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Abstract: The gas-liquid-fueled two-phase detonation has very complex phenomena and 

characters. Until now they are studied mainly by experiments, because complex interactions 

between the two phases and chemical reactions models make numerical simulations very difficult. 

In the paper, numerical simulations of gas-liquid-fueled two-phase detonation have been 

performed by using an improved Space-Time Conservation Element and Solution Element (CE/SE) 

method. The Eulerian Two-Fluid Model and Eulerian-Lagrangian Particle-Trace Model were 

adopted already. Numerical results were compared with some experiments and characters of 

gas-liquid-fueled two-phase detonation were analyzed. All of them show that the complex 

phenomena of gas-liquid-fueled two-phase detonation can be simulated. The improved CE/SE 

scheme has the features of high resolution, simple form and robustness. 
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1 Introduction 

The formation and propagation of detonation is a very complicated phenomenon [1] [2]. For 

a long time the detonation phenomena are studied mainly by experiments. However, in the last 25 

years the numerical simulations have improved immensely as a result of major progress in both 

computational methods and available computer. Especially in last recent decades of development, 

the mechanism recognition of detonations in gaseous fuel-oxidizer mixtures has made large 

progresses and its numerical simulation can be basically achieved [3]. But our understanding of 

the initiation, formation, structure and stability of detonations in gas-liquid-fueled two-phase 

mixtures are still more primitive than for detonations in gaseous fuel-oxidizer mixtures [4]. 

The lack of knowledge of the features of gas-liquid-fueled detonations can be partly ascribed 

to the fact that the governing parameters of gas-liquid-fueled mixtures are far more than that of 

gaseous mixtures. Indeed, apart from the chemical composition and initial pressure and 

temperature of the mixture, one should take into account atomization, droplet breakup and 

vaporization, droplet size and shape as well as droplet distribution, etc. The latter effects may play 

a major role in gas-liquid-fueled two-phase detonations [5]. They will induce that the detonation 

processes are very complex and detonation zone thickness is at least a few times larger than that in 

gaseous fuel-oxidizer mixtures. All these features result in mathematical and physical difficulties. 

The difficulties of numerical simulation of gas-liquid-fueled detonation are mainly due to its 

complex physical and chemical phenomena as well as determination for governing parameters of 

gas-liquid-fueled mixtures. In the simulations of gas-liquid-fueled detonation there are two 

primary factors: One is the strong discontinuity surface in detonation waves; another is the process 

of energy release in the flow field. These factors depend on numerical schemes and chemical 

reaction models respectively [6] [7]. 

In this paper an efficient and accurate Eulerian-Lagrangian Particle-Trace Model for 



gas-liquid-fueled two-phase detonations was constructed and compared with the normal Eulerian 

Two-Fluid Model. A new two-dimensional CE/SE scheme with two-order accuracy with a 

hexahedral mesh was deduced. The simplified chemical reaction models were adopted. The 

gas-liquid-fueled two-phase detonation in liquid-fueled C6H14-air system and liquid-fueled 

C10H22-O2/air systems were simulated. The numerical results were discussed and compared with 

corresponding results by C-J theory and experiments. All of these show that Eulerian Two-Fluid 

Model, Eulerian-Lagrangian Particle-Trace Model and the improved CE/SE schemes with 

two-order accuracy are reasonable and feasible. The main features and characters of complex 

gas-liquid-fueled two-phase detonation can been successfully simulated. 

2 Governing Equations and Chemical Reaction Model 

2.1 Governing Equations 

In this paper, an Eulerian-Lagrangian Particle-Trace Model is introduced for treating the 

gas-liquid-fueled two-phase detonations. The droplet phase is considered as continuous and 

homogeneous medium and all droplets can be are traced by Lagrangian method.  

Following assumptions are made about present model: the gas phase behaves as an ideal gas; 

the temperature of all gaseous species is the same; there are no process of collision, coalescence 

and fragmentation in droplet phase; the shape of droplets always keeps to be spherical; the 

temperature distribution in droplet phase is uniform; the volume occupied by droplets is negligible 

when it compares with the volume of gas; chemical reactions occur only in the gas phase; if 

chemical reaction occurs, the chemical energy is absorbed only by gas. 

