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PREFACE 
 
 
Dear Colleagues 
 
 
On behalf of the organising committees, we are delighted to welcome you to the 5th 
International Conference on Computational Methods (ICCM2014) at Cambridge, UK. 

The ICCM2014 is an international conference that provides an international forum for the 
exchange of ideas on recent advances in areas related to computational methods, numerical 
modelling & simulation, as well as their applications in engineering and science. It will 
accommodate presentations on a wide range of topics to facilitate inter-disciplinary exchange 
of ideas in science, engineering and related disciplines, and foster various types of academic 
collaborations internationally. All papers accepted for publication in the proceedings have 
been peer reviewed. Papers may also be selected and invited to be developed into a full 
journal paper for publication in special issues of the journals. 

The conference series originated in Singapore in 2004 by Professor GR Liu, followed by 
ICCM2007 in Hiroshima, Japan, ICCM2010 in Zhangjiajie, China, and ICCM2012 in Golden 
Coast, Australia. This year, the ICCM2014 conference programme covers over 270 oral 
presentations in 47 technical sessions, including 3 Plenary talks, 9 Thematic Plenary talks, and 
a number of Keynote talks in technical sessions. These presentations cover a broad range of 
topics related to computational mechanics, including formulation theory, computational 
methods and techniques, modelling techniques and procedures, materials, deformation 
processing, materials removal processes, processing of new and advanced materials, welding 
and joining, surface engineering and other related processes. 

We would like to express my gratitude to all the members of the Local Organizing Committee, 
International Scientific and Organization Committee, Honorary Chairmen and Co-Chairmen, 
who have provided advices and guidance timely in planning and executing this conference. 
We also would like to use this opportunity to express my gratitude to the School of 
Engineering of the University of Liverpool, and to colleagues for their strong support and 
encouragement. Sincere thanks and appreciation go to some 100 international reviewers for 
their prompt review reports on the submitted papers. Our appreciation goes also to all the 
Mini-Symposium Organizers for their efforts and contributions in the organization.  A vote of 
thanks also goes to members at the Scientech Publisher, USA for their professional services 
and management of the conference website and timely coordination with our participants.  

 

 

G.R. Liu, University of Cincinnati, USA  
Zhongwei Guan, University of Liverpool, UK  
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ODE-Solver-Oriented Computational Method for the Structural 

Dynamic Analysis of Super Tall Buildings 

*Yaoqing Gong¹, and Xiancheng Wang2 
1Yaoqing Gong, School of Civil Engineering, Henan Polytechnic University, China 

2Department of Civil and Material Engineering, Henan University of Urban Construction, China 

*Corresponding author: gongyq@hpu.edu.cn 

Abstract 
The paper is to introduce a computational methodology that is based on ordinary 
differential equations (ODE) solver for the structural systems adopted by super tall 
buildings in their preliminary design stage so as to facilitate the designers to adjust 
the dynamic properties of the adopted structural systems. The construction of the 
study is composed by following aspects. The first aspect is the modelling of a 
structural system. As a typical example, a mega frame-core-tube structural system 
adopted by some famous super tall buildings such as Taipei 101 building, Shanghai 
World financial center, is employed to demonstrate the modelling of a computational 
model. The second aspect is the establishment of motion equations constituted by a 
group of ordinary differential equations for the analyses of free vibration and resonant 
response. The solutions of the motion equations (that constitutes the third aspect) 
resorted to ODE-solver technique. Finally, some valuable conclusions are 
summarized.  

Keywords:  ODE-solver-oriented computational methodology, tall building 
structures, structural dynamic analysis, computational model of a mega frame-core-
tube structural system, free vibration and resonant response, ODE solver 

Introduction 
Nowadays, we are experiencing an unprecedented level of activity in the design and 
construction of super tall buildings because of the limitation of land resources and 
advanced construction technology, ad hoc in China [X. zhao et al. (2011)]. The world 
architecture history has been rewritten by the multiformity of structural systems, the 
complexity of component arrangements and the variation of architectural styles of 
current super tall buildings. However, the analytical level for the investigation of 
dynamic properties of various structural systems adopted by super tall buildings lags 
behind their construction level. Both computational models and numerical methods 
for the dynamic analyses proposed hitherto by existing literatures are quite limited in 
their ability to model and to determine the three-dimensional motion of the structural 
systems. 
 
For instance, Reza Kamgar, Mohammad Mehdi and Saadatpour [Reza et al. (2011)] 
developed a simple mathematical model based on Euler-Bernoulli beam theory to 
determine the first natural frequency of tall buildings including a framed tube, a shear 
core, a belt truss and an outrigger system with multiple jumped discontinuities in the 
cross section of the framed tube and shear core. Hong Fan, Q.L. Li, Alex Y. Tuan and 
Lihua Xu [Hong Fan et al. (2009)] investigated the seismic analysis of the structural 
system of Taipei 101, a mega-frame system with a central braced core connected to 
perimeter columns on each building face, by employing a 5-storey frame 
computational model composed by 3-D beams, 3-D columns and floor slabs. Wen-
Hae Lee [Lee (2007)] simplified a tube-in-tube tall-building system as an Euler-
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Bernoulli beam with variable cross-sections and then formulated an approximate 
solution procedure for the free vibration analysis.  
 
In order to render the computational model of a super tall building system closer to 
practical engineering as well as the corresponding numerical method more efficient, 
the purpose of this paper is to present an ODE-solver-oriented computational 
methodology for the structural systems adopted by super tall buildings in their 
preliminary design stage so as to facilitate the designers to adjust the dynamic 
properties of the adopted structural systems. The construction of the study is 
composed by following aspects. The first aspect is the modelling of a structural 
system adopted by a super tall building. As a typical example, a mega frame-core-
tube structural system as showed in Figure 1(a) adopted by some famous super tall 
buildings such as Taipei 101 building, Shanghai World financial center, is employed 
to demonstrate the modelling of a computational model. The second aspect is the 
establishment of motion equations constituted by a group of ordinary differential 
equations (ODE) for the analyses of free vibration and resonant response. The 
establishment utilized semi-discretization, displacement quantification and motion-
field quantification techniques. The solutions of the motion equations (that constitutes 
the third aspect) resorted to an ODE solver technique (Yuan Si [Yuan (1991, 1993)]). 
Finally, some valuable conclusions are summarized.   

1. Modelling of a super-tall building system 
Figure 1(a) shows a mega frame-core-tube system adopted by some famous super tall 
buildings such as Taipei 101 building, Shanghai World financial center, etc. On 
structural aspects, the space mega frame is composed by two grades of members. The 
first grade is mega columns and beams, and the second grade is interiorly 
supplementary frames in the mega frame. The mega columns are generally made by 
tubes or other mega-substructures, which are jointed by the giant beams in every 
several floors. Since the geometric dimension (cross sectional area and inertial 
moment, etc.) of the members of the mega frame is very large, comparing with that of 
the supplementary ones, the characteristic makes this kind of structure has great load 
bearing capacity, strong sidesway stiffness. By analyzing the structural performance 
of the mega frame-core-tub system shown in Figure 1(a), we can conduct following 
two basic assumptions: 
 
(1) Rigid floor slab assumption, that is, each floor is infinite rigid in its own plane; 
(2) Strain state assumption, that is, the axial strain of a mega beam is negligible 

comparing with that of a mega column. 
 

Based on the two assumptions, we might simplify a mega frame-core-tube system 
shown in Figure 1(a) as a generalized equivalent continuous stiffened thin-walled 
tube-in-tubes as shown in Figure 1(b), and conclude that the wall of the thin-walled 
tubes is subjected to a plane stress state of longitudinal normal stress and horizontal 
as well as vertical shear stress, which are the functions with respect to the curved 
coordinate S, along the direction of centerline of the thin-walled tubes, and the 
longitudinal coordinate (vertical axis Z ) of the tubes, as showed in Figure 2. 

x

y

z
core tube

stiffener

nodal lines

foundation

subgrade

S

 Figure 1: A mega-frame-core-tube 
system and its computational model

(a) (b)

S

z

( , )s zσ

( , )s zτ

( , )s zσ

( , )s zτ

Figure 2: Stress state of the tube
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The subgrade or the foundation soil of the structural system is idealized as a semi-
infinite elastic body, whose equivalent stiffness equations in the normal and 
tangential direction at the bottom and walls of a foundation pit have been formulated 
by employing the displacement equations of Mindlin [Mindlin (1936)] in a semi-
infinite elastic body subject to a concentrated force acting in the interior of the semi-
infinite elastic body. Using the equivalent stiffness equations [Gong (2007)], the 
interactions between the foundation and the subgrade (foundation soil) can be readily 
taken into considerations quantitatively.  
 
Consequently, the computational model of a mega frame-core-tube system of a super 
tall building will be a generalized equivalent continuous tubular shell constituted by 
stiffened thin-walled tubes-in-tubes supported on a semi-infinite elastic body as 
shown in Figure 1(b). 

2. Formulation of motion equations 

2.1 Semi-discretization technique and displacement quantification 
As shown in Figure 1(b), if we use one-variable functions 0 ( )xv z  , 0 ( )yv z   and  ( )zθ   
defined on the vertical axis Z of the tubular shell, which are piecewise functions in 
most cases, the transverse displacements of the cross section of the tubular shell in the 
X and Y directions, and the rotation around the longitudinal axis Z will be 
represented as 

    { }
0

0 0

( )
( ) ( )

( )

x

y

j

v z
v z v z

zθ

    =   
    

.     (1) 

Similarly, if we make a semi-discretization along the cross-section central line S by 
the vertical lines named nodal lines and employ the one-variable functions ( )in

jw z , and 
( )ex

jw z , respectively defined on the inner and outer nodal lines, and interpolation 
functions ( )j insϕ , and ( )j exsϕ between the inner and outer nodal lines, the axial 
displacement or longitudinal warping of the tubular shell will be expressed as 

    { } [ ( )]{ ( )}( , ) [ ( )]{ ( )}
in in

ex ex j

s w zu s z s w z
ϕ
ϕ

 =  
 

.     (2) 

where 1, 2,j n=   is the segment number of the nodal lines in the longitudinal 
direction Z (1 may represent foundation and 2 to 6 may stand for the first to fifth 
floors and so on, for example), and the segment number depending upon the property 
variation of the building system up the height is the intersection number between 
nodal lines and the curvilinear coordinate (central line of the cross section) S; { }0( )v z  
and { }( , )u s z  are function sets, constituted by all of the basic unknown functions; 
[ ( )]sϕ  a row vector, and { ( )}w z  a column vector, respectively. 

2.2   Motion-field quantification 
For free vibration analysis, the longitudinal and transverse dynamic displacements of 
the structural system (the tubular shell) can be respectively written in Galerkin’s form 
as 

{ } [ ( )]{ ( )}( , , ) [ ( )]{ ( )}
i tin in

ex ex j

s w zu s z t es w z
ωϕ

ϕ
   =   
   

,                             (3) 

    { } { }{ }0 0( , ) ( ) i t
j

v z t v z e ω= .       (4) 

For forced vibration steady-state response analysis, if giving an arbitrary vertical 
ground-motion of { )}(gu t , an arbitrary horizontal ground-motion of { )}(gT t  in the X 
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and Y directions, and the rotation around the longitudinal axis Z, for instance, the 
motion field of the computational model can be readily quantified as follow 

    
{ } { } { }

{ } { } [ ]{ }0

( , , ) ( ) ( , ) ( )

( , ) ( ) ( ) ( )

t
g

t
o g

u s z t u t u s z r t

v z t T t f t v z

= + 


= + 
,     (5) 

where ( )r t  and ( )f t  are the time functions concluded by means of the time-change 
law of ( )gu t  and ( )gT t , respectively. 

2.3   Motion equations or governing equations 
By employing above motion field, the total kinetic energy as well as the potential 
energy of the structural system including the strain energy stored in the subgrade can 
be readily estimated. Then, by using a Hamiltonian principle, the governing equations 
of the structural system can be derived conveniently, which are the ordinary 
differential equations (ODE) and corresponding boundary conditions. For instance, 
the motion equations for free vibration will lead to 

    
{ } { } { } { } { } { }
{ } { } { } { } { } { }

1 1 1 1

1 1 1 1 1

0 ,      0

0

in in ex exu u u u
s i s i

in ex in ex exv v v v t
s s i i r

F F F F

F F F F F

+ = + = 


+ + + − = 
,      (6) 

    
{ } { } { } { } { } { }

{ } { } { } { } { }

0 ,   0

0

in in ex exu u u u
s i s ij j j j

in ex in exv v v v
s s i ij j j j

F F F F

F F F F

+ = + = 


+ + + = 

,      (7) 

in which, 

{ } { } 2
0[ ]{ ( )} [ ]{ ( )} [ ]{ ( )},   [ ]{ ( )},u u

s iE A w z G B w z G CF Fv z m A w zω′′ ′− −= =        

{ } { }
{ }

2
1 0 2 0

0

[ ]{ ( )} [ ] { ( )}, [ ]{ ( )},
[ ]{ ( )}

T

r n

v
i

t
r H

v
s G D v z G C w z m D v z

C k
F
F v

F
E z

ω= =

=

′′ ′+ 



 .            

Equations (6) and (7) are the motion equations for the foundation and other segments 
of the computational model respectively, and their corresponding boundary 
conditions at the bottom of the foundation will be 

    

{ } { }
( ) ( ) ( ){ }

( ){ } { }
1 1 0

0

[ ]{ '(0)} [ ]{ (0)} [ ]{ '(0)} [ ]{ (0)}

[ ] [ ] { (0)} [ ] { (0)}

      [ ] { (0)} + [ ]{ (0)} = 0

,   zD zD
inin e

in ex

x T

exT
tD

E A w k A w E A w k A w

G D G D v G C w

G C w k S v

= =





 ′+ + 

+








.      (8) 

The boundary conditions at the top of the computational model become as 

  { } { } { } { }
{ } { }1 1 0

[ ]{ '( )} 0 ,   [ ]{ '( )} 0
( [ ]) ( [ ]) { ( )} ( [ ] { ( )}) ( [ ] { ( )}) = 0in ex T in

in in

T ex

E A w H E A w H
G D G D v H G C w H G C w H′

= =
+ + + 





. (9) 

Also the displacement consistence and generalized internal force equilibrium 
conditions at each connection of the computational model must be 

1 1

0 0 1

{ ( )} { ( )} ,  { ( )} { ( )}
{ ( )} { ( )}

in in ex ex
k k k k k k k k

k k k k

w H w H w H w H
v H v H

+ +

+

= =
= 

,                (10) 
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{ } { }
{ } { }
{ } { }

{ } { }
{ }

1

1

1 1 0

1 1 0 1

1

[ ]{ '( )} [ ]{ '( )} ,  
[ ]{ '( )} [ ]{ '( )} ,

[( [ ]) ( [ ]) ]{ ( )} [ ] { ( )}

    [ ] { ( )} [( [ ]) ( [ ]) ]{ ( )}

    [ ] { ( )} [ ] {

in in
k kk k

ex ex
k kk k

inin ex T
k kk k

exT in ex
k kk k

inT T
k k

E A w H E A w H
E A w H E A w H

G D G D v H G C w H

G C w H G D G D v H

G C w H G C w

+

+

+

+

=

=

′+ +

′+ = +

+ +{ }
1

( )}
ex

k k
H

+











.       (11) 

The meaning of the matrices such as [A], [B], etc. can be referred to [Gong (2010)]. It 
is observed, in mathematic view, that the problem about the free vibration of a super 
tall building system is an eigenvalue problem, and its governing ordinary differential 
equations (ODE) can be theoretically solved by an ODE solver such as COLSYS 
[Ascher (1981)], a general purpose program developed to solve various ODE 
problems. However, the normal ordinary differential equation solver can only solve 
the standard ODE problem. Consequently, a computational software package known 
as EIGENCOL [Yuan (1991, 1993)] has been developed to solve the eigenvalues and 
corresponding modes efficiently [Yaoqing Gong (2010)]. 

3. ODE-Solver Method 
As mentioned previously, the free vibration of a super tall building system is an 
eigenvalue problem of a group of ordinary differential equations, which can be 
theoretically solved by an ODE solver. However, a normal ordinary differential 
equation solver can only solve a standard ODE problem. In order to find the 
eigenvalues, a computational software package known as EIGENCOL [Yuan (1991, 
1993)] has been developed to solve the eigenvalues and corresponding modes 
efficiently. According to the technique proposed in the literatures, before the ordinary 
differential equations with eigenvalues are solved, they should be transformed into 
the standard ODE forms accepted by COLSYS [Ascher (1981)]. The procedure 
includes following steps. 

3.1 Coordinate transformation 
The solving interval of standard ordinary differential equations must be [0,1] . Thusly, 
the coordinate transformation must be performed for a practical problem with the 
solving interval of [0, ]jH , for example. At this point, the transformation technique 
will be 

    ( ) ( ) ( )1
/ ,    i

i

d d d d

dx d dx H d
x H

ξ

ξ ξ
ξ = ⋅ == .       

3.2 Trivial ODE conversion technique 
Because eigenvalues are undetermined constants and also a part of the solution of a 
group of ODEs, the determination of the unknown constants become a key point for 
the solution of the group of ODEs. Therefore, a trivial ODE is necessary to convert 
the ODEs with eigenvalues into a new set of standard ODEs in which an eigenvalue, 
say 2ω , has been made as an unknown function. In view of the derivative of a 
constant is zero, the trivial ODE can be thusly established as 

 2( ) / 0d dλ ω ξ′ = = .               (12) 

The addition of equation (12) will lead to one more corresponding boundary 
condition. Finding the condition introduces another technique, equivalent ODE 
technique. 

3.3 Equivalent ODE technique 
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If we define a normalized function with respect to the forgoing mentioned basic 
unknown functions as 

{ } { } { } { } { } { }( )
0 0 0

2

( ) ( ) ( ) ( ) ( ) ( )
( )

T T

in in ex ex

Tw w w w v v d
R

H

ξ

ζ ζ ζ ζ ζ ζ ς
ξ

+ +
= ∫ ,           (13) 

where H  is the total height of the structural system. Equation (13) can be recognized 
as a generalized inner production of the basic unknown functions, and obviously 

    
{ } { } { } { } { } { }( )0 0

2

( ) ( ) ( ) ( ) ( ) ( )
( )

T T T

in in ex exw w w w v vdR R
d H

ξ ξ ξ ξ ξ ξ
ξ

ξ

+ +
′= = .   (14) 

Also if we set 

    
{ } { } { } { } { } { }( )1

0 0 0
2

( ) ( ) ( ) ( ) ( ) ( )
(1) 1

T T

in in ex ex

Tw w w w v v d
R

H
ζ ζ ζ ζ ζ ζ ς+ +

= =∫ ,     (15) 

the equation will become a standard normalized condition, and we can find two useful 
boundary conditions as follows 

}(0) 0
(1) 1

R
R

=
=

.                (16) 

By employing above trivial ODE 
conversion and equivalent ODE 
techniques, one can transform ordinary 
differential equations with eigenvalues 
into a new group of standard ODEs. For 
instance, equations (6), (7), (12) and (14) 
constitute a group of standard ODEs, and 
equations (8), (9), (10), (11) and (16) 
become their corresponding boundary 
conditions. The group of ordinary 
differential equations can be readily 
solved by a normal ODE solver such as 
COLSYS [Ascher (1981)]. 

4. Example and computational result 
analysis 

The purpose of the section is to demonstrate the numerical determination of resonant 
response for a super tall building system due to a given complex ground motion. 

4.1 Example 
Figure 3 shows the cross section of a mega frame-core-tube system adopted by a 
reinforced concrete super tall building under its structural construction as shown in 
Figure 1 (a). The height of the main superstructure is 261.9 meters, and the height of 
its foundation structure is 21 meters. The cross-section area of all the mega columns 
and beams is 22.4 2.4m× ; the cross-section size for all the columns and beams of the 
secondary frame in the mega frame is 20.7 0.7m× ; the distance between two columns 
is 8.4m . A box-pile foundation is implemented, and the foundation soil is clayey silt. 
The equivalent stiffness of soil at the bottom and side faces of the foundation pit is 
respectively utilized as follows. 

532.4 10zD dK r= × KPa/m, 525.1 10tD dK r= ×  KPa/m, 525.1 10tH dK r= ×  KPa/m, 
532.8 10nH dK r= ×  KPa/m. dr  is a coefficient that depends on the realistic site 

conditions ( 1.0 is used in this example); rC  is the contact coefficient between the 
foundation and the subgrade (takes 0.5 in this example); the materials used in the 
structural system are respectively: the thickness of the wall for the foundation tube is 

8.4
8.4

8.4

8.4

8.4

8.4

8.4 8.4 8.4 8.4 8.4 8.4

50.4m

 50
.4

m
mega frame

secondary frame

core tube

  Figure 3. cross-section of 
a mega frame-core-tube system
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0.6m , the concrete level is 50C , and the concrete level for the mega frame is 
50C too; the concrete level executed for the secondary frame is 35C , the thickness of 

the wall for the inner tube is 0.40m , 0.45m  for the outer tube, and the concrete level 
for the tubes is 40C . 

4.2 Computational result analysis 
In the following tables and 
figures xP , yP , zP  and θP  
represent a group of natural 
periods of the structural 
system in the X, Y, Z, and 
θ  (around axis Z) directions, 
respectively. It is implied 
that if the ground motion 
periods coincide with the 
group of natural periods of 
the structural system, the 
resonance of the structural 
system will occur. That is, if  

x x2π/ω =P , y y2π/ω =P , 
z z2π/ω =P  and θ θ2π/ω =P , 

resonance will occur; 0xv , 
0yv , θ , inw , and exw  stand 

for the resonant 
displacement amplitudes at 
the top of the structural 
system in the transvers 
directions as well as the 
resonant warping at the top 
of inner and outer tubes of 
the computational model. 

5. Conclusions 
The structural resonance 
will occur when the ground 
motion period in one 
direction is very close to the 
natural period of the 
structural system in the 
identical direction. The 
characteristic of the 
computational result is that 
the dynamic response value 
is very large (should be 
infinite theoretically), as 
shown in Figure 4, a step 
change is happening. 
A designer must pay 
attention to the coupling 
natural periods of a structural system as long as the movement of its foundation soil 
during an earthquake is very hard to predict or evaluate quantitatively. The 
adjustment of a structural system, including the change of its material, arrangement of 
its components, etc., will lead to the change of its dynamic property, especially its 
coupling natural period that possess many combinations, as listed in table 1. As 
shown in Figure 5, when the ground motion period changes to a certain degree, the 
structural system might experience a different coupling resonant state. Also as listed 
in table 2, they implicitly teach us that the dynamic property improvement of a 
structural system just in a single direction could render the structural system to stay in 
a potential coupling resonant state. 

Table 1. Resonant response of coupling vibration 
xP  yP  zP  θP  0xv  0yv  inw  exw  

3.9 4.9 4.2 21 1866.75 52.70 342.66 372.85 
4.5 4.9 4.2 1.3 38.66 34.46 13.99 15.07 
2.9 3.1 3.1 3.1 1533.69 11.15 319.34 344.75 

 

Table 2. Influence of dynamic-property 
adjustment on resonant response 

xP  0yv  inw  exw  
7.9 0.45 0.05 0.11 
3.5 1.62 0.46 0.28 
2.2 33.86 5.05 6.52 
1.7 151.96 28.95 28.38 
1.5 245.71 45.16 44.71 

 

Table 3. Influence of structural stiffness on resonant 
response 

structural 
stiffness 0xv  0yv  θ  inw  exw  

3.15 3.51 3.25 -0.82 0.45 2.53 
3.5 1.69 -0.16 -0.82 0.26 1.22 

4.15 -3.34 -26.24 -0.82 -1.87 -5.25 
4.55 9.97 463.79 -0.82 38.67 107.55 

 

Table 4. Influence of foundation stiffness on resonant 
response 

foundation 
stiffness 0xv  0yv  θ  inw  exw  

2.2 3.58 4.60 -0.82 0.58 2.59 
3.2 3.55 4.53 -0.82 0.57 2.56 
4.2 3.53 4.49 -0.82 0.57 2.55 
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The resonant periods or natural periods of a structural system strongly depend on its 
global rigidity, as shown in table 3. The reduction of global rigidity of a structural 
system will make its natural period become longer, and vice versa.  
 
The influence of the foundation stiffness of a structural system on its resonant periods 
or natural periods is not obvious if the superstructure remain unchanged, as shown in 
table 4. These computational results tell us that it is not a wise way to improve the 
dynamic property of a structural system by means of increasing the size of the 
foundation in its aseismic design. 
 
The methodology presented in the paper is helpful for the determination of coupling 
frequencies or periods of a complex structural system, which are very hard to find in 
the published literatures hitherto and to determine by utilizing other numerical 
methods. 
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Abstract 

In this work, a face-based smoothed extended finite element method (FS-XFEM) is 
developed for three-dimensional fracture problems. This method combines the 
extended finite element method (XFEM) and smoothing technique together. With 
XFEM, arbitrary crack geometry can be modeled and crack advance can be simulated 
without remeshing. With face-based smoothing technique, the integration of singular 
term over the volume around the crack front can be eliminated, thanks to the 
transformation of volume integration into area integration. Numerical examples are 
presented to test the accuracy and convergence rate of the FS-XFEM. From the 
results, it is clear smoothing technique can improve the performance of XFEM for 
three-dimensional fracture problems  
Keywords: three-dimension, face-based smoothed extended finite element method, 
stress intensity factor.  
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1. Introduction 

The fracture analysis by standard finite element method (FEM) is quite cumbersome 
and tedious caused by conforming the crack geometry to element boundary. 
Remeshing, which greatly increases the computation time, is always needed to match 
the new geometry of the crack surface, when the crack advances. In order to avoid 
these two disadvantages of FEM, the extended finite element method (XFEM) has 
been proposed to facilitate the modeling of arbitrary crack geometry and its 
evolvement [Belytschko et al. (1999); Moes et al. (1999);]. In the XFEM, the 
displacement field of the standard FEM is enriched by a discontinuous displacement 
function and the asymptotic displacement field around the crack tip based on a local 
partition of unity. The most important advantage of XFEM is that it can simulate the 
crack without conforming the mesh to the crack geometry and crack propagation 
without remeshing. The method can improve the accuracy by incorporating arbitrary 
functions into the displacement field of the standard FEM to describe the local 
behavior around the singular features such as crack tips, notches or corners and thus 
is a flexible and powerful tool in the field of fracture mechanics. Currently, the 
XFEM is widely used to simulate two- and three-dimensional elastic and plastic 
fracture problems [Elguedj et al. (2006); Bordas et al. (2008); Rabczuk et al. (2007); 
Rabczuk et al. (2009)]. Attracted by the advantages of the XFEM, researchers in other 
fields of computational physics have also employed it [Chessa et al. (2003); Chopp et 
al. (2003); Merle et al. (2002); Ji et al. (2002)].  

 
 

On the other hand, a generalized gradient smoothing technique was introduced by 
[Chen et al. 2001]. More recently, Liu has established a G space theory and 
developed weakened weak (W2) formulation which has been the foundation for 
smoothed finite element methods (SFEM) [Liu et al. (2009); Liu (2010); Liu et al. 
(2010)]. Using different schemes of smoothing domain formation, cell-based 
smoothed finite element method (CS-FEM) [Le et al. (2010)], node-based smoothed 
finite element method (NS-FEM) [Liu et al. (2010)] and edge-based smoothed finite 
element method (ES-FEM) [Chen et al. (2012)] are developed. With the smoothing 
technique the domain integration is transformed into boundary integration according 
to the divergence theory. The shape function derivative is replaced with the shape 
function multiplied by the component of the outward unit vector along the boundary 
of the smoothing domain. Thanks to this transformation, the singular term existing in 
the derivatives of the shape functions for fracture mechanics is eliminated with 
smoothing technique. Smoothed methods have shown several advantages. For 
example, NS-FEM can provide upper bound solution [Liu et al. (2010)]. ES-FEM 
[Chen et al. (2012)] is proved to be more efficient and more accurate. In the ES-FEM, 
the system stiffness matrix is computed using strains smoothed over the smoothing 
domains formed based on the edges of the triangles. It is proved that the ES-FEM 
possesses the following excellent properties: (1) the ES-FEM model possesses a 
close-to-exact stiffness: it is much softer than the 'overly stiff' FEM and much stiffer 
than the 'overly soft' NS-FEM model; (2) the results are often found to be 
superconvergent and ultra-accurate: much more accurate than the linear triangular 
elements of FEM; (3) the implementation of the method is straightforward and no 
penalty parameter is used, and the computational efficiency is better than the FEM 
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using the same set of nodes. These properties of the ES-FEM have been confirmed by 
many works [[Chen et al. (2012)], Liu et al. (2008); Cui et al. (2011)]. 

 
In view of the advantages of XFEM and ES-FEM, an edge-based smoothed XFEM 
has been developed to combine the advantages of the two methods for two-
dimensional fracture problems [Jiang et al. (2013); Chen et al. (2012)]. Although the 
ES-XFEM has achieved remarkable progress in the simulation of fracture mechanics, 
the previous works are confined to two-dimensional fracture problems. In this paper, 
for the first time, the face-based smoothing technique is combined into XFEM to 
develop three-dimensional face-based smoothed extended finite element method (FS-
XFEM).  
 
[Karihaloo et al. (2003); Karihaloo et al. (2001)] from a simplified variational 
function using a truncated asymptotic crack tip displacement, formulated the hybrid 
crack element (HCE) for evaluating the SIF but also the coefficients of the higher 
order terms of the crack tip. But it has not been extended to three-dimensional 
fracture problem. A direct traction boundary integral equation method (TBIEM) for 
three-dimensional crack problems is developed in [Xie et al. (2014)]. However, a 
singular system of equations is always obtained [Aliabadi (1997); Cruse (1988)]. 
Special methods [Pan (1997)] has to be employed to tackle this problem. The 
proposed FS-XFEM will not have these problems comparing with the above 
problems. 
 
This paper is organized as follows: Section 2 provides a brief description of FS-FEM. 
Section 3 introduces the formation of face-based smoothed XFEM. Section 4 
illustrates the computational procedure for three-dimensional stress intensity factor 
(SIF). Section 5 gives two examples to test the newly developed method and compare 
the results of FS-XFEM with those of XFEM. The conclusion is made in Section 6.  

2. Face-based smoothed FEM (FS-FEM) 

2.1. Smoothing domain formation 

Due to the excellent features of ES-FEM in two-dimensional problems, the FS-FEM 
[Nguyen-Thoi et al. (2009a; 2009b)] for three-dimensional problems is developed. In 
the FS-FEM, linear tetrahedral elements, which are feasible for arbitrarily 
complicated geometry, are used to mesh the problem domain. Instead of using the 
edges of the elements in two-dimensional problems, faces of the elements in the FS-
FEM are used to create smoothing domains. Therefore, it is named face-based 
smoothed finite element method. The faces of the elements in three-dimension can be 
classified into two types: boundary face and interior face. The boundary face lies on 
the boundary of the domain, while the interior face lies inside the domain. The 
smoothing domains associated with these two types of faces are formed in different 
ways. For the interior face, which is shared by two elements, the smoothing domain is 
formed by connecting the three points of the face to the centroids of the two elements 
shown in Fig. 1(a). For the boundary face, which belongs to only one element, the 
smoothing domain is formed by the face and the centroid of the only element. Four 
points (three from the face and one being the centroid of the element) automatically 
form a tetrahedral shown in Fig. 1(b). 
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Figure 1. Two types of smoothing domains (a) smoothing domain formed based on 
interior face (b) smoothing domain formed based on boundary face 

2.2. The formulation of FS-FEM 

In the FS-FEM, the problem domain is meshed with 4-node tetrahedral elements. 
Based on the above description of smoothing domain formulation, faceN  smoothing 
domains in the whole model can be created. Here faceN  is the number of the faces in 

the whole problem domain Ω . The smoothing domains satisfy ∑ =
Ω=Ω faceN

k
k

1
 and 

∅=Ω∩Ω ji , .ji ≠ With face-based smoothing technique, the integration of the 
derivatives of the shape functions over domain can be transformed into integration of 
shape functions multiplied with component of outward unit vector of the boundary 
face. The integration result is then divided by the volume of the smoothing domain. In 
the setting of FS-FEM, the smoothed strain is obtained as: 
 

uBε =  (1)  

 
Here [ ]Tnsnsns wvuwvu 111=u is the displacement vector with all the 
displacement components of the nodes belonging to the smoothing domain. B  is the 
strain-displacement relationship matrix in three dimension expressed as: 
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with  
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where kΓ  is the boundary face of the smoothing domain. )(xk

hn  is the h  component 
of the outward normal vector on the boundary kΓ . )(xiN  is the shape function. s

kV  is 
the volume of the smoothing domain. 
 
By Gauss quadrature, )( kihb x can be further written as: 
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where gauN  is the number of the Gauss points and nw  is the weight of the Gauss point. 

k
faceN  is the number of faces attached to the smoothing domain kΩ .  nx  is the 

coordinate of the Gauss point on the boundary face.  )( niN x  is the thi  shape function 
of the Gauss point nx .  )( n

k
nn x  is the outward unit normal component.  

 
The set of algebraic equations for FS-FEM can be obtained in the form of matrix: 
 

fdK =  (5)  

 
Here d  is the displacement vector of all the nodes in the model, K is the global 
stiffness matrix and f  is the nodal force. 
 
The entries in sub-matrices of the stiffness matrix K  in Eq. (5) can be expressed as: 
 

∑
=

=
faceN

k

s
kijij

1
,KK  (6)  

 
Here the summation means an assembly process, 

s
kij ,K  is the stiffness matrix 

associated with the smoothing domain kΩ  and can be computed by 
 

s
kij ,K = s

kjiji Vd
s
k

BDBBDB
TT

=Ω∫Ω  (7)  

 
where s

kV  is the volume of the smoothing domain kΩ , D  is the matrix of material 
constants that is defined as follows: 
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with 
)1(2 ν+

=
EG , 

)21)(1( νν
υλ

−+
=

E . Here E  is the Young's modulus, and ν  is the 

Poisson's ratio. 

3. Face-based smoothed XFEM (FS-XFEM) 

3.1. The formulation of FS-XFEM 

The displacement of XFEM is composed of three parts: the continuous displacement 
from standard finite element method, the enrichment part that represents discontinuity 
across the crack surface and the enrichment part that describes the singular strain field 
around the crack front. Heaviside function is usually employed as enrichment 
function for the discontinuity across the crack surface. A set of branch functions, 
which are derived from the displacement field around the crack front, are used to 
produce the singular strain field around the crack front. Nodal subtraction is used in 
FS-XFEM. 
 

∑ ∑

∑∑

−

−−

∈ =

∈∈

−+

−+=

efs

cfsfemfs

Nk
kkk

Nj
jjj

Ni
ii

bN

aHHNuNu

4

1
))()(()(          

))()(()()(

α

α
αα φφ xxx

xxxx

 (9)  

 
Here )(xNi , )(xN j  and )(xNk  are the shape functions associated with different types 

of nodes and iu  is nodal displacement in standard FEM. femfsN −  is the node set of the 
whole finite element model. jx  and kx  are the coordinates of  the thj  and thk  nodes 
in the element respectively. )(xH  is a Heaviside jump function and is set as follows:  
 


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

−
≥⋅−

=
            otherwise    1

0)( if    1
)(

* nxx
xH  (10)  

 
cfsN −  is the set of nodes whose support domain is completely cut by the crack surface. 

ja  is the enriched degree of freedom associated with node set cfsN − . efsN −  is the set 
of nodes in the vicinity of the crack front. )(xαφ  are a set of branch functions to 
model the asymptotic features of the displacement field around the crack front: 
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where ),( θr  is the local polar coordinate system, which is defined so that the plane 
where 0=θ  must be tangent to the crack front. α

kb  is the thα  (of the totally four) 
enriched degree of freedom associated with node set efsN − . 
 
Caused by different types of enrichment functions, nodes in FS-XFEM can be 
categorized into three types. (a) common nodes denoted by femfsN − , which are not 
enriched by either )(xH  or )(xαφ ; (b) )(xαφ enriched nodes denoted by efsN − . As 
shown in Fig. 2(a), the smoothing domain 21GABCG . Here ABC  is the face, based 
on which the smoothing domain is formed. 1G  and 2G  are the centroids of the two 
elements, which share the face ABC . The crack surface EFMN is in this smoothing 
domain. But the crack front MN  is also inside the smoothing domain, which means 
that the crack surface does not completely cut the smoothing domain but part of the 
smoothing domain. )(xαφ  is used to describe the displacement behavior around the 
crack front. Therefore, nodes associated with this smoothing domain are enriched by 

)(xαφ . (c) )(xH  enriched nodes denoted by cfsN − . As shown in Fig. 2(b), the 
smoothing domain 21GABCG  is constructed in the same way as Fig. 2(a). Here EFD  
is the crack surface. This smoothing domain is completely cut by the crack surface. 
Therefore, )(xH  is used to enrich the nodes associated with the smoothing domain, if 
the nodes are not enriched by )(xαφ .  
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Figure 2. (a) crack-front element (b) crack-cut element  
 
Employing the strain smoothing operation, the smoothed strain over kΩ  from the 
displacement approximation can be written as: 
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where )( k

u
i xB  is the smoothed strain gradient matrix for the standard FS-FEM part, 

and )( k
a
j xB , )( k

b
m xB  correspond to the Heaviside function and branch functions 

enriched parts respectively. Those matrices can be written as: 
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In the above equation, zyxhb k
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Using Gauss quadrature along the segments of boundary, the above equations can be 
written as: 
 

 ))()()(()(1)(

),,(        ))()()(()(1)(

)()(1)(

1 1
,

1 1

1 1

ninni

N

m

N

n
nmhs

k
k

b
ih

ninni

N

m

N

n
nhs

k
k

a
ih

nni

N

m

N

n
nhs

k
k

u
ih

wNn
V

b

zyxhwHHNn
V

b

wNn
V

b

k
face gau

k
face gau

k
face gau

xxxxx

xxxxx

xxx

αα φφ −=

=−=

=

∑∑

∑∑

∑∑

= =

= =

= =

 (15)  

 
Here k

faceN  is the number of the boundary faces of the smoothing domain, gauN  is the 
number of the Gauss points used on the boundary face. nx  is the coordinate of the 

thn  Gauss point on the boundary face. 
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The stiffness matrix K  is yielded by: 
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Substituting Eq. (16) into Eq. (5) can produce a set of linear equations. In FS-
XFEM, f  is composed of three parts: ,  and u a bf f f . These three vectors can be 
obtained as follows: 
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4. Three-dimensional stress intensity factor calculation 

Several numerical techniques, in conjunction with finite-element (FE) analyses, 
have been developed to calculate fracture mechanics parameters. Three of these 
techniques are: (1) the virtual crack extension (VCE) method [Parks et al. (1974; 
1977); Hellen (1975; 1989)], (2) the virtual crack closure technique [Rybicki et al. 
(1977); Shivakumar et al.(1988); Raju et al. (1988); Buchholz (1984)], and (3) the J-
integral method [Rice (1968); Cherepanov (1967; 1969); Eshelby (1956); ]. Based on 
J-integral method, an interaction energy integral method is used to calculate stress 
intensity factor in this work. A cylindrical volume with the radius dr  surrounding a 
point C located on the crack front is shown in Fig. 3. If the crack surfaces are 
traction-free, the domain form of the interaction energy integral  )(sI  can be written 
as: 
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where  
 

auxauxaux: σuσuIεσP ⋅∇−⋅∇−=
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Here the superscript aux stands for auxiliary field. ε ,u  and σ  are the actual strain, 
displacement and stress field respectively.  

