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Abstract 
This paper investigates the solution of space problem for transversely isotropic 
foundation based on damage theory. Firstly, the modified Galerkin’s displacement 
function is introduced into the basic equations of the transversely isotropic elastomer 
space problem. Secondly, employing Hankel integration transform and Bessel 
function theory, we obtain a general three-dimensional solution in the image field by 
the displacement function method. Finally, by means of the Hankel integration 
inversion shift theory, the fundamental expressions of strain and stress in the 
transversely isotropic foundation are presented for different cases that the 
characteristic roots were equal or not. The solution could be used to solve some 
specific axisymmetric and asymmetrical problems in semi-infinite space under 
different boundary conditions. 

Keywords: transversely isotropic foundation, damage, displacement function method, 
Hankel integral transform，stress.  

1 Introduction 

The research achievements of many researchers at home and abroad and a large 
number of engineering practice show that it is feasible and more representative that 
the cohesive soil foundation is simplified transversely isotropical elastic half-space 
model in many circs. Since the transversely isotropic foundation model was put 
forward, many domestic and foreign researchers have carried out in-depth research on 
the model. In 1940, a general solution of axisymmetric problem about the 
transversely isotropical body of revolution was firstly solved by Soviet scholar 
Lekhnitskii. And then, Elliott derived a particular solution about a three-dimensional 
problem that can be degenerated to Leknitskii solution in the axisymmetric condition 
by means of two harmonic functions in 1948. Based on the equilibrium equation of 
displacement expression. Eubanks and Sternberg obtained the Leknitskii solution 
systematically in 1954, and proved the completeness of Elliott solution. The detailed 
analytic solution expression of the surface and interior of the transversely isotropic 
half-space under point loads or circular loads was given by C.M.Gerrard(1980). And 
by referencing the three displacement functions, Pan and Chou(1979) made use of the 
Green’s function method to obtain the whole expressions of fundamental solution of 
transversely isotropic semi-infinite body.  

Interiorly, it is Hu haichang who studied that problem first. In 1953, he obtained 
the general solution of space problem of transversely isotropic elastic body by means 
of two potential functions, specifically discusses the problems of transversely 
isotropic semi-infinite elastic body, and got the fundamental solution when s1 ≠ s2. 
Ding Haojiang, through the Hu Haichang’s solution, used integral method to obtain 
the fundamental solution of axisymmetric problems of transversely isotropic 
materials, which can be directly degenerated to the fundamental solution of 
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axisymmetric problems of isotropic materials. Dun zhiling and his graduates, by 
modifying Love displacement function in isotropic elastic mechanics, made use of 
displacement method and Hankel integral-transform theory to get the general solution 
of transversely isotropic foundation in image field. And by using the inversion of 
Hankel integral, the analytical solutions of displacement and stress of semi-infinite 
foundation under several common loads were obtained and the results of numerical 
calculation were given. Based on the basic equations of transversely isotropic elastic 
body and Hankel transform, the generation solutions of displacement and stress of 
space problem of layered transversely isotropy under non-axisymmetric loads were 
solved by using transfer matrix method(Chen guangjing and Zhao xihong, 1998). The 
Biot’s wave equations of transversely isotropic saturated poroelastic media excited 
by non-axisymmetrical harmonic source were solved by means of Fourier expansion 
and Hankel transform. Then the components of total stress in porous media are 
expressed with the solutions of Biot’s wave equations.( Zhang Yinke and Huang Yi, 
2001). 

Based on the theory of damage mechanics, the elastic damage of transversely 
isotropic foundation was considered and a general three-dimensional solution for 
transversely isotropic foundation in the image field was strictly obtained by the 
displacement function method. The Galerkin’s displacement function for isotropic 
elasticity was modified, and Hankel integration transform and Bessel function theory 
were employed in the solution. With the Hankel integration inversion shift theory, the 
analytical expressions of stress and displacement in the transversely isotropic 
foundation were presented. 

2 Damage theory 

Shen Zhujiang put forward that the damage characteristics of the material are 
described by the cementitious bar element. The linear elastic damage model is 
adopted to simulate the transverse isotropic soil. This model is a single-spring model, 
which is composed of cementitious bar and spring and includes a lot of cementitious 
node. The soil of the mechanical process is analyzed as a synthetic material including 
undisturbed and damage soil. With the increase of deformation, cementitious nodes 
will be gradually destroyed and mechanical properties of soil gradually deteriorate. 

The effective stress in damage mechanics is called the equivalent stress in this 
article to distinguish the concept of effective stress in soil mechanics. According to 
Lemaitre equivalent strain principle, the stress-strain relationship of one-dimensional 
damaged soil is as follows: (1 )E E E Dε σ σ σ= = = −                                        （1） 
Where σ  is equivalent  stress, E  is the elastic modulus of non-destructive materials, 
E  is effective elastic modulus, and D  is damage variable. 

