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Abstract 
In achieving accurate results, current nonlinear elastic recovery applications of finite 
element (FE) analysis have become more complicated for sheet metal springback 
prediction.  In this paper, an artificial neural network (ANN) was used to mimic the 
nonlinear elastic recovery and provides a generalized solution in the FE analysis. The 
nonlinear elastic recovery was processed through back-propagation networks. This 
approach is able to perform pattern recognition and create direct mapping of the 
elastically-driven change after plastic deformation. The FE program for nonlinear 
elastic recovery experiment was carried out with the integration of ANN. The results 
obtained at the end of the FE analyses were closed to the measured data.  
Keywords: Finite element, neural network, non-linear recovery, springback prediction  

Introduction 

One of the problems in the sheet metal forming process is the springback 
phenomenon. This phenomenon occurs due to the elastic recovery, which is 
influenced by the elastic properties and the plastic flow of the sheet metal material. 
Although the elastic recovery contributes only small strain if compared to the plastic 
strain, the final shape of a sheet metal forming product is significantly affected due to 
the accumulative small strain in corner radii and sidewall of curved surface (Kim et 
al. 2013). Most of the current finite element (FE) method practices still utilize the 
classic elastoplasticity theory, which assumes that the unloading modulus after plastic 
deformation is parallel to the initial Young’s modulus. However, several 
investigations have shown that the unloading modulus is influenced by accumulated 
plastic strain (Cleveland and Ghosh 2002; Li et al. 2002; Yoshida et al. 2002; Andar 
et al. 2010). Furthermore, several investigations have found that the unloading stress-
strain curve actually shows nonlinear elastic recovery (Cleveland and Ghosh 2002; 
Cáceres et al. 2003; Andar et al. 2010; Chatti and Hermi 2011; Sun and Wagoner 
2011). The  development of an additional surface in the yield surface (Eggertsen and 
Mattiasson 2010) and the transition of the elastic to the plastic model (Quasi-Plastic-
Elastic model) (Sun and Wagoner 2011) have been proposed for the description of 
nonlinear elastic recovery in constitutive modeling. However, due to the complexity 
of developing the nonlinear recovery model, the variable elastic modulus achieves a 
relatively wider range of application in springback predictions (Chatti and Hermi 
2011; Zhu et al. 2012).   
 
The applications of an artificial neural network (ANN) as the parameters 
identification tool for the FE springback analysis provide solution without solving the 
nonlinearity problems(Aguir et al. 2008; Kazan et al. 2009; Veera Babu et al. 2010; 
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Aguir et al. 2011). Thus in this paper, ANN was used to mimic the nonlinear elastic 
recovery and provides a generalized solution in the FE analysis. The implementation 
of ANN in the constitutive model of the FE software requires an additional technique 
to achieve better generalization. This is to ensure that the developed ANN model is 
utilizable in a wide range of the FE springback analysis.    
 

Methodology 

The application of ANN is split into the curve regeneration and interpolation 
coefficient parts.  A new curve is generated from the raw experimental data and the 
output is used as an input to the interpolation coefficient part. This procedure is 
discussed further in the next subsection.    
 
3.1   The Database and its Regeneration 
This study utilized the experimental data that have been published by (Sun and 
Wagoner 2011). The published data were chosen based on their comprehensiveness in 
providing information from the identification of material parameters until the 
measurement of springback. Figure 1 shows the tensile test result for a DP 980 steel 
sheet with intermediate unloading cycles. The hysteresis loops are noticeable 
significantly as the flow stresses increase prior to unloading. Figure 2a shows the 
magnified view of the fourth cycle from Figure 1. A chord modulus ( ) of 145GPa 
and an initial Young’s modulus ( ) of 208GPa are shown for comparison. It is 
shown that the current elastic modulus ( ) varied at different normalized stress 
points . Figure 2b shows the regeneration of the unloading curve by the first 
ANN, whose architecture was investigated in two cases, as shown in Table 1. The 
true strain and true stress are the input and the output of the network.  

 
Figure 1. Tensile test result for DP 980 steel with intermediate unloading cycles 

3.2   Determination of Interpolation Coefficient 
In the second ANN, the input and output data of the network are formed based on the 
regenerated curve in Figure 2b. An interpolation model is applied to interpolate the 
range between  and  at every normalized stress point  as shown in 
Eq.(1). 