C

C
lξ

dr

cL

 
Figure. 3. A cylindrical volume surrounding a point C 

 
The main difficulty in the calculation of interaction energy integral lies in the 
evaluation of the gradients and higher order gradients of the auxiliary fields that 
appear in the integrand. As shown in Fig. 4, we define a local orthogonal coordinate 
system at a point s along the crack front such that the local 2x  axis is perpendicular to 
the plane of the crack, and the 1x  and 3x  axes lie in the plane of the crack and are 
normal and tangent respectively to the crack front. To illustrate a convenient 
procedure to evaluate these gradients, we consider a point p which lies in the local 

21 xx −  plane as shown in Fig. 4. The base vectors 1e , 2e  and 3e  as shown in the 
figure are constructed by keeping 1e and 2e  parallel to 1x  and 2x  and moving in the 
direction of 3x . r , θ  are local polar coordinates defined in the figure. The auxiliary 
fields expressed in this orthogonal curvilinear coordinate system are given as: 
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Figure 4. Local orthogonal coordinate system at a point s  along the crack front 
 
The weighting function q  is defined as follows: A set of elements having at least one 
node within a cylindrical volume of radius dr  around the crack front are selected. The 
value of cq  of node associated with the crack tip  C is defined: 
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rrx
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where C

lξ  is a unit vector that is perpendicular to the crack front at the crack tip C and 
lies in the local tangent plane to the crack surface. 
  
Having defined the auxiliary fields, the interaction energy integral )(sI  defined by Eq. 
(18) takes the value 
 

( ) [ ] aux
IIIIII
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II
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sI ++
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=
υ  (24)  

 
Here aux

IK , aux
IIK , and aux

IIIK  are the stress intensity factors associated with the 
auxiliary fields and IK , IIK , and IIIK  are the stress intensity factors associated with 
the actual fields. The process of evaluating the actual stress intensity factors involves 
making a judicious choice of the auxiliary stress intensity factors, and then evaluating 
the interaction energy integral. For example, Substituting 1aux

I =K , and 
0aux

III
aux
II == KK  into Eq. (24) yields: 
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Similarly, IIK  can be obtained by substituting 1aux

II =K  and 0aux
III

aux
I == KK  and IIIK  

by substituting 1aux
III =K  and 0aux

II
aux
I == KK . 

5. Numerical examples 

Two examples are presented in this work to test our method. One is a plate with 
a thorough edge crack under tension. The other problem is a cylinder with a penny-
shaped crack under remote tension. Strain energy and SIFs are obtained by FS-XFEM 
and compared with those of XFEM. 
5.1. A plate with a thorough edge crack under tension 

A plate with a thorough edge crack under tension is first analyzed as shown in 
Fig. 5. The mesh is plotted in Fig. 6. The dimension of plate is: the height  mm2=H  
the width mm1=W  and the thickness mm5.0=t  with the crack length mm3.0=a . 
The load MPa 1=σ  is applied on the top surface of the plate. All the degrees of 
freedom on the bottom surface are fixed. The material parameters are: Young's 
modulus MPa 1=E   and the Poisson's ratio 3.0=υ . 

H

W
T

a

σ

 

Figure 5. A plate with a thorough edge crack under tension 
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Figure 6. Mesh of the plate with a thorough edge crack 

 

5.1.1 Result 

Five types of meshes with linear tetrahedral elements ( 42513 ×× , 43518 ×× , 
43719 ×× , 46131 ×× , 48141 ×× ) are used in the model. A sample mesh is shown in 

Fig. 6. For comparison, the results are also computed using XFEM. The reference 
solution of strain energy is obtained using singular FEM with very fine mesh 
(2,179,458 nodes) in this study. The strain energy is defined as: 
 

1
2

TU d
Ω

= Ω∫ ε Dε  (26)  

 
The results of the strain energy produced by FS-XFEM and XFEM are plotted in Fig. 
7. From the figure, it can be seen that the numerical results obtained from FS-XFEM 
are closer to the reference solution than those of XFEM using the same mesh. This is 
due to integration of face-based smoothing technique into the XFEM. 
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Figure 7. Plate with a thorough edge crack under tension: the variation of strain 
energy given by XFEM and FS-XFEM with different node numbers 

 

5.1.2 Convergence rate of FS-XFEM 

The convergence property of FS-XFEM and XFEM is studied in this section. In order 
to investigate quantitatively the numerical results, an error indicator in energy norm is 
defined as follows: 
 

ref

refnum

U
UU

Ee

−
=  (27)  

 
where refU  denotes the strain energy of reference solution and numU  stands for the 
strain energy of numerical solution. The errors in strain energy norm against h  for 
this example is plotted in Fig. 8, where h  is the average distance between two 
adjacent nodes. From the figure, it can be seen that the error of FS-XFEM is smaller 
than that of XFEM with the same mesh. At the same time, FS-XFEM has higher 
convergence rate than XFEM for this example, which means that FS-XFEM can 
converge to the reference solution at a higher rate. 
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Fig. 8. Convergence rate of XFEM and ES-XFEM for a plate with a thorough crack 
under tension 

5.1.3 Condition number 

Another important property of numerical methods is the condition number of the 
global stiffness matrix, )(Kcond . The condition number of the global stiffness matrix 
can affect the number of iterations needed to obtain a converged solution in the 
manner of )(Kcondniter ∝ , when an iteration solver is used to solve the algebraic 
system equation. The condition number of FS-XFEM and XFEM for thist example 
against node numbers is listed in Table 1. As it can be seen, FS-XFEM has bigger 
condition number than XFEM with the same mesh. But the difference is not quite big. 
 
Table 1. Condition numbers of FS-XFEM and XFEM for the first example with 

different mesh densities  
Mesh 13×25×4 18×35×4 31×61×4 41×81×4 

XFEM 1.3212e+006 1.8420e+006 1.4312e+007 1.7578e+007 
FS-XFEM 1.5427e+006 2.0628e+006 1.7675e+007 2.8165e+007 

 

5.1.4 Efficiency of FS-XFEM 

In the assessment of numerical methods, the time cost of different numerical methods 
should also be taken into consideration. As shown in Table 2, the time consumption 
for FS-XFEM and XFEM with different meshes is compared. From the table, it is 
clear that the FS-XFEM takes more time to solve the equation than XFEM for the 
same mesh. This is in agreement with the condition number comparison between FS-
XFEM and XFEM. However, after taking the results accuracy into account and 
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considering the efficiency, the present FS-XFEM is found to perform much better 
than XFEM for the results in energy error norms as shown in Fig. 9. From the figure, 
it is clear that within the same computation time, the results of FS-XFEM are more 
accurate than XFEM.  
 
Table 2. Time cost of FS-XFEM and XFEM for the first example with different 

mesh densities 
Mesh 13×25×4 18×35×4 31×61×4 41×81×4 

XFEM 0.321761s 1.185841s 12.08005s 29.681937s 
FS-XFEM 0.67652s 2.579944s 34.70061s 104.7701s 
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Figure 9. Comparison of computational efficiency of FS-XFEM and XFEM in 
terms of energy norm for a plate with a thorough crack under tension 

 

5.2. A cylinder with a penny-shaped crack under remote tension 

From the first example, it is seen that the FS-XFEM is powerful to simulate a straight 
crack in three-dimension. In order to extend the applicability of the proposed method, 
a cylinder with a penny-shaped crack under remote tension is studied. The crack is in 
the middle of the cylinder, with the radius (of the penny) mm 3.0=a  shown in Fig. 
10. The remote tension is applied on the top surface of the cylinder. The bottom 
surface of the cylinder is fixed. The geometrical details are as follows: mm 12=H  
and mm 3=R . With the ratio 1.0/ =Ra , this problem can be considered as a crack 
in an infinite body. The solution of stress intensity factor is given by [Anderson 
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(1995)]: aKI πσ
π
2

= . This is an axisymmetric problem. Due to the symmetry, only 

one quarter of the model is simulated with appropriate boundary condition shown in 
Fig. 11. In this model, symmetrical boundary condition are prescribed on both of the 
two side surfaces of the quarter-cylinder. 

2a

R

σ

H

 

Figure 10. A cylinder with a penny-shaped crack under remote tension 

Crack front

Crack surface

 
Figure 11. The mesh used for a cylinder with a penny-shaped crack under remote 

tension 
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The strain energy for this problem by FS-XFEM and XFEM is plotted in Fig. 12. The 
reference solution for strain energy is obtained by singular FEM with very fine mesh 
(1,443,082 nodes). It can be seen that FS-XFEM can produce more accurate results 
than XFEM with the same mesh. The stress intensity factor (SIF) is also obtained by 
FS-XFEM and XFEM. The SIFs with error are tabulated in Table 3. From the table, it 
is noticed that numerical solutions of SIFs using FS-XFEM are closer to the reference 
solutions than XFEM for the same mesh. This confirms that face-based smoothing 
technique has a strong value to integrate to XFEM.  
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Figure 12.   The variation of strain energy with number of nodes for a cylinder 
with a penny-shaped crack under remote tension 

 
Table 3. )mmMPa(IK (with error) of FS-XFEM and XFEM for a cylinder with 

a penny-shaped crack under remote tension with different mesh densities 
Mesh 1352 

 

2500 

 

4968 

 

6016 

 

9306 

 
XFEM 0.6097 

(1.34%) 

0.6114 

(1.07%) 

0.6118 

(1%) 

0.612 

(0.97%) 

0.6121 

(0.95%) 

FS-XFEM 0.6121 

(0.95%) 

0.6137 

(0.70%) 

0.6140 

(0.65%) 

0.6143 

(0.6%) 

0.6144 

(0.58%) 
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6. Conclusion 

In this work, the face-based smoothing technique is combined into extended finite 
element method (XFEM) to develop face-based smoothed extended finite element 
method (FS-XFEM) for three-dimensional fracture problems. Two numerical 
examples are used to test the accuracy, efficiency and convergence rate of FS-XFEM. 
Through the numerical results some conclusions can be drawn as follows:  
1. There are no additional parameters involved in the FS-XFEM, hence, the 

implementation of FS-XFEM using tetrahedral element that can be generated by 
many commercial software is quite straightforward. 

2. Due to the properly softening effects provided by the face-based smoothing 
technique, the proposed FS-XFEM possesses a close-to-exact stiffness of the 
continuous system. Hence, it can provide more accurate results than XFEM using 
the same tetrahedron mesh in terms of strain energy and stress intensity factors. 

3. The convergence rate and computational efficiency of FS-XFEM have been 
improved significantly compared with XFEM. FS-XFEM also possesses some 
advantages compared to XFEM. For example, in the calculation of the stiffness 
matrix, no singular term appears in the integrand. Mapping, which increases the 
complexity of the calculation, is not needed. 
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DISCONTINUOUS GALERKIN FINITE VOLUME ELEMENT METHODS

FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

RUCHI SANDILYA ? AND SARVESH KUMAR?

Abstract. In this paper, we have discussed a one parameter family of discontinuous Galerkin
finite volume element methods for the approximation of the solution of distributed optimal

control problems governed by a class of second order linear elliptic equations. In order to

approximate the control problem, the method of variational discretization is used. By fol-
lowing the analysis of Kumar et. al. [Numer. Meth. Part. Diff. Eqns. 25 (2009), pp.

1402–1424], optimal order of convergence in L2-norm for state, costate and control variables

are derived. Moreover, optimal order of convergence in broken H1-norm are also derived
for state and costate variables. Several numerical experiments are presented to validate the

theoretical order of convergence.

Keywords: Optimal control; variational discretization; discontinuous Galerkin finite vol-
ume element methods; order of convergence; numerical experiments.

1. Introduction

This paper is concerned with the discontinuous Galerkin finite volume element (DGFVE)
approximation of the elliptic optimal control problem of the following type : Find y, u such
that

min
u∈Uad

1

2
‖y − yd‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) , (1.1)

subject to

−∇.(K∇y) = Bu+ f inΩ, (1.2)

y = 0 onΓ. (1.3)

where, Ω ⊂ R2 is a convex, bounded and polygonal domain and Γ is the boundary of Ω, λ is
a positive number, f, yd ∈ L2(Ω) or H1(Ω), K = (kij(x))2×2 denotes a real valued, symmetric
and uniformly positive definite matrix in Ω, i.e., there exists a positive constant α0 such that

ξTKξ ≥ α0ξ
T ξ ∀ξ ∈ R2.

B is a bounded continuous linear operator and Uad is denoted by

Uad = [u ∈ L2(Ω) : a 6 u(x) 6 b, a.e. inΩ, a, b ∈ R].

The numerical solutions of such kind of elliptic problems have been investigated by many re-
searchers, since these problems have lots of applications in mathematical and physical problems.
Finite element methods extensively used for the approximation of the control problems and for
the error analysis of finite element methods (FEM) applied to elliptic control problems, we refer
to [3, 4, 5, 6, 7, 15] and references therein. In most of these papers, the state and costate vari-
ables are discretized by continuous linear elements and control variable by piecewise constant
or piecewise linear polynomials. More recently, Hinze given a new direction for approximat-
ing the control problem in which a new variational discretization approach is introduced for

?Department of Mathematics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695

547, Kerala, India. Email:sarvesh@iist.ac.in and ruchisandilya.12@iist.ac.in.
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linear-quadratic optimal control problems whereas the control set is not discretized explicitly
and obtained improved convergence order for optimal control, for more details, kindly see [8].

Because of local conservative property of the finite volume element (FVE) methods, these
methods are very popular in computational fluid dynamics and (FVE) methods have also been
used to solve fluid optimal control problems. In [12], the author has used the optimize-then-
discretize approach and FVE discretizations to approximate elliptic optimal control problems.

It is well known the discontinuous Galerkin (DG) methods which was introduced by Arnold
in [1] does not demand the inter element continuity criteria and has some attractive features
such as: high order accuracy, localizabilty and suitable for parallel computing easily handle the
boundary conditions. Keeping in mind the advantages of FVE methods and DG methods, in
[16], Ye introduced discontinuous Galerkin finite volume element (DGFVE) methods for elliptic
problems. Later Kumar et. al. [9] have discussed a one parameter family of DGFVE methods
for the approximation of the elliptic problem. Recently, Kumar extended the analysis of [9] for
approximation of miscible displacement problems, see [10].

In this paper, in order to obtain an optimal system, first we apply Lagrange multiplier
method to the problem (1.1Introductionequation.1.1)-(1.3Introductionequation.1.2) and obtain
an optimal system. Then we use DGFVE methods to discretize the state and adjoint equation
of the system. For the optimal condition, we use variational discretization approach intro-
duced in [8] to obtain the control.This paper is organized as follows: While the Section 1 is
introductory, Section 2 is devoted to the DGFVE formulation for the optimal control problem.
In Section 3, we discuss the convergence analysis of DGFVE in different norms and finally in
Section 4, we present some numerical experiments to support the theoretical results obtained
in Section 3.

2. Discontinuous Galerkin Finite Volume Element Formulation

We assume that our optimal control problem admits a unique control u, since Uad is
bounded, convex and closed. For the subsequent standard existence, uniqueness and first-
order optimality results we refer to [14]. We can then write the first-order optimality condition
in the following form:

(λu+B∗p, v − u) ≥ 0 ∀v ∈ Uad, (2.1)

where the function p is called adjoint state (or costate) associated with u and solution of the
adjoint equation

−∇.(K∇p) = y − yd, inΩ (2.2)

p = 0, onΓ. (2.3)

Let τh be a regular, quasi-uniform triangulation of Ω̄ into closed triangles T with h = max
T∈τh

(hT ),

where hT is the diameter of the triangle T . The dual partition τ∗h of τh is constructed as follows:
divide each triangle T ∈ τh into three triangles by joining the barycenter B and the vertices of
T as shown in Figure 1A triangular partition and its dualfigure.1. Let τ∗h consists of all these
triangles T ∗i . We define the finite dimensional Trial (Vh) and test space (Wh) associated with
τh and τ∗h , respectively as follows:

Vh = {vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ τh}
Wh = {wh ∈ L2(Ω) : wh|T∗ ∈ P0(T ∗) ∀T ∗ ∈ τ∗h}.

where Pm(T ) or Pm(T ∗) denotes the space of all polynomials of degree less than or equal to m
defined on T or T ∗, respectively. Let V (h) = Vh +H2(Ω) ∩H1

0 (Ω). To connect the trial space
and test space, we define a transfer operator γ : V (h) −→Wh as:

γv|T∗ =
1

he

∫
e

v|T∗ds, T ∗ ∈ τ∗h ,
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Figure 1. A triangular partition and its dual

where e is an edge in T , T ∗ is the dual element in τ∗h containing e, and he is the length of the
edge e.
Multiply (1.2Introductionequation.1.2) and (2.2Discontinuous Galerkin Finite Volume Element
Formulationequation.2.2) by γvh, integrate over the control volumes and an application of Gauss
divergence methods leads the following DGFVE formulation: Find (yh, ph, uh) ∈ Vh×Vh×Uad
such that

Ah(yh, wh) = (Buh + f, γwh) ∀wh ∈ Vh, (2.4)

Ah(ph, qh) = (yh − yd, γqh) ∀qh ∈ Vh, (2.5)

(λuh +B∗ph, v − uh) ≥ 0 ∀v ∈ Uad, (2.6)

where the bilnear form Ah(·, ·) defined as

Ah(Φh,Ψh) = −
∑
T∈τh

3∑
j=1

∫
Aj+1BAj

(K∇Φh.n)γΨhds+ θ
∑
e∈Γ

∫
e

[γΦh].〈K∇Ψh〉ds

−
∑
e∈Γ

∫
e

[γΨh].〈K∇Φh〉ds+
∑
e∈Γ

∫
e

α

hβe
[Φh].[Ψh]ds ∀Φh,Ψh ∈ Vh.

Here, the symbols [·] and 〈·〉 used for jump and average respectively and θ ∈ [−1, 1], α and β
are penalty parameters, for more details kindly see [9]. Let yh(u) and ph(y) be the solutions of

Ah(yh(u), wh) = (Bu+ f, γwh) ∀wh ∈ Vh, (2.7)

and

Ah(ph(y), qh) = (y − yd, γqh) ∀qh ∈ Vh, (2.8)

respectively. A norm |||.||| on V(h) is defined by

|||v|||2 = |v|21,h +
∑
e∈Γ

1

hβe

∫
e

[v]2ds,

where |v|21,h =
∑
T∈τh

|∇v|20,T . Using the coercivity and boundedness of the bilinear form Ah(·, ·)

which is proved in [9, pp. 1410–1413] and noting that yh = yh(uh) and ph = ph(yh) we have
the following result.

Lemma 2.1. Let yh(u) and ph(y) be the solutions of (2.7Discontinuous Galerkin Finite Vol-
ume Element Formulationequation.2.7) and (2.8Discontinuous Galerkin Finite Volume Element
Formulationequation.2.8) respectively. Then the following results hold :

|||ph(y)− ph||| ≤ C ‖y − yh‖ and |||yh(u)− yh||| ≤ C ‖u− uh‖ .
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The result easily follows by using (Theorem 2.3, [9]) and Cauchy-Schwarz inequality.

We emphasis that throughout the article C is a generic positive constant (also appeared in
Lemma 2.1theorem.2.1) which is independent of the mesh size h but may depend on the bounds
of f, u, y, p and size of the domain Ω.

3. Convergence Analysis

3.1. Convergence in L2-norm.

Theorem 3.1. Assume that K ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈ (H2(Ω) ∩
H1

0 (Ω)) × (H2(Ω) ∩ H1
0 (Ω)) × Uad be the exact solutions and (yh, ph, uh) ∈ Vh × Vh × Uad be

the solutions of (2.5Discontinuous Galerkin Finite Volume Element Formulationequation.2.4)-
(2.6Discontinuous Galerkin Finite Volume Element Formulationequation.2.6). Then there ex-
ists an h0 > 0 such that for all 0 < h ≤ h0

‖u− uh‖ ≤ Ch. (3.1)

Moreover, if K ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω), then there exists an h0 > 0 such that for all
0 < h ≤ h0

‖u− uh‖ ≤ Ch2. (3.2)

The above theorem can be proved by using the variational inequalities (2.1Discontinuous
Galerkin Finite Volume Element Formulationequation.2.1) and (2.6Discontinuous Galerkin Fi-
nite Volume Element Formulationequation.2.6) with the functions u and uh, using (Lemma 2.4,
Theorem 3.2, [9]) and Lemma 2.1theorem.2.1. For more details, we refer to [11].

Now, using triangle inequality, (Theorem 3.2, [9]), Lemma 2.1theorem.2.1 and Theorem 3.1theorem.3.1,
we have the following theorem.

Theorem 3.2. Assume that K ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈ (H2(Ω) ∩
H1

0 (Ω)) × (H2(Ω) ∩ H1
0 (Ω)) × Uad be the exact solutions and (yh, ph, uh) ∈ Vh × Vh × Uad be

the solutions of (2.5Discontinuous Galerkin Finite Volume Element Formulationequation.2.4)-
(2.6Discontinuous Galerkin Finite Volume Element Formulationequation.2.6). Then there ex-
ists an h0 > 0 such that for all 0 < h ≤ h0

‖y − yh‖ ≤ Ch, ‖p− ph‖ ≤ Ch. (3.3)

Moreover, if K ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω), then there exists an h0 > 0 such that for all
0 < h ≤ h0

‖y − yh‖ ≤ Ch2, ‖p− ph‖ ≤ Ch2. (3.4)

Following the proof lines of (Theorem 3.1, [9]) and using Theorem 3.1theorem.3.1, The-
orem 3.2theorem.3.2 together with Lemma 2.1theorem.2.1, we can derive the following error
estimates in the H1-norm. For a detailed proof, we refer to [11].

3.2. Convergence in broken H1-norm.

Theorem 3.3. Assume that K ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈ (H2(Ω) ∩
H1

0 (Ω)) × (H2(Ω) ∩ H1
0 (Ω)) × Uad be the exact solutions and (yh, ph, uh) ∈ Vh × Vh × Uad be

the solutions of (2.5Discontinuous Galerkin Finite Volume Element Formulationequation.2.4)-
(2.6Discontinuous Galerkin Finite Volume Element Formulationequation.2.6). Then there ex-
ists an h0 > 0 such that for all 0 < h ≤ h0

|||y − yh||| ≤ Ch, |||p− ph||| ≤ Ch. (3.5)
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4. Numerical Experiments

In this section, we present two numerical examples in order to discuss the performance of the
DGFVE for the approximation of the elliptic optimal control problem (1.1Introductionequation.1.1)-
(1.3Introductionequation.1.2). The method holds true for any value of θ ∈ [−1, 1] but in par-
ticular, for the numerical experiments we take θ = -1,0,1, as these values of θ leads to different
interesting schemes in the context of discontinuous finite element methods, kindly see [13]. We
will investigate the order of convergence of state, costate and control variables in L2-norm and
order of convergence of state and costate variables in the broken norm |||.|||.

Example 1. We consider the following elliptic control problem with Dirichlet boundary
value condition:

min
u∈Uad

1

2
‖y − yd‖2L2(Ω) +

1

2
‖u‖2L2(Ω) ,

−4y = u inΩ,

y = 0 inΓ,

u ≥ 0,

where Ω = [(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1], Γ denotes the boundary of Ω. The exact
state y is sin(πx1)sin(πx2), yd = (4π4 + 1)sin(πx1)sin(πx2), p = −2π2sin(πx1)sin(πx2) and
u = max(0,−p).
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Figure 2. Order of convergence in broken H1-norm for state and costate
variables for Example 1.

|||y − yh|||

θ=-1 θ=0 θ=1

0.3719918 0.37650518 0.38334068
0.2460884 0.24772621 0.25033399
0.1839629 0.18473849 0.18600306
0.1469065 0.14733895 0.14805334
0.1222834 0.12255207 0.12299930

|||p− ph|||

θ=-1 θ=0 θ=1

7.21776447 7.24618657 7.29030071
4.82156990 4.83286579 4.85124495
3.61641018 3.62227458 3.63199956
2.89231763 2.89585972 2.90178678
2.40948560 2.41184101 2.41580092

Table 1. Numerical results of broken H1 error for θ=1, θ=-1 and θ=0 with
β=1 and α = 10 for Example 1.
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Figure 3. Order of convergence in L2-norm for state and costate and control
variables for Example 1.

‖y − yh‖

Dof θ=-1 θ=0 θ=1

384 0.02657497 0.02999063 0.03437191
864 0.01172431 0.01344455 0.01568472

1536 0.00654811 0.00756756 0.00890502
2400 0.00416848 0.00483938 0.00572336
3456 0.00288324 0.00335721 0.00398345

‖p− ph‖

Dof θ=-1 θ=0 θ=1

384 0.30726316 0.33952145 0.38187541
864 0.13500845 0.15109265 0.17258162

1536 0.07535372 0.08485681 0.09766827
2400 0.04797144 0.05421803 0.06268522
3456 0.03318749 0.03759811 0.04359833

‖u− uh‖

Dof θ=-1 θ=0 θ=1

384 0.30968478 0.34176897 0.38392985
864 0.13604558 0.15206116 0.17347429

1536 0.07586822 0.08533866 0.09811434
2400 0.04825989 0.05448858 0.06293629
3456 0.03336438 0.03776417 0.04375267

Table 2. Numerical results of L2 error for θ=1, θ=-1 and θ=0 with β = 1
and α = 10 for Example 1.

In the next example we take desired state yd to be zero and include desired control u0.
Example 2. We consider the following problem

min
u∈Uad

1

2
‖y − yd‖2L2(Ω) +

1

2
‖u− u0‖2L2(Ω) ,
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−4y = u+ f inΩ,

y = 0 inΓ,

u ≥ 1 inΩ.

In this example we have,
Ω = [(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1], u0 = 1 − sin(πx1/2) − sin(πx2/2) + s, yd = 0,
p = Z(x1, x2), f = 4π4Z − u, where Z = sin(πx1)sin(πx2) and

s =

{
0.5 if x1 + x2 > 1.0
0.0 if x1 + x2 ≤ 1.0

. The exact solution of this problem is y = 2π2Z, u = max(u0 − p, 1).
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Figure 4. Order of convergence in broken H1-norm for state and costate
variables for Example 2.

|||y − yh|||

Dof θ=-1 θ=0 θ=1

384 7.21797574 7.24658386 7.29098777
864 4.82162819 4.83298774 4.85147100

1536 3.61643379 3.62232663 3.63209930
2400 2.89232940 2.89588651 2.90183911
3456 2.40949230 2.41185655 2.41583166

|||p− ph|||

Dof θ=-1 θ=0 θ=1

384 0.37204143 0.37657411 0.38343755
864 0.24610328 0.24774803 0.25036647

1536 0.18396914 0.18474788 0.18601743
2400 0.14690967 0.14734380 0.14806087
3456 0.12228530 0.12255488 0.12300372

Table 3. Numerical results of broken H1 error for θ=1, θ=-1 and θ=0 with
β = 1 and α = 10 for Example 2.

The errors in broken H1-norm for the DGFVEM solution of state and costate variables are
presented in Tables 1Numerical results of broken H1 error for θ=1, θ=-1 and θ=0 with β=1
and α = 10 for Example 1table.1 and 3Numerical results of broken H1 error for θ=1, θ=-1 and
θ=0 with β = 1 and α = 10 for Example 2table.3 for examples 1 and 2, respectively whereas
the errors in L2-norm for the DGFVEM solution of state, costate and control variables for
examples 1 and 2 are presented in Tables 2Numerical results of L2 error for θ=1, θ=-1 and θ=0
with β = 1 and α = 10 for Example 1table.2 and 4Numerical results of L2 error for θ=1, θ=-1
and θ=0 with β = 1 and α = 10 for Example 2table.4 respectively.
Figures 2Order of convergence in broken H1-norm for state and costate variables for Example
1figure.2, 3Order of convergence in L2-norm for state and costate and control variables for
Example 1figure.3 (for Example 1) and 4Order of convergence in broken H1-norm for state and
costate variables for Example 2figure.4, 5Order of convergence in L2-norm for state and costate
and control variables for Example 2figure.5 (for Example 2) indicate that the computed orders
of convergence match the theoretical orders of convergence in L2-norm and broken H1-norm.
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Figure 5. Order of convergence in L2-norm for state and costate and control
variables for Example 2.

‖y − yh‖

Dof θ=-1 θ=0 θ=1

384 0.30825840 0.34069258 0.38326672
864 0.13545263 0.15162708 0.17323066

1536 0.07560241 0.08515929 0.09803949
2400 0.04812983 0.05441189 0.06292457
3456 0.03329703 0.03773274 0.04376519

‖p− ph‖

Dof θ=-1 θ=0 θ=1

384 0.02663156 0.03005540 0.03444685
864 0.01174998 0.01347458 0.01572027

1536 0.00656257 0.00758466 0.00892548
2400 0.00417772 0.00485037 0.00573660
3456 0.00288965 0.00336485 0.00399269

‖u− uh‖

Dof θ=-1 θ=0 θ=1

1.0e− 003 ∗

384 0.20013750 0.17824991 0.15447196
864 0.06389361 0.05698655 0.04942176

1536 0.02785402 0.02484840 0.02154210
2400 0.01452166 0.01295391 0.01122471
3456 0.00849969 0.00758109 0.00656606

Table 4. Numerical results of L2 error for θ=1, θ=-1 and θ=0 with β = 1
and α = 10 for Example 2.
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[4] E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, IFIP: Anal.

and Optimization of Diff. Systems (2003), 121:89–100.
[5] R.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates,

Journal of Mathem. Anal. and Applications (1973), 44:28–47.

[6] T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic
equation, ESIAM: Mathem. Modelling and Numer. Anal.(1979), 13:313–328.

[7] W. Gong and N. Yan, Robust error estimates for the finite element approximation of elliptic optimal

control problems, J. Comput. Appl. Math.(2011), 236:1370–1381.
[8] M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic

case , Computational Optimization and Applications (2005), 30:45–61.
[9] S. Kumar, N. Nataraj and A.K. Pani, Discontinuous Galerkin finite volume element methods for second

order linear elliptic problems, Numer. Meth. Part. Diff. Eqns. (2009), 25:1402–1424.

[10] S. Kumar, A mixed and discontinuous Galerkin finite volume element method for incompressible miscible
displacement problems in porous media, Numer. Meth. Part. Diff. Eqns. (2012), 28:1354–1381.

[11] R. Sandilya and S. Kumar, Convergence analysis of discontinuous finite volume methods for elliptic

control problems, International Journal of Computational Methods (2015), 13:1640012–20.
[12] X. Luo, Y. Chen and Y. Huang, Some error estimates of finite volume element approximation for elliptic

optimal control problems, Int. J. Numer. Anal. Model. (2013), 10:697–711.

[13] S. Prudhomme, F. Pascal, J.T. Oden and A. Romkes, A priori error estimation for discontinuous
Galerkin Methods, TICAM Report, (2000).
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Abstract 
This paper presents POD-based reduction approach for structural optimization design considering 
microscopic material nonlinear microstructures. This work introduces Reduced Order Model 
(ROM) to alleviate the heavy computational demand of nonlinear nested multiscale procedures, 
particularly in an optimization framework which requires multiple loops involving similar 
computations. The surrogate model constructed using Proper Orthogonal Decomposition (POD) and 
Diffuse Approximation reduces the computational effort for solving the microscopic boundary 
value problems. Multiscale analysis model (FE2) is applied to link structure and microstructures in 
the two scales. Maximum stiffness design of the macroscopic structure is realized using a discrete 
level-set topology optimization model. It is shown by means of numerical tests that the reduced 
multiscale model provides reasonable designs as compared to those obtained by the unreduced 
model while with a significantly reduced computational effort.  

Keywords: Model reduction, Diffuse Approximation, Multiscale analysis, Topology optimization 

Introduction 

Optimization techniques for structural size, shape, topology designs have been widely developed 
and employed in engineering applications. One of its most prominent applications is designing 
lightweight structures for aircrafts. An increasing number of optimized structures, parts and 
components appear in the latest models of Airbus and Boeing. Most of present optimization 
algorithms are developed within frameworks of numerical analysis with the assumption that the 
considered structure is constituted by one-scale linear elastic materials. However, due to the fast 
development made in the field of material science, advanced fiber-reinforced composites are 
increasingly used in both aerospace and military applications. More advanced structural analysis 
models are required such that the structural influences from microscopic heterogeneities can be 
considered. As a response, multiscale incremental homogenization approaches or the so called FE2 
approach have been proposed and largely developed in the last decade [Feyel and Chaboche (2000), 
Kouznetsova et al. (2001)]. Generally speaking, this type of approach solves two nested boundary 
value problems, one at the macroscopic scale and another at the microscopic scale. The FE2 
approach is able to evaluate the macroscopic responses of heterogeneous material with an accurate 
account for micro characteristics and evolution of the morphology. The challenges of the FE2 
approach are due to high computational effort. Therefore, there is an increasing research demand of 
bridging structural optimization models and FE2-type analysis models. 
 
This paper introduces Reduced Order Model (ROM) to perform multiscale topological optimization 
design. The multiscale analysis model FE2 [Feyel and Chaboche (2000)] is applied to link the 
macroscopic structure and the corresponding RVE microstructures in the microscopic level. The 
optimization process requires multiple design loops involving similar or even repeated 
computations of the RVE which perfectly suits the ROM learning process. In the present work the 
considered RVE is assumed to be the same for all marcoscopic integration points. Maximum 
stiffness design of the macroscopic structure is performed using a discrete level-set topology 
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optimization model [Challis (2010)]. The reduction is performed in an adaptive non-intrusive 
manner which is an alternative to the intrusive approach [Yvonnet and He (2007)}]. The reduced 
basis is extracted using Proper Orthogonal Decomposition (POD) and the surrogate model is 
constructed using Diffuse Approximation [Nayroles et al. (1992)}, variant of Moving Least Squares 
[Lancaster and Salkauskas (1981)].  
 
The remainder of this paper is organized in the following manner: firstly the FE2 approach is briefly 
reviewed which links the macroscopic structure and microscopic microstructure RVE; secondly, the 
discrete level-set model for structural topology optimization design is presented; thirdly, a bi-level 
reduced surrogate model is developed for microscopic RVE solution using POD and Diffuse 
Approximation;  the presented model is then showcased by one numerical test example; finally, the 
paper ends with concluding comments and suggestions for future work.  
 

 
 

Figure 1.  Illustration of the selection of a typical 2D representative volume element (RVE). 
 

FE2 approach 

The FE2 approach [Feyel and Chaboche (2000)] is chosen here to bridge the macroscopic structure 
and the corresponding microscopic RVE to perform structural topology optimization. The key 
hypothesis of FE2 consists in the separation of macroscopic and microscopic scales. It is assumed  
that the microscopic length scale is large enough to be considered in the framework of continuum 
mechanics, and at the same time much smaller than the macroscopic length scale considered in 
terms of periodically ordered pattern [Kouznetsova et al. (2001)], as illustrated in Fig. 1. 
 
The principal concept of the FE2 approach assumes that each macroscopic material point is 
attributed with a RVE so that the macroscopic stress and strain for the considered point can be 
estimated by averaging the corresponding stress and strain fields of the RVE. Thereafter, there is no 
need to specify the macroscopic constitutive behavior and we only need to define the constitutive 
behavior for each material phase of the RVE. Let x  and y  denote the position of a point at the 
macroscopic and microscopic scales, respectively. At the macroscopic scale, stress and strain fields 
are denoted by ( )Σ x  and ( )E x , which are evaluated as the average of the corresponding 
microscopic fields ( )σ x, y  and ( )ε x, y   over the RVE of region Ωx  corresponding to the material 
point x . The FE2 performs the following steps: 
 
• evaluate the macroscopic strain field ( )E x  with an initially defined elastic tensor 0C ; 
• define boundary conditions on the RVE at material point $x$ upon the value of ( )E x ; 
• evaluate the stress field ( )σ x, y  through periodic homogenization analysis on the RVE; 
• compute the macroscopic stress tensor ( )Σ x  at material point x  via averaging ( )σ x, y ; 
• update the structural displacement field ( )u x  using iterative Newton-Raphson method; 
• repeat above procedures until the macroscopic force equilibrium is achieved. 
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Figure 2.  Illustration of the implementation of FE2 in the framework of FEA. 
 

A schematic view of the FE2 algorithm is depicted in Fig. 2, where each Gauss integration point is 
attributed with an RVE within the context of finite element analysis (FEA). In case of nonlinear 
elasticity, the displacement solution at the macroscopic scale is solved using the iterative Newton-
Raphson method. 

Nonlinear structural design using level-set method 

In order to avoid defining a pseudo-relationship between the intermediate values and the considered 
RVE, we choose to use the discrete version of level-set topology optimization model [Challis 
(2010)] to straightforwardly link RVEs to the solid region of the structure. An initial level-set 
function 0( , )x tψ  is constructed as a signed distance function upon the discretized initial structural 
topology following 

    { 0

0

( , ) 0 if 1
( , ) 0 if 0

e e

e e

t
t

ψ ρ
ψ ρ

< =
> =

x
x      (1) 

where ex  denotes the center of the eth element and eρ  is its pseudo-density. The initialized level-set 
function 0( , )e tψ x  is then be updated to ( , )e tψ x corresponding a new structural topology by solving 
the ``Hamilton-Jacobi'' evolution equation 

    ( , ) ( , ) 0n
x t v x t
t

ψ ψ∂
+ ∇ =

∂
     (2) 

where t is a pseudo-time defined corresponding to different optimization iterations. The normal 
velocity field vn determines geometric motion of the boundary of the structure and is chosen based 
on the shape derivative of the design objective. Within the context of multiscale analysis, the 
optimization objective corresponding to stiffness maximization or compliance minimization can be 
written in terms of ( )ψρ  

    
( )

1

min : ( ( ))
. . : ( , ( ))

( ( ))
0 or 1, 1, , ,

T
ext

N
e reqe

e

c
s t

V V
e N

ψ
ψ

ψ
ψ ρ

ρ
=

=
=

= =
= ∀ =

∑

f u
R u 0



ρ
ρ

ρ
ρ

     (3) 

where 1( , , )Nρ ρ= ρ  is the vector of the element pseudo-densities. In the following, we will 
denote ( )ψρ  by ρ  to alleviate the notation. The objective ( ( ))c ψρ  is twice of the strain energy. 
The macroscopic structural stiffness is maximized in terms of minimizing the global strain energy. 

