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Abstract 

A selective smoothed finite element method (Selective S-FEM) is developed for dynamic 3D 
analysis of extremely large deformation of incompressible bio-tissues, using the simplest 4-node 
tetrahedron elements. In the present selective S-FEM, face-based Smoothed FEM (FS-FEM) and 
node-based Smoothed FEM (NS-FEM) are, respectively, used for the deviatoric and volumetric 
parts of the deformation of incompressible bio-tissues. Therefore the “overly-soft” feature of the 
NS-FEM is made use of for mitigating the volumetric locking that may occur in bio soft tissue. 
Because the FS-FEM can provide close-to-exact stiffness, our selective S-FEM can provide an 
accurate solution. In the current formulation, the soft tissue is modeled using the hyperelastic 
constitutive law. Numerical examples are presented to simulate a passive filling process of 
anatomical rabbit ventricles. It is demonstrated that the Selective S-FEM possess good potential for 
accurately simulating the behavior of bio-tissues for reliable solution.. 

Keywords: Finite Element Method, Smoothed Finite Element Method, Gradient Smoothing, 
Incompressibility, Anisotropy, Myocardium, Tetrahedral, Large Deformation, Explicit time 
integration  

Introduction 

The explicit dynamic Finite Element Method (FEM) has been successfully applied to solve transient 
nonlinear responses of various material and structural systems with large deformation and strain, 
impact-contact and metal forming problems in automotive, aerospace, and bioengineering 
(Goudreau and Hallquist 1982; Belytschko, Liu, and Moran 2000; Miller et al. 2006). In explicit 
dynamics analyses using FEM, four-node quadrilateral element (Q4) and eight-node hexahedron 
element (H8) are the most frequently used with single quadrature point for efficiency, which 
requires a hourglass control to remedy hourglass instability (spurious zero-energy modes) 
(Belytschko, Liu, and Moran 2000). In addition, the one-point quadrature technique can also 
mitigate the volumetric locking in nearly incompressible solids.  
 
When quadrilateral and hexahedral elements are used, it is laborious and time-consuming in pre-
processing and the remeshing for distorted elements, because of the difficulties in automatically 
meshing with these types of elements It is much easier to automatically create and refine, when 
using Triangular and Tetrahedral mesh (T-mesh) are used in complicated geometry. In fact, there 
are now many commercial and open-source softwares, have been developed for automotive 
generating T-meshes. However, in the FEM based on the standard weak formulation, the 
performance of T-mesh is usually very poor for its overly stiff behavior. This is in particular true for 
incompressible solids where volumetric locking may occur. 
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Many efforts have been made to enhance the capability of T-mesh in handling the incompressibility, 
including the F-bar method (De Souza Neto et al. 1996), the method using hydrostatic pressure as 
an additional independent variable (Zienkiewicz et al. 1998), nodal pressure average treatment 
(Bonet and Burton 1998), Hu-Washizu three fields variational theorem (Taylor 2000), and nodal 
averaging treatment of deformation gradient tensor (Bonet, Marriott, and Hassan 2001). The node-
based strain smoothing has also been successfully applied to meshfree methods for stabilization 
(Chen, Yoon, and Wu 2002). 
 
Models using smoothed strains can have a theoretical foundation on G space theory (Liu and Zhang 
2009; Liu 2009; Liu and Zhang 2013). Because the G space theory allows the use of discontinuous 
functions, such a formulation is also termed as weakened weak (or W2) forms. Typical W2 
formulation method is the Smoothed Point Interpolation Methods (S-PIM) (Liu and Zhang 2013). 
When functions in a FEM space are used in a W2 formulation, the so-called the smoothed finite 
element method or S-FEM. In terms of the way to construct the smoothing domains, S-FEM can 
have a family of methods of unique properties, which can be classified as cell-based smoothed FEM 
(CS-FEM) (Liu, Dai, and Nguyen 2006), node-based smoothed FEM (NS-FEM) (Nguyen-Thoi et al. 
2010), edge-based S-FEM (ES-FEM) (Liu, Nguyen-Thoi, and Lam 2009) for 2D problems, and 
face-based S-FEM (FS-FEM) for 3D problems (Nguyen-Thoi et al. 2009). In these S-FEM methods, 
the NS-FEM has an unique property of volumetric locking free, due to its strong softening effects. 
However, spurious non-zero-energy eigen-modes and temporal instabilities arise for NS-FEM, 
despite the fact that it is proven spatially stable (Liu 2009; Liu, Dai, and Nguyen 2006). Differing 
from NS-FEM, the ES-FEM or FS-FEM that uses edge-based or face-based smoothing domains are 
found both spatial and temporal stable, because of using more smooth domains. However, ES-FEM 
or FS-FEM usually produces slightly overestimated stiffness, and hence it can also suffer from the 
volumetric locking. A method using selective gradient-smoothing technique, so called Selective S-
FEM, has been proposed in order to eliminate volumetric locking, at the same time, improve the 
performance of the simplex TRI3 and TET4 elements. The employment of the combined edge-
based and node-based smoothing operations enables effective handling of element distortion in 
extremely large deformation with low computation cost. 
 