For the three-dimensional anisotropic damage, equivalent stress can be expressed 
as:                     ( ) :M Dσ σ=                                                                                （2） 
In the formula, ( )M D  is the damage effective tensor. considering the matrix is 
symmetric and can be reduced to an matrix of isotropic damage problem, so damage 

tensor ( )M D  is elected: 
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where D1,D2 respectively respect the damage variable of the horizontal plane and the 
vertical plane. The damage variables can be determined according to the literature[15]. 

3 The general solution of space problem for transversely isotropic foundation 
based on damage theory 

3.1 The equivalent stress of transversely isotropic space problem in cylindrical 
coordinate 
In cylindrical coordinate ( ), ,r zθ , it is assumed that the z-axis is perpendicular to the 

isotropic plane of physical properties, so elasticity is isotropic in the plane ( ),r θ . Let 
u 、 v、w  be the displacement of points along the three directions r ，θ ， z .The 
geometric equation of transversely isotropic space problem in cylindrical coordinate 
is as follows: 

{ } { } 1 1 1, , , , , , , , , ,
T

T
r z z rz r

u u v w v w u w u v v
r r r z z r z r r r rθ θ θε ε ε ε γ γ γ

θ θ θ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎪ ⎪= = + + + + −⎨ ⎬⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

（4） 
Therefore the relationship of stress components and displacement components of 

undamaged foundation can be expressed by the displacement in cylindrical 
coordinates: 

{ } { } [ ]{ } [ ] 1 1 1, , , , , , , , , ,
T

T
r z z rz r

u u v w v w u w u v vC C
r r r z z r z r r r rθ θσ σ σ σ σ τ τ ε

θ θ θ
⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎪ ⎪= = = + + + + −⎨ ⎬⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭
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, ( )( )2
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( )2
12 1 2c n nλ μ μ= + , ( )13 2 11c nλ μ μ= + , ( )2

33 11c λ μ= − , 44 2c G= , ( )66 1 12 1c E μ⎡ ⎤= +⎣ ⎦ ,

1 2n E E= , 1E  and 2E  is the modulus of elasticity in a horizontal plane and a vertical 
plane respectively; 1μ  and 2μ  is the Poisson ratio in a horizontal plane and a vertical 
plane respectively; 2G  is the shear modulus in a vertical plane. 

From Eq.(2), the stress of transversely isotropic foundation with damage can be 
obtained by the stress of undamaged foundation in the follow form as 
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Where   ( )( )2
11 2 11 1c n n Dλ μ= − − , ( )( )2

33 1 21 1c Dλ μ= − − , 

( )( )44 2 1 21 1c G D D= − − , ( ) ( )66 1 1 11 2 1c E D μ⎡ ⎤= − +⎣ ⎦  
3.2 The Displacement Function Method of transversely isotropic space problem 
in cylindrical coordinate  
When analyzing elastic semi-infinite body and non-axisymmetric problem of the 
thick plate in 1960, Ruki R introduced two displacement functions ϕ and ψ : 
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These are the general expression of the isotropic spatial problems. And they can be 
used to solve the isotropic spatial problem in a variety of different boundary 
conditions specifically. 

Based on damage theory, the relation between the displacement components and 
the displacement function for transversely isotropic spatial problem can be obtained 
through complex calculations (specific process can be seen in reference [6], [16] and 
[17]). And it is the revised Galerkin’s displacement function. 
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 is Laplace Operator. F 

and ϕ is two displacement function for transversely isotropic body. Hu Haichang 
proved that the displacement function, F and ϕ , represents a complete solution of the 
space problem. 

What’s more, F and ϕ  should go for the following compatible equation. 
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In order to obtain the expression of stress and displacement components, the 
derivative of the Eq. (8) for r ，θ  and z are substituted into Eq. (6).Then we can 
obtain the expression of the stress components in cylindrical coordinates.  
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Eq. (8) and Eq. (11) are the general solution of transversely isotropic space problem 
and they are represented by F and ϕ .As can be seen from the expression, if 
displacement function, F and ϕ , is determined appropriately, we can determine the 
corresponding displacement components and stress components. Therefore, Hankel 
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integration transform is introduced and displacement functions, F and ϕ , are 
expressed in the form of series as the following. 

( ) ( ) ( ) ( )
0 0

, , , cos , , , , sink k
k k

F F r z F r z k r z r z kθ θ ϕ ϕ θ ϕ θ
∞ ∞

= =

= = = =∑ ∑     （12） 

After Eq. (12) put into Eq. (9), we obtain: 
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（13） 

Let  ( ) ( ) ( ) ( ) ( ) ( )
0 0

, , , , ,k k k k k kF z rF r z J r dr z r r z J r drξ ξ ϕ ξ ϕ ξ
∞ ∞

= =∫ ∫            （14） 

Then using the Hankel transform and the nature of Bessel functions 
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After k-order Hankel transform is applied to, the Eq. (13) can be transformed into as 
follows: 
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                （16） 

The inversion formula of Hankel transform is : 
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After the Eq. (17) put into Eq. (11), the displacement function can be expressed as: 
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（18） 
According to the nature of Bessel functions, we can obtain its derivative express 
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（19） 
Using Eq. (19), we can calculate the derivative of the displacement Eq. (18) for r ，
θ and z . And after putting them into the Eq. (8) and Eq. (11) respectively, the general 
solution of transversely isotropic spatial problems within quadrants is obtained (only 
u 、and zθτ was listed). 
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⎡ ⎤
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∑ ∑∫ ∫
      （20） 