( )V ρ  is the total number of solid elements and reqV  is the required number of solid elements. u  is 
the final converged displacement solution. ( , )R u ρ  stands for the force residual at the macroscopic 
scale 
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1

( , ) ( , ) d .
e

N
T

ext e e
e

ρ
Ω

=
= − Ω∑ ∫R u f B x yρ σ      (4) 

An augmented Lagrangian method is applied to convert the original constrained optimization 
problem Eq. (3) into an unconstrained problem as presented in [Belytschko et al. (2003)]. 

Bi-level reduced surrogate model 

A bi-level reduced surrogate model is constructed coupling the POD and Diffuse Approximation 
procedures. The first level of reduction is achieved by Proper Orthogonal Decomposition (POD), 
allowing to expand a displacement field as a linear combination of the truncated modes. Secondly, 
the surrogate model based on Diffuse Approximation is built to express the POD projection 
coefficients as functions of the average micro strain tensors.  
 
Proper Orthogonal Decomposition of RVE displacement field 
 
We consider a D-dimensional (D = 2 or 3) RVE of N points subjected to a time-dependent loading 

( ) ( )t t=E ε  during a time interval [ ]0,I T=  discretized by M instants { }1 2,, , Mt t t . Let DN
i ∈u   

denote the DN -dimensional nodal displacement vector recorded at the instant it  . The reduced 
order displacement vector  ( )R DNt ∈u   may be written 

    0
1

( ) ( ( )),
m

R
i i

i
t tφα

=
= +∑u u ε      (5) 

where min( , )m M DN , 0 11/ M
iiM == ∑u u DN

iφ ∈  are constant vectors and coefficients ( ( ))i tα ε  
are scalar functions of pseudo-time t. iφ  are the eigenvectors of the eigenvalue problem 

    ,u i i iφ λφ=C      (6) 

where uC  is the covariance matrix 

    0 0
1
( )( )

M
T

u i i
i=

= − −∑C u u u u      (7) 

The size of the truncated basis m is chosen in consideration of the projection error   induced by the 
POD procedure 

    1

1

1 ,
m

ii
M

jj

λ
δ

λ
=

=

= − <∑
∑

      (8) 

where δ  is a prescribed tolerance. 
 
Diffuse Approximation of the projection coefficients 
 
The surrogate model of the projection coefficients , 1, ,i i mα =  , with respect to average stain ε  
in Eq. (15) is constructed using the method of Diffuse Approximation 

    ( ) ,Tα = p aε      (9) 

where [ ]1 2, , Tp p=p   is the polynomial basis vector. In 2D case, the polynomial basis vector 
expressed in terms of the average strain in 2D case is 

    [ ]11 22 121, , , , ,Tε ε ε=p       (10) 
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Figure 3.  Illustration of the approximation procedure of the surrogate model. 
 

The vector of coefficients [ ]1 2, , Ta a=a   are the minimizers of functional defined by 

    2

1

1( ) ( ( )) ,
2

M
T

k k
k

J w α
=

= −∑a p a ε      (11) 

in which kw  are the weights of  Euclidean distance defined following [Breitkopf et al. (2004)]. 
 
Bi-level reduced model 
 
An illustrative flowchart of the approximation procedure is given in Fig. 3. With a given admissible 
value of average micro strain *ε , the corresponding approximated POD projection coefficients 
from 1α  to mα  are locally interpolated using Diffuse Approximation. Thereafter, we have the 
reduced order solution of the displacement filed 

    

*
0 ( ),R α= +u u Φ ε      (14) 

where { }1, , mφ φ=Φ   is the reduced basis obtained through POD of RVE displacement fields.  
 
The surrogate model is applied to replace full FEA in microscopic analysis. Computations during 
the first time step of the first optimization iteration are performed using full FEA to initialize the 
surrogate model. The surrogate model is then used to replace full FEA in solving the micro problem 
in the following computations when there are enough neighboring points to perform the 
approximation. When there is no enough points within the local influence zone, the micro problem 
is solved using full FEA and the results are used to update the POD basis Φ  and enrich the 
surrogate. 

Numerical example 

The benchmark cantilever problem is considered with anisotropic material defined at microscopic 
scale. As illustrated in Fig. 4, the macroscopic structure is discretized into 32 20×  four-node plane 
strain elements where each element has four Gauss integration points. Each Gauss point in the 
macroscopic structure corresponds to a considered RVE in the microscopic scale. The material 
property of the solid phase in the RVE is assumed to be isotropic with a nonlinear elastic 
constitutive behavior as shown in Fig. 4. Conventional unreduced FE2 approach requires 32 20 4× ×  
independent RVE analysis in the microscopic scale for one time evaluation at the macroscopic scale. 
For the sake of simplicity, the initial elastic stiffness matrix have been kept during the Newton-
Raphson iterative resolution procedure. In order to perform sensitivity analysis, tangent stiffness 
matrix is evaluated using the perturbation method at the converged moment of each design iteration. 
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Figure 4.  Illustration of the test example.  
 

 
 

Figure 5.  Resultant tractions of the first 7 POD modes after the optimization. 
 
The external loading force is set to 1.5 N and the considered volume ratio constraint is set to 32%. 
The tolerance error in Eq. (8) is set as in the previous case of 610δ −= . The extracted POD modes 
vary adaptively during the optimization procedure and the size of the reduced basis is 6 after the 
first iterations and then increase to 7 during the following iterations until the end. The resultant 
tractions of the first 7 of the final POD modes are shown in Fig. 5 together with their associated 
normalized eigenvalues.  
 
The structural topological evolution in the macroscopic scale is given in Fig. 6. The convergence 
histories of the strain energy and the volume ratio are demonstrated in Figs. 7(a) and (b), 
respectively. During the loading phase of the first optimization iteration, the periodic 
homogenizations of the RVE in the microscopic scale are performed using full FEA. Since the 
second optimization iteration, both FEA and the surrogate model are used for the microscopic 
analysis. Fig. 7(c) gives the percentage of FEA usage in each optimization iteration. It can be seen 
that less than 4% microscopic analysis require full FEA except a jump from 2% in iteration 20 to 
17% in iteration 21. It can be seen that a branch of the structure splits in iteration 21. Such a severe 
topological variation results in a large variation of the structural physical response and hence the 
surrogate built according to the previous calculations is no longer accurate enough. Therefore, an 
increased number of full FEA is required to recompute the set of the reduced basis. The surrogate 
model is updated thereafter and the usage ratio of FEA drops back below 4% and decreases to 0% 
in the following iterations as the structural topology converges, meaning that all computations are 
performed with the surrogate. 
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Figure 6.  Structural topology variations during the optimization process. 
 

 
 

Figure 7.  Optimization history: (a) convergence history of the strain energy, 
(b) convergence history of the volume ratio, (c) the ratio of FEA usage in each iteration. 

 
The same optimization design has also been performed without using the surrogate. The unreduced 
FE2 approach gives an exactly the same optimization design result as the reduced model where the 
relative errors of the objective are less than 510−  . Generally speaking, it requires around two hours 
of computing for each optimization iteration on a HP Z420 Workstation when using the unreduced 
sequential FE2. In contrast, the reduced FE2 approach requires only ten minutes of computing on 
average for each design iteration apart from the first design iteration. More saving in computation 
can be expected using the reduced approach when larger scale problems are considered. 
 
Fig. 8 depicts the equivalent strain distributions in the microscopic scale at selected points where 
the nodal displacements are scaled 20 times for the purpose of illustration. One may note that the 
existence of the holes in the RVE concentrates much higher strains and hence stresses in the 
microscopic scale than the homogenized macroscopic values. The micro strain distributions clearly 
manifest the difference of the loading status in different structural branches. The micro strain 
distributions at points b and c are quite similar because they are located in the same branch of the 
structure. The higher stress concentration may lead to the initial material failure or crack at the 
micro scale which cannot be detected when using the conventional one scale fracture analysis. 

Conclusions 

In this work, we have proposed a reduced multiscale model for macroscopic structural design 
considering microscopic material nonlinear microstructures. Several established techniques have 
been applied: the structural design is realized using a discrete level-set topology optimization model, 
the multiscale analysis is performed using the FE2 approach, and the surrogate model is constructed 
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using POD and Diffuse Approximation. The surrogate model is constructed in an on-line manner: 
initially built during the first optimization design iteration is then updated in the following design 
iterations. It has been observed that the surrogate model can significantly reduce the computational 
cost, particularly when multiple loops involving similar computations are required. Further 
improvement of the proposed model could be the employment of the advanced models of any of the 
applied techniques, such as considering nucleation in level-set topology optimization in order to 
avoid an artificially defined initial topology, considering the size effect in multiscale analysis, and 
other possible strategies to perform model reduction either in an intrusive manner or non-intrusive 
manner using different approaches to construct the surrogate. 
 

 
 

Figure 8.  Equivalent strain distribution at selected points. 
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Abstract

Rolling contacts are usual in various technical systems and yield usually non-holonomic constraints. A new regular-
ization method motivated by physical considerations is investigated in the present paper. The convergence of the
spring-damper regularization for the so called principal damping, which is motivated by the critical damping in the
linear case, is proven. The solutions of the DAEs and the corresponding ODEs converge if a certain condition on the
regularization parameters is fulfilled. A rolling disc on the flat plane and a skate on an inclined plane are analyzed as
numerical examples. It is demonstrated firstly that the optimal choice of the regularization parameters corresponds
to the principle damping and secondly that the sufficient convergence condition obtained in the proof is valid for the
numeric simulations.

1. Introduction

In most cases the constraint equations on velocity level enforcing a rolling motion cannot be integrated, yielding nonholo-
nomic constraint equations. Usually the nonholonomic constraints can be incorporated into the equations of motion by the
method of Lagrange multipliers. This formulation leads to index-2 differential algebraic problems. In the present paper
we investigate a new viscoelastic idealization of nonholonomic constraints, that is motivated by physical considerations.
Pure rolling is equal to a sticking state, with a kinematically repositioned contact point. Usually sticking is modeled by
introducing an elasticity in the contact as demonstrated by [Vielsack, 1996]. Here the constraint is enforced by the elastic
and dissipative terms, that help to avoid numerical oscillations in the contact. In an earlier work [Stamm, 2011] applied
this kind of viscoelastic formulation to a tangential contact law, extending the classical laws of friction, like the Coulomb
model, to distributed contacts, in order to circumvent the problem of indeterminacy in the sticking state. However a de-
scription of a contact law by means of viscoelastic forces is sensible only if it approximates the idealized rigid formulation
in case of infinitely stiff chosen viscoelastic parameters. Thus the objective of this work is to show the convergency of the
viscoelastic description to the idealized nonholonomic rigid description in a mathematical sense.

2. Statement of problem

Consider the general multibody system with m nonholonomic constraint equations, as given in definition 1.

Definition 1 (Differential algebraic initial value problem). Let I = [t0, te] be a closed interval. Then the equations of
motion can be described by the following differential algebraic initial value problem

M(q)q̈ = F (q, q̇, t)−GT(q)Λ, (1)

0 = G(q)q̇ (2)

with the consistent initial conditions q(t0) = q0, q̇(t0) = q̇0. Furthermore holds M(q) ∈ Rn×n is symmetric and positive
definite. The functions G(q) ∈ Rm×n and F (q, q̇, t) ∈ Rn are sufficiently smooth, the matrix G(q) is assumed to have full
rank m.

Usually deformations occur in a contact area due to local deformations of asperities and the elasticity of the bodies
itself. A sensible physical description of a contact should take these effects into account. Thus the constraint forces, that
enforce the constraint equation, are replaced by applied forces in form of a viscoelastic force element, which leads to the
viscoelastic description of the given multibody system as stated in definition 2.

Definition 2 (Viscoelastic description). Let I = [t0, te] be a closed interval. Then for t ∈ I and for a fixed εf ∈ (0, ε0]
the equation of motion of the viscoelastic description is given by

M(q)q̈ = F (q, q̇, t)−GT(q)Λ, (3)

ż = G(q)q̇ (4)

along with the initial conditions q(t0) = q0, q̇(t0) = q̇0 and z(t0) = z0, where the Lagrange multiplier Λ is replaced by

Λ = c
εf
z + d

εκf
ż. (5)

The functions G(q) ∈ Rm×n and F (q, q̇, t) ∈ Rn are sufficiently smooth, the matrix G(q) is assumed to have full rank m.
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The parameter κ is chosen as 1
2 , inspired by the critical damping in the linear case. The given forms of the underlying

systems are not suitable, in order to obtain an estimate of the distance between the corresponding solutions. However by
applying appropriate transformations, they can be transformed to a standard singular perturbation form. Transforming
the systems given in definition 1 and definition 2 to autonomous systems and introducing the new variable θ according to

√
εΛ̇ = θ + h(y,Λ) + S(Λ), (6)

where S(Λ) = Λ and h(y,Λ) = c(dc )
1

1−κ (Ġy2 + GM−1F − GM−1GTΛ). The equivalent systems in standard singular
perturbation form can be obtained.

ẏ = f(y,Λ),
√
εΛ̇ = θ + h(y,Λ) + S(Λ) := g1(y, θ,Λ),
√
εθ̇ = h(y,Λ)− dS

dΛ (θ + h(y,Λ) + S(Λ)) := g2(y, θ,Λ).

Setting ε = 0 leads to the reduced problem in form of differential algebraic equations

ẏ = f(y,Λ),

0 = θ + h(y,Λ) + S(Λ) := g1(y, θ,Λ),

0 = h(y,Λ)− dS
dΛ (θ + h(y,Λ) + S(Λ)) := g2(y, θ,Λ).

with the column matrices λ = [Λ, θ], g = [g1, g2] and f(y, λ) = [y2,M
−1(F − GT)Λ, 1] the problems can be written

conveniently. The differential algebraic equation can be represented in the following form:

Definition 3 (Differential algebraic equation).

ẏ = f(y, λ),

0 = g(y, λ), (7)

y(0) = y0
0 .

The viscoelastic approximation reads as:

Definition 4 (Viscoelastic description in singular perturbation standard form).

ẏ = f(y, λ),
√
ελ̇ = g(y, λ), (8)

y(0) = y0
0 +
√
εy0

1 +
√
ε

2
y0

2 + ... , λ(0) = λ0
0 +
√
ελ0

1 +
√
ε

2
λ0

2 + ... .

3. Proof of convergency

In the underlying form, standard singular perturbation approaches can be used in order to obtain an estimate of the
distance of the solution of the problems given in definition 3 and definition 4.
In order to construct a solution of the initial value problem eq. (8) in form of an infinite asymptotic power series expansion
the following theorem by Hairer and Wanner [Hairer and Wanner, 2010] can be applied.

Theorem 1. Let f and g be sufficiently smooth functions. Consider the initial value problem given in eq. (8)

ẏ = f(y, λ),
√
ελ̇ = g(y, λ),

y(0) = y0
0 +
√
εy0

1 +
√
ε

2
y0

2 + ... , λ(0) = λ0
0 +
√
ελ0

1 +
√
ε

2
λ0

2 + ... .

Introducing the time scale τ = t√
ε

enables the construction of the solutions in form of an infinite asymptotic series

expansion according to

y(t) =
∞∑
j=0

√
ε
j
yj(t) +

√
ε
∞∑
j=0

√
ε
j
ηj(τ), λ(t) =

∞∑
j=0

√
ε
j
λj(t) +

∞∑
j=0

√
ε
j
ζj(τ). (9)

The functions ηj(τ) and ζj(τ) satisfy the conditions

‖ηj(τ)‖ ≤ Kje
−κjτ , ‖ζj(τ)‖ ≤ Cje−κjτ .
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The proof of this theorem is given in [Hairer and Wanner, 2010]. Instead of the infinite power series expansion, the
truncated power series expansion will be used instead. Special interest is devoted to the series truncated at N = 0
since the resulting zeroth approximation corresponds to the differential algebraic equation. Thus the target is to find an
estimation of the error made when using the truncated series expansion instead of the full series expansion. This question
is answered by the following theorem from Hairer and Wanner [Hairer and Wanner, 2010].

Theorem 2. Let f and g be sufficiently smooth functions. Consider the viscoelastic formulation in form of initial value
problem (8). Suppose that the logarithmic norm µ(gλ) < −1 holds in an ε independent neighborhood of the solution y0(t),
λ0(t) of the differential algebraic equation (7) with the initial condition y0(0) = y0

0, satisfying the constraint equation, on
the interval 0 < t < T . If the initial values y0

0 and λ0
0 lie in this neighborhood, then the initial value problem (8) has a

unique solution for ε sufficiently small and for 0 < t < T , which is of the form

y(t) = ytr(t) +O(
√
ε
N+1

) =
N∑
j=0

√
ε
j
yj(t) +

√
ε
N∑
j=0

√
ε
j
ηj(

t√
ε
) +O(

√
ε
N+1

), (10)

λ(t) = λtr(t) +O(
√
ε
N+1

) =
N∑
j=0

√
ε
j
λj(t) +

N∑
j=0

√
ε
j
ζj(

t√
ε
) +O(

√
ε
N+1

). (11)

The coefficient functions ηj(τ) and ζj(τ) satisfy ‖ηj(τ)‖ ≤ Kje
−κjτ and ‖ζj(τ)‖ ≤ Cje

−κjτ . The error between the
solution of the differential algebraic equation (7), which corresponds to the truncated series at N = 0, and the viscoelastic
formulation (8) can be estimated above according to

‖y − y0‖ ≤M1

√
ε, ‖λ− λ0‖ ≤M2

√
ε.

The proof of this theorem is given in Hairer and Wanner [Hairer and Wanner, 2010]. Thus the solution of the viscoelastic
contact formulation is in an O(

√
ε) vincinity of the solution of the differential algebraic equation. The request that the

logarithmic norm µ(gλ) < −1 leads to the following condition on the eigenvalues of the matrix −GM−1GT:

λ−GM
−1GT

max ≤ − 2c
d2 , (12)

where λ−GM
−1GT

max denotes the maximum eigenvalue of the matrix −GM−1GT.

4. Numerical experiments

In order to confirm the theoretical results, numerical experiments were carried out. Therefore a classical mechanical
system of a skate sliding down an inclined plane under the influence of gravity is considered. The model is shown in fig. 1.
Mathematically the constraint equation is given by the demand, that the velocity of the contact point is always parallel

Figure 1: disk rolling on a flat support

to the skid, which can be expressed in the following fashion

v · t = 0,
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Figure 2: Deviations of the solutions of differential algebraic equation and viscoelastic formulation in case (12) is fulfilled
(left) and not fulfilled (right), where the deviation grows exponentially fast.

where v denotes the velocity of the contact point and t the vector perpendicular to the skid. This finally results in the
scalar constraint equation

0 =
[
− sinϕ cosϕ 0

]︸ ︷︷ ︸
G(q)

u̇1

u̇2

ϕ̇


︸ ︷︷ ︸
q̇

.

5. Discussion and conclusion

Convergency of the viscoelastic description of contact forces is proven for nonholonomic constraints in general form. The
proof is performed for the principal damping exponent. The solutions of the DAE and the corresponding ODE converge
if the condition

µ(GM−1GT) > 2c
d2

is fulfilled. Numerical experiments were made to verfiy the statement of the proof. They confirm the optimum performance
for this choice of the viscoelastic parameters. In the future the described approach will enable a consistent modelling of
sticking, sliding and rolling contacts in multibody dynamics.
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In this paper, simulations of low velocity impact characteristics of curvilinear 
corrugated-core sandwich structures were presented, which were validated against the 
corresponding experimental data. Two different configurations of lightweight 
aluminium sandwich panels from Metawell® Company in Germany were tested using 
drop-weight impact tower with spherical indenter to evaluate their energy-absorbing 
characteristics and to identify the associated failure mechanisms under vary of impact 
loading conditions. 

Here, two panel configurations were studied based on the finite element analysis by 
using commercial finite element code Abaqus/Explicit developing numerical models 
to cover the most representative cases. A good degree of correlation was obtained, 
which indicates the finite element models developed are capable of predicting the 
dynamic behaviour of the curvilinear corrugated-core sandwich structure panels 
subjected to low velocity projectile impact.     

 

Keywords: Curvilinear corrugated-core sandwich structures, low velocity impact, 
finite element, perforation failure.   

 

Introduction 

Sandwich structures are considered as optimal designs for a wide range of 
applications such as insulated structures, marine construction, transportation and 
aerospace vehicles.  A composite sandwich panel is usually made from a lightweight 
foam, honeycomb or corrugated core sandwiched between two composite face sheets. 
Such a combination offers exceptional specific strength-to-weight ratio or stiffness-
to-weight ratio, buoyancy, dimensional stability, and thermal and acoustical 
insulation characteristics. The curvilinear corrugated-core sandwich structure is one 
of outstanding sandwich structures offering superior mechanical properties. Many 
researches have been study on various types of sandwich structures [Biancolini 
(2005) , Nyman and Gustafsson (2000) , Rejab and Cantwell (2013) , Herrmann, 
Zahlen (2005) , Kazemahvazi and Zenkert (2009) , Xiong, Ma (2011) , Lin, Liu 
(2007) , Zenkert (1995) , Zhang Y (2011) , Yokozeki, Takeda (2006)]. However, it 
was found that few of published worked involved in curvilinear corrugated-core 
sandwich structures in spite of a versatile applications.  

In this paper, the curvilinear corrugated-core sandwich structures from Metawell® 
company, which is a patented lightweight construction aluminium panel made by 
bonding two cover sheets to the core material, consisting of wave formed sheet metal, 
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using a hot melt adhesive in a continuous, process were used and tested in order to 
study the influence of low velocity impact attached by the spherical indenter response 
to the rigid panels.   

Experimental Work 

The curvilinear corrugated-core sandwich structures in this study were based on EN 
AW-1582 H48 aluminium alloy sheets from fabricated by bonding two cover sheets 
into core material, which consists of wave formed sheet metal, using a hot melt 
adhesive in a continuous process. There were two panel configurations, which 
different fact sheet thicknesses and core sizes were tested.  Fig.1 shows a design and 
dimension of both panels.  

 

      t1  -  thickness of top cover sheet 

 tw -  thickness of corrugation  

 t2  -  thickness of bottom cover sheet 

 H  -  panel height in mm.  

Fig.1 shows a design and dimension of both panels.  

Table 1. Panel dimensions 

Type 
t1 tw t2 H weight 

Descriptions 

(mm) (mm) (mm) (mm) (kg/m
2
) 

Alu hl 05-02-05 
hl/H6 0.5 0.2 0.5 6.0 3.8 lightweight panel 

(primer  coated) 

Alu cc 08-03-05 
hl/H10 0.8 0.3 0.5 10.0 5.2 White coating on one 

side 

 

Low velocity impact tests on the panels started from 1.93 m/s and increased gradually 
until 5.4m/s were conducted by using an Instron CEAST 9350 drop tower machine. A 
cylindrical impactor of 5.32 kg with 25.4 mm diameter spherical end was used.  The 
test specimens had the dimension 155 mm. x 155 mm. The specimens were clamped 
by cylindrical ring with inside and outside diameter of 76 and 100 mm. respectively. 
The 200 N. of clamp force between both bottom and top rings was applied.  Details 
about the test configuration are shown in Figure 2.   

In order to get the materials properties for the input parameters used in finite element 
modelling, the top and bottom face sheets were tested by using Instron 4505 to 
conduct the uniaxial tensile test. The result from tensile test is shown as the graph in 
Fig. 3.   
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Fig.2 (a) Schematic of drop-weight apparatus, using spherical impactor    

(b) side view 

Finite element modelling  

ABAQUS/Explicit [Abaqus6.12-3 (2012)]was used to develop numerical simulations 
of the curvilinear corrugated-core sandwich structures under low velocity impact. The 
aluminium alloy was modelled as an elasto-plastic material with rate-dependent 
behaviour. For a rate-dependent material, the relationship follows the uniaxial flow 
rate definition as:   

 ̇
  

      ̅                                                        (1) 
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Fig.3 The stress- strain curve of EN AW-1582 H48 from tensile test  

Where h is a known strain hardening function, q is the von-Mises equivalent stress, 
     is the equivalent plastic strain, and     is the temperature. The isotropic 
hardening data for the EN AW-1582 H48 aluminium alloy are given in Table 2. The 
density of the aluminium was taken as       = 2690 kg/m3. The material properties of 
EN AW-1582 H48 can be found in table 3.  

Table 2. Isotropic hardening data for the EN AW-1582 H48 aluminium alloy 

Yield stress 

(MPa) 153 160 178 203 214 224 231 234 235 232 

Plastic strain 0 4E-4 0.002 0.013 0.020 0.030 0.040 0.050 0.056 0.065 

The rate-dependent hardening curves can be expressed as:  

   ̅(  ̅   ̅ ̇ )     (  ̅ )   ̅ ̇                        (2) 

Where        and R are the equivalent plastic strain and stress ratio ( =    ̅/  y ) 
respectively. 
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Damage initiation criteria 

Ductile damage criterion is a phenomenological model for predicting the onset of 
damage due to nucleation, growth, and coalescence of voids. The model assumes that 
the equivalent plastic strain at the onset of damage,   ̅

  , is a function of stress 
triaxiality and strain rate: 

       ̅
  (   ̅ ̇ )                                (3) 

Where    = - p/q and   is the stress triaxiality, p is the pressure stress, q is the Misses 
equivalent stress, and   ̅ ̇  is the equivalent plastic strain rate. The criterion for 
damage initiation is met when the following condition is satisfied: 

      

      ∫
     

 ̅ 
  

(   ̇̅  )
                                                  (4) 

 

Where    is a state variable that increases monotonically with plastic deformation. 
At each increment during the analysis the incremental increase is computed as:  

     ∫
     

 ̅ 
  

(   ̇̅  )
                                          (5) 

Shear failure criterion 

The shear failure model is based on the value of the equivalent plastic strain at 
element integration points; failure is assumed to occur when the damage parameter 
exceeds 1. The damage parameter,  , is defined as : 

    
 ̅ 
  

 ∑  ̅  

 ̅ 
       (6) 

where   ̅
    is any initial value of the equivalent plastic strain, ∑  ̅   is an increment 

of the equivalent plastic strain,  is the strain at failure, and the summation is 
performed over all increments in the analysis. The strain at failure,   ̅

  , is assumed to 
depend on the plastic strain rate,  ̅ ̇  ; a dimensionless pressure-deviatoric stress ratio, 
p/q (where p is the pressure stress and q is the Mises stress); temperature; and 
predefined field variables. However, in this model, the temperature parameter would 
be ignored as a small effect to the results.  

Element removal 

When the shear failure criterion is met at an integration point, all the stress 
components will be set to zero and that material point fails. By default, if all of the 
material points at any one section of an element fail, the element is removed from the 
mesh; it is not necessary for all material points in the element to fail. For example, in 
a first-order reduced-integration solid element removal of the element takes place as 
soon as its only integration point fails. However, in a shell element all through-the-
thickness integration points must fail before the element is removed from the mesh. In 
the case of second-order reduced-integration beam elements, failure of all integration 
points through the section at either of the two element integration locations along the 
beam axis leads, by default, to element removal[Abaqus6.12-3 (2012)].  
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Geometry and Mesh design 

In order to reduce time of processing, only a quarter of modelling was generated. The 
Aluminium corrugated core and skin parts were meshed with a uniform mesh 
consisting primarily of 8-node linear brick, reduced integration, hourglass control 
elements (C3D8R). Core and skins were completely bonded with tie constrain around 
the interface areas. A 4-node 3-D bilinear rigid quadrilateral (R3D4) was used to 
contribute support rings and spherical end projectile. 

 

 

 

 

 

 

 

 

 

 

Fig.4 shows the quarter model assembly and mesh design.  

Boundary conditions and loading 

For the support bottom support ring, it was fixed all of degree of freedom and the -
200 N. of uniform pressure was applied on the top support ring imitating as the 
experimental clamp condition.   The projectile, which had the inertia of 5.321 kg, was 
allowed to translate only in y direction with the required predefined field of initial 
velocity.  
The general contact, which had the contact domain included surface pairs by all with 
self-contact was applied for the whole model. The contact properties had frictionless 
tangential behaviour and hard contact for normal behaviour.   

Table 3. Materials properties and parameters used in finite element modelling  

Properties Values 

Young’s modulus  (Gpa.) 68    

Density (kg/m3) 2650  

Strain rate 150 

Fracture strain for ductile damage  0.065 

Fracture strain for shear damage 0.050 

Stress triaxiality  0.33 

Fracture energy (kJ/m2) 67  
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Results and discussions 

Fig. 5 and 6 compare typical load-displacement plots for the impact energy from 10 J. 
up to 80 J. It could be indicated that the agreement between the experimental results  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Typical load-displacement plots from Alu hl 05-02-05 hl/H6 panels in ascending 

impact energy 
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and the numerical predictions is very good for both panels. For Alu hl 05-02-05 
hl/H6, the prediction from numerical model slightly offered a higher impact 
displacement when 50J. was applied as shown in fig. 5. The results from numerical 
model seem be perforated slightly later than the experimental results according to the  

 
 

Fig. 6 Typical load-displacement plots from Alu cc 08-03-05 hl/H10 panels 

ascending impact energy 
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panel Alu cc 08-03-05 hl/H10 presented in fig. 6.   Clearly, the peak load increases 
with the velocity. However, it was found that the panel Alu hl 05-02-05 hl/H6, which 
has less structures and bottom face sheet thickness, could offer a higher peak load in 
the range of velocity since 2.73 m/s to 3.8 m/s. It could be indicated that after 6 m/s, 
the bottom face sheet of Alu cc 08-03-05 hl/H10 obviously affected to the peak load 
as shown in fig. 7.      
 
 

Apparently, the prediction offers correlation of peak load from Alu cc 08-03-05 
hl/H10 in the initial state and it seem diverge when the velocity increased. Only in the 
range of 3.35 - 3.78 m/s from numerical results had slightly higher than the 
experimental results. It could be considered that the maximum perforation load is 9.4 
kN. at 90 J. before dropping when increasing of velocity for Alu cc 08-03-05 hl/H10. 
Meanwhile, the trend of peak load seems to be constant while the impact velocity is 
increasing since 4.71 m/s.   
 
From the finite element model results in fig. 8(c), it could gradually reveal the initial  
stress concentration and the propagation of failure on the panel since t = o 
millisecond until the panel was fully perforated at t = 6.00 milliseconds. It also could 
predict that the stress comes along the longitudinal corrugation direction (Z axis). The 
evidence revealed that it could not find the debonding failure mode between the 
corrugated-core and both top and bottom face sheets. Therefore, using the tie 
constrains between core and skins could be acceptable in the finite element model.  It 
was found the buckling mode of failure mechanism occurred before the propagation 
of fracture would initiate. The initial crack did not propagate from the middle of 
impact, but started from the cavity inside the coalescent core then spread along z-
direction as a crescent form.  

The influence of projectile on the perforation resistance of the curvilinear corrugated-
core sandwich structures are shown in fig. 8(a) and (b). Surprisingly, the diameter of 
penetration were investigated and found in double of the projectile diameter.  
 
 

Fig. 7 compares peak load against velocity between panels Alu hl05-02-05 hl/H6 and 

Alu cc 08-03-05 hl/H10.  
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Conclusions  

Agreement between the experimental and predicted data is reasonably good, with the 
model tending to follow the experimental data. Only in some regions were observed 
not associated in particular the impact displacement, which seem offers slightly 
greater than measured data.  
Increasing of the core and face sheets thickness enhances the stiffness and impact 
energy resistance quite in double of maximum peak load.   
 
 
 
 
 
 

t  = 0.00 ms. 

t  = 0.09 ms. 

t  = 0.38 ms. 

t  = 0.72 ms. 

t  = 1.17 ms. 

t  = 1.50 ms. 

t  = 2.40 ms. 

t  = 3.25 ms 

t  = 3.80 ms. 

t  = 6.00 ms. 

Fig. 8 (a) and (b) Compares central cross-section view of perforation between 

experimental and finite element modelling, using Alu hl 05-02-05 hl/H6,   (c) 

Deformation of perforation since t = 0 millisecond until fully perforated at t = 6.00 

millisecond. 

(b) 

(a) 

(c) 

cm. 
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Abstract 
A combined approach of boundary element method (BEM) and precise integration method (PIM) is 
presented for solving transient heat conduction problems with variable thermal conductivity. The 
boundary integral equation is derived by means of the Green's function for the Laplace equation. As 
a result, three domain integrals are involved in the integral equation. The radial integration method 
is used to transform the domain integrals into the boundary integrals. After discretization the solved 
domain by the BEM, a system of ordinary differential equations (ODEs) can be obtained. Adaptive 
PIM can solve efficiently ODEs and improve greatly the computational efficiency. Numerical 
examples show that the present approach can obtain satisfactory performance even for very large 
time step size. In addition, the results are independent of the time step size when the integral of free 
term can be analytically integrated, here, the free term is formed by boundary conditions and heat 
sources. 

Keywords:  Adaptive precise integration method, Radial integration method, Boundary element 
method, Transient heat conduction 

Introduction 

It is generally known that the finite difference method (FDM) is used to solve the transient heat 
conduction problems. However, the result of FDM is unstable when change the time step size. The 
precise integration method (PIM) [Zhong (1994)] can obtain stable and accurate results for different 
time step sizes. Particularly, the results are independent of the time step size when the free term can 
be divided into the functions of space and time and the time-related integral can be integrated 
analytically. Up to now, the PIM in conjunction with the finite element method (FEM) has been 
applied to conduct the transient heat transfer analysis [Cheng et al. (2004)], the transient forced 
vibration analysis of beams [Tang (2008)] and the sensitivity analysis and optimization problems 
[Xu et al. (2011)]. In addition, the method combining the PIM with meshless local Petrov–Galerkin 
method has been applied to the transient heat conduction problems [Li et al. (2011)]. 
 
Compared with FDM, FEM and the meshless method, BEM is very robust for solving the linear and 
homogeneous heat conduction problems [Song and Li (2003)]. However, BEM is still a challenge 
for solving nonlinear problems such as variable thermal conductivity problems. The main reason is 
that the fundamental solution of the problem obtains extremely difficult. Fortunately, we can use the 
fundamental solution of the linear problem to solve the nonlinear problem, whereas domain 
integrals are involved in resulting integral equations. 
 
Generally, there are mainly two methods which can transform the domain integrals into the 
boundary integrals. The first one is the dual reciprocity method (DRM) [Nardini and Brebbia 
(1983)]. The deficiency of the method is that the particular solutions may be difficult to obtain for 
some complicated problems. In addition, even for known heat sources term, the method still 
requires an approximation of the known function. The second one is the radial integration method 
(RIM) [Gao (2002)]. The RIM not only can transform any complicated domain integral into the 
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boundary without using particular solution, but also can remove various singularities appearing in 
domain integrals. The method combining the RIM with the BEM is called the radial integration 
boundary element method (RIBEM). 
 
The RIBEM has been widely applied to many fields including the crack analysis in functionally 
graded materials [Zhang (2011)], the heat transfer problems [AL-Jawary and Wrobel (2012); Yu et 
al. (2014a; 2014b; 2014c;)] and the viscous flow problems [Peng (2013)]. The RIBEM still exists a 
problem, which solved results are sensitive for different time step sizes when the problems are 
transient. The RIBEM and the PIM have been combined to solve transient heat conduction 
problems [Yu et al. (2014c)]. 
 
In this paper, an adaptive technique is introduced in the present method to improve the 
computational efficiency without affecting accuracy. First of all, we discretize the space domain by 
using the RIBEM to obtain a system of ordinary differential equations (ODEs) with respect to time, 
and then solve the ODEs by the PIM. Finally, two numerical examples are presented to validate the 
proposed method. 

Governing Equation 

Considering a two-dimensional bounded domain Ω  with heat source and a spatially variable heat 
conductivity, the governing equation for transient heat conduction problems in isotropic media can 
be expressed as 

 ( ) ( ) ( ) ( ), ,
,

i i

T t T t
k f t c

x x t
ρ

 ∂   ∂ ∂
+ = ∈Ω   ∂ ∂ ∂   

x x
x x x  (1) 

where ( )1 2,x x=x , ( ),T tx  is the temperature at point ∈Ωx  and at time t , ( )k x  is the thermal 
conductivity, ( ),f tx  is a known heat source, ρ  is the density and c  is the specific heat. The 
repeated subscript i  denotes the summation through its range which is 2 for two-dimensional 
problem. 
 
The initial condition is ( ) 0,0 =T Tx , where 0T  is a prescribed function. The boundary conditions are 
 ( ) ( ) 1, = ,T t T t ∈Γx x x  (2) 

 ( ) 2= ,i
i

Tk n q t
x
∂

− ∈Γ
∂

x x  (3) 

where Γ = ∂Ω , 1 2 =Γ ∪Γ Γ , 1 2 =Γ ∩Γ ∅ , in  is the i -th component of the outward normal vector n  to 
the boundary Γ , T  and q  are prescribed temperature history and heat flux on the boundary, 
respectively. 

Implementation of RIBEM 

Boundary-domain Integral Equation 

To derive the boundary integral equation, a weight function G  is introduced to Eq. (1) and the 
following domain integrals can be written as 

 ( ) d d d
i i

T TG k Gf c G
x x t

ρ
Ω Ω Ω

 ∂ ∂ ∂
Ω + Ω = Ω ∂ ∂ ∂ 

∫ ∫ ∫x  (4) 
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Using Gauss’ divergence theorem, the first domain integral can be manipulated as 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,
, d , d d

, ,
d d

i i
i i i i

i i i i

GT TG k G k n k T n
x x x x

G k G
T k T

x x x x

Ω Γ Γ

Ω Ω

∂ ∂ ∂ ∂
Ω = Γ − Γ + ∂ ∂ ∂ ∂ 

∂ ∂  ∂ ∂
Ω + Ω ∂ ∂ ∂ ∂ 

∫ ∫ ∫

∫ ∫

x y
x y x x y x x

x y x x y
x

 (5) 

If Green’s function ( ln / 2r π− ) is acted as the weight function G , the last domain integral in Eq. (5) 
can be written as 

 ( ) ( ) ( ) ( ),
d

i i

G
k T k T

x xΩ

 ∂ ∂
Ω = − ∂ ∂ 

∫
x y

x y y  (6) 

where ( , )r x y  is the distance between the source point y  and the field point x . Substituting the 
equation into Eqs. (4) and (5), it follows that 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

,
, , , d , d , ( , )d

, ,
, , d d

G
T t G q t T t G f t

G T t
V T t c

k t
ρ

Γ Γ Ω

Ω Ω

∂
= − Γ − Γ+ Ω +

∂
∂

Ω − Ω
∂

∫ ∫ ∫

∫ ∫

x y
y x y x x x y x

n
x y x

x y x
x

 





 (7) 

where ( , ) ( ) ( , ) /q t k T t= − ∂ ∂x x x n , ( ) ln ( )k k=x x , ( , ) ( ) ( , )T t k T t=x x x , ( , ) ( ( , ) / )( ( ) / )i iV G x k x= ∂ ∂ ∂ ∂x y x y x  
in which ( , )q tx  is the heat flux, ( , )T tx  and ( )k x  are the normalized temperature and thermal 
conductivity, respectively. Eq. (7) is valid only for internal points. For boundary points, a similar 
integral equation can be obtained by letting →Γy  as is done in the conventional BEM such as 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

,
( ) , , , d , d , ( , )d

, ,
, , d d

G
c T t G q t T t G f t

G T t
V T t c

k t
ρ

Γ Γ Ω

Ω Ω

∂
= − Γ − Γ+ Ω +

∂
∂

Ω − Ω
∂

∫ ∫ ∫

∫ ∫

x y
y y x y x x x y x

n
x y x

x y x
x

 





 (8) 

where  

 ( ) ( )
1 ,

=
,

2

c ϕ
π

∈Ω



∈Γ

y
y y

y
 (9) 

( )ϕ y  is the interior angle at a point y  of the boundary Γ . Particularly, ( )=0.5c y  if y  is a smooth 
point on the boundary. 