Biological tissues, like skin, myocardium, arterial layer, can often treated as hyperelastic material. 
This is because they can undergo very large deformation, and after unloading, they can recover to 
original state.  These strain energy functions can be divided into two groups by their variables. The 
first group is the strain-based strain energy functions, such as the Fung form for arterial layer 
(Chuong and Fung 1986)  and the McCulloch exponential form for myocardium (Vetter and 
McCulloch 2000), which regard strains as independent variables. The another group is the 
invariant-based strain energy functions, like the Hozapfel-Gasser-Odgen form for arterial layer 
(Gasser, Ogden, and Holzapfel 2006) , the Lin form (Lin and Yin 1998) for rabbit heart, and the 
Ogden form (Ogden 1972) for extremely large deformation.  
 
In this paper, we first introduce the basic formulations of explicit dynamic nonlinear Selective S-
FEM in Section 1, and then briefly review the strain energy functions of bio-tissues in Section 2. 
Following numerical examples of transversely isotropic hyperelastic plate and passive bi-ventricles 
in Section 3, conclusions are drawn in Section 4. 

Explicit Dynamic nonlinear Selective S-FEM 

In dynamic analysis, inertia and damping effects must be considered, and the discrete form of the 
governing equation can be given in general as follow 
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 int ext   Mu Cu F F  (1) 

where u  is nodal displacements vector, and T d


 M N ρN ( ρ is mass density vector), 

T d


 C N cN ( c is damping coefficient vector), 
t

T T
ext td d

 
   F N b N t .  

 
In general S-FEM, nodal internal forces should be computed from smoothed strain matrix and 
smoothed stress,  

 int
T d


   F B σ  (2) 

 
 

In this paper, total Lagrange formulation is employed to solve geometrical nonlinearity. The initial 
reference configuration of material point in a body   is denoted by X , and displacement at time tn 

is denoted as nu  then the current deformed configuration is expressed as  

 n n x X u  (3) 

There is the deformation gradient tensor of X  which is the measure of deformation from reference 
configuration, as in Figure 1. It is given by 

  n
n





x
F

X
 (4) 

In our S-FEM, the deformation gradient tensor needs also be written in smoothed version, as below 

    
0 0

0

0 0
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 
 

         X X  (5) 

where 0 s
LA  is the area of initial smooth domains.  

 
For hyperelastic incompressible biology material, the corresponding strain energy function is often 
split into volumetric part and deviatoric part. The smoothed second Piola-Kirchoff (PK2) stress 
tensor can be calculated by given strain energy function and smoothed deformation gradient as 
follows 

  
vol dev

NS-FEM FS-FEM
2 2 2ij

ij ij ij ij

S
E C C C

   
   
   


     (6) 

where ijE  is the Green strain tensor, the smoothed right Cauchy-Green strain tensor .ij ki kjC F F     

After getting the PK2 stress tensor, substitute it into Eq.(2) to get internal nodal force vector. 
 
In the Selective S-FEM, its strain smoothing is performed using a combination of edge-based 
smoothing in 2D problem (face-based smoothing in 3D) and node-based smoothing. These two 
types of smooth domains in Selective S-FEM used here are plotted in Figure 2. In Selective S-FEM, 
volumetric part of PK2 stress is computed by the “over-softly” NS-FEM, and the deviatoric part of 

Figure 2. Illustrations of smoothing domains 
of (left) FS-FEM-TET4 (right) NS-FEM-

TET4 

Figure 1. Configuration and motion of a 
continuum body, and smoothing domains 
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PK2 stress is handled by more precise ES-FEM using smoothed deformation gradient tensor from 
Eq.(5).  
 
For the time integration, the well-established explicit central differential method is used. Although 
explicit scheme is conditional stable, it is much easier in programming and no need to form the 
global tangent stiffness matrix. The time increments are defined as 

   1/2 1 1/2 1 1/2 1/2, / 2, .n n n n n n n n nt t t t t t t t t              (7) 

The displacement and velocity can be update by 

  1 1/2 1/2 ,n n n nt    u u v  (8) 

  1/2 1/2 ,n n n nt   v v a  (9) 

The acceleration n n a u is obtained by solving the following equation 

     , , .n ext n n int n n nt t  Ma f u f u Cv  (10) 

If a lumped mass matrix is employed in Eq.(10), M  becomes a diagonal matrix, and na  can be 
computed via trivial operations without invoking a linear algebra equation solver.  