Under the above assumptions, the gas-phase is governed by Eulerian equations: 
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In Eq. (1), Q is the vector of conserved variables, E and F are the conservation flux vectors in x- 

and y-directions, S is the source term vector. Combined with chemical reaction and phase 

transition, the expressions of Q, E, F, S are as follows 
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The Lagrangian governing equations for the k-th droplet are as follows: 
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Here ρi (i from 1 to Ns) is the mass density of the i-th species (especially, ρ1 is defined as the 

density of fuel gas), Ns is the number of considered species, ωi is the production rate of the i-th 

species. ρ, u, v, p and e are the total density, the velocity components of x-direction and y-direction, 

the pressure, and the total energy per unit volume of gas phase, respectively. Accordingly, mpk, xpk, 

ypk, upk, vpk, Tpk, epk and Ipk denote the mass, the position coordinates components and the velocity 

components, temperature, the internal energy per unit mass and atomization rate of the k-th (k 

from 1 to Np) droplet, respectively. Np is the number of initial droplets, which is determined by 

the equivalence ratio of gas-liquid-fueled mixture. fxk and fyk are the force components acting on 

the k-th droplet. qdk is the convection heat transfer between gas mixtures and the k-th droplet. Cv is 

the capacity of liquid fuel. dVk is the volume of gas phase influenced by the k-th droplet, which is 

related to the Euler grid. When i=1, δ=1, otherwise, δ=0. 

The dynamic interaction of droplets with the gaseous flow could bring to instability of the 

interface and atomization of droplets. According to boundary layer theory, the atomization rate of 

droplets and the force components acting on the k-th droplet as well as convection heat transfer 

between gas mixtures and the k-th droplet were derived by references [8] [9]. 

2.2 Chemical Reaction Models 

CO, CO2 and H2O are the main product of the chemical reaction between hydrocarbon and 

oxygen. In present study, to avoid complicate the problem and save computing resources, the 

following three main global reaction involving five species are considered: 

Reaction 1：
2 2( )

2 4 2
n m

n m m
C H O nCO H O                (4) 

Reaction 2： 2 22 2CO O CO                               (5) 

Reaction 3： 2 22CO CO O                                (6) 

The expression of each chemical reaction rate RPk is available in Ref. [10-11]. Then, production 

rate of each chemical species ωi is expressed as: 
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where Wi is the molecular weight of the i-th species, Nr is the number of chemical reactions, 
kiv  



and 
kiv  are the stoichiometric coefficients of the i-th species in the k-th chemical reaction. 

3 Improved CE/SE Scheme 

The CE/SE method was originally proposed by Chang and co-workers [12-13], which is a 

completely new numerical framework for solving hyperbolic conservation equations. According 

to principle of Chang designed two grid types, we design more general structures of 

two-dimensional CEs and SEs (Fig.1) [14]. New two-dimensional CE/SE schemes can be 

constructed sententiously and three-dimensional scheme can be extend easily.  

 

 

(a)                          (b)                              (c) 

Fig.1 (a) Mesh points projection on xy plane   ( b)SE   (c)CEs (in this work) 

3.1 Improved CE/SE Scheme with the second order accuracy 

Consider the two-dimensional conservation equations: 

 0
t x y

  
  

  

Q E F
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Then because Eq. (8) can be expressed as 0 H  with ( )H Q, E, F . The Gauss’ divergence 

theorem in the space-time E3 implies that Eq. (8) is the differential form of the integral 

conservation law：                   
( )

d 0m

S V

 H s                         (9) 

where S(V) is the boundary of an arbitrary space-time region V in
3E ; ds=dσ·n with dσ and n, 

respectively, being the area and the unit outward normal vector of a surface element on S(V). 

For an arbitrary grid point P', we define a solution element SE (P') that constituted by the 

three vertical planes intersecting at P' as demonstrating in Fig. 1 (b). Assuming that E, F and Q at 

point (x, y, t) in SE (P') are approximated by the second-order Taylor’s expansions at P'(j, k, n): 
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Where δx=x-xP', δy=y-yP', δt=t-tP', xP', yP' and tP' are the position coordinates of point P', but 

(V)P',(Vx)P', (Vy)P', (Vt)P', (Vxx)P', (Vyy)P', (Vtt)P', (Vxy)P', (Vxt)P' and (Vyt)P' are the constant values of V, 

its first-order and second-order derivative on x, y and t directions at point P', respectively, in which 

V denotes Q, E and F. Substituting Eq. (10), (11) and (12) into Eq. (8), it can obtain: 
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The above equations imply that the variables required in computation are ( )PQ and its first and 

second order space derivates ( )x PQ  ( )y PQ  ( )xx PQ  ( )xy PQ  and ( )yy PQ . 

Assuming flux vectors in every CE satisfy the integral conservation law, and the integrating 

Eq. (9) on the surfaces of CE (P') with the aid of Eq. (10), (11) and (12), we can obtained:  
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Define the following functions as: 
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So the Q , E and F  in Eq. (14) can be expressed as: 
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From Eq. (14) the current space second-order derivates ( )xx PQ and ( )yy PQ at P must be known 

firstly for solving ( )PQ . With the estimated value in SE (P) approximated from the last half time 

step, the current second-order can be expressed as: 

 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
( )

2

ˆ( ) ( ) ( )
2

x C x A x E x G

xx P

x x xt

x

t



  





 

Q Q Q Q
Q

Q Q Q

, (17) 



 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
( )