Transformation of Domain Integrals to the Boundary by RIM 

In general, the heat source ( ),f tx  is a known function. In this circumstances, RIM [Gao (2002)] 
can be directly used to transform the first domain integral in Eq. (8) into the boundary as follows: 

 ( ) ( ) ( )1, ( , )d ( ) , , d ( )
,

ArG f t F t
r nΩ Γ

∂
Ω = Γ

∂∫ ∫x y x x z y z
z y

 (10) 
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where the radial integral AF  can be expressed as ( ) ( )( ),

0
, , , ( , ) d

rAF t G f t ξ ξ= ∫
z y

z y x y x . 

 
For the last two domain integrals in Eq. (8), the RIM formulation cannot be directly used because T  
and /T t∂ ∂  are unknown. To solve this problem, T  and /T t∂ ∂  are approximated by the 
combination of the radial basis functions (RBFs) and the polynomials in terms of global coordinates 
[Zhang (2011)]. Thus, T  and /T t∂ ∂  are respectively expressed as 

 1 1 2 2 3
1

( )
N

i i
i

T R a x a x aα φ
=

= + + +∑  (11) 

 1 1 2 2 3
1

( )
N

i i
i

T R b x b x b
t

β φ
=

∂
= + + +

∂ ∑


 (12) 

and the following equilibrium conditions have to be satisfied: 

 1, 2,
1 1 1

0
N N N

i i i i i
i i i

x xα α α
= = =

= = =∑ ∑ ∑  (13) 

 1, 2,
1 1 1

0
N N N

i i i i i
i i i

x xβ β β
= = =

= = =∑ ∑ ∑  (14) 

where N  is the total number of boundary and interior nodes, = ( ,  )iR r x x  is the distance from the i-th 
application point 1, 2, ( , )i i ix x=x  to the field point x  and ( )Rφ  is the RBF. In this paper, the 
compactly supported fourth-order spline RBF is adopted, i.e., 

 ( )

2 3 4

1 6 8 3 0

0

i
i i i i

i

R R R R d
R d d d

d R

φ

      
 − + − ≤ <     =       
 ≤

 (15) 

in which id  is radius of the supported region at the i-th point. 
 
The coefficients iα , 1a , 2a  and 3a  in Eq. (11) can be determined by collocating the application 
point ix  in Eq. (11) at all nodes. A set of algebraic equations can be written in the matrix form as 

=αT φα , where T
1 2 1 2 3{ , , , , , , }N a a aα α α= α , T T T

1 2{ ,  ,  ,  ,  0,  0,  0} {{ } , }NT T Tα = =    

T T 0 . If no 
two nodes share the same coordinates, the matrix φ  is invertible and thereby 1

α
−= Tα φ . According 

to T T{{ } , }α =T T 0  , the matrix 1−φ  can be expressed in the block form as ( ) ( )1 2( 3) ( 3) 3
,

N N N+ × + ×

 
  
 φ φ . 

Then α  can be rewritten as 1= T α φ . Similarly, the coefficients in Eq. (12) can also be simply 

expressed as 1= T β φ , where T
1 2 1 2 3{ , , , , , , }N b b bβ β β= β , 1 2={ / ,  / ,  ,  / }NT t T t T t∂ ∂ ∂ ∂ ∂ ∂T   

 . 
 
Substituting Eqs. (11) and (12) into the last two domain integrals in Eq. (8), then transforming it 
into the boundary integrals by RIM, a pure boundary integral equation can be obtained as follows 
[Yu et al. (2014b)]: 

 ( ) ( ) ( ) ( ) ( ) ( ), 1, d d dAG rc T G q T F
rΓ Γ Γ

∂ ∂
= − Γ − Γ + Γ + −

∂ ∂∫ ∫ ∫ y y

x y
y y x y x x V T C T

n n


     (16) 
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where yV  and yC  are the boundary integral terms corresponding to the last two domain integrals in 
Eq. (8). 

System of Differential Equations 

Assuming that the boundary Γ  is discretized into bN  linear elements and the region is distributed 
IN  internal nodes, the total number of nodes is = +b IN N N . Eq. (16) can be conveniently expressed 

in the following matrix form: 
 b b b b b b b b onα = − + + − ΓC T G Q H T f V T C T     (17) 

 I I b I b I I I in= − + + − ΩT G Q H T f V T C T     (18) 
where 

( ) ( ) ( ){ }1 2= , , , 
bNk c c cαC diag y y y , { }T

1 2= ,  , , 
bb Nk T n k T n k T n− ∂ ∂ − ∂ ∂ − ∂ ∂Q  , { }T

1 2= , , , 
bb NT T TT   

 , 

{ }T

1 2= , , , 
II I I NT T TT   

 , { }T

1 2, , ,
bb Nf f f=f  , { }T

1 2, , ,
II I I Nf f f=f  . The matrices bG , bH , IG  and IH  

correspond to the coefficients of boundary integrals and bf , bV , bC , If , IV  and IC  refer to the 
coefficients of domain integrals term. 
 
After the application of boundary conditions and elimination the unknown heat flux quantity, a 
system of ordinary differential equations is obtained only relation to temperature as follows [Yu et 
al. (2014b)]: 
 ( )= ( ) ( )u u ut t t+T B T F

   (19) 

Adaptive Precise Integration Method 

The general solution of Eq. (19) can be written as 

 1 0
( ) ( ) exp( ( )) ( )d

t

u k u k u kt t t tξ ξ ξ
∆

+ = + ∆ − +∫T ET B F   (20) 

where =exp( )u t∆E B  and kt k t= ∆ . The matrix E  can be rewritten as =[exp( / )]m
u t m∆E B , where m is 

an integer. Now, 2Mm =  is selected, where M is an integer. The following truncated Taylor series 
expansion can be used: 

 2exp( ) ( ) / 2! ( ) / !p
u u u u apη η η η≈ + + + + = +B I B B B I E  (21) 

where /t mη = ∆ , I  is the identity matrix. How to compute the matrix E  has been detailedly shown 
in literature [Zhong (1994)]. 
 
The main factor of influence computation efficiency is how to select a optimal M  and p. Because 
the most of the computational cost of PTI is the times of the matrix multiplications ( TMM ), where 
TMM= 1M p+ − . The optimal selection of TMM is shown in literature [Chen et al. (2004)] for 
different prescribed error tolerance. In addition, in Eq. (20), the function ( )kt ξ+F  is formed by the 
known temperature boundary conditions, heat flux boundary conditions or heat sources. In this 
article, the term 

0
exp( ( )) ( )d

t

u kt tξ ξ ξ
∆

∆ − +∫ B F  in Eq. (20) is analytically integrated for all numerical 

example. 
 
Finally, true temperature ( , )T tx  can be computed by using ( )( , ) ( , ) /T t T t k=x x x . 
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Numerical Examples 

To check the convergence of the proposed method, the root mean square (RMS) error is given by 

 2 2
, , ,

1 1
( ) /

N N

numerical i exact i exact i
i i

RMS T T T
= =

= −∑ ∑  (22) 

where ,numerical iT  and ,exact iT  are the numerical solution and the exact solution of the i-th node, 
respectively. For comparison, two examples are also computed by using the RIBEM, which use the 
finite difference technique to simulate the derivative of temperature with respect to time (it will be 
abbreviated to RIBEM-FD) [Yu et al. (2014b)]. 
 
Example 1: In this example, a square plate 2[1,2]Ω =  is considered with 1 2( )k x x= +x , =1ρ  and 

1c = . The initial condition and the heat source are 2 2
0 1 2= +T x x  and 1 2( , ) 6( ) 10cos(10 )f t x x t= − + +x , 

respectively. The boundary conditions are given by 2
1 1( ,1, ) 1 sin(10 )T x t x t= + + , 

2
2 2(2, , ) 4 sin(10 )T x t x t= + + , 2

1 1( , 2, ) 4 sin(10 )T x t x t= + + , 2
2 2(1, , ) 1 sin(10 )T x t x t= + + . The exact 

solution of the problem is 2 2
1 2( , ) sin(10 )T t x x t= + +x . The plate is discretized into 20 equally space 

linear boundary elements and distributed uniformly 16 internal nodes. 
 

Table 1. The value of TMM  for different pε  

t∆  
TMM  

510pε
−=  

TMM  
610pε
−=  

TMM  
710pε
−=  

TMM  
810pε
−=  

TMM  
910pε
−=  

TMM  
1010pε
−=  

TMM  
1110pε
−=  

TMM  
1210pε
−=  

0.2 15 15 16 16 16 16 17 18 
5 19 19 20 20 20 20 21 22 

 
Table 1 shows the optimal value of TMM  for different time step sizes and computational error 
tolerance. Comparison with the general selection TMM=23 , the adaptive PTI improves the 
computational efficiency greatly. For different time step size, it can be seen from Figure 1 that the 
RMS errors of the PIBEM are highly coincident, but the errors of the RIBEM-FD emerge a big 
fluctuation. 
 

 
 

Figure 1. RMS error of temperature with 510pε
−=  for example 1. 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

78



Example 2: In this example, we consider a concave geometry with 1( ) exp( )k x=x , 1cρ = =  and 
0 1t< ≤ . The initial temperature and the heat source are 0 0T =  and ( , ) 10f x t = , respectively. The 
time-dependent temperature condition is (0, , ) 60T y t t=  for the left boundary and the other 
boundaries are insulated. The geometry and computational model of the BEM can be seen in Figure 
2 with 36 boundary elements and 13 internal nodes. The problem is also computed using the FEM 
software ANSYS, which the results are considered as the reference solutions exactT  in Eq. (22). The 
solved domain is uniformly discretized into 832 4-noded elements. Table 2 shows the optimal value 
of TMM  for different time step sizes and computational error tolerance. It can be seen from Figure 
3 that the solutions of PIBEM are very stable and accurate than the solutions of RIBEM-FD for the 
different time step size. 
 

Table 2. The value of TMM  for different pε  

t∆  
TMM  

510pε
−=  

TMM  
610pε
−=  

TMM  
710pε
−=  

TMM  
810pε
−=  

TMM  
910pε
−=  

TMM  
1010pε
−=  

TMM  
1110pε
−=  

TMM  
1210pε
−=  

0.001 9 9 10 10 10 10 11 12 
0.2 17 17 18 18 18 18 19 20 

 

 
 

Figure 2. Computational model of the BEM for example 2. 
 

 
 

Figure 3. RMS error of temperature with 510pε
−=  for example 2. 
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Conclusions 

In this paper, the adaptive PIM is introduced into the RIBEM for solving the transient heat 
conduction problems with variable thermal conductivity. For the RIBEM-FD, the sensitive results 
are caused by the finite difference method to solve the derivative of temperature with respect to 
time. The PIBEM can perfectly solve the problem. Numerical examples show the PIBEM with 
adaptive technique can obtain the stable and accurate results for a big time step size and improve 
efficiency, whereas only in the case of a small time step the RIBEM-FD can obtain accurate results.  
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Abstract 
The DualSPHysics code is proposed as a numerical tool for the simulation of liquid sloshing 
phenomena. A particular type of sloshing motion can occur during the core meltdown of a liquid 
metal cooled reactor (LMR) and can lead to a compaction of the fuel in the center of the core 
possibly resulting in energetic nuclear power excursions. This phenomenon was studied in series of 
"centralized sloshing" experiments with a central water column collapsing inside the surrounding 
cylindrical tank. These experiments provide data for a benchmark exercise for accident analysis 
codes. To simulate "centralized sloshing" phenomena, a numerical method should be capable to 
predict the motion of the free surface of a liquid, wave propagation and reflection from the walls. 
The DualSPHysics code based on the smoothed particle hydrodynamics method was applied to the 
simulation of "centralized sloshing" experiments. Simulation results are compared with the 
experimental results. In a series of numerical calculations it is shown that overall motion of the 
liquid is in a good agreement with experimental observations. Dependence on the initial and 
geometrical symmetry is studied and compared with experimental data. 

Keywords:  ICCM2014, Computational method, Sloshing Experiment, Smoothed Particle 
Hydrodynamics 

Introduction 
The problem of safety in nuclear reactors has been intensively studied from the time of the 
development of the first reactor designs. Over time, several severe accidents occurred at nuclear 
reactors, but without dangerous consequences for the environment, until the accident at Chernobyl 
Nuclear Power Plant (NPP) occurred in 1986 and massive severe accident at Fukushima NPP 
(2011), where four units were seriously damaged by a tsunami wave. Today it is clear that further 
successful development of the nuclear energy industry is impossible without deeper knowledge of 
severe accidents and without the provision of safety guarantees to the public, based on 
comprehensive analyses of nuclear reactor safety.  
 
One of the current problems in severe accident analysis is the problem of molten corium motion, 
which could possibly result in a recriticality event. The movement of the corium during an accident 
involving melting of the reactor core may be initiator of a recriticality event with dangerous high 
power excursions. 
 
Simulation with Eulerian methods is difficult, since special treatments are required for capturing the 
indicated phenomena. To be more specific, the treatments required are the Volume Of Fluid (VOF) 
method, combined with mesh refinement, for tracking the free-surface, and sliding meshes, for the 
connection between the moving and stationary meshes. The above treatments increase the 
computational cost and requirements of the simulation considerably. An alternative way of 
simulating the flow is the Smoothed Particle Hydrodynamics (SPH) method which will be used in 
the present work for the simulations.  
 
The SPH method was initially developed by [Lucy (1977)], [Gingold & Monaghan (1977)] and has 
been used for modeling astrophysical problems. The application of SPH to a wide range of 
scientific areas has led to significant extensions and improvements of the original method 
[Monaghan (2005)], [Liu(2003)]. SPH is a Lagrangian, particle, mesh-less method and has the 
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advantages of tracing and resolving the free-surface without any special treatment  and describing 
moving/deforming boundaries easily. 
 
The DualSPHysics code [Gomez-Gesteira et al. (2012a, 2012b)] is proposed as a numerical tool for 
the simulation of liquid sloshing phenomena. A particular type of sloshing motion can occur during 
the core meltdown of a liquid metal cooled reactor (LMR) and can lead to a compaction of the fuel 
in the center of the core possibly resulting in energetic nuclear power excursions. This phenomenon 
was studied in series of "centralized sloshing" experiments [Maschek et al. (1992a, 1992b)] with a 
central water column collapsing inside the surrounding cylindrical tank. These experiments provide 
data for a benchmark exercise for accident analysis codes. To simulate "centralized sloshing" 
phenomena, a numerical method should be capable to predict the motion of the free surface of a 
liquid, wave propagation and reflection from the walls. 

Standart SPH formalism 
The SPH formalism relies on the use of kernel approximation of field functions for the calculation 
of the operators appearing in the discretization of the flow equations, instead of using a 
computational grid. In this way it is able to approximate derivatives or functions from unconnected 
and randomly scattered computation points. The basis of the SPH approximations originates from 
the following identity: 

                                                        ∫
Ω

−= ')'()'()( dxxxxfxf δ                                                           (1)                                                  
where  )(xf  is a function of three dimensional position vector x, )'( xx −δ  is the Dirac delta 

distibution and Ω  is the volume of the integral that contains x. The above relation can be 
approximated using a smoothing kernel function ),'( hxxW − : 
 
                                                        ∫

Ω

−−= '),'()'()( dxhxxWxfxf                                                    (2) 

A similar equation can be derived for the gradient of a function: 

                                                        ∫
Ω

−∇−=∇ '),'()'()( dxhxxWxfxf                                                (3) 
In order the above approximations to be valid, the kernel function ),'( hxxW −  has to fulfill certain 
requirements, such 
as: 
•Unity or normalization condition : ∫

Ω

=− 1),'( dxhxxW  
•Dirac distribution property : )'(),'(lim

0
xxhxxW

h
−=−

→
δ  

•Compact condition : 0),'( =− hxxW , for  hkxx ⋅>− '  , where hk ⋅  is the kernel’s support domain 
•Also the kernel function has to be even, positive and monotonically decreasing function. 
 
There are many types of kernel functions. In the present work the quintic kernel is used [Monaghan 
(2005)]  

20)12(
2

1
16

21)(
4

3 ≤≤+





 −= qqq

h
qW

π
                                          (4) 

where hrq /= , with r  the distance between two computational points and h  a characteristic 
smoothing length. 
 
In the SPH method the entire system is represented with a finite number of particles that carry 
individual mass, occupy individual space and the characteristic quantities of the flow (e.g. velocity, 
density, pressure etc.). Thus the continuous integral relations can be written in the following form of 
discretized particle approximation: 
 

ij
j j

j
i Wxf

m
xf )()(

1
∑
=

=
ρ

                                                            (5) 
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                                                         (6) 

 
In the above equations ),( hxxWW jiij −= , jm  is the j particle’s mass and jp  is the j particle’s 
density.  
 
Using the above approximations for a function and the derivative of a function, one can derive the 
SPH flow equations [Monaghan (2005)]: 
 
Momentum equation: 

gW
PPm

dt
dV

ijij
j

j

i

i

j
j

i +









Π++−= ∑ α

α

ρρ ,22                                           (7) 

Continuity equation: 

                     ( ) α
αα

ρ
ρρ

,ijji
j j

j
i

i WVV
m

dt
d

−= ∑                                                             (8) 

 
where g - gravity acceleration, ijΠ is the viscosity term suggested by [Monaghan (2005)], α

iV is 
velocity, iP  is pressure, latin indexes denotes particles number, greek index denote coordinate 
direction. 
 

αα ,ij
i

ij W
x
W

=
∂
∂

                                                                                 (9) 

Pressure is calculated from an equation of state, thus the method is weakly compressible. The Tait 
equation of state is commonly used . 
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In the above equation  7=γ ,  ρ0 is the reference density and c0 is an artificial speed of sound, since 
the real speed of sound would require a very small time step. In order to keep density variations less 
than 1%, the value of c0 is chosen ~10 Vmax , according to [Monaghan (2005)]. 
The dynamic boundary conditions described in [Crespo et al., (2007)] are used in this work. The 
boundary particles satisfy the same continuity equation as the fluid particles, therefore, their density 
and pressure also evolve. Hence, when a fluid particle approaches a boundary particle, and they are 
at the interaction distance defined by the kernel range, the density of the boundary particles 
increases giving rise to an increase distance of the pressure and the force exerted on the fluid 
particle also increases due to the pressure term in the momentum equation creating a repulsive 
mechanism between fluid and boundary.  

Implenmentation details 
The SPH scheme presented in the previous section is implemented in the DualSPHysics code. The 
code is implemented using both the C++ and CUDA programming languages. The code can then be 
executed either on the CPU or on the GPU since all computations have been implemented both in 
C++ for CPU simulations and in CUDA for the GPU simulations. The philosophy underlying the 
development of DualSPHysics is that most of the source code is common to CPU and GPU which 
makes debugging straightforward as well as the code maintenance and new extensions. This allows 
the code to be run on workstations without a CUDA-enabled GPU, using only the CPU 
implementation. On the other hand, the resulting codes should be necessarily different since code 
developers have considered efficient approaches for every processing unit.  
 

ICCM2014, 28th-30th July 2014, Cambridge, England

83



Computational runtime increases dramatically with the number of particles in the SPH simulations. 
Hence, parallelisation methods are essential to run simulations with a huge number of particles in a 
reasonable execution time. GPUs constitute a suitable hardware for scientific tasks where 
mathematical calculations are carried out using large sets of data. 
 
Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamic 
method  [Gomez-Gesteira et al. (2012a, 2012b)] introduced the framework to implement SPH codes 
using the best techniques and performance optimizations on GPU. That work focused on identifying 
suitable algorithms for efficient parallelization since a proper and full use of all the capabilities of 
the GPU architecture is not straightforward. As an initial step, the implementation focused on 
solving the particle interactions on a GPU using CUDA and the next step was the implementation of 
the neighbour list and the time integration in order to develop an entire GPU-SPH model. 
 

Experiment description 
The DualSPHysics code described in the previous sections, has been applied to the numerical 
simulation of the three-dimensional sloshing liquid motion problems. These problems has been 
experimentally studied in KfK (presently KIT) in the framework of the safety analysis of fast 
nuclear reactors [Maschek (1992a)]. 
 
The sloshing experiments had two main objectives. The first was to obtain a better understanding of 
centralized sloshing phenomenon. In a hypothetical severe accident of a fast nuclear reactor, a 
possible recriticality may occur following core melting and relocation of the fissile materials. 
 
The second purpose of the sloshing liquid motion experiments was to provide data for a benchmark 
exercise for reactor accident analysis codes [Maschek(1992b)]. These data were subsequently used 
to verify and validate the SIMMER-III/IV reactor safety analysis code [Shirakawa (2008)], 
[Yamano et. Al (2008)]. 
 
Experiments were performed with water under normal conditions. The experimental installation 
consists of a cylindrical container separated by a membrane into two coaxial parts. The container 
was opened, so that the environment is air under atmospheric pressure. At the initial moment, the 
membrane is quickly moved up, resulting in the water column collapsing under the force of gravity. 

 
Fig. 1  Central sloshing experiment geometry. 

 
In Fig.1 (a) and  Fig.1 (b), the different experimental configurations at the beginning of the 
experiments are presented: 
(a) a fully symmetrical configuration with no obstacles in the flow 
(b) an asymmetrical configuration with no obstacles 
(c) a symmetrical configuration with a rod bank installed around the liquid column. 
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For the asymmetrical case, the same experimental and computational domain geometry is used, but 
the position of the water column is shifted by an offset of 8.25 cm from the container center. 

 
The parameters of the numerical model used in the calculations for the symmetrical geometry are: 
container diameter D = 0.44 m, diameter  of water column d = 0.11 m, height of water column h = 
0.2 m, water density 1000 kg/m3. 
 
The geometry of the numerical model for the test cases with rod imitators is the same as for the 
experimental series without rods. The difference is the presence of twelve vertical rods equidistantly 
positioned around the water column. Their distance from the center is Rc = 17.6 cm . The rod 
diameter (drod) in the experiments was 2 cm, to simulate a blockage ratio similar to that in a real 
reactor pool. The same value for the rod diameter has been used in the numerical model. An 
overview and sketch of the experimental setup, with geometrical sizes, for these test series are given 
in Fig. 1 (b). 
 
The initial velocity field in water is zero. The initial pressure field is hydrostatic: 
 

                                                          ghp ρ=                                                           (11) 

Experiment and numerical results 
In this section the results of the simulation of the centralized sloshing experiment in the 
symmetrical geometry,  the asymmetrical geometry and experiment geometry with 12 rod bank  are 
presented.  
 
The main quantitative parameters for the symmetrical case are the arrival time of the liquid at the 
wall, the time and height of the maximal wave at the wall, and the time and height of the central 
peak. The central peak height is the most important of these for the recriticality analysis, and, as has 
been found, the peak height is difficult to reproduce in the numerical simulation.  
 
 

 
 

 

 
Figure 2.  Experiment  and simulation result for symmetrical case. 
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Furthermore, a correct definition and measurement of the central peak height is not very obvious. In 
the applied experimental technique, large drops on top of the peak moving with the same velocity as 
the bulk flow were included in the height measurement (see the more detailed discussion of the 
definition of the central peak value in the following subsection).  

 

 
Figure  3.  Experiment  and simulation result for asymmetrical case.  

T=0 sec, T=0.25 sec, T=0,47 sec, T=0.75 sec 
 

For the asymmetrical case, only the timing of the maximum height at the walls and the height of the 
maxima were measured in the experiments. 
 
Fig. 2-4 shows a visualization of the results of the simulation in comparison with the experimental 
observations of the liquid  sloshing motion.  

 

 
Figure  4.  Experiment and simulation results with 12 rod bank.  

T=0 sec, T=0.21 sec, T=0.36 sec, T=0.86 sec. 
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The results are summarized in Table 1-3. Most of the quantitative simulation results are in a good 
agreement with both experimental data and the numerical results predicted by the reactor safety 
analysis code SIMMER-IV, although some deviations in the central peak value are observed. Also, 
for the asymmetrical case, a lower value of the height of the right-hand slosh is predicted. A similar 
value was obtained using the SIMMER-IV code. For the asymmetrical geometry, the lower values 
may be due to the relatively low resolution of the numerical model. 

Table 1. 3D Central Sloshing: Symmetrical Case 

 
Symmetrical 

case 

Slosh at outer container  wall Slosh at pool center 
Arrival time 
at wall [s] 

Time of 
maximum 
heights [s] 

Maximum 
heights [cm] 

Time of 
maximum  
height [s] 

Maximum 
height [cm] 

 
Experiment 0.20±0.02 0.42±0.02 16±1.0 0.88±0.04 40±5 

SPH result 2.8 
M particles 0.21 0.39 14 0.88 0.33 

SIMMER-IV 
(coarse mesh - 

44×44×100) 
0.20 0.40 17.25 0.88 36 

SIMMER-IV 
 (fine mesh - 

92×92×100) 
0.20 0.38 18.75 - >50 

(overestimated) 

Table 2.  3D Central Sloshing: Asymmetrical Case 

 
Asymmetrical Case 

Slosh at pool center  Slosh at right wall 

Time of maximum 
height [s] 

Maximum 
height [cm] 

Time of maximum 
height [s] 

Maximum 
height [cm] 

 
Experiment 0.36±0.02 14.0±2.0 0.48±0.02 24±2.0 

SPH result 2.8 M 
particles 

0.36 14.5 0.48 21.5 

SIMMER-IV 0.36 17.25 0.48 21 

Table 3. 3D Central Sloshing: Symmetrical Case. Vertical Rod Bank  

Vertical Rod 
Bank 

Slosh at outer wall Slosh at pool center 
Arrival time 
at wall [s] 

Time of 
maximum 
heights [s] 

Maximum 
height [cm] 

 

Time of 
maximum 
height [s] 

Maximum 
height [cm] 

 
Experiment 0.20±0.02 0.42±0.02 15±1.0 0.88±0.04 15±3 

SPH result 2.8 
M particles 0.21 0.39 16 0.86 0.12 

 
The comparative snapshots from the experiment and numerical simulation for the test cases with 12 
rod bank are presented in Fig. 4. 
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Conclusion 
The DualSPHysics computer code based on the SPH method has been applied to the numerical 
simulation of the three-dimensional sloshing liquid motion problem. A number of numerical models 
have been created to reflect different configurations of the experimental installations. These are as 
follows: 

• Fully symmetrical configuration: the liquid column is symmetrically located at the container 
center. 

• Asymmetrical configuration: the liquid column is located with an offset from the container 
center. 

• Symmetrical configuration with obstacles: rod imitators are installed around the liquid 
column. 

The quantitative parameters of the flows predicted by the numerical algorithm have been compared 
with the available results of the simulations performed with the SIMMER-III/IV reactor safety 
analysis code and with experimental data. These measured flow quantities, such as the heights of 
the wall sloshes and the central peak, and the timings of these events, are accurately predicted with 
high resolution simulations. At the same time, the present algorithm based on the SPH method is 
capable of resolving the high central peak in the fully symetrical case, which was an issue for the 
SIMMER code. 
 
A sensitivity study for the value of the central peak height in the symmetrical configuration has also 
been performed. The study showed the convergence of the central peak height value with an 
increase in the number of particles used for modeling. 
 
In analyzing for a possible recriticality event, the height values of the central peak calculated for the 
different experimental configurations and different resolutions of the numerical model were 
compared. The highest peak, corresponding to the maximal volume of the fissile materials 
compacted in the center of the pool, is observed in calculations of the fully symmetrical 
configuration with the fine numerical resolution. Thus conclusion demonstrates the experimentally 
observed sensitivity of the liquid flow to the geometrical asymmetries of the vessel. 
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Abstract 

This paper is to present an extended shape preserving topology optimization formulation aiming at 
preserving specific local structural domain configuration. By introducing Artificial Week Elements 
(AWE) established with respect to shape preserving control points, we constrain its elastic strain 
energy to suppress the warping deformation. Compared with the existing global compliance 
topology optimization, this formulation acts as a control of local compliance of the structure. 
Numerical results have shown how the strain energy constraint related to AWE influences the 
optimized solution, especially the effect of the upper limit of the constraint. Comparative studies 
have evidently shown that the effect of shape preserving can be successfully achieved. Possible 
structural distortions are also illustrated in order to have an in-depth understanding of the design 
mechanism. 

Keywords:  Topology Optimization, Shape Preserving, Artificial Weak Elements, Warping 
Deformation, Local Strain Energy 

Introduction 

Topology optimization method has been developed as one of the most effective techniques in 
saving structural weight and improving multidisciplinary performances. Recent advances of 
topology optimization techniques have been summarized by excellent literature surveys such as 
Guo and Cheng (2010), Sigmund and Maute (2013), Deaton and Grandhi (2014).  
Meanwhile, different topology optimization formulations were also presented to obtain required 
structural deformation patterns. In these literatures, constraints on a single or multiple nodal 
displacements were normally issued. For example, in the works of Liu et al. (2008), warping 
deformation of beam cross-section was considered in a new anisotropic beam theory as well as in 
topology optimization. Rong and Yi (2010) designed the multi-points displacements using a newly 
developed phase transferring method. Typically, in the works of Qiao and Liu (2012), a geometric 
average displacement function integrating the deformation field, which was similar to a P-norm 
scheme, was proposed to minimize the structural maximum deformation. In this way, the 
magnitudes of different nodal displacements were controlled to form a better deformation. Other 
displacement designs can be found mostly in topology optimization of compliant mechanisms (see 
e.g. Wang et al. 2005, Stanford et al. 2012 and 2013).  
However, constraints on the magnitudes of nodal displacements might not appropriate in many 
complicated engineering cases searching better structural deformation behaviors. For example, 
challenges of suppressing structural local warping deformation to maintain structural coordinative 
displacements are always faced during the aircraft structure design, manufacturing and assembling 
(Niu 1988, Barrett 1992, Wang 2000), which are considered as shape preserving design. Key 
difficulties lies in that the popularly used global compliance and nodal displacements in topology 
optimization cannot effectively describe and suppress the local warping deformation.  
Therefore, this paper proposes to implement multi-point shape preserving constraints in an extended 
topology optimization formulations by introducing strain energy based quantitative approach 
describing warping deformation magnitudes in shape preserving domain.  
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?

 
Figure 1. An illustrative structure system for shape-preserving design problem (Dashed lines 

indicates probable deformation for the loaded structure) 

Multi-Point Shape Preserving Design 

Local domains are concerned for shape preserving as shown in Figure 1. They may be void (e.g. a 
structural opening for process, feature or maintenance) or solid (e.g. a structural branch or a 
component), or even hybrid (e.g. parts or equipment). When it comes to situations like structural 
installing, connecting and assembling problems mostly based on the point locations, it is essential to 
have proper design of multi-point shape preserving i.e. coordinative displacement of control points. 
Therefore, we propose to define Artificial Week Elements (AWE) established with respect to the 
above mentioned control points. The local strain energies related to AWE are considered as 
additional constraints to suppressing the warping deformation.  

Structural Deformation 

The nodal displacement vector Ωu  of the local domain Ωis composed by two components of rigid 
displacement vector ΩRu  and warping deformation vector ΩWu , i.e.  

Ω ΩR ΩWu = u + u  (1) 

To achieve the structural shape preserving design necessitates suppression of the warping 
deformation. As a result, local strain energy is used to describe and constrain warping deformation 
quantitatively here. It is expressed as  

T
Ω Ω Ω Ω

1
2

C  u K u  (2) 

where ΩK  is the local domain stiffness matrix. 
Since no strain energy produced by rigid displacement, the above expression can be written as 

T
Ω ΩW Ω ΩW

1
2

C  u K u  (3) 

Theoretically, there would be no elastic warping deformation but only rigid body movement under a 
perfect shape preserving design where the local strain energy is 0. But practically the perfect effect 
is unobtainable. The constraint is given by a minor upper bound above zero, i.e.  . The shape 
preserving design achieves a fairly well effect in permissible tolerance when the strain energy value 
satisfies 

ΩC   (4) 
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Artificial Week Elements 

However, the shape preserving design will degenerate into an all-domain shape preserving when the 
elastic strain energy of the local domain is directly defined as a constraint function, which is an over 
constraint issue compared with multi-point shape preserving design. In this paper, Artificial Weak 
Elements (AWE) is proposed and established with respect to the shape preserving control points. 
The AWE nodal Degrees of Freedom (DOFs) are coupled to those of the control points. By 
calculating the AWE strain energy, the warping deformation of these multiple points can be 
measured. 

Besides, to ensure the precision of structural analysis, the stiffness of additional AWE should be 
weak enough not to influence the structural mechanical properties. In this paper, the Poisson’s ratio 
is set to a general value 0.3, and the elastic modulus is set to 1 Pa, which is much smaller than 
regular material. 

FE elements and nodes of AWE
Void domain and its control points
Solid domain and its control points

L

H

I

JK

A D

EF

CB

 
Figure 2. The definition of AWE  

For the shape preserving design illustrated in Figure 1, AWE can be established as shown in 
Figure 2. The outline boundaries contain 11 control points, i.e. points A to L. Then 6 additional 
weak elements are created with the 11 points respectively. When the total structure is loaded, the 
AWE deform along with the control points. At this point, the shape preserving constraint can be 
defined as AWE strain energy constraint, i.e.  

AWEC   (5) 

Therefore, the topology optimization with shape preserving design is formulated as 

find:  1= , i n    η  

(6) min:  T1
2

C  u Ku  

s.t.:  =f Ku ; 0V V ; AWEC   

In the above formulations, η  is the vector of pseudo-density design variables, whose items’ values 
vary from 0 to 1 describing material distribution in design domain. SIMP interpolation model (see 
Bendsøe and Sigmund 1999, Rozvany 2001) is used here with the penalty factor equals to 3. The 
global strain energy C  is minimized as the object function. K  is the global stiffness matrix. V  is 
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the material volume and 0V  is its upper bound.   is a given minor upper bound, whose value is 
relevant to specific structure and problem. 

Sensitivity Analyses on Shape Preserving Constraint 

The design sensitivity of the object function, i.e. the global strain energy with respect to the pseudo-
densities is easily obtained and can be found in many references dealing with the topology 
optimization problems (e.g. Sigmund 2001), which will not be provided here. 

We mainly concern the sensitivity of the constrained AWE strain energy. It can be expressed as 
T

AWE AWE AWE AWE
1
2

C  u K u  (7) 

AWEu  is the displacement vector of control points, i.e. nodes of AWE. AWEK  is the stiffness matrix 
of AWE 

Derivative of the AWE strain energy is written as 
T TAWE AWE AWE
AWE AWE AWE AWE

T AWE
AWE AWE

1
2i i i

i

C

  



  
 

  






K u
u u u K

u
u K

 (8) 

where the stiffness matrix of AWE is independent from topology design variables i . 

Here we define AWE AWEu T u , where AWET  is a constant matrix which converts the global 
displacement vector u  to the local one AWEu . Following the derivative of the equilibrium equation, 
we further have 

1AWE
AWE AWE

i i i i   

     
   

    

u u f K
T T K u  (9) 

Substituting the above equation into equation (8), it turns into  

 

T 1AWE
AWE AWE AWE

T* 1

i i i

i i

C

  

 





   
  

   

  
  

  

f K
u K T K u

f K
λ K u

 (10) 

where we formulated a new vector *
λ  calculated from the AWE displacements vector, stiffness 

matrix and the constant matrix, i.e. T
AWE AWE AWE

 λ u K T . 

It is informed that *
λ  is a column vector whose dimension is equal to total DOFs. After one 

additional finite element analysis by applying *
λ  as an artificial load vector on the structure, we 

have 

   

* *

T T* 1 *





λ Ku

λ K u
 (11) 

Then the derivative of local elastic strain energy can be expressed as 

 
T*AWE

i i i

C

  

   
  

   

f K
u u  (12) 
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The derivatives of the load vector and the stiffness matrix with respect to the pseudo-densities are 
easily obtained according to the SIMP interpolation model used in this paper. Typically, in the case 

of design independent loads, the derivative of the load vector will be zero, i.e. 0
i






f . 

Numerical Examples of Shape Preserving Design 

L-shape Beam 

Here we optimize an L-shape beam aimed at preserving the cutout configuration as shown in 
Figure 3. The top boundary is fixed and a single-point force of 100N is applied on the right corner. 
A frame with a particular non-design width is assigned around the cutout. Shape preserving control 
points are the four corners of the frame and the corresponding AWE is one quadrangle weak 
element linked to the control points A to D. Under the constraint of 40% material volume fraction, 
standard topology optimization design merely maximizing the overall structural stiffness is shown 
in Figure 4(a). Afterwards, without any other conditions changed, shape preserving design is shown 
in Figure 4(b), where   equal to 2×10-15J. The optimized strain energies of global structure, shape 
preserving frame domain and the AWE are listed in Table 1. The strain energy of AWE is decreased 
from 8.58×10-15J to 2.00×10-15J under the effect of shape preserving constraint, while the loss of 
global structure stiffness is less than 6%. 