                                   (1) 
where  and  are the input and output of the network training.  
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Table 1. Neural network training parameters 

Parameters Case 1 Case 2 
Training function Trainlm (LM) Trainlm (LM) 
Hidden layer 3 3 
Neuron per layer 20, 20, 20 2, 2, 2 

 

Figure 2. (a) Magnified view of the fourth unloading-reloading with  and  
(Sun and Wagoner 2011) (b) new unloading curve regenerated by first ANN 

 
3.3   ANN to FE analysis link establishments 

The second ANN is completely trained and the neuron weights and biases are 
extracted in the form of matrices. A feedforward network from the matrices is 
implemented into the user defined material subroutine. In the FE analysis,  need to 
be updated at every increment of the unloading/reloading process. The function of the 
feedforward-network-based constitutive model in the FE model at every increment is 
as follows: 
 

(i) For (i +1)th strain increment, the input of the network is the value of the 
normalized stress point, , where  and  are given by the current 
stress and current yield stress. To distinguish the input between unloading 
and reloading processes, the input is expressed as  and 
.    

(ii)  is then calculated by reversing Eq. (1) as: 
  
  (2) 

 
Results and Discussion 
 
The variation of the unloading elastic modulus is a function of plastic pre-strain and it 
contributes to the size of hysteresis loops, as shown in Figure 1. Therefore, ANN 
prediction of the unloading curve cannot be utilized in the constitutive model if it is 
only based on the true strain and true stress as the input and output of the network. 
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This is due to the stresses along the unloading curve that need to be updated at every 
iteration as a product of  and true strain. By determining the relation of  with  
and  at the fourth loop, the product of Eq.(1) is able to represent all other loops 
based on the provided  and .  
 
Figure 2b shows the result of the curve regeneration which consists of a closely fitted 
curve and a highly fitted curve by the first ANN. This fitting accuracy has a 
significant effect on the architecture of the second ANN.  In the first case, the first 
ANN regenerates the unloading curve with high accuracy. A fluctuating step curve is 
produced when the slope determination is based on the highly fitted unloading curve, 
as shown in Figure 3a.  In the second ANN part, high accuracy is essential as the 
result was utilized directly into the FE analysis. Therefore, a network training with a 
highly fitted training set requires 20 neurons in its first, second, and third hidden 
layer. This network consumes a very high computational cost and time. Furthermore, 
the prediction of  experiencing distortions at every step curves, as shown in Figure 
3b. The distortions are the source of error when the predictions were transferred into 
FE analysis. 
 
In the second case, the first ANN regenerates the unloading curve with a closely 
fitting accuracy and it results in quite a smooth curve, as shown in Figure 4a. In order 
to obtain such a smooth curve, the selection of network architecture with low number 
of neurons is essential, which determines the accuracy of the model with regard to the 
particular set of data. In the second ANN part, a network training with a closely fitted 
training set only requires eight neurons in its first, second, and third hidden layer, 
which results in low computational consumption. In addition, the prediction of  
experiencing a smooth mapping, as shown in Figure 4b. 
 
Figure 5 shows a comparison of the overall fit by the FE analysis using the current 
model with the experimental data. Although the network training was based on the 
fourth cycle, the overall prediction fit obtained was adequate. The result also shows 
that a closely fitting ANN prediction was adequate to achieve closeness to the 
experimental data in the FE analysis. 
  

  
Figure 3. Case 1:(a) Elastic modulus determination;(b)interpolation coefficient 

prediction 
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Figure 4. Case 2:(a) Elastic modulus determination;(b)interpolation coefficient 

prediction 

 

 
Figure 5. Comparison of overall fit by the FE analysis by using ANN prediction 

model 

Conclusions 

The above work demonstrates the ability of ANN to predict the relation between the 
nonlinear elastic modulus, the initial Young’s modulus, and the chord modulus. It is 
shown that the model is well implemented in the finite element analysis to achieve 
closeness to the experimental data. With its generalization, this approach is suitable to 
be used in other finite element model of sheet metal forming to predict springback. 
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