2

ˆ( ) ( ) ( )
2

y C y A y E y G

yy P

y y yt

y

t



  





 

Q Q Q Q
Q

Q Q Q

. (18) 

The cross derivates ( )xy PQ and ( )yx PQ are: 

 
( ) ( )

( ) ( )
2

xy P yx P

xy P yx P

 

 

 
 

Q Q
Q Q , (19) 

Where                  
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( )
2

x C x A x E x G

xy P
y



  
 



Q Q Q Q
Q ,        

                        
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( )
2

y C y A y E y G

yx P
x



  
 



Q Q Q Q
Q .                  (20) 

Using the continuous condition at point A , C , E and G , the left and the right derivatives of 

( )PQ in x and y direction can be gained as 
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To avoid numerical instability in the case of discontinuity, the derivates are written in form of 

weighted average:             
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where is an adjustable constant and usually equals 1~2 and the weighted equation W is expressed 

as                         
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3.1 Treatments of Stiff Source 

The S is the source term vector of governing equations (1), which are consisted of the 

production rates of each species. In a reacting flow, the characteristic time of chemistry and flow 

have a scale gap. The magnitude of stiffness problem can be weighted by the Damkohler number 

which is defined as the ratio of the maximum characteristic time scale and the minimum’s in a 

system. For detonation problems:       flow

chem

Da



                               (24) 

where τflow and τchem are the characteristic time scale of flow and chemistry reaction, respectively. 

Decoupling method was applied to treat the stiff source in this study [15], namely we 

decoupled the chemistry reaction from governing equations (1),So in one time step, we frozen the 

reaction and solved the flow field first, then solved the variation of the each species by source 



items. And Da=30 in this sduty. 

4 Verification of our Improved CE/SE Scheme 

In order to verify our improved CE/SE scheme with the second-order accuracy deduced by 

new structure of CEs and SEs, a detonation propagating in a stoichiometric H2-O2 gas was 

computed. In this case the initial pressure and temperature were 1 atm and 298 K, respectively. 

Detonation wave was generated by igniting in the left with high initial pressure and temperature 

28 atm and 3874 K, respectively. The detailed chemically reacting model was adopted. An 

mechanism with the eight-species (H2, O2, H, O, HO, HO2, H2O, H2O2) and twenty chemical 

reactions for hydrogen-oxygen combustion was used [16].  

Fig. 2 is the developing process of pressure and temperature simulated. From Fig.2 it can 

show that deflagration-to-detonation transition (DDT) process completes in very short time and 

can be ignored. Fig. 3 gives out the numerical results compared with experimental and theoretical 

results for detonation velocity and CJ pressure. The compared results indicate that they are limited 

in 3% and the results are very agreement.  

 

Fig.2 Developing process of pressure and temperature 

          

(a) Velocity                                 (c) C-J pressure 

Fig.3. Numerical results compared with experimental and theoretical results 

(c)Numerical cellular patternby                      (d) Experimental cellular pattern  

Fig. 4 Cellular pattern of a detonation wave on a 19.3° wedge 

Fig.4 shows the cellular patterns produced by the reflection of H2-O2 detonation wave over a 



19.3° wedge by experiment [17]. The numerical results can agree well with the experiment and 

numerical results can draw up the basic feature of detonation wave reflection over wedge clearly. 

5 Numerical Results 

We have completed the numerical simulation of gas-droplet-fueled two-phase detonation by 

using the Eulerian Two-Fluid Model and Eulerian-Lagrangian Particle-Trace Model and the 

CE/SE method with the second order accuracy. Their numerical results were compared and 

analyzed briefly. 

5.1 Gas-Droplet-Fueled Detonations with Eulerian-Lagrangian Particle-Trace 

Model 

In the Eulerian-Lagrangian Particle-Trace model it assumed that both droplet phase and gas 

phase are the continuous and homogeneous medium. The gas phase is governed by Eulerian Eq. 

(1). However, droplet phase is consisted of particles system and all droplets are traced by using 

Lagrangian method. Each particle in droplet phase is governed by Lagrangian Eq. (3). 

The detonations in liquid C10H22-O2/air systems with different fuel droplet radii and 

equivalence ratios (Φ) have been simulated. Initial pressure and temperature of the mixtures are 1 

atm and 298 K, respectively. Detonation wave is generated by igniting in the left with a high 

initial pressure and temperature as 10 atm and 2980 K, respectively. The other computing 

parameters are given as below: λ=0.1 W·K
-1

·m
-1

, ρf=730 kg/m
3
, μ=2.07×10

-5
 Pa·s, μf=3.5×10

-4
 

Pa·s, Cv=2.1×10
3
 J·kg

-1
·K

-1
, Pr=0.74. In the present simulations, the velocity and temperature of 

the droplets are set to 0 if the radii of the droplets are decreased to 0. 