To have an obvious view of the shape preserving effect, a comparison of enlarged deformation of 
the frame is presented in Figure 5. The standard design generates a large warping deformation. On 
the contrary, the shape preserving design achieves a better deformation behavior where the frame 
corners’ displacements was coordinated.  
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Figure 3. An L-shape beam with a 

quadrate cutout and its AWE 

(a) Standard topology optimization 

(b) Shape preserving design 

Figure 4. Comparison of the L-shape beam designs 

Table 1. Comparisons of strain energies of the optimized L-shape beam 

Strain Energy Global structure Frame around the cutout AWE 
Standard topology optimization 1.17×10-4J 8.57×10-6J 8.58×10-15J 

Shape preserving design 1.24×10-4J 4.21×10-6J 2.00×10-15J 
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Original outline of the frame
Standard topology optimization
Shape preserving design 

 
Figure 5. Comparison of enlarged deformations of the frame around the hole in optimized 

designs (Amplification factor 1.5×107) 

Furthermore, the optimized results with different material volume are presented in Figure 6. C  and 
AWEC  represent the optimized strain energy of global structure and AWE in standard topology 

design. C  and AWEC  represent the optimized strain energy of global structure and AWE in shape 
preserving design.  

For the standard topology optimization, the structure material is always distributed on the optimal 
load carrying path as a result of seeking maximum stiffness of global structure. Consequently, the 
standard design results always have smaller global strain energies. In shape preserving design, the 
local strain energy of AWE is much lower than the standard one with a little sacrifice on its global 
stiffness to satisfy local shape preserving constraint. This paradox between shape preserving 
constraint and global strain energy indicates that the final optimized design will be a compromise 
between global stiffness and local deformation. 
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Figure 6. Optimized designs versus different volume fraction and their strain energy 
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Distortion of Load Carrying Path 

For in-depth understanding of the paradox, further discussions on the upper bound of shape 
preserving constraint and its influence on the structural optimization design are discussed here.  

Taking the L-shape beam design for example, we obtain optimized design in Figure 7 in turn via 
changing the value of   with the rest conditions keeping identical. The optimized configurations 
change gradually as the value of   decreases. When the shape preserving constraint is so strong, the 
structural load carrying path will be distortional (e.g. 11th and 12th result) with unsatisfied large 
sacrifice of global stiffness. In these cases, regular structural design cannot meet the requirement of 
shape preserving constraints. The topology optimization is forced to separate the shape preserving 
domain from the load carrying path to obtain an approximate rigid deformation. Such result is 
mathematically reasonable but loses actual physical significance and engineering value in 
optimization design. 
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Figure 7. The global strain energy and corresponding optimized design results versus 

different constraint values of ε 

Accordingly, the upper bound of shape preserving constraint should be appropriately chosen to 
avoid phenomena of load carrying path distortion. Meanwhile, researchers are not only to solve a 
mathematical model but also to account for more practical problems into consideration, which is 
one of the key difficulties in optimization design for engineering structures. 

Shape Preserving Design for Windshields  

Consider now an airframe shown in Figure 8. The front fuselage is connected to the center one at 
its rear side. The whole fuselage bears aerodynamic loads. Warping deformations of windshields 
need to be avoided not to cause the glasses fracture. Here, AWE is defined as illustrated in Figure 8. 
The control points of each windshield contain four corners and four midpoints of the boundaries as 
well. With the airframe’s layout as topology optimization design subject, two material distribution 
results of skin reinforcement from standard design and shape preserving design are presented in 
Figure 9. The value of the shape preserving constraint   is set as 0.02J. 
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Figure 8. Illustration of shape 

preserving design of 

windshields 

(a) Standard topology optimization design 

(b) Shape preserving design 

Figure 9. Comparison of material distributions of skin 

reinforcement 

Referring to the optimized designs with the same volume fractions in Figure 9, we can distinguish 
that the material distributed around the windshields increases in the shape preserving design. 
Therefore, the prescribed local domain is strengthened and the warping deformation is suppressed. 
Additionally in the weak loaded area between windshields and center fuselage, the shape preserving 
design modifies the load carrying path to offset the warping deformation in the windshields. The 
detailed data of shape preserving design and standard stiffness design is listed and compared in 
Table 2. Although there is a 5% sacrifice on the stiffness of global structure, the shape preserving 
design has improved the effect of shape preserving for 4 times better than the standard one. Thus, 
the effectiveness of shape preserving topology optimization design is further demonstrated, which 
possesses a good perspective in practical structure design applications. 

Table 2. Comparisons of strain energies of optimized designs 

Strain energy The whole 
fuselage 

The AWE of 
windshields 

Standard optimization design 6893 J 0.092 J 

Shape-preserving optimization 
design 7263 J 0.020 J 

Conclusions 

We proposed an extended structural topology optimization method with multi-point shape 
preserving constraint in this paper. The shape preserving constraint of local domain is constructed 
by the strain energy of Artificial Weak Elements (AWE). Compared with the standard topology 
optimization design maximizing structural stiffness, this formulation have evidently shown that the 
coordination of multi-point displacements and the effect of shape preserving can be successfully 
achieved. Further numerical results are analyzed to show the influence of shape preserving 
constraint on the optimized design pattern and the entire performance of structure. Besides, the 
design distortion due to improper definition of the shape preserving constraint is revealed and 
studied in this paper.  
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Abstract 
Foam-metal composites are being increasingly used in a variety of applications. One important 
aspect in the structural integrity of foam-metal interface is the ability to resist failure around the 
interface whilst ensuring required load bearing capacity. This study investigated the mechanical and 
failure behaviour at the interface region at micro scale. The foam-metal composite consisted of 
polyurethane foam directly adhered to a galvanised steel face sheet. Optical, scanning electron and 
atomic force microscopy were used to examine the interface geometry and to obtain a realistic 
surface profile for use in a finite element (FE) model. Finite element analysis (FEA) was used to 
study the effects of different interfacial roughness profiles on mechanical interlocking and modes of 
failure, which are directly related to interfacial strength. A set of finite element models of idealised 
surface pairs of different geometries and dimensions were developed based on the microscopic 
observations at the foam-metal interface. The finite element modelling results show that the micro-
scale roughness profile at the foam-metal interface causes mechanical interlocking and affects the 
stress field at the scale of the interface surface roughness, which consequently governs the specific 
failure mode and the relative proportion of the cohesive to adhesive failure in the interface region 
for a given foam-metal interface. It was found that the aspect ratio (relative width and height) and 
width ratio (relative spacing) of roughness elements have a significant effect on the stresses and 
deformations produced at the interface and consequently control the modes (cohesive or adhesive) 
of failure.  

Keywords: Numerical modelling, foam, interface, fracture, cohesive fracture, adhesive fracture. 

Introduction 
Sandwich composites consisting of polymer foam and metal face sheets have many advantages for 
structural applications. The notable benefits are light weight, high bending stiffness and strength 
[Grujicic et al. (2008)]. The bond between the foam and metal must remain intact to ensure the 
structural integrity of the composite. So optimising the adhesion strength of the interface is crucial 
to the performance of the composite. To effectively achieve this, it is essential to understand the 
mechanisms of adhesion and the effects of these on the strength of the adhesive bond [Kim et al. 
(2010)].  

Characteristics of the interface of a solid polymer and metal have been extensively investigated. 
The main factors affecting the interfacial strength are chemical/physico-chemical (e.g. ionic or 
covalent bonds or van der Walls force) and physical (e.g. mechanical interlocking) interactions 
[Buehler (2008)]. Chemical interactions are related to the primary and secondary bond formations 
[Ho (1989); Grujicic et al. (2009)]. Mechanical interlocking is the interaction between the two 
material surfaces due to geometric effects [Noijen et al. (2009)] and plays a dominant role in 
interface bonding. A typical interlocking feature originates from the surface roughness of the 
interface and generally occurs at the microscopic scale. Specifically in the case of a polymer 
adhered directly to a metal surface, mechanical interlocking and absorption are the most significant 
mechanisms that contribute to the strength of the interface [Kim (2003); Grujicic et al. (2009); Kim 
et al. (2010); Ochoa-Putman and Vaidya (2011)]. The friction at the polymer-metal interface along 
with the polymer stiffness also contributes to the mechanical behaviour of the interface [Ochoa-
Putman and Vaidya (2011)].  

The effect of altering the surface roughness of steel at a micro-scale along with chemical treatment 
of the steel surface on the behaviour and strength of a steel-polymer interface [Ochoa-Putman and 
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Vaidya (2011)] showed that the strength of the steel-polymer interface increased as the surface 
roughness increased. It is suggested that the polymer-metal interfaces usually fail due to a 
combination of both interfacial adhesive failure between the polymer and the metal and cohesive 
failure of the polymer due to cracking [Yao and Qu (2002); Kim et al. (2010); Ochoa-Putman and 
Vaidya (2011)]. The relative strengths against cohesive and adhesive failures determine the 
resultant interfacial strength. For some material systems, cohesive failure typically requires more 
energy than that of adhesive failure; therefore interfacial strength could be improved by increasing 
the proportion of cohesive failure compared to adhesive one, as studied [Yao and Qu (2002)]. 
Altering surface roughness has been shown to result in an increase in cohesive failure and a 
reduction in adhesive failure [Yao and Qu (2002)], thus can increase the interfacial strength. A 
relationship exists between adhesive failure and the non-dimensional roughness , where  is the 
mean half-depth of the roughness and  is the mean distance from peak to trough of the roughness 
(Figure 1). 

 
Figure 1. Idealised profile representing surface roughness of polymer-metal interface 

(adapted from [Yao and Qu (2002)]) 
Kim et al. [Kim et al. (2010)] also showed via a similar study that increasing the ratio of cohesive to 
adhesive failure along the interface is an effective way to improve the interfacial strength of a 
metal-polymer composite. They roughened the surface of steel with micro-line patterns and 
investigated the effect of varying the roughness dimensions; depth R, widths w1 and w2 and width 
ratio w1/w2 (shown in Figure 1). However, changing the roughness depth R was found to have no 
effect on the interfacial fracture toughness. Increasing the ratio w1/w2 resulted in a smaller fraction 
of area failing purely due to adhesive failure along the interface and a larger fraction of area failing 
due to cohesive failure of the polymer. Hence, increasing the ratio of cohesive to adhesive failure 
can increase the interfacial strength of several metal-polymer composites. 

Numerical modelling has been successfully used to characterise polymer-metal interfaces [Yao and 
Qu (2002); Noijen et al. (2009)]. The finite element method (FEM) was used by Yao and Qu [Yao 
and Qu (2002)] to predict the energy release rate (ERR) of adhesive and cohesive cracks at different 
positions along a typical surface roughness profile of a metal-polymer interface. They observed that 
a crack along the interface propagated into the polyurethane (PU) foam when the ratio of adhesive 
to cohesive energy release rates (GR) reached a critical value. 

In the numerical study by Noijen et al. [Noijen et al. (2009)], the crack was assumed to be first 
formed on the flat surface of the metal due to low adhesive strength, and propagated along the 
interface until the ERR condition along the interface and through the polymer (affected by the 
roughness geometry at the interface) were met, which changed the direction of crack propagation 
deflecting into the polymer. This was however unable to account for the relative dominance 
between the adhesive and cohesive failure, so an improved numerical model was deemed necessary. 
This work indicated that the numerical modelling can predict the location at the polymer-metal 
interface where the crack propagation will deviate from the interface into the polymer, which in turn 
enables determination of the ratio of cohesive to adhesive failure [Noijen et al. (2009)].  

In this paper, we extend the previous studies on polymer-metal interface to the material system of 
foam-metal sandwich composite interface, namely galvanised (zinc coated) steel and polyurethane 
foam composite interface. It is known that polymers can adhere well to zinc coatings [Kim (2003)]. 
However, the key difference of foam-metal interface from that of a homogenous polymer-metal 
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interface is the porous and cellular structure of the foam, which affects the localised adhesive and 
cohesive failure mechanisms and the resulting fracture behaviour. Moreover, variability, such as 
temperature, polymer distribution, and poor wetting during the casting of polyurethane foam onto 
zinc coated steel can result in different adhesive strengths in different regions of the foam-metal 
interface [Kim (2003)].  

Most importantly, the bulk failure behaviour at the interfacial region is manifested by micro-scale 
deformation and fracture patterns. To address this, the present work investigated the interface of the 
specific foam-metal sandwich composite made of polyurethane foam and galvanised steel face 
sheets at microscopic scale using experimental observations and finite element (FE) analysis. The 
focus was to understand how the geometry of micro-scale surface roughness influences the nature 
of failure at the interfacial region of the foam-metal composite. The stress-strain distributions in the 
micro-scale roughness profile were analysed. In the FE analyses, idealised geometries of the 
interface representing different surface roughness profiles were created, and the failure modes were 
predicted under the tensile and shear loading conditions. In the experimental study, the foam-metal 
sandwich samples were fabricated without using any adhesive for bonding so as to avoid any 
chemical effect of external adhesives. The metal-foam interface was imaged using optical and 
scanning electron microscopes. The surface roughness was characterised using an atomic force 
microscope. Subsequently, the effect of changing surface roughness parameters (i.e. aspect ratio and 
width ratio) on the crack propagation patterns and failure modes, and the resulting interaction 
between adhesive and cohesive failures were investigated using finite element analysis. 

Materials and Methods 

Material Systems 
Polyurethane foam is porous, and has a cellular structure with voids. The properties of the foam can 
vary greatly depending on the type and proportion of the reactants used. The polyurethane foam 
used in this study was produced by mixing Endurathane GP38 polyol blend with Endurathane 5005 
isocyanate, supplied by New Zealand Polymer Group Ltd. The stress-strain curves of the foam in 
tension and compression are shown in Figure 2.  
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Figure 2. Polyurethane foam stress strain curves showing the difference in behaviour when 

subjected to tension and compression 
A commercially available G550 galvanised high strength structural steel was used for the 
composite. It had a thickness of 0.75 mm. The material properties are given in Table 1. The steel 
surface is covered by a zinc rich layer as a result of the galvanisation. The foam contact is therefore 
with this zinc layer, and not with the steel. The zinc layer is significantly stiffer and stronger than 
the polyurethane foam  (Table 1). 
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Table 1. Material properties of the constituents of the foam-metal composite  

Material Modulus of 
Elasticity 

Yield 
Strength 

Poisson’s 
Ratio 

Polyurethane foam 
[Randall and Lee 

(2002)] 
7.5 GPa 0.34 MPa 0.40 

Zinc [Davis (2014)] 83 GPa 160 MPa 0.25 
G550 steel [Davis 

(2014)] 200 GPa 550 MPa 0.3 

Sample Preparation 
Polyurethane foam-G550 steel sandwich composite was fabricated in a controlled laboratory 
condition. Composite samples that were subjected to compression tests were failed by local 
buckling, and foam and metal were delaminated along the interface. The foam-metal specimens 
were cut into approximately 10 × 10 mm sections from the failed region of the samples to observe 
the interface failure. These specimens were used for surface roughness analysis and imaging foam 
cell sections. The foam-metal specimens were then moulded in an epoxy resin without causing any 
damage to the delaminated interface and foam (see Figure 3a). The section of each specimen was 
then ground and polished to obtain a smooth surface for microscopic examination. Sections of 10 × 
10 mm specimens were also mounted flat using double-sided carbon tape (Figure 3b) to observe the 
top and bottom surfaces of the failed composite. 

(a)  (b)  

Figure 3. (a) Specimen cross-section of foam-metal interface prepared for microscopic 
examination, (b) Specimens showing the top and bottom surfaces of foam-metal composite 
where it has failed along the interface (top specimen shows failure surface, and the bottom 

specimen is used as the control) 

Microscopic Examination 
An Olympus MX6B microscope was used to examine the prepared specimens. Dark field lighting 
was used, as it provides a clearer image than that of bright field lighting. The entire length of the 
interface was examined at 100, 200 and 500 magnification levels. Images were taken at regular 
intervals along the interface. Surface roughness of zinc coating was analysed using an Atomic Force 
Microscope. 

The cross-section of the foam-metal interface, the failed surface, and the surface of steel (without 
foam) were observed using a Scanning Electron Microscope (SEM) at a range of magnification 
from 100× to 24000×. The specimens were coated with a thin platinum layer to avoid surface 
charge accumulation and to improve the image quality. Both the back scatter electron detector (for 
improved materials distinction) and secondary electron detector (for improved topography) were 
used to observe the specimens. Figure 4 shows a typical optical microscope image of the foam-
metal interface. 
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Figure 4. A typical optical microscope image of the foam-metal interface (using Dark field and 

100× total magnification) showing steel (black), zinc (silver), and polyurethane foam 

 (a)  

(b)  (c)  

(d)  (e)  

Figure 5. Division of the foam-metal composite into individual roughness elements: (a) Foam-
metal sandwich composite, micro-scale view of the foam-metal interface, and zoomed view of 
a typical roughness profile, (b) jagged profile, (c) triangular profile, (d) semi-circular profile, 

(e) Filleted triangular profile 

Finite Element Modelling of the Interface 
The foam-metal interface was modelled using FEM to understand the failure mechanisms and 
investigate how different roughness parameters affect the deformation behaviour and failure modes. 
An idealised surface roughness profile is an accurate assumption for modelling an induced 
roughness, especially if the technique used to induce the roughness is accurate and consistent. Even 
for modelling a random surface roughness (i.e. a naturally rough surface) an idealised surface 
roughness profile can be an accurate assumption provided it is based upon average dimensions and 
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a profile similar to that of the actual roughness. Idealised micro-scale surface roughness profile was 
modelled by dividing the foam-metal interface into individual repeating elements (RE), as shown in 
Figure 5. Each RE represented a roughness profile with a part of the metal and foam. 

Materials Modelling  
A two dimensional FE model of RE was developed and analysed using the software ABAQUS 
[ABAQUS (2014)]. The polyurethane foam was modelled as a homogenous and isotropic solid 
material, as it was identified through optical microscopy that the material at the interface region was 
solid polyurethane rather than cellular foam (Figure 5a). The thickness of the solid film varied 
between 5-50 µm. The failed interface showed that the thin solid film perfectly adhered to the metal 
surface (see Figure 4). Four different idealised surface roughness profiles were modelled. These are 
referred to as the jagged, triangular, filleted triangular and semi-circular profiles, as shown in Figure 
5b-e, respectively.  

Both zinc and steel are considerably stiffer and stronger than polyurethane so that it is unlikely that 
either will fail before polyurethane does. Hence the metal component of the interface has been 
modelled as analytically rigid. To simplify the analysis we have chosen to model polyurethane as 
behaving the same in compression as it does in tension. This is a reasonable assumption as at the 
micro scale solid polyurethane attached to the zinc coating is unaffected by voids that are 
responsible for the difference in behaviour in tension and compression at the macro scale. Figure 6 
shows stress-strain curve of the polyurethane foam used in the FEA analysis. 

 
 Figure 6. Polyurethane stress-strain curve used in FEA 

Loading and Boundary Conditions  
The foam metal interface was analysed under two loading conditions, tension and shear loadings. 
So each surface roughness profile was modelled under both tensile and shear loading. The boundary 
conditions imposed for the tensile and shear load cases are shown in Figure 7. Both the boundary 
conditions included specified displacement and symmetry conditions. Each roughness element was 
symmetric about the vertical axis (Figure 7a). Hence, a half of the single element was modelled 
applying the symmetric boundary condition about the vertical axis (red lines in Figure 7b) for 
tensile load case. Since the foam was perfectly adhered to the zinc layer of the galvanised steel, all 
degrees of freedom were constrained at the foam-zinc interface in the finite element model for both 
load cases. This is highlighted in yellow in Figure 7b. 
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(a) 
x

y

 
(b)  

Figure 7. Tensile boundary conditions: (a) A typical foam-metal interface model showing 
loads and boundary conditions for tensile loading, (b) Different boundary conditions: yellow - 

fixed, red - vertical (y) symmetry, blue - specified vertical displacement  
For the tensile loading, a specified displacement boundary condition of 0.5 µm was applied to the 
top surface of the roughness element in the vertical direction (y-direction), which is highlighted by 
the blue line in Figure 7b. The direction of shear load was parallel to the horizontal interface, and as 
a result asymmetric loading was generated across the roughness element, implying that the 
symmetry boundary condition could no longer be used. Moreover, the stresses and strains generated 
due to shear loading were not symmetrical between adjacent roughness elements. So symmetry 
boundary conditions could not be used at the edge of the roughness element to compensate for the 
edge of the roughness element not being at a free end of the interface (see Figure 8). To account for 
this, the geometry used in the FE model for shear loading was a section of the metal foam interface 
consisting of three roughness elements, and the behaviour of the middle roughness element was 
evaluated. The top surface of the roughness element is displaced in the horizontal (x) direction by 
1.5 µm. 

(a)  

(b)  

Figure 8. Shear boundary conditions: (a) A typical foam-metal interface model consisting of 
three roughness elements showing loads and boundary conditions for shear loading, (b) 
Different boundary conditions: yellow - fixed, red - specified horizontal (x) displacement 
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Meshing and Failure Modelling 
Linear 3-node triangular plain strain elements were used for all the models. The mesh was biased 
and was locally refined to generate fine meshes at the metal-foam interface and around the corners 
of the profiles in order to capture the sharp stress variation along the interface and around the 
corners. A finite element mesh convergence study was performed to ensure that the mesh used in 
the models was of sufficient resolution so as to accurately predict the stress, strain and damage 
evolution in the interface region.  

A continuum damage model was used to model crack propagation, adopted from [Neilsen et al. 
(1995)]. Each element had a scalar ‘damage’ parameter D that measures its load carrying capacity. 
The scalar damage parameter D is used to characterise the volume-averaged micro-fracture of the 
volume of material represented by each element. The damage parameter is calculated based on the 
principal stresses of the elements. It is used to inhibit the transmission of tensile stress between 
elements. The damage parameter lies between 0 and 1. Material with D = 0 is undamaged and is 
able to transmit the full tensile load, whereas material with D = 1 is fully damaged and cannot 
transmit any tensile load, thus creating a partial macro crack. Connected macro-cracks or 
contiguous cracked material across a body leads to fracture. A failure criterion was used, and a 
material stiffness degradation model was implemented. If an element met the failure criterion, its 
stiffness was reduced by scaling with (1-D). 

Microscopic Characterisation of the Interface 
Figure 9 shows a surface roughness image obtained from the surface area of zinc using AFM. 
Figure 10 shows the cellular structure of polyurethane foam obtained from optical microscopy. At a 
magnification of 500, the features, such as foam pores, contact between polyurethane and zinc at the 
interface, distinct regions of steel, zinc and polyurethane as well as the irregularities in the zinc 
galvanising layer, can be observed. Figure 11 shows the solid polyurethane film (top grey) that 
covers the majority of the metal surface at a magnification of 8000 from SEM. The film thickness 
generally varies between 5-50 μm although there are a few locations along the surface which are not 
covered by the film. 

 
Figure 9. Roughness profile of zinc surface of the galvanised steel 
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Figure 10. Cellular structure of polyurethane foam obtained from optical microscope 

 
Figure 11. SEM image showing solid polyurethane (without pores/voids) layer covering the 

majority of the metal surface (observed using 8000 × total magnification) 
The observations suggested that the foam-metal composite did not predominantly fail along the 
interface adhesively, and rather it failed near the interface by cohesive manner. The top surface 
specimens failed much closer to the interface than the cross-sectional specimens, i.e. in the cell 
walls of the cells in the vicinity of the metal surface. The stresses in the cellular area of the 
polyurethane foam where voids are present are considerably higher than those in the solid foam 
present at the foam-metal interface. This leads to the trend in cohesive failure predominantly in the 
cell wall as opposed to solid polyurethane .As a result of this, crack propagation due to cohesive 
failure would not be in the immediate vicinity of the interface. A transition from cohesive failure to 
adhesive failure would be unlikely due to the small area of the cell walls compared to the solid layer 
of polyurethane attached to the metal layer. This explains the large areas of continuous cohesive and 
adhesive failure zones. As a result, when the adhesive strength of the interface exceeds the cohesive 
strength of the polyurethane foam at a macroscopic scale (including the effect of cellular structure), 
the mode of failure would be exclusively cohesive in the cell walls immediately next to the 
interface. This limits the strength of the interface to the cohesive strength of the macroscopic 
polyurethane foam. If the cohesive strength of the foam on a macroscopic scale exceeds the 
adhesive strength of the interface, the strength of the interface would then be limited to the strength 
of adhesion. This study focuses on the failure that is essentially confined to the ‘interface region’ – 
the region from the metal surface up to the top of the solid polyurethane foam layer. Hence for the 
purpose of studying the failure modes within this interface zone, the cellular structure of the foam 
can be ignored.  
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Stress Analysis using FEM 
As we focused on the solid polyurethane foam near the interface, the bulk properties of the foam 
was used for finite element analysis. Increasing the aspect ratio (ratio of width to height) roughness 
elements decreases stress concentration and reduces the likelihood of cohesive failure. Shear of the 
interface generally results in more adhesive failure than compared to tension (this may vary 
depending on material properties and adhesive strength). Typical maximum principle stress and 
strain distributions in a roughness element are provided in Figure 12. 

 
(a) 

 
(b) 

Figure 12. (a) Maximum principle strain distribution in polyurethane foam at point of yield, 
(b) distribution of maximum in plane stress in polyurethane at point of yield (MPa) 

Failure is initiated at points of stress concentration. The stress distribution determines the location, 
where polyurethane foam will first yield initiating cohesive failure. The distribution and 
concentration of strains at the interface between polyurethane and metal determines where adhesive 
failure will occur. The characteristic shape of a roughness element determines the distribution and 
concentration of stress and strain at the interface between the polyurethane foam and the metal. 
Figure 13 shows that stress distribution for roughness profiles of different shapes and how it 
influences the stress field and concentrations. We discuss below how a typical roughness element 
behaves under tensile and shear loading prior to damage or crack initiation.  

 

 
(a)  

(b)  
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(c) 

 
(d) 

 

Figure 13. von Mises Stress distribution (MPa) in the roughness profiles at point of failure for 
various shapes of the roughness elements; (a) Jagged, (b) Semi-circular, (c) Triangular, (d) 

Filleted triangular 
Effect of Roughness Parameters on the Failure Mode 
Failure is initiated at points of stress concentration. Failures which propagate along the 
polyurethane-steel interface will be adhesive failure and failures which propagate through the 
polyurethane foam will be cohesive failure. The relative magnitudes of the cohesive strength of 
foams and the adhesive strength of an interface govern the failure mode for a given geometry of a 
roughness profile and loading conditions. However, these strength values depend on the foam type, 
structure, processing conditions, and method of adherence to the substrate; so the exact relative 
proportion of cohesive and adhesive failures will depend on the specific material system. For many 
cases, when the adhesive strength of the interface is generally weaker than the cohesive strengths of 
the materials which comprise that interface, adhesive failures typically may occur before cohesive 
failures for foam-metal composites as cohesive failures require more energy than adhesive failures. 
In this case the purpose of inducing surface roughness at the foam-metal interface will be to cause 
cohesive failures, as a greater ratio of cohesive failure to adhesive failure will result in a stronger 
interface. In this study, the adhesive strength of the polyurethane steel interface and the cohesive 
strength of polyurethane foam were assumed to be equal, as the objective was to analysis how the 
geometry of the roughness profile affects the failure mechanics under different loading conditions 
for an interfacial region with equal strengths. 

It has been identified that modifying certain roughness parameters (e.g. aspect ratio and width ratio) 
can improve interfacial strength by increasing the ratio of cohesive to adhesive failure around the 
interface ([Kim (2003); Kim et al. (2010)]). In this study we explore the effect of aspect ratio, width 
ratio and shape of the roughness profile on the strength and failure mechanism of foam-metal 
interfaces. The aspect ratio is defined as the ratio of roughness width (w) to roughness depth (d) as 
shown Figure 14a, and the width ratio is defined as the ratio of widths w1 to w2 as shown in Figure 
14b. Both of these parameters have been shown to affect the strength of polymer-metal interfaces. 
Next the failure mechanics of roughness profiles for a range of different aspect ratios (1:1 to 4:1) 
and width ratios (1:1 to 8:1) will be evaluated using FEA in order to determine how they affect the 
interfacial failure mode. 
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(a) Aspect ratio, w:d 

 

(b) Width ratio, w1:w2 

Figure 14. Definition of aspect ratio (left) and width ratio (right) 

Effect of Aspect Ratio 
A key parameter of micro-scale roughness is the ratio of the width to the depth of the roughness 
elements. Increasing the aspect ratio in general reduces stress concentrations within the foam 
making cohesive failure less likely. Path of crack propagation is indicated by the completely 
damaged material, as shown by red lines in Figure 15, Figure 16, and Figure 17. Elements in red 
indicate where the failure criterion was satisfied, and the stiffness of corresponding elements was 
degraded. 

Tensile loading 

We considered ‘jagged’ roughness profiles of three different aspect ratios, viz: 1:1, 2:1, and 4:1, and 
analysed the crack propagation and failure modes in each case under tension (Figure 15). The crack 
initiated at the corners of the base of the roughness element for all the aspect ratios considered. For 
the 1:1 aspect ratio profile, the crack propagated exclusively through the polyurethane material 
between the two base corners, indicating a pure cohesive failure as shown in Figure 15a.  

An increased aspect ratio of 2:1 resulted in a combination of mixed adhesive and cohesive failures 
(Figure 15b). The crack propagated adhesively along the interface before a cohesive failure is 
initiated which propagated into the polyurethane foam. For this 2:1 aspect ratio roughness profile, 
the cracks propagated approximately half-way down the left side of the interface of the roughness 
element, and then traversed across it horizontally through the polyurethane foam up to the centre, 
where the cracks from both the sides met. This crack pathway resulted in a failure mode which was 
about 50% cohesive.  

For the 4:1 aspect ratio profile, the crack propagated a small distance down the interface of the 
roughness element, and then traversed horizontally across it through the polyurethane foam 
cohesively (Figure 15c). Some secondary cracking was also noticed. A second crack formed from 
the corner of the base of the roughness element and extended vertically into the polyurethane foam 
for a short distance. Two similar short cracks originated from the middle of the base and propagated 
upwards following slightly inclined paths. So a higher aspect ratio again leads to predominant 
cohesive failure with localised secondary fracture.  

(a)  
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(b)   

(c)  

Figure 15. Jagged roughness profile in tension, showing fracture paths for different aspect 
ratios  

Shear loading 

We considered roughness profiles of the same aspect ratios as before, and analysed the crack 
propagation and failure mode in each case under shear. The cracks paths are shown in Figure 16. 
Under shear loading for all of the aspect ratios considered, the crack propagation initiated from the 
left corner of the roughness element. For the 1:1 aspect ratio case, two crack paths were formed 
(Figure 16a). The main crack propagated from the left side of the roughness element to the other 
side causing fracture. This caused a nearly pure cohesive failure. A secondary crack was also 
created from the left corner and propagated a short distance down the roughness profile nearly 
parallel to the interface of the roughness element. For the case with an aspect ratio of 2:1, the failure 
mode changed to partly adhesive and partly cohesive (Figure 16b). Only one crack path was present 
in this case. This crack path extended nearly three quarters of the way down the left face of the 
roughness element interface causing adhesive failure. Then the crack traversed across the roughness 
element, moving diagonally up to the top of the roughness element and across to the right corner 
causing cohesive fracture. The crack path for the 4:1 aspect ratio profile was similar to that of the 
2:1 aspect ratio profile with a larger adhesive failure component (Figure 16c). The crack propagated 
downwards along the left surface of the roughness element up to approximately 90 percent of the 
left interface. Then it turned upwards and traversed through the polyurethane foam, but remained 
close to the right interface, before reaching the upper right corner. This shows a combination of 
adhesive and cohesive failures in the left and right interfaces for the roughness profile with a high 
aspect ratio. Overall, as the aspect ratio of the roughness profile increases, the proportion of 
adhesive failure increases under shear. This study was repeated for the triangular profile and similar 
trends in the transition in behaviour from cohesive to adhesive failure was noticed, as shown in 
Figure 17.  

(a)  

(b)  
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(c)  

Figure 16. Jagged roughness profile in shear, showing fracture paths for different aspect 
ratios  

(a)  

(b)  

Figure 17. Triangular roughness profile in shear, showing fracture paths for different aspect 
ratios 

Effect of Width Ratio 
One characteristic feature of surface roughness is the relative spacing between adjacent roughness 
elements. We studied the effect of this by investigating the effect of width ratio on the fracture 
pattern. In this case, we considered a semi-circular roughness profile so as to be different from that 
considered in the aspect ratio case. 

Tensile loading 

For this study, we considered three width ratios, 1:1, 3:1, and 8:1, for the semi-circular roughness 
profile. The fracture paths for the primary (major) cracks of the semi-circular roughness profile in 
tension are nearly the same for all width ratios (Figure 18). For all three width ratios modelled 
under tensile load, the primary cracks are initiated from the two corners of the base of each 
roughness element, where the stress concentrations occur. From each corner, two primary cracks are 
initiated and propagated in the reverse direction. One of them propagated along the flat part of the 
interface first adhesively, and another one propagated cohesively into the polyurethane foam. The 
two cohesive cracks met at the centre of each roughness element. 

However, secondary cracks and local level of damage for the three width ratios are somewhat 
different. For the 1:1 width ratio roughness profile, the two cohesive cracks met at the centre, and 
then extended upward into the body of the polyurethane (Figure 18a). The cracks generated in the 
3:1 width ratio roughness profile caused larger damage as it propagated across the base of the 
roughness element (Figure 18b). The localised cracks from the centre are smaller in length and 
damage at the middle of the base is large. The 8:1 width ratio roughness profile showed a crack path 
similar to that of the 3:1 width ratio model (Figure 18c); however, the crack paths was thinner, and 
it produced less damage as it propagated across the base of the semi-circular roughness element. 

A roughness profile of 1:1 width ratio results in approximately 50% cohesive failure, a 3:1 width 
ratio in 75% cohesive failure, and a 8:1 width ratio in 89% cohesive failure. From the width ratios 
considered, the 8:1 width ratio produces the largest cohesive failure due to it having the smallest 
width ‘w2’.  
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Broadly, within a roughness element, the width ratio does not significantly affect the mode of 
failure. Adhesive failure in the flat portion and cohesive failure within the roughness elements are 
observed in general with some difference in crack paths, due to the loading direction and the 
presence of stress raisers (corners). However, width ratio has a direct effect on the strength of an 
interface by altering the proportion of cohesive and adhesive failure. As noticed in the semi-circular 
surface profile under tension, when the width ratio decreases the proportion of the horizontal flat 
surface at the interface decreases, given the length of the roughness element base remains constant. 
The crack propagated across the base of the roughness elements for all of the width ratios; so 
decreasing the width ratio reduced the area where adhesive failure could occur, thus increasing the 
proportion of the cohesive failure zone. 

(a)  

(b)  

(c)  

Figure 18. Semi-circular profile in tension showing failure paths for width ratios of 1:1, 3:1, 
and 8:1. 

Shear loading 

Next we study the effect of the width ratio on the failure mode under shear by considering a semi-
circular roughness profile. Three different width ratios from low to high values, 1:1, 4:1 and 8:1, 
were adopted. Figure 19 shows the fracture pattern under shear loading for various width ratios of 
the roughness profile. For all of the width ratios modelled, the crack initiated from the left side and 
first propagated along the flat interface, thus causing adhesive failure. Upon reaching the left corner 
where the semi-circular profile met the flat face, the crack behaviour depended on the width ratio of 
the roughness profile. 

Figure 19 shows the fracture pattern for the 1:1 width ratio profile. When the tip of the crack 
reached the left corner of the roughness element, the crack divided into branches to produce two 
cracks. Both the cracks subsequently traversed cohesively within the foam. The first crack 
propagated downwards across the roughness element in an inclined direction. Before reaching the 
interface, it turned about 45° to move in the upward direction to reach the right corner of the 
roughness element. The second crack initiated from the left corner, propagated into the body of the 
polyurethane foam in an inclined upward direction (approximately 45°) up to about 10 µm, and then 
bent towards right to traverse horizontally for a short length.  

The crack path for the 4:1 width ratio profile had some features similar to that of the 1:1 width ratio 
profile (Figure 19b). The key differences are that the first crack propagated along the interface 
following the circular boundary, causing adhesive failure of the interface that continued up to nearly 
the bottom point of the roughness element. The crack then diverted upwards into the foam, and 
propagated across the roughness element in a curved path to reach the right corner. Another crack 
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branched out from this ‘first’ crack just before reaching the right corner. A second crack also 
originated from the left corner for this case. This crack propagated upwards in a curved path, 
causing cohesive failure of the polyurethane foam, similar to the 1:1 width ratio case. For the 8:1 
width ratio roughness profile, the crack path followed the left hand semi-circular interface of the 
roughness element up to the bottom point (Figure 19c). This crack produced a fracture that 
primarily occurred along the interface in the roughness element, signifying a pure adhesive failure. 

Hence for the 1:1 width ratio profile, the polyurethane foam fails cohesively within the semi-
circular roughness elements, although the failure follows a path closer to the interface. For the 
roughness profiles with 4:1 and 8:1 width ratios, the failure progressively changes from cohesive to 
adhesive, with partial adhesive failure for the 4:1 width ratio profile and complete adhesive failure 
for the 8:1 width ratio profile.  

(a)  

(b)  

(c)  

Figure 19. Semi-circular profile in shear showing failure paths for width ratios of 1:1, 4:1, and 
8:1 

Conclusions 
In this study, the interface of a polyurethane foam and galvanised steel composite was examined 
using optical microscopy, SEM, and AFM. A micro-scale finite element model was subsequently 
developed to analyse the effect of interface roughness on the mode of failure under tension and 
shear. It was found that whilst the macroscopic properties of polyurethane foam are affected by 
voids, the microscopic properties of polyurethane at the foam-metal interface are not affected 
considerably, because a thin film of solid (void-less) polyurethane effectively covers the majority of 
the surface of the galvanised steel. Thus, the macroscopic properties of polyurethane foam 
including the effect of voids are not good representation of the micro-scale properties of 
polyurethane at the foam-metal interface.  

Both the relative width to depth of roughness elements and the spacing between roughness 
elements, as characterised by the aspect ratio and width ratio, respectively, were found to have a 
profound influence on the mode of failure and interfacial strength. Cohesive failure was the 
dominant mode of failure in the roughness profiles under tensile load irrespective of the aspect ratio 
as anticipated. It was found that under tension the roughness profiles with a lower aspect ratio 
would fail with a large proportion in a cohesive manner when compared to the higher aspect ratios 
of the same roughness profile. Based on the results of the present analysis, the jagged roughness 
profile with a 1:1 aspect ratio leads to almost pure cohesive failure. With a moderate aspect ratio of 
2:1, the failure mode changes to a combination of partly adhesive and partly cohesive modes, whilst 
a further increase in the aspect ratio (4:1) leads to predominant cohesive failure mode again. Failure 
mode under shear strongly depends on the aspect ratio of the roughness profile. For low aspect ratio 
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roughness, the failure is primarily cohesive, which then transitions to a combination of adhesive and 
cohesive failures with an increase in the aspect ratio.  

Under tensile loading, adhesive failure in the horizontal flat portion and cohesive failure within the 
roughness elements are observed, in general, for all width ratios with some local differences in the 
crack paths. This is due to the direction of loading combined with the stress concentration generated 
at the corner of the roughness element.  