Hyperelastic strain energy functions for bio-tissue 

Hyperelastic constitutive laws are often employed to model the mechanical response of bio-tissues. 
Based on experimental data, variety of isotropic and anisotropic strain energy functions have been 
proposed in recent years. In all these forms of strain energy function, they can be grouped into two 
categories, in terms of their independent variables. The first group is the strain-based forms group, 
which is expressed directly in terms of the components of suitable strain tensor (often is Green 
strain tensor E ).The general decoupled form of this group is given below 

  ( ) .dev vol   E  (11) 

In the beginning of the development of biomechanics, almost all strain energy functions are formed 
using Green strain tensor, like Fung’s form (Chuong and Fung 1986), “Pole-zero” form (Nash and 
Hunter 2000), and McCulloch form (Vetter and McCulloch 2000). Although these forms are the 
naturally transited from elastic constitutive law, they are boring in finding the material parameters 
and constructing the local material coordinate systems for their needs of an orthogonal coordinate 
system. 
 
Another group is the invariant-based forms group, strain energy functions are expressed in terms of 
invariants of right Cauchy-Green strain tensor I1, I2 and fiber directions Ii

 (i=4,5,…), and the general 
form is given as below 

       1 2 4 1 2 4, , , ,... , , ,... ,dev volI I J I I I I J     (12) 

where J is the volume ratio and 3J I . Note that in S-FEM, all invariants should use the 

smoothed version. Material parameters of invariant-based form are less than strain-based form and 
often just need the fiber orientation. With these advantages, this type is more and more popular in 
biomechanics, like the recently proposed Holzapfel-Gasser-Odgen (H.G.O) form (Gasser, Ogden, 
and Holzapfel 2006) for adventitial layers. 
 
There is also a group of strain energy function in terms of principal stretches, such as the Ogden 
form (Ogden 1972). Although they should be categorized in another group for its variables, the 
principal stretches can be derived form invariants of right Cauchy-Green strain tensor, so we regard 
they are just special version of the invariant-based forms. 
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Numerical examples 

1. Transversely isotropic hyperelastic plate under uniform pressure 

 

Figure 3. (a) Problems settings of example 3, regular mesh (b) and irregular mesh (c) at initial configuration 

The model configuration of one family of fiber-reinforced hyperelastic plate is showed in Figure 3, 
where L = 1m, W = 1m, H = 0.1m, and a  is the unit vector in fiber orientation. The regular mesh 
and one kind of irregular mesh are plotted in Figure 3(b)(c). Nearly-incompressible Mooney-Rivlin 
model is employed as the isotropic part of strain energy with the parameters: 10 1kPaC  , 

01 0.5kPaC  ,  1000mPa   and density  3
0 1000kg/m  . Weiss polynomial form (Weiss, Maker, 

and Govindjee 1996) is employed as deviatoric part of strain energy function with parameter: 

1 5kPaA  . This strain energy function can be written in following form. 

 

       

       

1 2 4 1 2 1 2 4

21
1 2 01 1 10 2 1 2 4 5 4

, , , ,... , , , ,... ,

, ( 3) 3 , , , , 1 .
2

dev dev vol
iso ani

dev dev
iso ani

I I J I I I I I I J

A
I I C I C I I I I I I

    

       
 (13) 

 

The boundary condition and initial condition are given as follows. Initial condition: 0 v 0  and 
0 0u . Boundary condition: on the four lateral surface 0n n n

x y zu u u   . Loading: on the upper 

surface, a given uniform pressure is applied. This example is aimed to illustrate the ability S-FEM 
to solve large anisotropic deformation caused by transversely isotropic constitutive law. 

 
Explicit analyses with conventional dynamic relaxation technique are only performed using 
Selective S-FEM with 7058 TET4 elements (5088 nodes) to achieve the quasi-static solutions. Five 
different fiber orientations cases are calculated here, and the corresponding orientation vectors 

Figure 4. Deformed configurations for regular (above) and irregular meshed (below) example 1 with different 
fiber directions 
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Figure 6. Stress-strain curves of fiber, cross fiber and 
fitted Ogden forms. 

are (cos 0 ,sin 0 ,0)  , (cos30 ,sin 30 ,0)  , (cos 45 ,sin 45 ,0)  , (cos 60 ,sin 60 ,0)   , and 

(cos90 ,sin 90 ,0)  . The deformation configurations of different cases are plotted in Figure 4. It is 

obvious that different embedded fiber direction will lead to a quite different deformation. Moreover, 
according to definition of transversely isotropic, deformation configurations of cases with fiber 

direction  (cos 0 ,sin 0 ,0)   and (cos90 ,sin 90 ,0)   should be identical, so as to (cos30 ,sin 30 ,0)   

and (cos 60 ,sin 60 ,0)  . For clear demonstration of this phenomenon, displacements of Z-axis in the 

two upper face diagonal lines are plotted in Figure 5. In Figure 5, nodes with the same distance to 
the center of plate will have the same deflections in every different fiber direction cases. Also in this 
figure, results of regular and irregular mesh are matched very well. This example demonstrates that 
the present selective S-FEM using TET4 is capable to handle the transversely isotropic hyperelastic 
material in large deformation. 