Tang and Nicholls et al. [18] has systematically studied the detonations in a C10H22 spray 

with 200 μm radius droplets in air and oxygen using a vertical shock tube. In order to verify the 

accuracy of the present model, the detonations in a C10H22 spray with 200 μm radius droplets in air 

and oxygen have been simulated by using Eulerian-Lagrangian Particle-Trace model. The 

numerical results are compared with theoretical prediction values and experimental data 

mentioned above. Fig. 6 (a) and (b) show that calculated detonation velocities in our simulation is 

consistent with the experimental data in trends. Just the calculated results are higher than 

experimental data.  

Meanwhile, we can also find that all theoretical prediction values are agree well with 

experiment data for mixtures with lean fuel. However, it is worth noting that, for mixtures with 

rich fuel, all the theoretical prediction values are contrary with experimental value in trends.  

     

 (a) detonation velocity in fuel-oxygen systems       (b) detonation velocity in fuel-air systems 

Fig. 6. Comparison of detonation velocity in fuel-oxygen/air systems derived by different methods 



Fig. 7 shows the comparison of calculated detonation velocities with C-J theory for all 

gaseous mixtures. It can be seen that the detonation velocities in O2 has a similar trend as that in 

air. Just the detonation velocities in O2 is higher than that in air. 

 

Fig. 7. Comparison of calculated detonation velocity with C-J theory for all gaseous mixtures 

5.2 Gas-Droplet-Fueled Detonations with the Eulerian Two-Fluid Model 

In order to compare the numerical results obtained with using the Eulerian-Lagrangian 

Particle-Trace model, we simulated  numerically also the Gas-Droplet-Fueled Detonations with 

the Eulerian Two-Fluid Model. 

In the Eulerian Two-Fluid Model it assumed that both droplet phase and gas phase are the 

continuous and homogeneous medium. The governing equations of gas phase and droplet phase 

are both Eq. (1): for the gas phase: Q=(ρ, ρu, ρv, E)
T
, E=(ρu, ρu

2
+p, ρuv, (E+p)u)

T
, F=(ρv, ρuv, 

ρv
2
+p, (E+p)v)

T
,S=(Id, -Fx+udId, -Fy+vdId,-(udFx+vdFy)+((ud

2
+vd

2
)/2+qr)Id)

T
, for droplet phase: 

Q=(ρd, ρdud, ρdvd, N)
T
, E=(ρdud, ρdud

2
, ρdudvd, Nu)

T
, F=(ρdvd, ρdudvd, ρdvd

2
, N)

T
, S=-(Id, -Fx+udId, 

-Fy+vdId,0)
T
, where ρd is the density of droplet phase, ud and vd are the velocity components of 

droplet phase, N is the droplet numbers per unit volume, Id is the density variation by the phase 

change, Fx and Fy are the forces components acting on droplets, the total energy density 

E=p/(γ-1)+ρu
2
/2. The detail of the reduced reaction mechanism can be found in Ref. [19]. 

The detonations in liquid C6H14 fuel-air system with different equivalence ratios (Φ) have 

been simulated. Figure 5 show the detonation velocities of C6H14 fuel at different equivalence 

ratios by experiments, C-J theory [20, 21] and simulations, respectively. The numerical results are 

more accurate than the C-J theoretical values and can agree well with the experimental data. 

However, the C-J theoretical values are higher than that of the experimental data.  

From the results mentioned above we can find that the general trend of the detonations 

velocities obtained with the Eulerian Two-Fluid Model is consistent with that of the 

Eulerian-Lagrangian Particle-Trace model. 

 

Fig.5 Detonation velocities of C6H14 fuel at different equivalence ratios 



6 Conclusions 

The gas-liquid-fueled two-phase detonation is very complex phenomenon, until now we are 

still the lack of knowledge of the features for gas-liquid-fueled two-phase detonation. In this paper, 

The Eulerian Two-Fluid Model and Eulerian-Lagrangian Particle-Trace model have been 

developed and a new framework of the two-dimensional CE/SE method was proposed and 

deduced. Numerical simulations of detonations in liquid C6H14 fuel-air and C10H22 fuel-O2/air 

systems have been achieved. Comparison of numerical simulation with theoretical values and  

experimental data was completed. Compared results indicate that our simulating results agree well 

with experimental data in trends. Numerical results obtained by using Eulerian-Lagrangian 

Particle-Trace model are more accurate than that obtained with Eulerian Two-Fluid Model. 

However the general trend of the detonations velocities obtained with the Eulerian Two-Fluid 

Model is consistent with that of the Eulerian-Lagrangian Particle-Trace model. 

 It is proved that the two models and an improved CE/SE method we proposed above can be 

successful to simulate gas-liquid-fueled two-phase detonation. Our improved CE/SE scheme has 

the features of high resolution, simple form and robustness. 
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