3.3 The displacement components and the stress components of space problems 
for transversely isotropic foundation 
The Eq. (20) shows that, if the functions kF  and kϕ can be obtained, we can get the 
analytical expressions of displacement components and stress components of the 
elastic space problem that is transversely isotropic. According to the material 
characteristic roots of transversely isotropic body, s1 and s2, the situation can be 
divided into s1=s2 and s1≠s2 when solving kF  and kϕ  and getting their derivatives for z. 
Because the anisotropy of most foundation rock materials can be reflected by s1≠s2, 
the solution of 1 2s s≠  is only solved as follow. 
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When 1 2s s≠ , the solution of ordinary differential equation of Eq. (16) is 
( ) ( ) 3 31 2 1 2, , , s z s zs z s z s z s z

k kF z A e B e C e D e z E e F eξ ξξ ξ ξ ξ
ξ ξ ξ ξ ξ ξξ ϕ ξ −− −= + + + = +    （21） 

Put the Eq. (21) and its derivative for z into Eq. (20). when 1 2s s≠ , the general 
expression of displacement components and stress components can be obtained (only 
u 、and zθτ were listed). 
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 （22） 

The analytic expressions of displacement components and stress components 
expressed in the Eq. (22) apply to space issues for transversely isotropic foundation 
with injury under a variety of non-axisymmetric loads. For the specific space problem 
of transversely isotropic foundation, when it is known that the specific boundary 
conditions of transversely isotropic foundation and five independent engineering 
elastic constants , 1E 、 2E 、 1μ ， 2μ ， 2G ,and damage variable 1D 、 2D , 
displacement and stress field distribution in the corresponding boundary conditions 
can be obtained through using the result. 

4 The example analysis 

In order to verify the validity of these theoretical approaches and indicate the impact 
on transversely isotropic foundation when damage considered, the engineering elastic 
constants of transversely isotropic foundation in the reference[9] was 
selected: 1 35.6MPaE = , 2 20.8MPaE = ， 2 9.09MPaG = ， 1 0.299μ = ，

2 0.146μ = ，The foundation bears the circular uniform unidirectional horizontal load. 
Its load collection degree, p, is 10kPa. And the load radius r is 1m. Because of space 
limitations and time constraints, this numerical example just makes the comparative 
analysis of the shear stress component in the z-axis, 

0z rθτ =
, for transversely isotropic 

foundation without injury. The mathematical software used is Matlab. 
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Figure2 Spatial distribution 
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Fig. 1, Fig. 2 and Fig. 3 show that the spatial distribution curves of the shear stress 
component in the z-axis,

0z rθτ =
, for transversely isotropic foundation with damage or 

not , are almost identical with the changing of the depth z and the polar angle θ. Then 
we can make an qualitative analysis of the difference of foundation shear stress 

0z rθτ =
 in two different situations when choosing two kinds of the plane state. 
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 Figure 4 The comparison of shear stress 
as = 2θ π  for two kind of foundation 
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Figure 5 The comparison of shear stress 
as z=2m and z=5m for two kind of 
foundation 

 (Note: The dotted line represents damage foundation and solid line represents the foundation without 
damage in figures) 

Fig. 4 and Fig. 5 show that: ①When θ fixed, with the z value increases, the 
foundation’s shear stress 

0z rθτ =
 in three cases is continuously attenuated . And when 

the depth z is smaller than 4m (equivalently 4 times of circular load’s radius), the 
attenuation is in a fast rate. When z is greater than 4m, the attenuation speed becomes 
slower. And with the increasing of the depth, three shear stress values are close to 
equal ultimately; ② When z  is constant, the foundation’s shear stress 

0z rθτ =
 in three 

cases, conforms with the sinusoidal line as θ  changing. In view of D1, The shear 
stress 

0z rθτ =
 of transversely isotropic foundation is greater than that without damage, 

while it is smaller than that in view of D2. And when the depth is to 4m(equivalently 
4 times of circular load’s radius), the shear stress is almost equal in three cases. Thus 
the damage has an impact on the transversely isotropic foundation’s shear stress 
within the scope of 4 times of load’s radius, but the impact can be negligible beyond 
the scope. This conclusion is identical to the results of practical engineering test, 
which can describe that the displacement function method here is reasonable and 
effective. 

5 Conclusions 

In this paper, it is a important work that the Galerkin displacement potential 
function has been revised. Base on this, a general solution of the transversely 
isotropic elastic space’s problem is obtained in the image field, which is based on the 
elastic damage theory. Moreover, The analytic solution expression of displacement 
and stress components for the space problem of transversely isotropic foundation is 
derived. The solution doesn’t only apply to solve both axisymmetric and non-
axisymmetric problem of the transversely isotropic elastic space no matter whether or 
not the damage is considered., but also plays a important role in studying 
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displacement and stress field of transversely isotropic foundation under specific 
boundary conditions. 
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