 

Figure 5. The deflections on the diagonal line (0, 0, 0.1) – (1, 1, 0.1) (left) and (1, 0, 0.1) – (0, 1, 0.1) (right) versus 
distances to point (0, 0) of regular and irregular meshed cases with different fiber orientations. 

2. Passive filling of rabbit ventricles 

Heart, as the most important organ in any 
species of animals, pumps blood to other 
organs and muscles by repeated, rhythmic 
contractions and expansions. Two phases 
can be divided in the cardiac cycle; one is 
the contraction period, referred as 
ventricular systole, another is the 
ventricular diastole which the heart is 
relaxed and refilled for the next cycle.  
 
This heart pump depends mainly on the 
active mechanical property of left 
ventricle myocardium. Here for the sake 
of simplicity, the passive filling process is 
calculated to approximate the diastole phase, because of its easier passive mechanical property and 
loading. Usually, myocardium is fiber-reinforced, and its fibers are complex distributed. According 
to reference (Lin and Yin 1998) and reference (Vetter and McCulloch 2000), they provide a 
invariant-based transversely isotropic strain energy function for rabbit myocardium and 
corresponding equibiaxial stress-strain curves. Luckily, because the correlation of the fiber and 
crossfiber strain-stress curves is 0.998631, anisotropy can be ignored. Ignoring the anisotropy of  
fiber architecture really can reduce many works on reconstructing the fiber orientations. We fit these 
two curves into Ogden form strain energy function (Ogden 1972) as in Figure 6. In Figure 6, the 
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2nd and 4th order Ogden forms can well approximate the curves in the fiber direction and cross 
fiber direction. For the sake of less parameters, the 2nd Ogden form here is employed as the 
constitutive law, the decoupled form is  

   2
1 2 32

1

2 1
3 ( 1)

2
i i i

N
i

i i

J  
   



        (14) 

where modified principal stretches 1/3 ( 1, 2,3)a aJ a   , N=2 for 2nd Ogden form, i  (Pa) and 

i  are the material coefficients,   is the bulk modulus. Here, for the rabbit myocardium, 

1 1803.71Pa  , 1 0.924   , 2 5.96Pa  , 2 25.0   , and 35590.19Pa  .  

 
To validate our Selective S-FEM, standard FEM with TET10 elements is employed here to do a 
comparison. The rabbit ventricle model is discretized by 39142 elements, 9069 nodes for Selective 
S-FEM, 62239 nodes for FEM, see it in Figure 7 (left).  Boundary condition:  LV and RV 
endocardial base is constrained the longitude (X-direction) displacements, epicardial base are fixed 
constrained. Loading: The 25mmHg pressure is smoothly applied on the LV surface to simulate the 
passive filling process, and the RV is unloaded here.  
 
A slice of rabbit ventricles in X-Y plane is drew in Figure 7 (Right) as a simple validation of TET4 
Selective S-FEM and TET10 FEM. In Figure 7 (Right), the blue dash curve is the undeformed 
outline of TET10 FEM slice, the red dot curve is the deformed outline of TET10 FEM slice, but the 
contour of displacement magnitude belongs to TET4 FS/NS-FEM. The two deformed outline match 
with each other very well, except some mismatches in the septum. This example shows the near 
quadratic tetrahedron element accuracy of Selective S-FEM. 

 
Figure 7. Mesh of rabbit ventricles (left) and a slice in X-Y plane (right, outline belongs to FEM TET10, contour 

belongs to FS/NS-FEM). 

Conclusions 

In this paper, Selective FS/NS-FEM is applied into isotropic and anisotropic incompressible bio-
tissues. Several conclusions can be derived from this paper. 
(1) Selective S-FEM using TET4 element can easily mesh complex geometry, such as ventricles. 
(2) FS-FEM is ideal for the deviatoric part of deformation of incompressible isotropic or 

anisotropic solids, so as to greatly improve the performance of the linear elements.  
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(3) NS-FEM is ideal for the volumetric part of deformation of incompressible solids, and can 
effectively mitigate the volumetric locking in incompressible materials, even if linear elements 
are used. 

(4) Selective S-FEM is capable to handle the large rotation of fibers in anisotropic bio-tissues with 
regular or irregular mesh. 

(5) Selective S-FEM can enhance the accuracy of linear TET4 element to be closer to quadratic 
TET10 element. 
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