When a roughness profile is subjected to shear (for the semi-circular shape in this case), the 
cohesive failure mainly occurs when the width ratio is low. However, for higher width ratios, the 
failure no longer propagates cohesively in the polyurethane, but instead propagates partially or 
completely adhesively along the interface. For example, for a width ratio of 8:1, a pure adhesive 
failure of the interface occurs. 

Controlling interface roughness can change the relative proportion of cohesive and adhesive failures 
at a foam-metal interface, which in turn can improve the interfacial strength of a foam-metal 
composite based on the difference between the cohesive strength of the foam and the adhesive 
strength of the interface. For example, if the cohesive strength is greater than the adhesive strength, 
then the jagged surface roughness profile with a 1:1 aspect ratio is the optimum surface roughness 
profile as it results in approximately pure cohesive failure when loaded either in tension or in shear.  

The approach adopted in this paper to evaluate the effect of roughness parameters on the failure 
mode around the interfacial region can be extended to other polymer-metal composites. Future work 
will be undertaken to determine micro-scale adhesive strength of polyurethane and galvanised steel 
for specified foam-metal composites to provide accurate model input. It appears that the key aspect 
to improve the strength of a foam-metal composite interfacial region is to enable preferred failure 
modes (cohesive/adhesive) by inducing controlled micro-scale roughness profiles accurately and 
consistently on the surface of the metal substrate [Kim et al. (2010)], which can be accomplished 
using mechanical (micro machining) and/or chemical (photochemical machining) methods. 
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Abstract 

An optimization approach is presented for form-finding of tensegrity structures. It is shown that 
various equilibrium shapes can be easily found by solving a forced-deformation analysis problem 
formulated as a minimization problem of the total strain energy. The self-equilibrium forces can be 
found from the optimality conditions of the nonlinear programming problem, and the stability is 
always guaranteed owing to local convexity of the strain energy. The equilibrium shape and self-
equilibrium forces can be modified by assigning fictitious material properties of cables. The 
proposed approach is successfully applied to form-finding of a tensegrity tower. 

Keywords:  Tensegrity, Form-finding, Optimization, Stability 

Introduction 

Tensegrity structure consists of cables and struts that carry tensile and compressive forces, 
respectively. Self-equilibrium forces, or prestresses, are introduced to stabilize the structure. Since 
the shape of the structure defined by nodal coordinates at self-equilibrium state depends on the 
member forces, it is difficult to obtain a desired shape. Therefore, several analytical and numerical 
approaches have been developed for form-finding of tensegrity structures (Zhang and Ohsaki, 2006). 
 
Miki and Kawaguchi (2010) proposed an approach to form-finding by solving an optimization 
problem. Gaspani et al. (2011) carried out form-finding analysis using nonlinear programming 
approach. Chen et al. (2012) used an ant-colony method for form-finding. 
 
In this study, we present a method for form-finding of tensegrity structures using a nonlinear 
programming approach. Various equilibrium shapes are found by utilizing fictitious material 
properties. Stability of the self-equilibrium state is also discussed. 

Basic Equations 

Let iN  ( 1, , )i m   denote the axial force of member i  of a tensegrity structure consisting of m  

members in the 3-dimensional space. The vector consisting of coordinates of all n  nodes is denoted 
by 3nX  . The unstressed length 0

iL  of member i  is given. Then, the length ( )iL X  of i th 

member satisfying compatibility (connectivity) conditions at nodes is a function of X , and its 
gradient ( )iL X  consists of directional cosines of members. If we neglect the self-weight, the 

equilibrium equation is written as 

1

( )
m

i i
i

N L


  X 0       (1) 

Although the material of tensegrity structure is usually linear elastic, we use a fictitious material in 
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the process of form-finding. For the given unstressed member lengths, the strain energy of member 
i  is regarded as a function of ( )iL X , which is denoted by ( ( ))i iS L X . Then the total strain energy 

( )S X  is obtained as 

1

( ) ( ( ))
m

i i
i

S S L


 X X       (2) 

The self-equilibrium shape is found by solving an optimization problem. The variables are nodal 
coordinates X , and the objective function is the total strain energy ( )S X . When no constraint is 
given, the stationary condition of ( )S X  is given as 

1

( ) ( ( ))
( )

m
i i

i
ii i

S S L
L

X L

 
  

 X X
X 0 ,  ( 1, , 3 )i n     (3) 

At the optimal solution satisfying Eq. (3), the equilibrium equation (1) is satisfied by regarding 
/i iS L   as the axial force iN  of member i .  

 
This optimization problem is a standard analysis problem with forced deformation for satisfying the 
compatibility at nodes for specified unstressed member lengths. Furthermore, the total potential 
energy is equal to the total strain energy, because no external load is applied at the self-equilibrium 
state. Therefore, the principle of minimum total potential energy ensures stability of the equilibrium 
shape obtained by minimizing the strain energy; however, we use a fictitious material, rather than 
the true material, in this process of form-finding. 
 
After obtaining X  as the solution of the optimization problem, we assign the properties of the true 
material, and compute the true axial force *( )iN X  from the member lengths ( )iL X  at equilibrium 

and the unstressed length 0
iL . Then, the tangent stiffness matrix * 3 3n nK   using the true material 

is defined as the sum of the linear stiffness matrix * 3 3
E

n nK   and the geometrical stiffness matrix 
* 3 3
G

n nK   as 

* * *
E G K K K        (4) 

The tangent stiffness matrix using fictitious material is denoted by 3 3n nK  . Let min  denote the 

lowest (7th) eigenvalue of K  excluding six zero eigenvalues corresponding to rigid-body motions. 
The principle of minimum total potential energy ensures that min 0   at the equilibrium state. Let 

3 3ˆ n nK   denote the increment of *K  from K ; i.e., 

* ˆ K K K        (5) 

Define the nodal displacement vector 3nd   as a linear combination of the eigenvectors 3n
i Φ   

( 7, , 3 )i n   excluding rigid-body motions as 

3

7

n

i i
i




 d Φ        (6) 

where i  ( 7, , 3 )i n   are arbitrary coefficients that are not equal to 0 simultaneously. Since the 

equilibrium state using the fictitious material is stable, T 0d Kd  holds. Therefore, the equilibrium 
state using the true material is stable if the following condition is satisfied: 
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T ˆ 0d Kd        (7) 

When the fictitious material is defined using a bilinear stress-strain relation with degrading stiffness, 
and the true material has constant stiffness that is equal to the initial stiffness of the fictitious 
material, then K̂  is positive semi-definite, and the condition (7) is satisfied. Note that this condition 
is a sufficient but not a necessary condition as demonstrated in the numerical examples. 
 
We can also formulate a constrained optimization problem with upper bound U

iJL  for cable iJ  

( 1, , )i p   as  

U( ) 0
i iJ JL L X ,  ( 1, , )i p      (8) 

The optimality condition for the minimization problem of  ( )S X  under constraint (8) is written as 

1 1

( ) ( ( ))
( ) ( )

i

pm
i i

i i J
i ii i

S S L
L L

X L


 

 
    

  X X
X X 0 ,  ( 1, , 3 )i n   (9) 

Hence, the axial force of cable iJ  should be equal to /i i iS L     to satisfy the equilibrium 

equation (1). Since ( )iL X  is not a convex function of X , stability of the equilibrium shape using 

the fictitious material is not guaranteed, when constraints on member length are given. 
 
Optimization is carried out using SNOPT Ver.7 (Gill et al., 2002) that is based on sequential 
quadratic programming (SQP). The sensitivity coefficients are computed analytically. When the 
approximate Hessian of Lagrangian is singular at a step of SQP, SNOPT stabilizes the QP 
subproblem by assigning small positive values on the diagonals of the Hessian, which leads to a 
penalty term of the quadratic norm of the increment of variables. Therefore, for the analysis 
problem of a free-standing tensegrity structure, the rigid-body motions are successfully excluded, 
and the nearest solution from the initial solution is obtained. 
 
The algorithm of form-finding is summarized as follows: 
1. Assign initial shape, unstressed lengths of members, and properties of fictitious material. 
2. Solve the optimization problem to obtain the nodal coordinates at equilibrium. 
3. Assign the properties of true material, and compute the axial forces at equilibrium and 

unstressed length using the true material. 
4. Evaluate stability of the equilibrium shape. 

Example of Tensegrity Tower 

The proposed approach is applied to form-finding of a tensegrity tower that consists of struts, 
vertical cables, saddle cables, diagonal cables, and horizontal cables (Zhang and Ohsaki, 2008). An 
example of three-layer tower is shown in Fig. 1. Form-finding is carried out for a 20-layer 
tensegrity tower as shown in Fig. 2(a). The tower has three struts in each layer, and the radius and 
height of each layer are 1.0 m and 2.25 m, respectively. The units are omitted, in the following, for 
simple presentation of the results.  
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Figure 1.  A 3-layer tensegrity tower model. 

 
 

                                            
(a) Initial,            (b) Case 1                  (c) Case 2                  (d) Case 3 

Figure 2.  Initial and self-equilibrium shapes of a 20-layer tensegrity tower. 
 
The unstressed lengths of cables and struts are assumed to be 80% and 100%, respectively, of the 
lengths of the members in the initial shape in Fig. 2(a). Let iA  and iE  denote the cross-sectional 

area and Young’s modulus, respectively, of member i . The values of i iA E  for the fictitious material 

are 100000 for struts and 1000 for cables. Note that the unstressed lengths of cables should be 
sufficiently smaller than the initial lengths in Fig. 2(a) to obtain a stable equilibrium shape, and to 
find various shapes that are not close to the initial shape. 
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Case 1: 
The equilibrium shape obtained by solving the unconstrained optimization problem is shown in Fig. 
2(b). The maximum axial force among all cables is 362.9. In Case 1, the stiffness of the true 
material is the same as that of the fictitious material. The axial forces are divided by 100 so that the 
absolute values of axial forces are in the order of 1/1000 of i iA E . Eigenvalue analysis is carried out 

for *K  to find that the 6th and 7th smallest eigenvalues as listed in Table 1. Since the 7th 
eigenvalue is sufficiently larger than the 6th eigenvalue that is approximately equal to 0, the 
equilibrium state is stable with six zero eigenvalues corresponding to rigid-body motions. 
 

Strain

St
re

ss

Case 1Case 2

Case 3

 
Figure 3.  Bilinear stress-strain relations. 

 
Case 2: 
We next consider a fictitious material with bilinear stress-strain relation. The 60 vertical cables are 
classified into six groups connecting the nodes with the same xy-coordinates in the horizontal plane 
of the initial shape. Ten cables in one of six groups are selected to have the bilinear stress-strain 
relation as indicated as Case 2 in Fig. 3. The strain at the stiffness transition point is 0.1, and the 
value of i iA E  of the second part is 100 i iA E . The equilibrium shape obtained by optimization is 

shown in Fig. 2(c). The minimum and maximum values of strains among the members with bilinear 
stress-strain relation are 0.1028 and 0.1030, which are close to 0.1. This way, a curved shape has 
been generated by assigning large stiffnesses for the cables that are vertically aligned at the initial 
shape. 
 
We multiply 1/100 to axial forces of all members and carry out eigenvalue analysis of tangent 
stiffness matrix using the true material with constant stiffness i iA E  for all cables. The 6th and 7th 

eigenvalues are listed in Table 1, which shows that the structure is stable, although the true material 
has smaller stiffness than the fictitious material, and the sufficient condition (7) for stability is not 
satisfied. If we set the maximum member length 01.1 iL  and solve the constrained optimization 

problem, the same equilibrium shape as shown in Fig. 2(c) is obtained. The axial forces of the 
constrained members in layers 1, 3, and 5 are listed in Table 2, which confirms that the axial forces 
at equilibrium can be obtained as the sum of the differential coefficient /i iS L   and the Lagrange 

multiplier i . 

 
Table 1. Eigenvalues of tangent stiffness matrix using true material. 

Case 6th 7th 
1 6.135×10-8 0.06125 
2 1.094×10-8 0.02594 
3 1.861×10-9 0.02171 
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Table 2. Axial forces at equilibrium of constrained members in layers 1, 3, and 5. 

Layer Bilinear model 
Constrained optimization 

(A) Differential coefficient 
of strain energy 

(B) Lagrange 
multiplier 

(A) + (B) 

1 397.6 100.0 300.1 400.0 
3 380.2 100.0 282.6 382.6 
5 380.8 100.0 283.2 383.2 

 
Case 3: 
Fictitious material property is given in the same vertical cables as Case 2. However, we decrease the 
value of i iA E  of the second part of the vertical cables to /100i iA E  as indicated by Case 3 in Fig. 3. 

The equilibrium shape obtained by solving the unconstrained optimization problem is shown in Fig. 
2(d). As seen from Figs. 2(c) and (d), the tower can be bent to opposite directions by increasing and 
decreasing the value of i iA E  of the vertical cables in the specified group. The axial forces of the 

vertical cables with bilinear stress-strain relation are between 103 and 104, which are close to the 
specified value 0.1 i iA E . We multiply 1/100 to axial forces of all members and carry out eigenvalue 

analysis of tangent stiffness matrix. The 6th and 7th lowest eigenvalues are listed in Table 1, which 
confirms the stability of structure. Since the stiffness of the fictitious material is smaller than that of 
the true material, the equilibrium shape with the true material is stable, if the shape with fictitious 
material is stable. 

Conclusions 

The following conclusions have been obtained in this study: 
1. Various equilibrium shapes can be obtained using the fictitios material with bilinear stress-

strain relations. The equilibrium shape can be successfully found by solving an unconstrained 
optimization problem of minimizing the total strain energy. 

2. A curved tensegrity tower can be generated by assigning fictitios materials for a group of 
vertically aligned vertical cables. It has been shown that the optimization problem with bilinear 
stress strain relation is equivalent to a constrained optimization problem with upper bound for 
the member lengths. 

3. The equilibrium shape of the tensegrity structure is stable, if the stable equilibrium is found 
using a fictitious material with degrading bilinear stress-strain relation, and the true material 
has the constant stiffness that is equal to the initial stiffness of the fictitious material. 

4. The rigid-body motions need not be constrained when solving the optimization problem using 
an SQP method, because the quadratic programming subproblem is automatically stabilized by 
assigning small positive values in the diagonals of the approximate Hessian of the Larangian. 
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Abstract 
Complicated domain topologies and moving boundaries in acoustic simulation are difficult to be 
described with mesh based methods. On the contrary, the meshfree SPH (Smoothed Particle 
Hydrodynamics) method does not have much trouble in dealing with these problems. Therefore, the 
present paper aims to simulate sound propagation and interference in time domain with the SPH 
method by solving linearized acoustic wave equations. Firstly, linearized acoustic wave equations 
are represented in the form of particle approximation. After that, a standard SPH numerical method 
for simulating sound waves in time domain is built by adding the leapfrog integration and the 
nearest neighbor particle searching method. Finally, both one dimensional sound propagation and 
interference models are simulated with the SPH method and results are validated and compared 
with theoretical data. Numerical results show that the SPH method can simulate acoustic waves 
accurately. 

Keywords: SPH, sound propagation, sound interference, acoustic wave, time domain 

Introduction 

Mesh-based methods are widely used in modeling acoustic waves and these methods include some 
classic numerical methods such as the Finite Element Method (FEM) [Ihlenburg (1998)] and the 
Boundary Element Method (BEM) [Kythe (1995)]. However, these method is not perfect in solving 
problems with moving or deformable boundaries or interfaces due to its mesh-based properties. 
 
Meshfree methods can handle these problems with a set of arbitrarily distributed nodes instead of 
mesh and many methods have been used in solving acoustic problems. As a meshfree, Lagrangian 
method, the SPH method not only has almost all advantages that meshfree methods have, but it is 
also suitable for solving problems with large ranges of density and object separation as shown in 
recent reviews by Springel [Springel (2010)], Liu and Liu [Liu and Liu (2010)] and Monaghan 
[Monaghan (2012)] due to its Lagrangian property. Introducing this method to acoustic simulation 
would also bring its advantages to some specific fields like combustion noise, bubble acoustic, 
sound propagation in multiphase flow et al. Therefore, this paper focuses on the application of SPH 
in the simulation of acoustic waves. 
 
The SPH method was first pioneered independently by Lucy [Lucy (1977)] and Gingold and 
Monaghan [Gingold and Monaghan (1977)] in 1977 to solve astrophysical problems. It computes 
with a set of particles which possess individual material properties. Owing to its properties that have 
mentioned, the SPH method has been used in the fields of astrophysics, structure deformation, fluid 
dynamics etc. [Springel (2010); Liu and Liu (2010); Monaghan (2012)]. However, no literature is 
found about solving linearized acoustic equations with SPH, except for few researches [Wolfe and 
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Semwal (2007); Hahn and Negrut (2009)] discussed solving fluid dynamic equations to obtain 
sound waves. 
 
Solving the fluid dynamic equations can model acoustic problems, but it is not the only way. Since 
there are large differences in the length scale between the values and variations of velocity and 
density, solving the linearized acoustic equations requires lower computational resource compared 
with solving the fluid dynamic equations and it has been widely used in modeling engineering 
problems [Bruneau (2010)]. However, no literature was found to use the SPH method to solve the 
linearized acoustic equations. 
 
The paper is organized as follows. In section 2, the linearized acoustic equations are solved with the 
standard SPH theory and then the acoustic modeling method is built by adding the time integration 
and neighbor particles searching method. In section 3 and 4, one-dimensional sound propagation 
and interference model are simulated with the standard SPH method and the results are validated 
and compared with the theoretical solution. 

SPH Formulations of Sound Waves 

The linearized continuity and momentum equations governing sound waves can be written as 

 ( )
t
δρ

ρ
∂

= − ∇⋅
∂

u  (1) 

 1 p
t ρ

∂
= − ∇

∂
u  (2) 

The linearized state equation for ideal air is 

 2
0p c δρ=  (3) 

where δρ is the change of density, ρ is the density, u is the velocity vector, t is the time, p is the 
sound pressure, c0 is the sound speed. The particle approximation equation of the continuity of 
acoustic waves is written as 

 ( )
0

1 0

( )
( )

N
ji

i ij i ij
j j

m
W

t
δρ

ρ δρ
ρ δρ=

∂
= + ∇

∂ +∑ u  (4) 

The momentum equation in SPH method is obtained as 

 2 2
1 0 0( ) ( )

N
ji i

j i ij
j i j

ppm W
t ρ δρ ρ δρ=

 ∂
= + ∇ 

∂ + +  
∑u  (5) 

Particle approximation of the equation of state is 

 2
0i ip c δρ=  (6) 

The second order leap-frog integration [Kelager (2006)] is used in the paper. All-pair search 
approach [Liu and Liu (2003)], as a direct and simple algorithm, is used to realize the neighbor 
particles searching in acoustic waves simulation. 
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Sound Propagation 

Sound Propagation Model 

A one-dimensional sound propagation in a pipe with uniform cross section is used. The sound 
propagation model is shown in Figure 1. 
 

 
Figure 1 One-dimensional sound propagation model 

The sound pressure of the acoustic wave transmitted in Figure 1 is 

 ( , 0) sin( )Ap t x p wt kx< = −  () 

where t is the time (propagation starts when t = 0), x is the geometric position, pA is the amplitude 
of the acoustic wave (in this section, pA = 50 Pa), w is the circular frequency of wave (in this 
section, w = 50 rad/s), k = w/c0, the sound speed c0 is 340 m/s and the density of the propagation 
medium is 1.0 kg/m3. 
 
The sound propagates from x < 0 to x > 0 and the computational domain is from -10 m to 80 m. The 
simulation results at the time t = 0.2 s are used to compare with the theoretical resolution. 

SPH Simulation 

The simulation results of sound pressure at the time t = 0.2 s are shown in Figure 2 (a) while the 
theoretical solution is also plot in the figure. It can be seen from the line graph that there are two 
peaks appear in the propagation and one of them is shown in Figure 2 (b). At the same time, a detail 
view of the start of the sound is also given in Figure 2 (c). 

 
(a) sound pressure at t = 0.2 s 
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(b) detail view 1    (c) detail view 2 

Figure 2 Sound pressure comparison between the SPH and the theoretical results at t = 0.2 s 

As can be seen from the figure, the SPH simulation results have almost the same trend compared 
with the theoretical solution. Values of the sound pressure can also be obtained accurately by using 
the SPH method. However, Figure 2 (b) and (c) show the effects of unphysical oscillations and it 
mainly appears at the place with large changes of sound pressure. 

Sound Interference 

Sound Interference Model 

An interference model of two different sound waves is used as shown in Figure 3. 
 

 
Figure 3 One-dimensional model of sound interference between two different sound waves 

A sound wave with 40 Pa sound pressure and 50 rad/s circular frequency transmits from the left 
side while another sound wave with 60 Pa and 50 rad/s comes from the right side. After 0.3 s, the 
sound pressure along the x axis is shown in dash line in Figure 3. 

SPH Simulation 

The simulation results and theoretical solution of sound pressure at the time t = 0.3 s are shown in 
Figure 4 (a). Two detail views of a peak and a valley are given in Figure 4 (b) and (c). 
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(a) sound pressure at t = 0.3 s 

  
(b) detail view 1    (c) detail view 2 

Figure 4 

Considering the computational time is 0.3 s, the interference happens at 48 < x < 102 m. It can be 
seen from the line figure that the SPH simulation results agree well with the theoretical solution. As 
shown in the detail views, the standard SPH method can compute sound pressure accurate 
comparing with the theoretical results. 

Conclusions 

Linearized acoustic equations are solved with the standard SPH theory and the simulation method is 
built by adding the time integration and neighbor particles searching method. One dimensional 
sound propagation and interference models are simulated with the SPH method and computational 
results are compared with theoretical data. Sound pressure results show that the standard SPH 
method can achieve accurate solution, although unphysical oscillations cannot be ignored. 
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Abstract 
Non-linear analysis of cable structures is computationally expensive due to large deformation 
against external loads. The Isogeometric Analysis method (IGA) initially developed by T.J.R. 
Hughes is considered to be more efficient than the existing numerical methods for large-
deformation analysis of cable structures. Moreover, Isogeometric Analysis is well suited for the 
structures with curved configurations, because the same mathematical descriptions for the geometry 
in the design (CAD) and the modeling in the analysis (FEA) are used. In this paper, we consider the 
self-equilibrium analysis of catenary cables as well as parabolic cables by using Isogeometric 
Analysis. The results demonstrate effectiveness and accuracy of Isogeometric Analysis for large 
deformation analysis of unstable structures, compared to the existing analysis methods. 
 
Keywords: Cable structures, Finite element analysis, Isogeometric analysis, B-spline curve, Self-
equilibrium analysis, Singular value decomposition 
 

Introduction 
There is a big gap between (computer aided) design (CAD) and analysis in conventional finite 
element analysis (FEA). This comes from the fact that they are using different mathematical 
descriptions for the geometry. The gap becomes critical for curved structures, such as shells and 
cable structures, because their geometries are much complex. To solve the gap by using the same 
mathematical description for both design and analysis, Hughes et al. (2005; 2009) and thereafter 
many other researchers developed a new analysis tool, called Isogeometric Analysis method (IGA). 
Furthermore, smoothness in the curved structures can also be guaranteed in IGA. 
The Isogeometric Analysis has been extensively applied for the studies on shell and plate structures, 
see for example those by Stefan et al. (2011) and Benson et al. (2010). However, there are only a 
limited number of studies on cables by using IGA. In this paper, we will apply IGA for self-
equilibrium analysis of cables under gravity, and investigate its efficiency as well as accuracy by 
comparison with conventional FEA. 
 

B-spline curve 
IGA and conventional FEA share almost the same analysis procedure, except that they use different 
shape functions. The same mathematical descriptions in (CAD) design, for example B-spline or 
NURBS curves (surfaces), are used as shape functions in IGA. In the following, we adopt B-spline 
curves as shape functions, which are constructed by taking a linear combination of B-spline basis 
functions. The vector-valued coefficients of the basis functions are referred to as control points. A 
piecewise-polynomial B-spline curve is given by 
 
 

               (1) 
 
 

C( ) " Ni,p( )
i"1

n

Bi
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where n is the number of control points, p is the polynomial order, ξi is the local coordinate of the ith 
knot, and Bi is the (global) coordinates of the ith control point. Moreover, the basis functions Ni,p(ξ) 
are defined as follows: 
 
 
 
 

        (2) 
 
 
 
 
Eq. (2) is referred to as the Cox-de Boor recursion formula (Cox, 1971; de Boor, 1972). Piecewise 
linear interpolation of the control points gives the so-called control polygon.  
 
 
 
 
 
 
 

 

 
Figure 1.  B-spline curve with control points,       Figure 2.  Quadratic B-spline basis function 

           control polygon, and knots 
 
An example B-spline curve is shown in Figure 1 with eight control points and p = 2; the resulting 
control polygon is shown in Figure1, and the B-spline basis functions are shown in Figure 2. Note 
that the curve is interpolatory at the first and last control points, due to the fact that the knot vector 
is open, and also at the sixth control point, due to the fact that the multiplicity of the knot ξ = 4 is 
equal to the polynomial order. Note also that the curve is tangent to the control polygon at the first, 
last and sixth control points. The curve is C 

p-1-continuous everywhere except at the location of the 
repeated knot, ξ = 4, where it is C 

p-2 (= C 
0)-continuous. 

To describe a two-dimensional B-spline, it is convenient to summarize the basis functions and their 
first-order derivative in a matrix form as follows: 
 
 
 
                 (3) 
 
 
 
 
 
 
                 (4) 
 
 
 
 
where the components in     are given as 
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0

 
                 (5) 
 
 
Formulations in large deformation 
The tangent stiffness matrix K is the sum of the linear stiffness matrix KE and the geometrical 
stiffness matrix KG: 
 
                 (6) 
 
The B-spline curves are used as shape functions for analysis of cable structures, thus, the 
formulations for KE and the geometrical stiffness matrix KG are given as [Bathe (1995)]   
 
 

            (7) 
 
 

            (8) 
 
 

            (9) 
 
 

          (10) 
 
 

          (11) 
 
 

          (12) 
 
 

          (13) 
 
 
                           (14) 
 
Where E is Young’s Modulus, A is the initial cross-sectional area, L0 is the initial element length 
before deformation, L is the current length after deformation,   is the axial stress in small 
deformation,   is the axial strain in small deformation xi, yi are the current coordinates of the 
specified nodes of the element, and           are the initial coordinates of the specified nodes of the 
element. For large deformation problems, the true axial strain has to be calculated from the 
extension of the cables, which is given as 
 
 

     (15) 
 
 
Structural analysis by singular value decomposition 

Tangent stiffness matrix K of an unstable structure is not invertible, because it is singular. To 
proceed the analysis for unstable structures ruling out the mechanisms as well as rigid-body motions, 
which cause singularity of K, singular value composition of K turns out to be convenient for 
formulations as well as computations [Kawaguchi (2011)]. By using a unitary matrix Ψ, a 
(symmetric) tangent stiffness matrix K is rewritten as follows: 

K "KE �KG

KE " EAL0
2
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1
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L2
XTNTNU

U " X X0

XT " x1, y1,…, xi, yi,…, xn, yn@ B

X0
 �T " x1
0, y1

0,…, xi0, yi0,…, xn0, yn0

" ds
ds0

1" dx
ds0

2

� dy
ds0

2

1" 2
L0

dx
d
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     (16) 
 
 
 
 
 
 
where O is a zero matrix, λi is the ith singular value of K, dof is the number of degrees of freedom of 
the system. The pseudo-inverse matrix K- of the tangent stiffness matrix K is obtained as follows 
 
 
 
 
 

     (17) 
 
 
 
 
 
 
 
 
Subjected to the external load F, the displacements of control points of a (unstable) cable structure 
can be calculated by using the K- defined in Eq. (17) as follows:  
 

     (18) 
 
Accuracy evaluation and initial settings for analysis 

In this paper, we analyze the self-equilibrium shapes of the cable structures subjected to gravity, 
and verify the accuracy of the analyses, which is evaluated by the mean square error (MSE) defined 
as 
 

   (19) 
 
 
where m is the number of evaluation points, yi,    are respectively the ith y-coordinate calculated by 
analysis and by theory, and f is sag of the cable.  
In this paper, two cable structures with different initial shapes. Each of them are analyzed by 
different models:  
・	
 9 two-node isoparametric elements with 10 nodes,	
 
・	
 30 two-node isoparametric elements with 31 nodes, 
・	
 9 four-node isoparametric elements with 10 (external) nodes,  
・	
 30 four-node isoparametric elements with 31 (external) nodes,  
・	
 a single cubic B-spline curve with 10 control points, and 
・	
 a single cubic B-spline curve with 31 control points.  
Two-node isoparametric elements are interpolated by straight lines, and four-node isoparametric 
elements are interpolated by cubic curves. To have the same (cubic) order for geometry description, 
the isogeometric elements are interpolated by the same polynomial order as four-node isoparametric 
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elements. Young’s Modulus E is 205[GPa], the initial cross-sectional area A is 0.0001[m2], spatial 
span is 30[m], the weight of the cable per unit length µ for catenary cables is 7.85[N/m], the vertical 
distributed load w0 for parabolic cables is 7.85[N/m], and the number of evaluation points of mean 
square error is 3000 points. CPU is 2.8 GHz Intel Core i7, the memory of the CPU is 12GB, and 
analysis software is MATLAB R2007b provided by MathWorks Corporation. 
 

Self-equilibrium analysis of catenary cable 
The self-equilibrium shape of a single cable against its own weight becomes a catenary [Japan 
Society of Civil Engineers (2001)]. In this section, a catenary is used as the exact solution. The 
formulation of symmetric catenary cable is give as 
 

   (20) 
 
 
where x, y is x-coordinate and y-coordinate respectively, T0 is the horizontal tension.  
 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 3.  Initial catenary cable of object 1 with 10 nodes 
  
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 4.  Final catenary cable of object 1 with 10 nodes 
  
 
 
 
 

 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 
Figure 5.  Initial catenary cable of object 2 with 10 nodes 

 
 
 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 6.  Final catenary cable of object 2 with 10 nodes 
 

 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 7.  Initial catenary cable of object 1 with 31 nodes 
 

 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 8.  Final catenary cable of object 1 with 31 nodes 

y " T0
R
cosh Rx

T0
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 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 9.  Initial catenary cable of object 2 with 31 nodes 
 

 
 

 
 

 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 
Figure 10.  Final catenary cable of object 2 with 31 nodes 

 
Table 1. Identified results of catenary cable 

 

 
 
 
 
 

 
 
 
 
 

The initial shapes from which the large deformation analysis for different modeling are shown in 
Figures 3, 5, 7, and 9, and their corresponding final shapes due to gravity are respectively shown in 
Figures 4, 6, 8, and 10. Note that in (a) and (b) in these figures, ◯ refers to element boundary node, 
● refers to element internal node; and moreover, in (c) in these figures, ◯ refers to control point. 
Performances of the analyses using conventional FEA as well as IGA with different number of 
elements are summarized in Table 1. It was clear that IGA is more accurate compared to 
conventional FEA when the structure is modeled by using the same (external) nodes (or control 
points for IGA). On the other hand, convergence performance of IGA is not superior to that of 
conventional FEA. 

Self-equilibrium analysis of parabolic cable 
The self-equilibrium shape of cable with large vertical distributed load compared to its own weight 
becomes a parabolic cable. Parabolic cables are widely used in design of suspension bridges. In the 
analysis, the weight of the cable is regarded as zero and vertical distributed loads like floor slabs of 
the bridge are treated as loads applied to the nodes. The formulation of a symmetric parabolic cable 
is given as 
 
 

   (21) 
 

y " w0
2T0

x2
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The initial shapes from which the large deformation analysis for different modeling are shown in 
Figures 11, 13, 15, and 17, and their corresponding final shapes due to gravity are respectively 
shown in Figures 12, 14, 16, and 18. Note that in (a) and (b) in these figures, ◯ refers to element 
boundary node, ● refers to element internal node; and moreover, in (c) in these figures, ◯ refers to 
control point. 
 

  
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 11.  Initial parabolic cable of object 1 with 10 nodes 
 

 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 12.  Final parabolic cable of object 1 with 10 nodes 
 
 

 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 13.  Initial parabolic cable of object 2 with 10 nodes 
 
 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 14.  Final parabolic cable of object 2 with 10 nodes 
 

 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 15.  Initial parabolic cable of object 1 with 31 nodes 
 

 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 16.  Final parabolic cable of object 1 with 31 nodes 
 
  
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 17.  Initial parabolic cable of object 2 with 31 nodes 
 

 
 

 
 
  
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 18.  Final parabolic cable of object 2 with 31 nodes 
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Table 2. Identified results of parabolic cable 

 

 
 
 
 
 

 
 
 
 
 

 
Performances of the analyses using conventional FEA as well as IGA with different number of 
elements are summarized in Table 2. It was clear that IGA performs better than conventional FEA 
in accuracy in all cases. However, the superiority of IGA in computation costs is not clear.  
 
Conclusions 

In this paper, we applied Isogeometric Analysis for self-equilibrium analysis of unstable cable 
structures and investigated its performances in accuracy as well as in efficiency. For all analysis 
cases in this paper both for catenary cables and parabolic cables, IGA is more accurate than 
conventional FEA. However, its performance on computational costs is not as clear as accuracy. 
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This paper focuses on parameter identification of Fluid Viscous Dampers, comparing different 
existing literature models, with the aim to recognize ability of these models to match experimental 
loops under different test specimens. Identification scheme is developed evaluating the 
experimental and the analytical values of the forces experienced by the device under investigation. 
The experimental force is recorded during the dynamic test, while the analytical one is obtained by 
applying a displacement time history to the candidate mechanical law. 
Identification procedure furnishes device mechanical parameters by minimizing a suitable objective 
function, which represents a measure of difference between analytical and experimental forces. To 
solve optimization problem, the Particle Swarm Optimization is adopted, and the results obtained 
under various test conditions are shown. Some considerations about the agreement of different 
models with experimental data are furnished, and the sensitivity of identified parameters of 
analyzed models against frequency excitation is evaluated and discussed..  

Keywords: Fluid Viscous Damper, parameters identification, Kelvin-Voigt model, Particle Swarm 

Optimization 

Introduction 
In recent years, several devices have been proposed to reduce the effects of dynamic loads in civil 
structures and infrastructures. In this paper, the attention is focused on Fluid Viscous Dampers 
(FVD), generally viewed as passive dissipation elements [1], widely adopted in many civil 
engineering applications to reduce the vibration level and to increase structural protection level 
against wind and earthquake forces (see for instance [2],[3]). Among the most interesting features 
of viscous dampers, one should mention low maintenance costs, usability for several earthquakes 
without damage and viscous forces out-of-phase with the elastic ones. 
Viscous dampers utilized in civil structures to control seismic, wind induced and thermal expansion 
motions, are usually arranged in one of the following configurations: a diagonal or chevron bracing 
element within a steel or concrete frame, as a part of the cable stays of long-span bridges, as a part 
of tuned mass dampers, as a part of a base isolation system to increase the energy dissipation and as 
a device to allow free thermal movements [4]. Viscous dampers can be efficiently used in the 
construction of new buildings or in retrofitting existing structures. The importance of viscous 
dampers in vibration control has increased thanks to their energy dissipation capability and wide 
range of applications. 
A viscous fluid damper typically consists [1] of a piston within a damper housing, filled with a 
compound of silicone or similar type of oil. The fluid passes through several small orifices from one 
side of the piston to the other; therefore, the energy is dissipated through the concept of fluid 
orificing. The fluid damper produces a force that is not always proportional to velocity [5], 
depending on the type of orifice used. The orifice utilizes a series of passages to alter flow 
characteristics with fluid speed. The “fluid control orifice” provides forces proportional to  , where 
α is a coefficient varying in the range [0.5 ÷ 1]. When α=1, the behavior of FVD is linear and in 
earthquake engineering applications this is the most desired circumstance. Actually, FVDs contain 
valves instead of the piston within orifices. These valves are opened once the transmitted force 
exceeds a certain design limit. However, the force produced by FVD is not proportional to velocity, 
and also in this case the valves provide forces proportional to  .  
Since the applications of viscous dampers are growing very fast, the exact recognition of their 
mechanical behavior is of primary importance to provide a reliable support to design an efficient 
seismic protection strategy. Current identification techniques for viscous dampers are mostly based 
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on parametric models. Although parametric identification techniques have been successfully used to 
identify viscous dampers, non-parametric identification techniques are more suitable in structural 
health monitoring, because the system characteristics may continuously vary over time, both 
quantitatively as well as qualitatively. 
Several identification approaches, both parametric and nonparametric, are compared in [4], by using 
real data carried out from full-scale nonlinear viscous dampers, commonly used in large flexible 
bridges. About the parametric techniques, the capability of the Adaptive Random Search is explored 
in [4]: the authors solved an optimization problem in which the numerical values of the unknown 
model parameters were estimated by minimizing an objective function based on the normalized 
mean square error between the measured and identified damper responses, evaluated as 
displacement/velocity, and obtained integrating dynamic equilibrium equations of FVD constitutive 
law, under experimental applied force history. 
In this field, also soft-computing techniques, fuzzy inference systems and neural networks have 
been applied to model a Magneto Rheological Fluid Damper [6][7]. Evolutionary computation 
methods, e.g., Genetic Algorithms (GA) [8][9], have been widely applied in parameter 
identification applications and many others. Among different nonlinear models, especially the 
Bouc-Wen has been identified thanks to its versatility. In [10], the GA was employed to identify a 
mechatronic system of unknown structure. In this framework, a real-coded GA has been recently 
adopted in [11] to identify a piezoelectric actuator, whose hysteretic behavior has been modeled by 
the Bouc-Wen nonlinear law. A magneto-rheological fluid damper behavior has been recognized by 
[12], with reference to a non-symmetric version of the original Bouc-Wen model and by using a 
real coded GA. The final algorithm is very similar to the GA, but its efficiency has been improved 
in virtue of a selection procedure embedded into crossover and mutation genetic operators. The GA 
has been widely adopted to fit the Bouc–Wen model to hysteresis loops experimentally obtained for 
composite materials [13], non-linear degrading structures [14], magneto-rheological fluid dampers 
[15][16][17] or bolted-welded connections [18]. In [19], a new method based on GA is developed to 
identify the Bouc–Wen model parameters from experimental hysteretic loops, obtained from 
periodic loading tests. 
Among evolutive algorithms, the Particle Swarm Optimization (PSO) [20] has been recognized as a 
promising candidate in parameter identification. The PSO is based on the multi-agent or population 
based philosophy (the particles) which mimics the social interaction in bird flocks or schools of 
fish, by incorporating the search experience of individual agents. Moreover, the PSO is effective in 
exploring the solution space in a relatively small number of iterations. PSO has been used in the 
design of PID controllers [21] and electro-magnetic [22].  The PSO convergence characteristic was 
analyzed in [23], where algorithm control settings were also proposed. In [24], a PSO algorithm is 
employed using experimental force–velocity data, obtained from various operating conditions, to 
identify the model parameters of a magneto rheological fluid damper.  
In [25] a parameter identification for basic and generalized Kelvin–Voigt and Maxwell models for 
FVD is carried out. The identification procedure developed by means of particle swarm 
optimization gives the best mechanical parameters by minimizing a suitable objective function that 
represents a measure of difference between analytical and experimental applied forces. Results are 
obtained under various test conditions, comparing the agreement of various models with 
experimental data. 
This paper focuses on parameter identification of FVD: the identification process is developed 
comparing the experimental and the analytical values of the forces experienced by the device under 
investigation. The experimental value of the force is recorded during the dynamic test, while the 
analytical one is obtained by applying the time history of displacements to the candidate mechanical 
law. In this way, a measure of the “distance” between experimental and analytical results is 
introduced, as the integral of the difference along the whole experiment. The optimal parameter set 
is thus derived by minimizing this distance using an evolutionary algorithm. For the parametric 
identification of FVD, the authors adopt an evolutive algorithm, the Particle Swarm Optimization. 
Different analytical models, characterized by increasing complexity, are considered and then are 
identified. The sensitivity against test conditions is also assessed.  
The next of the paper is organized as follows: in section 2 there is a selection of models adopted in 
this study for FVD modeling; in section 3, the identification scheme is posed and in section 4, some 
remarks of PSO algorithm are given. Moreover, in section 5 some specifications of experimental 
tests are furnished; section 6 reports the results of identified parameters, which are discussed in 
section 7. Some conclusions are finally given in section 8. 
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MECHANICAL MODELS FOR FLUID-VISCOUS DAMPERS 

System identification involves creating a model for a system that, with the same input as the 
original system, the model will produce an output that matches the original system output with a 
certain degree of accuracy. The input or excitation of the system and model, and their 
corresponding outputs, are used to create and tune the model until a satisfactory degree of accuracy 
is reached.  
The application of non-classical methods for the parametric identification of viscous dampers 
requires: (i) the definition of an appropriate single-degree-of-freedom mechanical model and (ii) the 
formalization of the objective (or cost) function to be minimized. This section deals with the first 
aspect.  
Generally, the system to be identified could be modeled by physical laws that reflect the dynamics 
of the system. A model created by laws, which reflect the physical properties of the system is called 
a white-box model. However, creating a white box model for real-world (complex) systems is a 
challenging task. 
In structural applications, the selection of a proper model for FVD plays a central role to predict the 
real structural response after the identification. Generally, the description of FVD requires a suitable 
mechanical model, made of a set of springs and dashpots appropriately connected each other. In this 
study, different classical and generalized mechanical models are selected to identify a viscous 
device using experimental data. The main difference between classical and generalized models is 
that the generalized one incorporates a nonlinearity in spring and viscous elements; in addition, the 
resistant forces of generalized models have fractional exponential coefficients. 
 
