of the cantilever beam with an aspect ratio of 2:1 corresponding to length over 
height. The left side of the domain is fixed as the Dirichlet boundary while the right side is treated 
as a non-homogenous Neumann boundary with a concentrated force F=1 vertically applied at the 
centre point. The objective function is to minimize the mean compliance, and mesh level (100 ×50) 
is adopted.  As shown in Fig.1, the design domain is discretized with 100×50 Q4 elements and 
design variables are located at the corners of each element. 
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Figure 1. Design domain of the cantilever beam (Left) 
Figure 2. FE nodes in the design domain(Right) 

The topology optimization is converged after 319 iterations, and the overall structural mean 
compliance is minimized from 319.136 to 66.519. Fig.3 shows the discrete plots of the nodal 
densities at different design stages, in which the first figure is the initial design, the last figure is the 
optimal design, and the rest are the intermediate designs. The corresponding contours of the design 
variables are displayed in Fig.4 that shows the design gradually moves towards the lower limit 
0.0001 (weak material) and upper limit 1 (solid material) during the optimization. So it can be seen 
that the topology optimization in this study can actually be regarded as a numerically iterative 
process to re-distribute a number of material density points in the design space until the 
convergencecriterion is satisfied.  
 

 
   (a)    (b)    (c) 

 
   (d)    (e)    (f) 

 
(g) 

 
Figure 3. Topology plots: (a) initial design, (b)-(e) intermediate designs, and (f) final solution, 
the size of the node denoting the magnitude of nodal density values. (g) Local zoom-out plots 
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   (a)    (b)    (c) 

 
   (d)    (e)    (f) 
 

Figure 4. Contour plots of nodal design variables 
(a) initial design, (b)-(e) intermediate designs, and (f) final solution 

 
Fig.5 displays the topology plots of the element stiffness at different design stages of the 
optimization. The optimization using the proposed nodal density-based method can result in 
checkerboard-free design, and the so-called “layering” or “islanding” numerical phenomenon 
(Rahmatalla and Swan 2004) can also be eliminated by using the present Shepard function 
approximant. Fig. 6 shows curves of the objective function and the volume constraint over the 
iterations. It is noted that the first 75 iterations are mainly employed to implement topological 
optimization, and the rest iterations are used to adjust local structural shapes until a uniform 
distribution of the strain energy in the structure is achieved. Since the proposed method has been 
proved to be mesh-independent, it is possible to use a coarser finite element mesh to improve 
computational efficiency. According to the curve of constraint, the proposed method is well mass 
conservative. 
 

 
   (a)    (b)    (c) 

 
   (d)    (e)    (f) 
 

Figure 5. Topology plots of nodal design variables: 
(a) initial design, (b)-(e) intermediate designs, and (f) final solution 
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Figure 6. Iteration histories of objective function and volume constraint 

Conclusions 

In this paper, an alternative SIMP scheme is proposed for topological optimization of structures 
based on a multi-level Shepard function approximant. In this method, the nodal variables are 
considered as the design variables, to implement structural topology changes. A nodal density field 
with enhanced smoothness is constructed by using the original set of design variables via a non-
local Shepard function method. The new set of nodal variables is applied to evaluate the practical 
material properties of finite elements, via a local interpolation scheme of the standard Lagrangian 
shape function. Therefore, instead of using the time-consuming higher-order elements, the lower-
order finite elements can be easily employed to improve computational efficiency. The proposed 
topology optimization methodology is able to eliminate the typical numerical instabilities in the 
topology optimization of continuum structures. It is straightforward to extend the proposed multi-
level topology optimization method to more advanced mechanics problems. 
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