Linear viscous model 
The simplest way to model a velocity dependent mechanical law is by means of the standard linear 
viscous model. The equation of the motion of a FVD modeled in this way and subject to a time-
varying force p is:  

  my Cy p+ =                                                                                (1) 

This basic model has the main advantage to be extremely simple, but sometimes it is too poor for a 
reasonable representation of real mechanical behavior. For this reason, it has been updated by the 
non-linear viscous model that depends on a fractional exponent of the velocity instead of a simple 
linear relationship. Generalized non-linear viscous model is described below:   
 
Generalized viscous model 
 It is a two parameters model proposed by Constantinou [26], [27] whose law is: 

                                             sgn( )my C y y pα
+ =     (2) 

where α is the damping term exponent, whose value lies between 0 and 1. Various mechanical 
behaviors are associated to different values of α. For instance, if α = 1 the linear viscous damping 
law corresponds; if α = 0 the dry friction appears (consequently, the force increases quickly for 
small velocity values, and becomes almost constant for large velocity values). This damping law 
has been widely adopted by various authors thanks to its ability in structural behavior modeling. For 
example, Lin and Chopra [28] make use of this constitutive law in the investigation of the 
earthquake induced response. In addition, this law is adopted in many structural computer codes.  
However, experimental studies demonstrated that the resistance force of viscous dampers depends 
not only on damper velocity, but also on damper deformation. This mechanical property may be 
mathematically modeled connecting a spring element and a viscous element, respectively. If these 
two elements are connected in parallel, the family of Kelvin-Voigt models is obtained. For example, 
if a linear spring is connected in parallel with the simple linear dashpot, the basic Kelvin-Voigt 
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model is derived. When non-linear springs are connected with generalized non-linear viscous 
models, other behaviors are obtained. In [29] Terenzi investigated linear and parabolic models for 
the elastic force ψe: 

                                                  1e K yψ =  (3) 

                                       
2

2 1 0e K y K y Kψ = + +                  (4) 

where K1 is the elastic stiffness, K2 and K0 are two constants. In [29], the authors stated that the 
parabolic function reproduces better the shape of the test cycles, but the linear function may be 
preferable, because it is simpler and yields a comparable energy balance. 
 
Generalized viscous – linear elastic model 
By combining Eq.(2) and Eq.(3), the equation of motion of a generalized Kelvin-Voigt model, 
subjected to a time-varying force p is derived: 

 1sgn( )my C y y K y pα
+ + =                                                      (5) 

 
Generalized viscous – quadratic elastic model 
In this model, the parabolic form in Eq.(4) is considered without the constant K0: 

2
1 2sgn( )my C y y K y K y pα

+ + + =                                                       (6) 

 

IDENTIFICATION: OPTIMIZATION PROBLEM 

The second step of parameter identification requires the formalization of a suitable objective 
function to be minimized. 
The model parameters x of the viscous damper are identified by solving the following single-
objective optimization problem: 

( ){ }min

       s.t. l u

f

≤ ≤
x

x

x x x  
where x = {x1,…,xj,…,xn} is a set of real parameters (in this case x collects the mechanical model 

parameters), xl = {x1
l,…,xj

l,…,xn
l} and xu = {x1

u,…,xj
u,…,xn

u} are lower and upper bounds of x, 

respectively. The solution that minimizes the objective function (OF) f(x) is x*.  

The following integral is assumed as measure to define the OF in the identification problem: 

( ) ( ) ( )( )1 end

m start

t

m e
p end start t

f p p dt
t tσ

= −
− ∫x x                                                   (7) 

where tstart and tend  are the start and end time records, pm(t) is the force measured, while pe(t) is the 
force estimated. This is obtained by numerical differentiation of experimental displacement time 
history with a 3rd order algorithm to limit numerical noise. One should point out that the evaluation 
of this OF is extremely computational cheap if compared with alternative approaches, in which the 
duality of starting from an experimental force leads to the theoretical displacement, obtained by 
integration as a solution of the differential equation. The optimization problem is solved by Particle 
Swarm Optimization (PSO).  
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Experimental studies 

Test apparatus 

The 750 kN viscous damper was tested at SISMALB srl laboratory in Taranto, Italy. The test setup 
(Figure 1) consists of a high resistance steel frame to withstand loads of tension and compression of 
2200 KN. The device is anchored to the structure by means of a pin, and is stilled to the servant 
cylinder by means of a threaded connection. The movements are generated by a servant cylinder of 
1400 KN, controlled in force and/or displacement. Between the servant cylinder and the device a 
load cell of 2500 KN is located, which acquires the forces applied to the device during the entire 
duration of the experiment. In a displacement imposed test, the device movements are controlled by 
a transducer mounted on the device. The control and data acquisition system is able to generate a 
real time analysis of device displacements, by instantaneously variation of applied forces by the 
servant cylinder by means of a computer automatic control hydraulic pressure system. The 
displacement time history can be imposed with different laws, from sinusoidal, triangular, or 
through a generator step of generic ones. This system is able to control applied forces in real time 
according to the imposed displacement or force imposed test. Acquiring system has 30 channels and 
can command 2 actuators at the same time. 
Table 1 shows the design characteristics of the tested FVD.  
 

 
 

Figure 1. View of the viscous test machine and fluid viscous damper 
 
 

 
 

Figure 2.  A photo of the test apparatus with the fluid viscous damper 
 

 
Table 1 Fluid Viscous Damper Design Condition 

F [kN] Stroke [mm] C [kN/(mm/s)] V [mm/s] α  

750 ± 100 406.24 460 0.1 
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 Test cases 

Four experiments were performed to obtain dynamic response of the viscous damper. The 
experiments were designed to determine the dynamic characteristics of the damper at varying 
velocities and to evaluate the effective energy dissipation of the device. The damper was subjected 
to multiple sets of monotonic sinusoidal excitations, at peak velocities of 92 mm/s, 230 mm/s, 460 
mm/s ( % refers to design velocity 460 mm/s) The first three tests have a 3-cycle excitation period, 
while the fourth test (energy dissipation test)  has a 10-cycle period. The test specifications are 
summarized in Table 2. 
 

Table 2. Fluid viscous damper test condition 

No. Test Type Load  
(kN) 

Test stroke  
(±mm) 

Velocity 
(mm/s) Cycle 

1 
Constitutive law test 

750 20 92 (20%) 3 
2 750 20 230 (50%) 3 
3 750 20 460 (100%) 3 
4 Damping efficiency test 750 17 460 (100%) 10 

 

Parametric identification 

For the evaluation of optimal values of the unknown parameters in Equations (1), (2), (5), (6) the 
parametric identification performed by PSO, was applied with a population size N=50 and 
maximum number of iterations L=100. The parametric identification has been performed by solving 
the single-objective optimization problem, whose objective function is given by Equation (7). The 
algorithms have been performed fifty times, and the best solution has been carried out as the final 
identification result.  
 
 Identification results 
 
This subsection shows the identified parameter values that best fit the test results for the four 
analyzed models. Table 3, Table 4, Table 5 and Table 6 show the best (Min), worst (Max), mean 
and standard deviation (Std) values of the OF obtained under different numerical tests, for the four 
analyzed models. Data are represented also in Figure 3.   
 

Table 3. Objective Function results obtained from the PSOA using the linear viscous mechanical 
model for four different experimental tests 

Mechanical Model: Linear viscous 
Test Mean Max Min Std 
Test 1 0.324322 0.324322 0.324322 0 
Test 2  0.363997 0.363997 0.363997 2.8E-16 
Test 3   0.272685 0.272685 0.272685 1.68E-16 
Test 4 0.297829 0.297829 0.297829 1.68E-16 
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 Table 4 Objective Function results obtained from the PSOA using the Generalized viscous mechanical 
model for four different experimental tests 

Mechanical Model: Generalized  viscous 
Test Mean Max Min Std 
Test 1 0.254494 0.254494 0.254494 4.26E-14 

Test 2  0.332256 0.332257 0.332256 1.39E-07 
Test 3   0.264244 0.26426 0.264243 2.99E-06 
Test 4 0.28234 0.28234 0.28234 2.45E-09 

 
Table 5 Objective Function results obtained from the PSOA using the Generalized viscous – linear 

elastic mechanical model for four different experimental tests 
Mechanical Model: Generalized viscous- linear elastic 
Test Mean Max Min Std 
Test 1 0.162356 0.163188 0.162077 0.000298 
Test 2  0.203976 0.204116 0.203949 3.45E-05 
Test 3   0.153384 0.153388 0.153384 7.23E-07 
Test 4 0.127699 0.127699 0.127699 1.41E-12 

 
Table 6. Objective Function results obtained from the PSOA using the Generalized viscous – quadratic 

elastic mechanical model for four different experimental tests 
Mechanical Model: Generalized viscous- quadratic elastic 
Test Mean Max Min Std 
Test 1 0.173636 0.254494 0.158448 0.022962 
Test 2  0.208454 0.21712 0.203949 0.006284 
Test 3   0.160706 0.26426 0.153025 0.026845 
Test 4 0.12752 0.127699 0.126207 0.00049 

 
Tables 7-10 show the values of identified parameters obtained for each mechanical model, where 
mean, max, min and std indicate the values which correspond to mean, max, min and std of OF in 
previous tables. Results of identification are represented also in Figures 4-7. 

 
Table 7. Values of mechanical parameters obtained in four different test types, using the linear viscous 

mechanical model of FVD 

Mechanical Model: Linear viscous 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 

v=92mm/s v=230mm/s v=460mm/s v=460mm/s 
M(mean) - [kg] 0 0 0 0 
M(max) - [kg] 0 0 0 0 
M(min) - [kg] 0 0 0 0 
C(mean) - [kN/(mm/s)] 6.308518 9.955068 2.950677 3.599261 

C(max) - [kN/(mm/s)] 6.308518234 9.955068455 2.95067697 3.599260974 

C(min) - [kN/(mm/s)] 6.308518234 9.955068455 2.95067697 3.599260974 

C(std)-[kN/(mm/s)] 3.32E-14 0 1.93E-15 3.15E-14 
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Table 8. Values of mechanical parameters obtained in four different test types, using the fractional 
viscous mechanical model of FVD 

Mechanical Model: Fractional viscous 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 

v=92mm/s v=230mm/s v=460mm/s v=460mm/s 
M(mean) - [kg] 1.75E-14 1.45E-11 0 0 
M(max) - [kg] 8.74059E-13 7.26404E-10 0 0 
M(min) - [kg] 0 0 0 0 
M(std) - [kg] 1.24E-13 1.03E-10 0 0 

C(mean) - [kN/(mm/s) ^ α] 321.4664 101.8108 20.93332 60.02495 

C(max) - [kN/(mm/s) ^ α] 321.4663828 102.5398101 22.44238445 60.02544199 
C(min) - [kN/(mm/s) ^ α] 321.4663828 101.058709 20.75427774 60.01439848 

C(std) - [kN/(mm/s)^ α ] 1.05E-10 0.254748 0.284589 0.001661 

α(mean) 0.121515 0.456479 0.647184 0.472998 
α(max) 0.121514934 0.458176548 0.648755563 0.473033897 
α(min) 0.121514934 0.454813372 0.634798957 0.472996579 
α(std) 6.82E-14 0.00058 0.002352 5.61E-06 

 
Table 9. Values of mechanical parameters obtained in four different test types, using the fractional 

viscous –linear elastic mechanical model of FVD 

Mechanical Model: Fractional viscous- linear elastic 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 
v=92mm/s v=230mm/s v=460mm/s v=460mm/s 

M(mean) - [kg] 2.034798 1.820115 0.000221 4.88E-12 

M(max) - [kg] 2.198171813 1.904731018 0.004116766 2.43898E-10 

M(min) - [kg] 1.810732517 1.602184231 0 0 

M(std) -[kg] 0.089231 0.077191 0.000761 3.45E-11 
C(mean) - [kN/(mm/s) ^ α] 52.61233 24.70355 2.924908 3.575181 

C(max) - [kN/(mm/s) ^ α] 58.98786914 24.94752828 2.925077333 3.575181353 

C(min) - [kN/(mm/s) ^ α] 48.52647178 24.41265785 2.924898421 3.575181353 
C(std) - [kN/(mm/s) ^ α] 3.512028 0.125295 3.31E-05 8.73E-11 
α(mean) 0.510677 0.768888 1 1 
α(max) 0.52834009 0.772247572 1 1 
α(min) 0.484805623 0.766278406 1 1 
α(std) 0.014462 0.001346 0 0 
K0(mean) - [kN/mm] 70.59402 41.37259 9.3253 13.89884 
K0(max) - [kN/mm] 75.50983233 42.59740601 10.00317587 13.89884259 
K0 (min) - [kN/mm] 63.74648345 38.15868057 9.286881568 13.89884253 
K0(std) - [kN/mm] 2.749654 1.129993 0.132487 9.43E-09 
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Table 10. Values of mechanical parameters obtained in four different test types, using the fractional 

viscous – quadratic elastic mechanical model of FVD 

Mechanical Model: Fractional viscous- quadratic elastic 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 

v=92mm/s v=230mm/s v=460mm/s v=460mm/s 

M(mean) - [kg] 1.528561 1.22022 0.007768 1.00E-15 

M(max) - [kg] 2.180005282 1.921826379 0.189771629 4.99811E-14 

M(min) - [kg] 0 0 0 0 

M(std) -[kg] 0.861915 0.886947 0.032415 7.07E-15 
C(mean) - [kN/(mm/s) ^ α] 67.00402 25.31663 4.324775 3.574265 

C(max) - [kN/(mm/s) ^ α] 321.4663828 26.52458809 22.43076879 3.57518146 

C(min) - [kN/(mm/s) ^ α] 48.53968825 24.39242143 2.924898421 3.567545202 
C(std) - [kN/(mm/s) ^ α] 52.75564 0.696476 4.821501 0.002507 
α(mean) 0.480449 0.764121 0.972133 1 
α(max) 0.527975613 0.771759295 1 1 
α(min) 0.121514934 0.753137579 0.634903225 0.999999994 
α(std) 0.077104 0.005187 0.095558 7.80E-10 
K1(mean) - [kN/mm] 55.07667 32.25728 10.0696 13.94087 
K1(max) - [kN/mm] 74.9994301 42.88675282 42.85875522 14.24910384 
K1(min) - [kN/mm] 0 13.76515596 0 13.89884243 
K1(std) - [kN/mm] 26.29288 13.44016 6.269791 0.114977 
K2(mean) - [kN/mm^2] 0.007748 0 0.002121 0.010372 
K2(max) - [kN/mm^2] 0.082770673 0 0.036533794 0.086436416 
K2(min) - [kN/mm^2] 0 0 0 0 
K2 (std) - [kN/mm^2] 0.023509 0 0.008492 0.028374 
 
 
COMPARISON OF HYSTERESIS LOOPS PREDICTED BY VARIOUS MODELS 
 
In figures 3-6 the experimental hysteresis loops of the damper under investigation are compared 
with those simulated by the selected models previous described, for load application velocities V1, 
V2 , V3  and V4. More precisely, in figures 3 and 4, the relationships between displacement and 
forces are shown, whereas figures 5 and 6 illustrate the relationships between force and velocity. 
The dotted lines represent the experimental loops, while the solid lines are the theoretical loops 
obtained by using the identified parameters for each assessed model.  
From these plots one can notice that the experimental and theoretical loops have exactly the same 
relative displacement (and velocity), whereas the damper force of the theoretical loop is computed 
according to each model. The experiment loops in Figures 3 and 4 show that, under harmonic 
excitation, the hysteresis loop of the damper changes when load application velocity increases. The 
comparison between theoretical and simulated loops points out that the simulated results obtained 
by the generalized viscous – linear elastic model ((b) in figure 3) match well with the experimental 
loops under all the excitation frequencies. The agreement of this model with experimental loop is 
better with respect to the linear viscous elastic one ((a) in figure 3). On the other hand, the other 
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analyzed models lead to elliptic hysteresis loops. For this reason, these cannot match well with the 
experimental loops for all the frequencies, because the loop changes its shape from low to high 
frequencies. For example, the linear viscous model underestimates the force for all frequencies and 
especially at low frequency.   
With reference to generalized viscous – linear elastic  ((c) in figure 4) and generalized viscous – 
quadratic elastic ((d) in figure 4) models, one can observe a good match with experimental loops 
for all velocities of the load application. The third  and the fourth models predict well the force; in 
effect, one should consider another aspect, i.e. the area of the loop, which represents the amount of 
dissipated energy in  the cycle. The plots point out that  the generalized  viscous – linear elastic 
model overestimates the amount of dissipated energy for all velocities of load application. On the 
contrary, the generalized viscous – quadratic elastic  predicts  fine the dissipated energy, especially 
for high load application velocity. The same observation can be pointed out with reference to  
generalized viscous – quadratic elastic model.  
 

  

  

  

 
(a) 

 
(b) 

Figure 3. Comparison between theoretical  and experimental force- displacement 
relationship: a) Linear viscous model, b) Generalized viscous model. 
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In figures 5 and 6 the relationships between the force and the velocity are shown. The first and the 
second model don't predict absolutely the experimental force -velocity experimental loop, wearers 
the third  and the fourth model match satisfactorily the experimental loop, especially for high 
excitation frequency.  
Because the matching of the identified model with the experimental ones depends on the excitation 
frequency, it is interesting to evaluate the sensitivity of identified parameters against the frequency 
excitation. For this purpose, for each model, the mean value p  of each identified parameter p, 
evaluated from the four tests is extrapolated; the range of variation   max minp p p∆ = − and the ratio 

/p p∆  are furnished (table 11-14) to quantity the variability of mentioned parameters with respect 
to the test conditions. From numerical data in tables 11-14, one can deduce that, except for the 
linear viscous model, the parameter C exhibits the highest variability against the velocity of the 
external excitation application. Anyway, all analyzed models present almost a comparable 
variability of involved parameters.  
 

  

  

  

 
(c) 

 
(d) 

Figure 4. Comparison between theoretical and experimental force- displacement relationship: 
c) Generalized viscous- linear elastic, d) Generalized viscous- quadratic elastic. 
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(a) 

 
(b) 

Figure 5. Comparison between theoretical and experimental force- velocity relationship: a) 
Linear viscous model, b) Generalized viscous model. 

 
 
 
 

Table 11. Parameters sensitivity of Linear viscous mechanical model 
M  [kg] 0 

M∆  0 
/M M∆  0 

C  [kN/(mm/s)] 5,703381 
C∆  7,004391 
/C C∆  1,228112 
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(c) 

 
(d) 

Figure 6. Comparison between theoretical and experimental force- velocity relationship: c) 
Generalized viscous- linear elastic, d) Generalized viscous- quadratic elastic. 

 
Table 12. Parameters sensitivity of generalized viscous mechanical model 

 
C  - [kN/(mm/s) ^ α] 126,0589 

 
C∆  300,5331 

 
/C C∆  2,384069 

 
α  0,424544 

 
α∆  0,525669 

 
/α α∆  1,238197 
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Table 13: Parameters sensitivity of Generalized viscous- linear elastic mechanical model 
 

M  [kg] 0,963784 
M∆  2,03E+00 
/M M∆  2,11E+00 

C  [kN/(mm/s) ) ^ α] 20,95399 
C∆  49,68742 
/C C∆  2,371263 

α  0,819891 
α∆  0,489323 
/α α∆  0,596815 

0K  - [kN/mm] 33,79769 

0K∆  61,26872 

0 0/K K∆  1,812808 
 

Table 14:  Parameters sensitivity of Generalized  viscous- quadratic elastic 
mechanical model 

M  [kg] 0,689137 
M∆  1,53E+00 
/M M∆  2,22E+00 

C  [kN/(mm/s)  ^ α] 25,05492 
C∆  63,42976 
/C C∆  2,531628 

α  0,804176 
α∆  0,519551 
/α α∆  0,646066 

1K  - [kN/mm] 27,83611 

1K∆  45,00707 

1 1/K K∆  1,616859 

2K  - [kN/mm2] 0,00506 

2K∆  0,010372 

2 2/K K∆  2,049701 
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Conclusions 

This study concentrates on classical and generalized mechanical models for FVD. The focal 
difference between classical and generalized models is that the generalized ones incorporate 
nonlinearity in spring and viscous elements; in addition, the resistant forces in generalized models 
have fractional exponential coefficients. To evaluate the effectiveness of diverse models to catch the 
hysteretic behavior of real FVDs, diverse analytical models have been identified on the basis of 
experimental tests. The identification procedure is performed  comparing the experimental and the 
analytical values of the forces experienced by the device under investigation. The experimental 
forces have been recorded during the dynamic test and the analytical ones have been evaluated by 
imposing the time history of displacement to the candidate mechanical law. The parametric 
identification of a real FVD has been developed by Particle Swarm Optimization. The identification 
process furnishes the best mechanical parameters by minimizing the difference between analytical 
and experimental applied forces. Four experiments have been performed to obtain the dynamic 
response of the viscous damper under investigation, varying the velocity of the load application.  
The results show that the analytical results obtained by the generalized viscous – linear elastic 
model match well the experimental loops, under all the excitation frequencies, better with respect 
the linear viscous elastic one. Moreover, with reference to generalized viscous – linear elastic and 
generalized viscous – quadratic elastic it has been observed a good match with experimental loops 
for all velocities of the load application. The generalized viscous – linear elastic model and the 
generalized viscous – quadratic elastic model one predict well the force, but the generalized  
viscous – linear elastic overestimates the amount of dissipated energy for all velocities of the load 
application. On the contrary, the generalized viscous – quadratic elastic predicts well the energy 
dissipated, especially for high velocity of load application. The same observation can be made with 
reference to generalized viscous – quadratic elastic model. Moreover, the sensitivity of identified 
parameters against the frequency excitation has been investigated. Results showed that, except for 
the linear viscous model, the parameter C exhibits the highest variability against the velocity of the 
external excitation application. Anyway, all analyzed models present almost a comparable 
variability of involved parameters. 
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Abstract 

Elastic-plastic stress analysis of a Zener-Stroh crack paralleling to the interface of a 
coating-substrate system has been carried out in this work.  The sum of the Burgers 
vectors of the climb and the glide dislocations along the crack line account for the 
stress field around its blunt tip where dislocation enters, and the sharp tip where crack 
propagates. Firstly, Gauss-Chebyshev quadrature technique is applied to solve the 
governing equation of dislocation density functions constrained by load-free crack 
faces. When taking plasticity into account at both crack tips where stresses are high, 
the generalized Irwin plastic zone correction is recommended. Plastic zone size (PZS) 
for both tips and crack tip opening displacement (CTOD) for the sharp tip are then 
obtained. The effects of coating thickness, crack depth, material mismatch and 
displacement loads ratio onto PZSs and CTOD have been analyzed in detail. 

Keywords: Zener-Stroh crack, bi-material coating-substrate composite, singular 
integral equations, Gauss-Chebyshev quadrature technique, PZS, CTOD. 

Introduction 

Apart from the well-known Griffith crack, there is another mechanism of cracking as 
a result of edge dislocations in solids, firstly realized by Zener and Stroh [Stroh 
(1954); Zener (1948)] in literature. They proposed that the edge dislocations of a pile-
up that are stopped at an obstacle, such as a grain boundary (GB), could coalesce into 
a crack nucleus (Fig. 1). Some situations in which massive Zener-Stroh cracks are 
coalesced have been recognized: Noticing solids with smaller grain size will possess 
more GBs, as well as less amount of possible pile up of dislocations at each 
boundary. More GBs lead to frequent occurrences of dislocation pile-up and more 
potential sources of crack nucleuses; while less pile up of dislocations accumulated at 
each location make it harder for dislocations 
to be repelled and overcome the energetic 
barrier for diffusion across a GB. That’s why 
GBs are major sinks of dislocations as well. 
Therefore, knowing more about Zener-Stroh 
cracks’ behaviors in micro- or nano-scale 
structures is of much significance.                                        

                            Figure 1.  Zener-Stroh crack initiation 
 

Many attractive features of nanocrystalline (nc) and microcrystalline (mc) metals, 
such as high strength and hardness, and improved resistance to wear and corrosion 
damage compared to conventional metals have been fully discovered by researchers 
[Kumar et al. (2003); Zhang et al. (2005)].  However, due to the presence of high-
density ensembles of GBs as stoppers for lattice dislocations, nc becomes quite easy 
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to break, especially those super-refined into ultrasmall grain sizes [Pozdnyakov 
(2003)]. High stress concentration at GBs will facilitate crack nucleation and growing 
process, degrading the fracture toughness of the material. Moreover, bulk 
nanostructured materials usually have disappointingly low ductility. They exhibit a 
very low uniform elongation due to low work-hardening rate. Localized deformation 
(necking) under tensile stress often occurs very abruptly because of nc’s low 
dislocation accumulation capability [Zhao et al. (2006)]. In order to enhance both 
toughness and ductility of nc and mc, without sacrificing their high yield strengths, 
numerous methodologies and techniques have been suggested [Kuntz et al. (2004); 
Wang et al. (2002)]. No matter how different they look like, people do believe that 
fabrication of micro- or nano-composites is the best solution up to now in fulfilling 
practical needs where both strength and toughness are highlighted. 
 
Although literatures commence to study on the effects of nanocomposites onto 
fracture toughness as a whole body, the localized behavior, such as how certain types 
of microcrack are initiated and propagating through the composite is lack of 
information, especially with plastic zone correction at crack tips. Therefore we 
manage to start with the investigation of a Zener-Stroh crack lying in a semi-infinite 
substrate covered by a coating with finite thickness, and check around its crack tips to 
see how certain properties are improved from single-phase structures. To our best 
knowledge, most of the time, ductility of nanocomposites, though enhanced, still 
remains limited compared to their corresponding values of traditional coarse-grained 
materials. That’s why for most cases, the size of the process zone and the plastic 
region around the crack tip is sufficiently small, so the small-scale yielding 
assumption is applicable to account for crack tip plasticity [Koch (2007)]. With the 
additional concern of more complicated configuration and stress field, we proposed a 
generalized Irwin model in dealing with mode I and mode II stress intensity factors 
simultaneously. The advantage of this model is that the model itself is intuitive and 
the procedure can be easily adopted by engineers. Results include the plastic zone 
size, the crack tip opening displacement, and effective stress intensity factors of mode 
I and mode II in different scenarios. 

The generalized Irwin model of a sub-interface Zener-Stroh crack  

The plastic zone size 

Current physical problem is depicted in Fig. 2a. Stress fields ahead of the crack tips 
along x  axis can be expressed as [Anderson (2005)] 
 

  

σ xx
(tm ) =σ yy

(tm ) =
KI

(tm )

2πr
,σ xy

(tm ) =
KII

(tm )

2πr
,σ zz

(tm ) = v2 σ xx
(tm ) +σ yy

(tm )( ) =
0 Plane stress

2v2KI
(tm )

2πr
Plane strain

,m = 1,2.

⎧

⎨
⎪

⎩
⎪

     (1) 

 
Here   (t1) ,   (t2 )  stands for the blunt and sharp crack tips, respectively. The subscript 2 
refers to the substrate material. 2ν  represents its Poisson’s ratio. Due to the Von Mises 
yield criterion, yielding will occur if the equivalent stress eσ  reaches the yielding 
stress of material 2, ysσ  
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The equivalent stress intensity factors eK  are then obtained by 
 

  

Ke
(tm ) =

(KI
(tm ) )2 + 3(KII

(tm ) )2 Plane stress

1− 2v2( )2
(KI

(tm ) )2 + 3(KII
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.
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(3) 

 
From Eq. (2), the first order estimation of PZS can be expressed with respect to  

σ ys , 
 

  
ry

(tm ) =
(Ke

(tm ) )2

2πσ ys
2 .

                                                
(4) 

 
Due to stress relaxation around crack tips, it is clear that the actual plastic strain will 
be extended to a larger zone. See from Fig. 2b, the 2nd order estimation of PZS, 
known as plastic zone correction, has the following form: 
 

rp
(tm ) = (Ke

(tm ) )2

πσ ys
2 .                                                (5) 

Crack tip opening displacement 

The crack tip opening displacement of a Zener-Stroh crack under the generalized 
Irwin model is shown in Fig. 2c. Although we can see faces are completely open 
throughout the crack, propagation will be initiated only at the sharp tip due to the 
existence of tensile stress, not at the blunt tip that has been compressed and stabilized. 
As a result, only CTOD at the sharp tip will be discussed hereafter. CTOD at the 
sharp tip δ is given in literature as [Anderson (2005)] 
 

2
2

2

1 ,
2

t
y

I

r
Kκδ

µ π
+=                                              (6) 

µ2  is the shear modulus. 
 
κ 2 =

3−ν2

1+ν2

 for plane stress, and  κ 2 = 3− 4ν2  for plane 

strain. Substitute Eq. (4) into (6), with the universal relation   E2 2µ2 = 1+ν2 , we have 
 

  
δ = 4

πE2 '
⋅

KI
t2 Ke

t2

σ ys

,                                             (7) 

 

in which   E2 ' = E2  for plane stress, 
  
E2 ' =

E2

1−ν2
2  for plane strain.   E2  is the elastic 

modulus of the substrate. 
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Figure 2.  The current problem: (a) 
A Zener-Stroh crack in a coating-
substrate system subjected to a 
combined displacement load; (b) 
Generalized Irwin plastic zone 
correction: plastic zone sizes yr  

and pr  ahead of two tips; (c) The 
crack tip opening displacement δ  
at the sharp tip. 

The effective stress intensity factor 

Let’s begin with the Zener-Stroh crack of length   2a  without plastic zone correction. 
Concentrated climb and glide edge dislocations at the blunt tip would lead to an array 
of dislocations emitted along the crack line. Due to traction free condition on the 
crack faces, governing equation of combined distributed dislocation density   B(ξ )  
turns out to be 
 

( ) ( ) ( ) ( )1 2
( )2 ( ) ( ) 0,

a a a

yy xy
a a a

B
x i x d B F x d B F x d

x
ξσ σ ξ ξ ξ ξ ξ ξ ξ
ξ− − −

+ = + − + − =
−∫ ∫ ∫      x a<       (8) 

 
where ( )  denotes the complex conjugate. The kernels   F1(x −ξ )  and   F2(x −ξ )  are 
given in the literature [Lu and Lardner (1992)]. The boundary conditions are 
 

  
Bx (ξ )dξ

−a

a

∫ =
µ2

π (1+κ 2 )
bx

T , By (ξ )dξ
−a

a

∫ =
µ2

π (1+κ 2 )
by

T ,                   (9) 

 
in which   Bx (ξ )  and   

By (ξ )  are the glide and climb dislocation densities, respectively. 

 bx
T  and  

by
T  are the corresponding total sum of Burgers vector in the  x  and  y  

directions. 
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Since the dislocation density tends to go infinity in a square root singular manner, Bx  

and By  can be rewritten into Bx (s) =
1
1− s2

φx (s)  and By(s) =
1
1− s2

φy(s) , where 

φx (s)  and φy(s)  are unknown regular functions. Substituting Bx  and By  into Eqs. (8) 
and (9), four singular integral equations with Cauchy kernels are obtained. Gauss-
Chebyshev quadrature technique is then implemented to solve them numerically, thus 
Bx  and By  can be obtained [Zhuang et al. (2013)]. Mode I and mode II stress 
intensity factors at each crack tip can be derived in the following form [Weertman 
(1996)] 
 

KI
(t1 ) = −2π πaφy(−1), KI

(t2 ) = 2π πaφy(+1),

KII
(t1 ) = −2π πaφx (−1), KII

(t2 ) = 2π πaφx (+1).
                 (10) 

 
Here φx (±1)  and φy(±1)  are values of regular functions at blunt (-1) and sharp (+1) 
crack tips after the half-crack length a  has been normalized to 1. 
 
When we improve our analysis to investigate the elastic-plastic fracture behaviors of 
the Zener-Stroh crack, plastic zone correction needs to be imposed at both crack tips. 
The elongated, effective half-crack length is given  
 

aeff
(tm ) = a + ry

(tm ) = a + (Ke
(tm ) )2

2πσ ys
2 .                               (11) 

 
Remember that a Zener-Stroh crack can only propagate from the sharp tip, let’s focus 
on investigation of effective stress intensity factors at that tip. Hence, we get 
 

KI
eff = 2π πaeff

(t2 )φy '(+1), KII
eff = 2π πaeff

(t2 )φx '(+1),            (12) 
 

where φx '(+1)  and φy '(+1)  are values of regular functions at the sharp tip after the 

effective half-crack length aeff
(t2 )  has been normalized to 1. 

Numerical examples and discussion 

Some numerical examples and discussions for the plastic zone size, the crack tip 
opening displacement and effective stress intensity factors of a Zener-Stroh crack of 
length 2a  are given. The crack is embedded in a coating-substrate without external 
loading. The total sum of the Burgers vector throughout the crack by

T + ibx
T  ensures 

faces are fully open. For the ease of assessment, PZS and CTOD are normalized by: 
 

0 2 0 2
20 0 02

2 0 2 0 2
2 2 2

0 2 0 0

0 02
2

( ) 3( ) Plane stress2 2
, , ,

(1 ) (1 ) (1 2 ) ( ) 3( ) Plane strain

( ) 4
, ,

'

T T
I IIy x

I II e

I II

e I e

ysys

K Kb b
K K K

a a K K

K K K
r

E

µ µ
κ π κ π ν

δ
π σπσ

⎧ +⎪= = = ⎨
+ + − +⎪⎩

= =

  (13) 

ICCM2014, 28th-30th July 2014, Cambridge, England

156



 

  

 
where KI

0 , KII
0 , Ke

0 , r0  and δ 0  are the mode I, mode II, equivalent stress intensity 
factors, PZS and CTOD respectively for the same Zener crack that is embedded in a 
homogeneous infinite plate of material ‘2’. The dependence of the normalized plastic 
zone size rp

(tm ) r0 , normalized crack tip opening displacement δ δ 0 , and normalized 

effective stress intensity factors KI
eff KI

(t2 )  and KII
eff KII

(t2 )  on the normalized coating 
thickness h / a , normalized crack depth d / a , the Dundurs’ parameter α , as well as 
displacement loads ratio bx

T /by
T  are shown in Tables 1-2.  

Normalized PZS and normalized CTOD 

In Table 1, normalized PZS at the sharp ( 0/spr r ) and blunt tip ( 0/btr r ), and 
normalized CTOD ( 0/δ δ  ) at the sharp tip of the Zener crack are depicted in 
different scenarios. For the case of bx

T = 0 , we may find the same α  leads to a pair of 
identical plastic zones around two tips. In the most special situation 0α = , if coating 
thickness h  is very large compared to half-crack length a  (  h = 10a ), it is verified 
from second column that values of pr  and δ  converge to their corresponding values 

0r  and 0δ  (they are called “reference values” in the context), no matter how far the 
crack is located beneath the interface.   
 
Comparing figures in second and third columns, we observe that with a decreasing 
coating thickness, PZS at both tips, and CTOD at the sharp tip will be decreased. And 
the trend becomes more significant in plane stress than plane strain condition. This 
observation tells us a fact that increasing the volume fraction of added material (the 
coating) will enhance the ductility of the original structure (the substrate) in manner 
of magnifying the plastic deformation region around the crack tips.  
 
Effects of the crack depth d  can be viewed from third column ( 2h a= ), where 
different material mismatches have different reactions from a decreased crack depth. 
Softer coatings (α < 0 ) shrink PZS and CTOD values lower than the reference while 
stiffer coatings (α > 0 ) result in higher-than-reference plasticity quantities. This 
indicates a fact that when the crack gets nearer to the interface, it becomes easier to 
propagate with a softer coating covered on top, but stabilized under the protection of 
a stiffer coating. 
 
Last two columns show continuous influence of displacement loads ratio bx

T by
T  onto 

PZS and CTOD. Supposing that crack depth d  can be either 0.5a  or 5a . If x dir−  
displacement load gradually increases from 0.1× by

T  to by
T , normalized rp  and δ  

will be increased without exceptions. As long as the crack is far away from the 
interface (for example d / a = 5 ), crack tip parameters become converge even within 
different material mismatches. But when the crack locates nearer, a thorough 
examination at different material mismatches tells that: a larger α  always results in 
higher sensitivities of normalized pr  and δ  along with the changing /T T

x yb b . Besides, 
this effect onto plane strain cases is more significant than it does on plane stress 
cases.  
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The effective stress intensity factors KI
eff  and KII

eff  

Due to the inclusion of the 1st order plastic zone size, we can see from Table 2, 
generally speaking, KI

eff KI  and KII
eff KII  are lower than 1. However the scale of 

decrement depends on material mismatches, crack depths and many more. One can 
see that KI

eff KI  and KII
eff KII  deduce more when the coating is stiffer (α > 0 ), 

meaning that the correction of KI  and KII  is more necessary if the substrate is coated 
with stiffer material. 
 
Moreover, when α < 0 , crack with greater depth shows smaller values of KI

eff KI  
and eff

II IIK K . Similar trends can be seen when α > 0  and crack gets closer to the 
interface. This illustrates that cases of shallower crack under stiffer coating, or deeper 
crack under softer coating, are in greater need of correction in terms of stress intensity 
factors. It is also not difficult to find KI

eff  and KII
eff of the sharp tip of a Zener crack 

under plane stress differ more from KI  and KII  respectively than the results shown 
for plane strain condition. 
 

Table 2.  Effective stress intensity factors KI
eff  and KII

eff , with 0β = , 2h a= , 
/ 0.5T T

x yb b =  

/d a   0.1 0.2 0.3 0.4 0.5 0.6 

0.4α = −  
 

 

KI
eff

KI

 
Plane stress 0.99827 0.99822 0.99818 0.99815 0.99812 0.99808 

Plane strain 0.99857 0.99853 0.99851 0.99850 0.99848 0.99847 

 

KII
eff

KII

 
Plane stress 0.99783 0.99777 0.99772 0.99767 0.99763 0.99758 

Plane strain 0.99820 0.99816 0.99813 0.99811 0.99809 0.99807 

0.4α =   

KI
eff

KI

 
Plane stress 0.99682 0.99694 0.99704 0.99713 0.99720 0.99727 

Plane strain 0.99791 0.99802 0.99810 0.99818 0.99824 0.99830 

 

KII
eff

KII

 
Plane stress 0.99625 0.99631 0.99637 0.99642 0.99648 0.99653 

Plane strain 0.99753 0.99761 0.99767 0.99773 0.99779 0.99784 

Conclusions 

In the present work, plastic zone size, crack tip opening displacement and effective 
stress intensity factors for a sub-interface Zener-Stroh crack in a coating-substrate 
system under combined displacement load bT = by

T + ibx
T  are investigated by a 

generalized Irwin model. In the numerical examples, we specifically describe the 
dependence of normalized plastic zone size for sharp tip rsp / r0 , for blunt tip rbt / r0 , 
normalized crack tip opening displacement for sharp tip δ /δ 0 , as well as normalized 
effective stress intensity factors for sharp tip KI

eff /KI , KII
eff /KII  on normalized crack 

depth d / a , normalized coating thickness h / a , Dundurs’ parameter α , and 
displacement loads ratio bx

T /by
T . According to the results obtained and discussed, 

following conclusions can be made: 
1. Either the Zener-Stroh crack exists in an infinite bi-material composite 

without mismatches (α = β = 0 ), or it locates far from the interface (d / a > 5 ) 
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in a coating-substrate system with mismatches (arbitrary α  and β ), the 
current physical problem reduces to the corresponding problem of the same 
crack in a homogeneous material. 

2. Normalized PZS and normalized CTOD will be increased with the increasing 
coating thickness. When coating thickness is fixed, a Zener crack moves 
nearer to the interface will experience higher PZS and CTOD values if the 
substrate is coated with stiffer material, but lower PZS and CTOD if it has a 
softer coating instead. 

3. These are the circumstances shall we need to produce the effective stress 
intensity factors: 1) if the coating is softer than the substrate and the crack is 
relatively deep beneath the interface; 2) if the coating is stiffer than the 
substrate and the crack locates near the interface; 3) choose substrate with 
stiffer-coating system to evaluate when the other conditions are the same; 4) 
choose plane stress structure to evaluate when the other conditions are the 
same. 

4. When the coating thickness and crack depth are fixed, with the increasing 
displacement loads ratio bx

T /by
T , normalized PZS and normalized CTOD 

grows more rapidly and around higher values if the substrate is coated with 
stiffer materials, especially in plane strain condition. 
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Abstract 

In the present work, based on the computational model of the eigenstrain boundary integral 

equations (BIE) as an inverse problem, the algorithm is investigated to determine the circular weld 

bead induced residual stresses, where the eigenstrain is considered to be the origin of residual 

stresses in structures. In order to reduce the number of unknowns and to consider the stability of 

inverse problem, the eigenstrains are approximated in terms of low-order polynomials in the local 

area, which is divided by cells, around welded zones according to the features of welding. The 

corresponding domain integrals with polynomial eigenstrains in each cell are transformed into the 

boundary integrals to preserve the favorable features of the boundary-only discretization in the 

numerical solutions. The sensitivity matrix in the inverse approach for evaluating the eigenstrain 

fields represented by the coefficients of polynomials is constructed with the aid of measured 

stresses in the domain after welding over a few selected measuring points. In the numerical 

examples, the residual stresses of circular weld beads in both the finite and infinite plates are 

evaluated with the proposed procedure, verifying the feasibility and effectiveness of the present 

algorithm. 

Keywords:  residual stress, circular weld bead, eigenstrain, boundary integral equation, inverse 

approach 

Introduction 

The circular weld beads are used quite frequently in the welded structures as well as in the repair 
weld and in the test pieces for evaluating the effects of stress corrosion cracks, so that the residual 
stress fields such formed become one of the primary concerns of engineers and researchers in this 
field. As the residual stresses have a significant influence on the performance of related components 
in service [Masubuchi (1980)], when such a component is in service, the associated residual stresses 
may superimpose on the applied stress to influence the deformation behavior of components, which 
induce distortion during further machining and cause unexpected failure or reduce the service time 
of components. Since the nature of residual stress is in self-equilibrium, however, its determination 
is not an easy task, especially with the mechanical techniques [Prime (1999)]. 
 
There are a great number of techniques to detect the residual stresses in a solid which can be 
classified as three major groups: physical, mechanical and numerical techniques. In the physical 
techniques, for example, the variation of inter-crystal distances can be detected by X-ray diffraction 
[Korsunsky et al (2006)] or by sound speed changes in acoustoelasticity or by magnetic techniques, 
most of them depending on certain material properties. In contrast, in the mechanical techniques, 
since the direct detection is impossible, parts of the material have to be removed from the solid to 
disturb the stress balance while the response of the specimen is measured in terms of either strains 
or shape changes at some other locations on the surface of the body. The blind-hole drilling may be 
the most commonly used residual stress measuring method in practice and consists essentially of 
drilling a small blind-hole on the surface of solid and measuring the strain field induced by material 
removal, usually by means of electrical resistance strain gauges. In addition to the use of strain 

ICCM2014, 28th-30th July 2014, Cambridge, England

161



 

 

gauges, the strain fields can also be measured by photo means such as the electronic speckle pattern 
interferometer [Suterio et al (2006)] or the digital image correlation in recent advances. In addition 
to the cost of mechanical methods, all of them are more or less destructive to the measured 
component by material removals due to the nature of self-balancing. It is evident that the 
mechanical techniques always provide a limited level of detail, due to the finite number of discrete 
data points that restricts the possibility of reconstructing full-field stress distributions. 
 
Numerical methods present a supplementary but effective means for determining the residual 
stresses. However, the detailed modeling of the process of residual stress generation requires the 
knowledge of numerical models for analyzing sophisticated coupled microstructural and thermo-
mechanical behaviors, which rely deeply on the understanding of constitutive laws and material 
parameters. As is widely accepted, residual stresses in components at service are caused by 
incompatible internal permanent strains, named originally as the inherent strains [Ueda et al (1986); 
Ma et al (1998a)] and lately as the eigenstrains [Jun et al (2010)], induced by any inhomogeneous 
inelastic deformation, temperature gradients or phase transformations during manufacturing and 
processing of the components. By making use of the information observed from the experiment at a 
number of selected points, the unknown eigenstrain distributions can be retrieved using the finite 
element method (FEM) [Lee et al] or the boundary element method (BEM) [Cao et al (2002)], 
following the mathematical framework of the inverse problem of eigenstrain theory to obtain the 
whole field of residual stresses. 
 
In spite of the inelastic origin of eigenstrains, the inherent state of residual stress fields falls really 
into elastic regime so that the BEM would be the most efficient numerical means to deal with the 
residual stress problems [Qian et al (2004; 2005)]. Based on the concept of eigenstrain, a 
straightforward computational model as an inverse approach was proposed with the eigenstrain 
formulations of boundary integral equations to determine the welding residual stresses [Ma et al 
(2012)]. In the present work, the eigenstrains are approximately expressed in terms of low-order 
polynomials in the local area around the heat affected zones of circular weld beads, which is 
divided by cells, according to the features of welding. The corresponding domain integrals with 
polynomial eigenstrains are transformed into the boundary integrals [Ma et al (1998b)] so that the 
attractive features of the boundary-only discretization are reserved in the process of numerical 
solutions using the boundary point method (BPM) [Ma et al (2010)]. The sensitivity matrix in the 
inverse approach for evaluating the eigenstrain fields represented by the coefficients of polynomials 
is constructed with the aid of measured stresses in the domain after welding over a few selected 
measuring points. In the numerical examples, the residual stresses of circular weld beads in both the 
finite and infinite plates are evaluated with the proposed procedure, verifying the feasibility and 
effectiveness of the present algorithm. 

Computational Model 

Eigenstrain Boundary Integral Equations 

The displacements and the stresses of a weld plate, Ω, in the static state without body force can be 
described by the eigenstrain boundary integral equations as follows [Ma et al (2012)]: 
 

( ) ( ) ( ) ( )* ,i j ijCu p u q p q d qτ
Γ

+ Γ∫ ( ) ( ) ( )* ,j ijq u p q d qτ
Γ

= Γ∫ ( ) ( ) ( )0 * ,
I

jk ijkq p q d qε σ
Ω

+ Ω∫        (1) 

( ) ( ) ( ) ( )* ,ij k ijkC p q u p q d qσ τ
Γ

= Γ∫ ( ) ( ) ( )* ,k ijku q p q d qτ
Γ

− Γ∫  

( ) ( ) ( ) ( )0 * 0 *,
I

kl ijkl kl ijklq p q d q p O
ε

ε σ ε
Ω −Ω

+ Ω +∫                                        (2) 

where ΩI (ΩI∈Ω) represents the local area having unknown eigenstrains, ε
0

ij, around the weld bead 
in Ω, since it is generally true that the position of the local area is known a priori in welding. p and 
q are the source and field points, u

*
ij, τ

*
ij, and σ

*
ij represent the fundamental solutions for 

displacement, traction and stress, respectively. u
*
ijk, τ

*
ijk and σ

*
ijk are the related derivatives. C is the 

conventional boundary shape coefficient, C=1/2 if p is on the smooth boundary Γ. Ωε is a small 
region of radius ε around point p when p∈ΩI, and O

*
ijkl is the corresponding free term resulted from 

the domain integral in (2) which can be derived using the conventional limiting techniques with a 
small ε region since the kernel of this domain integral is strong singular. A square plate 2w╳2w with 
a circular weld bead is shown in Fig. 1a. 
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(a)                                        (b)                                      (c) 

(a) The weld bead and the eigenstrain zone ΩI; (b) One of the cells and the local coordinate for 
the eigenstrain zone; (c) The position of measuring points 

Figure 1. The plate with a circular weld bead 

Eigenstrain Representation 

It is obvious from (1) and (2) that once the distributions of the eigenstrains ε
0

ij in the domain 
integrals are known, the unknown boundary displacements can be solved using (1) and the total 
fields of stresses can be computed using (2). Considering the features of thermal cycles of welding, 
the distributions of eigenstrains can be approximately expressed in terms of low-order polynomials 
in the local area ΩI: 

( ) ( )0

1 2
0, 0

m n M
mn m n

ij ij
m n

x q x qε α
+ =

= =

= ∑                                                            (3) 

where M is the number of terms of polynomials and αij
mn

 the coefficients to be identified. m and n 
are integers. In fusion welding, the eigenstrain distributions can be expected to be smooth since the 
temperature field in welding can be expressed by smooth functions especially during the cooling 
stage. Owing to the similar reason, the eiegenstrain can be assumed to be zero at the boundary of 
the eiegenstrain domain. The polynomial representations (3) for eigenstrain are inherently smooth, 
giving a smooth constraint on the eigenstrain field. The domain integrals with polynomial 
eigenstrains in (1) and (2) can be transformed into the boundary integrals by introducing the two-
point variables 

( ) ( )i i ix x q x p= −                                                                 (4) 

With this definition, the domain integrals with certain term of polynomials in (1) and (2), 
respectively, can be expressed in the form of the two-point polynomials as follows: 
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where m, n, s and t are all integers. xi, xi(p) and xi(q) are defined in (4). Then the domain integrals at 
the right hand sides in (5) and (6) with eigenstrains in the form of two-point polynomials can be 
transformed into the boundary integrals [Ma et al (1998b)], respectively. In this way, the favorable 
features of the boundary-only discretization are reserved. However, considering the difficulty of 
representing eigenstrains with low-order polynomials in a ring area formed by the circular weld 
bead as shown in Fig. 1a and for the purpose of reducing the number of unknown coefficients, the 
eigenstrain zone is divided into cells in the present work, one of them being shown in Fig. 1b. The 
low-order polynomials in each cell ΩK are represented using the local polar coordinates so that all 
of the polynomials in the cells are the same. That is, the polynomials in each cell have the same 
number of terms with the same coefficients owing to the circular weld bead. The domain integrals 
in (1) and (2) become 
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respectively, where NI is the number of cells divided and the eigenstrains and the kernels in each ΩK 

are also computed in the local polar coordinates. 

Inverse Approach 

In the inverse approach, the information from experiments is required to identify the unknown 
coefficients αij

mn
 in (3), the stresses measured after welding in the domain at a number of selected 

measuring points, x
(k)

 
( )( ) ( )0k k

ij ijxσ σ= ,                 x
(k)
∈Ω, k=1,2,…, MS                  (9) 

where σij
0(k)

 is the measured stresses and MS the number of measuring points of stresses. Since the 
residual stresses of weld plates have three components, σ

0
11, σ

0
12 and σ

0
22, at one point for the two-

dimensional problem, the number of known information from experiments is 3MS. By employing 
the BPM [Ma et al (2010)] and noticed the traction-free boundary conditions in the residual stress 
problem, the displacement equation (1) combined with (7) can be written after discretization in 
matrix from as 

=Hu Bα ,    
1

IN
K K

K =

= ∑B T B                                                      (10) 

where u is the vector of displacements at all the N nodal points on the boundary Γ, α the vector of 
unknown coefficients, and H and B the corresponding coefficient matrices. Similarly, the discrete 
stress equation (2) combined with (8) can be used to compute the stresses at selected points as 
follows 

( )1−
= + = =σ Fu Dα FH B + D α Sα ,    

1

IN
K K

K
σ

=

= ∑D T D                                 (11) 

where S is the so-called sensitivity matrix, F and D the corresponding coefficient matrices. The 
transformation matrices in (10) and (11) are defined respectively as 
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T ,     

2 2
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B
K
 and D

K
 are formed from the kernels of domain integrals in (7) and (8), respectively, which are 

computed by line integrals after the transformations using (5) and (6). The unknown coefficients of 
eigenstrains α can be obtained using the least square method by minimizing the object function, Φ, 
defined as follows 

2
01

2
= −Φ Sα σ                                                                  (13) 

where σ
0
 represents the vector of measured stresses. The unknown eigenstrain coefficients can be 

computed by the minimizing condition of (13) as S
T
(Sα-σ

0
)=0 so that to obtain 

( )
1

T T 0
−

=α S S S σ                                                                  (14) 

Numerical Examples 

Conditions of Computation 

Both the finite and infinite plates with circular weld bead are considered in the numerical examples, 
corresponding to the cases of test pieces and repair welds, respectively. The finite plate is shown in 
Fig. 1a with the width of localized area ΩI being set as wI=0.3w expressed in dashed lines where the 
eigenstrains are distributed. This width is somewhat wider than that of the heat affected zone (HAZ) 
according to the parameters of the material and welding, since the HAZ refers as to the narrow band 
with changes in microstructures of the material near fusion line while the eigenstrain domain 
corresponds to the zone undergoing plastic tensions in cooling stage following compressive 
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deformations in heating stage in the welding thermal cycle. The boundary Γ is discretized by N=100 
nodes and the eigenstrain zone ΩI is divided equally by NI=40 cells, one of them as shown in Fig. 
1b, in the application of the BPM. 
 
Only the normal components of eigenstrains in each cell are considered in the analysis and are 
approximately expressed in terms of low-order polynomials in the polar coordinate as follows 

( )0 2/ 4 0.78rr Sr rε ε = − +                                                             (15) 

( )0 2/ 1 0.44tt Sr rε ε = − +                                                              (16) 

where εS stands for the material constant, or the yield strain, defined as the strain when the Von 
Mises stress reaches the yield strength, σS, of the material. The eigenstrains given in (15) and (16) 
satisfy approximately both the zero condition at the border and the maximum value at the center of 
ΩI following the features of welding, which are used to compute the control values of stresses such 
as the measured stresses. The positions for the stress measuring points are shown in Fig. 1c, where 
the idealized measuring stresses are computed using the BPM with the values of eigenstrains in (15) 
and (16). With these idealized data, the residual stress can be reconstructed after solving the 
eigenstrains using the inverse approach stated above. However, as there are always errors in the 
experimental measurements, 10% random noises are introduced into the idealized data as follows 

( )0 01 0.1noise ran= ±σ σ                                                             (17) 

where ran represents the random function varying between 0 and 1. With these noisy data, the 
residual stress can also be reconstructed after solving the eigenstrains using the inverse approach. 
For the infinite plates, the solution procedure and all parameters are as the same with those of the 
finite plates except that there is no outer boundary Γ so that the boundary integrals in (1) and (2) 
vanish. 

Computed Results 

In all of the following figures, the stress distributions are shown along the x1 axis. The computed 
stresses with the inverse approaches are computed using noisy data of three measuring points. The 
computed results of the infinite and the finite plates are presented in Figs. 2 and 3, respectively, 
showing the feasibility and effectiveness of the present algorithm. 
 

   
(a) r0/w=0.3                             (b) r0/w=0.5                               (c) r0/w=0.8 

Figure 2. The residual stress distributions in infinite plates 
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(a) r0/w=0.3                             (b) r0/w=0.5                               (c) r0/w=0.8 

Figure 3. The residual stress distributions in finite plates 
 
It can be seen from Figs. 2 and 3 that there are equally biaxial stress fields (σ11=σ22) inside the 
circular weld beads. The values of these biaxial stresses decrease with the increase of the radius 
r0/w, formed by the constrained shrinkages of the welding plastic zone during cooling stages in both 
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the transverse and the longitudinal directions, or radius and circular directions respectively in the 
case of circular weld beads. In general, the transverse shrinkage plays the principal role since the 
gratitude of it is greater than that of the longitudinal shrinkage so that there are generally the equally 
tensile biaxial stresses inside the circular weld beads. However, the opposite situation can occur as 
shown in Fig. 3c that the equally compress biaxial stresses exist when r0/w is relatively large in the 
finite plate, since the stress field is formed primarily by the longitudinal shrinkage just like an iron 
hoop fasten the plate owing to almost the null outer constraint in this case. The longitudinal stresses 
(σ22) reach the peak values at the weld beads owing to the longitudinal shrinkage. 
 

 

M
a
x
. 
e
rr
o
rs

 o
f 

1
1
/

S

 
3 4 5 6 7

0.00

0.02

0.04

0.06

0.08

Number of measuring points

r
0
/w =0.5 (idealized)

r
0
/w =0.5 (noise introduced)

r
0
/w =0.8 (idealized)

r
0
/w =0.8 (noise introduced)

Infinite plate
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Figure 4. The errors in infinite plates 

 

   
(a) RMS errors                 (b) Max. errors of σ11          (c) Max. errors of σ22 

Figure 5. The errors in finite plates 
 
The errors using the idealized and the noise introduced data for the infinite and the finite plates are 
given in Figs. 4 and 5, respectively, showing that the inverse approach is not too sensitive to the 
noises in the stress measurement. The residual stress fields can be reconstructed with the proposed 
approach by using only a small number of selected measuring points, for example, three pointes 1, 2, 
and 3 as shown in Fig. 1c, with which the computed stresses are drawn in Fig. 2. The computed 
results verify the feasibility and effectiveness of the present algorithm. 

Conclusions 

Using the computational model based on the eigenstrain boundary integral equations (BIE), an 
algorithm of inverse problem is investigated to determine the circular weld bead induced residual 
stresses, where the eigenstrain is considered to be the origin of residual stresses in structures. In 
order to reduce the number of unknowns and to consider the stability of inverse problem, the 
eigenstrains are approximated by low-order polynomials in the local area, divided into cells, around 
welded zones according to the features of welding. The sensitivity matrix in the inverse approach 
for evaluating the eigenstrain fields represented by the coefficients of polynomials is constructed 
with the aid of measured stresses in the domain after welding over a few selected measuring points. 
The residual stresses of circular weld beads in both the finite and infinite plates are evaluated in the 
numerical examples, showing that the proposed inverse approach is not too sensitive to the noises in 
the stress measurement, verifying the feasibility and effectiveness of the proposed approach. 
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Abstract 

In order to assure structural integrity for operating welded structures, it is necessary to evaluate 
crack growth rate and crack propagation direction for each observed crack nondestructively. Here, 
three dimensional welding residual stresses must be evaluated to predict crack propagation. Today, 
X-ray diffraction is used and the ultrasonic method has been proposed as nondestructive method to 
measure residual stresses. However, it is impossible to determine residual stress distributions in the 
thickness direction. Although residual stresses through a depth of several tens of millimeters can be 
evaluated nondestructively by neutron diffraction, it cannot be used as an on-site measurement 
technique. It is because neutron diffraction is available only in special irradiation facilities. Author 
pays attention to the bead flush method based on the eigen-strain methodology. In this method, 
three-dimensional welding residual stresses are calculated by an elastic FEM (Finite Element 
Method) analysis from eigen-strains which are evaluated by an inverse analysis from released 
strains by strain gauges in removal of reinforcement of weld. Here, the removal of the excess metal 
can be regarded as nondestructive treatment essentially because toe of weld which may become 
crack starters can be eliminated. The effectiveness of the method has been proved for welded plates 
and pipes even with relatively lower bead height. In actual measurements, stress evaluation 
accuracy becomes poorer because measured values of strain gauges are affected by processing 
strains on the machined surface. In the previous studies, the author has developed the bead flush 
method that is free from the influence of the affecting strains by using residual strains on surface by 
X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively 
poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation 
accuracy of residual stresses in this method is formulated, and it is shown numerically that inner 
welding residual stresses can be estimated accurately from the measured residual strains by X-ray 
diffraction. 

Keywords:  Eigenstrain, Weld, Residual stress, X-ray diffraction, Bead flush method, Three-
dimensional evaluation, 

Introduction 

In order to assess structural integrity for operating welded structures, it is important to evaluate 
three-dimensional welding residual stresses non-destructively to predict crack propagating for 
observed cracks in in-service inspection. Today, there are some techniques to estimate three-
dimensional residual stresses such as neutron diffraction methods [Suzuki and Akita (2009)], 
welding simulation via thermal elastic-plastic FEM analysis [Yaghi et al. (2013)] and techniques 
based on the eigen-strain methodology [Mura (1978)]. However, neutron diffraction is unavailable 
to use as an on-site measurement application because it can be used only in special irradiation 
facilities.  Furthermore, measured stresses from diffraction methods including X-ray diffraction and 
high energy X-ray diffraction techniques cannot be input into the FEM model that has been used in 
assessment of structural integrity at the time of the design. It is because all the 6 stress components 
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that satisfy the self-equilibrium condition cannot be measured. Also, it is difficult to predict crack 
propagation via FEM [Kikuchi et al. (2009)] from estimated residual stresses by diffraction methods. 
Although welding residual stresses can be estimated non-destructively by using welding simulation, 
estimation accuracy may be poorer due to the difficulty of determining the parameters depended on 
temperature. To make matters worse, piece-to-piece variations have to be neglected in qualitative 
evaluation via thermal elastic-plastic FEM analysis. On the other hand, three-dimensional residual 
stress distribution can be estimated quantitatively by FEM analysis by using the eigen-strain 
methodology. For example, the cutting method [Ueda et al. (1975); Ueda et al. (1979)] based on the 
eigen-strain methodology has been proposed. In this method, residual stresses are determined by an 
elastic FEM analysis from eigen-strains which are calculated by an inverse analysis [Kubo (1992)] 
from released strains through sectioning. Here, eigen-strains are defined as a sum of inelastic strains 
[Mura (1978)] and can be regarded as the cause of residual stresses and elastic strains. Note that 
they are not always equal to inherent strains which are a total of physical inelastic strains such as 
thermal, plastic and transformation strains [Masuda and Nakamura (2010a; 2010b)]. Although 
structures have to be wasted by the cutting method, welding residual stresses can be evaluated non-
destructively by the bead flush method [Nakamura et al. (1995)]. In this method, eigen-strains are 
estimated from released strains in removal of reinforcement of weld. Since toe of weld may become 
crack starters, the removal of the excess weld metal can be regarded as a preferable treatment. The 
effectiveness of this method has been proved numerically for welded plates [Kumagai et al. (2000)]. 
In addition, statistical range of residual stress distributions has been accumulated successfully for 
welded pipes even with lower bead height [Ogawa and Nakamura (2011a; 2011b)]. In actual 
measurement, however, processing strains are created after machining the reinforcement of the weld. 
In this case, stress evaluation accuracy becomes poorer because measured values of strain gauges 
are affected by the processing strains. In order to solve the difficulties, the bead flush method has 
been developed to be free from the influence of the affecting strains [Ogawa (2013)]. In this method, 
not only welding eigen-strains but also processing strains are estimated non-destructively from 
residual strains on surface by X-ray diffraction instead of released strains by strain gauges (Fig. 1). 
However, estimation accuracy in this method is not higher due to relatively poor measurement 
accuracy of X-ray diffraction. 
In this study, numerical formula to be able to use the measured residual strains on the weld metal 
after the removal as additional source of information is shown. And, numerical simulation is carried 
out to prove the effectiveness in this method. 
 
 
 
 
 
 
 
 
 

Figure 1. Procedures in the advanced bead flush method 

Analytical Procedures 

Formulation of the Bead Flush Method 

In general, the elastic strains {εεεεe} of the concerned elements and the eigen-strains {εεεεe
*} can be 

related as: 

    }]{[}{ *
eee εRε =      (1) 
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where [Re] is an elastic response matrix. And, the i-th column of it can be obtained by imposing an 
unit eigen-strain vector to an i-th component of {εεεεe

*} as shown below: 

    T*
e

*
eunit }0,,1,,0{}{ LL == ii εε      (2) 

Therefore, elastic strains before and after removals of excess metal can be described as follows: 

    }]{[}{ *
ebebeb εRε =      (3) 

    }]{[}{ *
eaeaea εRε =      (4) 

where the subscripts b and a denote the before and after removals, respectively. Since it is based on 
the assumption that eigen-strains are constant through machining, the released strain vectors {∆ε∆ε∆ε∆εe} 
are given by the following equations: 

    }{}{}{ ebeae εε∆ε −=       

                       = }]){[]([ *
ba εRR −       

        = }]{[ *
εR      (5) 

where [R]=[Ra]-[Rb] and {εεεε*}={εεεεb
*}={εεεεa

*}. In actual measurements, measured released stains by 
strain gauges include measurement errors {∆ε∆ε∆ε∆εerr}. In this case, measured released strain vector 
{∆ε∆ε∆ε∆εem} is written as follows: 

   }{}]{[}{ err
*

em ∆εεR∆ε +=      (6) 

The most probable values of estimated eigen-strain vector {εεεεest
*} is described by the least square 

method as follows: 

   }{][}{ em
*
est ∆εRε

+=      (7) 

where [R]+ is the Moore and Penrose generalized inverse matrix [Kubo (1992)] of [R], and it is 
written as: 

   TTTT ][])[]][[]]([[][][ RRRRRRRR −+ =      (8) 

Improvement of the Bead Flush Method 

In the conventional bead flush method, excess metal has to be eliminated without affecting strains. 
Once processing strains {εεεεp

*} are created on a sample, measurement accuracy of release stains is 
worsened as shown below: 

   }]{[}{}]{[}{ *
paerr

*
em εR∆εεR∆ε ++=      (9) 

In order to improve this problem, the author has proposed the following equations instead of Eq. (7) 
[Ogawa (2013)].  

   T
eamebmab

T*
p_est

*
est }{][}{ εεRεε

+=      (10) 

   







=

aa

b
ab ][

RR

0R
R      (11) 

where {εεεεebm} and {εεεεeam} are measured residual strains before and after removals, respectively. And, 
these two residual strains can be measured non-destructively by X-ray diffraction. Therefore, it is 
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possible to obtain estimated values of both welding eigen-strains {εεεεest
*} and processing strains 

{εεεεp_est
*} non-destructively by using Eqs. (10) and (11). 

Additionally, in this study, measured strains on the weld metal after machined {εεεεwam} are added to 
Eqs. (10) and (11) to increase measurement information as shown below: 

   T
wameamebmabw

T*
p_est

*
est }{][}{ εεεRεε

+=      (12) 

   

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






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





=

aa

aa

b

abw ][
RR

RR

0R

R      (13) 

Note that residual strains on surface can be obtained non-destructively by the EBSD (electron 
backscatter diffraction patterns) method [Wilkinson (1996)] instead of X-ray diffraction. 

Numerical Simulation 

In this study, numerical simulation in the bead flush method based on the eigen-strain method is 
conducted to show the effectiveness of this method. 

FEM Model 

As shown in Fig. 2, a half of a butt-welded plate without geometrical restrictions at both ends was 
used as FEM model. The plate length, thickness and width are 120mm, 10mm and 60mm, 
respectively. The bead width is 8mm and its height is 0.3mm. Solid element that has 8 nodes and 3 
degrees of freedom were applied. The total nodes and elements of the model are 3349 and 2544, 
respectively. Young's modulus and Poisson's ratio were set at 200GPa and 0.265, respectively. A 
commercial software, ANSYS (CYBERNET SYSTEMS CO., LTD., Japan), was used here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. FEM model [Ogawa (2013)] 

Exact Distribution 

Exact eigen-strain distributions assumed in this simulation were quoted from the research report by 
Kumagai et al. [Kumagai et al. (1999)] in which eigen-strains were determined on the basis of the 
experimental results in the cutting method (Fig. 3). Here, the exact eigen-strains are distributed 
uniformly in the welding and thickness directions. Three dimensional exact residual stress 
distributions can be calculated from exact eigen-strains by elastic FEM analysis. For example, exact 
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stresses at the middle in the welding line on the bottom surface (x=30mm and z=0mm) are seen in 
Fig. 4. Here, x, y and z directions are the welding, perpendicular the welding and thickness 
directions, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Procedure to Evaluate Estimation Accuracy 

First, exact residual strain distributions for the whole structure are calculated by inputting exact 
eigen-strains in the FEM model as initial strains. Second, measured residual strains in the x and y 
directions at measurement points are obtained by adding measurement errors to exact residual 
strains. Here, measurement points on the top surface (z=10mm) on the base metal and weld metal 
are shown in Fig. 5 and Fig. 6, respectively. Third, estimated eigen-strains were computed by an 
inverse analysis. And, residual stresses on the bottom surface (z=0mm) are calculated to compare 
exact residual stresses. In this analysis, -500µ eigen-strains in the x direction were added evenly on 
the machined surface as processing strains. It is based on the assumption that micro cutter was used 
to remove the reinforcement of the weld [Chen et al. (1996)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Measurement points on the base metal 

Stabilization of Solution in Inverse Analysis 

In order to reduce unknown parameters in this inverse analysis, welding eigen-strain distributions in 
each direction were expressed by the four logistic functions [Kumagai et al. (1999)] as:  
 
 

Figure 3. Exact eigen-strain distributions 
[Ogawa (2013)] 

Figure 4. Exact residual stress distributions 
(x=30mm on the bottom surface) [Ogawa (2013)] 
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Figure 6. Measurement points on the weld metal 
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   0.5−=p , 60.01 =q , 40.02 =q , 30.03 =q , 25.04 =q      (15) 

where the subscript s denotes x, y and z directions, respectively. Constant values p and qi were 
determined in consideration of that welding eigen-strains were distributed less than 40mm in the y 
direction [Ueda et al. (1993)]. {asi} is a vector of unknown parameters. In addition, it was assumed 
that eigen-strains were constant in the welding and the thickness directions. Therefore, total number 
of unknown parameters of welding eigen-strains becomes twelve (4 functions × 3 directions). 
Furthermore, processing strains on the machined surface were considered as constant in the welding 
direction. The total number of unknown parameter becomes fifteen (5 points in each direction). 
In order to stabilize solutions, the artificial noise method was used [Ogawa and Nakamura (2011b)]. 
When [Rabw] in Eq. (12) is an N×M matrix with rank n, it can be decomposed as follows: 

   T
abw ][]][[][ VBUR −+ =      (16) 
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where [U], [B] and [V]T are N×N, N×M and M×M matrixes, respectively. The values of µj (1≦j≦n) 
are termed as singular values of [B]. Solutions become sensitive if singular values are smaller. 
In the artificial noise method, [Bn] −  matrix is replaced by [Bn_γ] −  as shown below: 

   T2
_ ][])[]([][ BIBB −− += γγn      (18) 
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where [I] is unit matrix. Solutions can be stabilized by increasing the real parameter γ. 

Results and Discussion 

Figure 7 shows estimation accuracy of welding residual stresses on the bottom surface from residual 
strains on the base metal (Fig. 5) and on the base and weld metals (Figs. 5 and 6). In this analysis, it 
was assumed that observation error follows the normal distribution whose average was 0 and 
standard deviation was set as 500µ because measurement accuracy of X-ray diffraction for welded 
joints was about ±100MPa [Kurimura and Akiniwa (2009)]. As we can see in Fig. 7, welding 
residual stresses cannot be estimated accurately from residual strains just on base metal. On the 
other hand, stress evaluation accuracy can be improved successfully when measured strains on the 
weld metal are used as additional source of information. Here, the L-curve method [Hansen (1992)] 
was used to determine the value of the artificial noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
              (a) Residual stresses in the x direction               (b) Residual stresses in the y direction 
 

Figure 7. Estimated residual stresses on the bottom surface after the removal. 
The dotted and chain lines are estimated results from residual strains 

on the base metal and on the base and weld metals, respectively. 
 

Conclusions 

In the previous study, the author developed the bead flush method that is free from the influence of 
processing strains in machining. However, stress evaluation accuracy is relatively poor especially in 
the vicinity of the weld line when measurement errors by X-ray diffraction are considered. In this 
study, mathematical expressions to be able to use measured strains on weld metal as additional 
source of information was shown. And, numerical simulation for butt welded plate was carried out 
to prove the effectiveness of this method. It was clarified that estimation accuracy of residual 
stresses especially near the weld line could be improved successfully by using this method. 
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Abstract 

The smoothed finite element method (S-FEM) developed recently shows great efficiency in solving 

solid mechanics. This paper extends an edge-based smoothed finite element method for static and 

free vibration analyses of plates. The edge-based strain smoothing technique is combined with the 

three-node Mindlin plate element (MIN3) to give a so-called the edge-based smoothed MIN3(ES-

MIN3). The system stiffness matrix is calculated by using the edge-based strain smoothing 

technique over the smoothing domains associated with the edges of elements. In each element the 

stabilized MIN3 is performed to avoid the transverse shear locking. Typical numerical examples 

demonstrate that the present ES-MIN3 is free of shear locking and can achieve the high accuracy 

compared to the exact solutions and others existing plate elements. 

Keywords: Shear locking, Finite element method (FEM), Edge-based smoothed three-node 
Mindlin plate element (ES-MIN3), Strain smoothing technique 

Introduction 

Nowsdays, the plate structures have been used widely in many branches of structural engineering 

problems. Owing to limitations of the analytical methods, many different numerical methods, such 

as finite difference method, finite element method, boundary element method, meshfree method etc, 

have been proposed to analyze the plate structures. Among them the finite element method (FEM) 

is one of the most popular numerical methods to simulate the behaviors of plate structures. In the 

practical application, many plate elements based on the Reissner-Mindlin theory using the first-

order shear deformation are preferred due to its simplicity and efficiency[Henry and Saigal 

(2000);Reddy (2006)]. These Reissner-Mindlin plate elements usually possess high accuracy and 

fast convergence speed for displacement, however, they also suffer from the ‘shear locking’ 

phenomenon which has the root of incorrect transverse forces under bending and induces over-

stiffness as the plate become progressively thinner. 

In order to eliminate shear locking and to increase the accuracy and stability of the solution, many 

new numerical techniques and effective modifications have been proposed, such as the mixed 
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formulation/hybrid elements[Lee and Wong (1982); Zienkiewicz and Lefebvre (1988); Miranda and 

Ubertini (2006); Auricchio and Taylor(1994); Lovadina (1998)] proposed by Lee et al and Miranda 

et al; the enhanced assumed strain method (EAS) [Simo and Rifai (1990); Simo et al. (1989);] 

proposed by Simo et al and the assumed natural strain (ANS) method[Tessler and Hughes (1985); 

Bathe and Dvorkin (1985); Batoz and Lardeur (1989)] proposed by Hughes et al. Recently. 

Bletcinger et al proposed the discrete shear gap method [Bletzinger et al. (2000)] to avoid transverse 

shear locking and to improve the accuracy of the present formulation. In fact, the DSG also can be 

classified as an ANS element. It is similar to the ANS methods in the terms of modifying the course 

of certain strains within the element, but is different in the aspect of removing of collocation points. 

The DSG can work well for different elements. 

Also based on the ANS method, a three-node Mindlin plate element (MIN3), which avoids shear 

locking, was proposed by Tessler and Hhghes. In MIN3, a complete quadratic deflection field is 

constrained by continuous shear edge constraints. The numerical examples demonstrated that the 

MIN3 is free of shear locking and can achieve convergent solutions. 

Recently, Liu et al have proposed a series of smoothed finite element method (S-FEM) by 

incorporating the strain smoothing technique[Chen et al. (2001)] of meshfree methods into the 

standard finite element method. In these S-FEM models, the compatible strain fields are smoothed 

based on the smoothing domains created from the entities of the element mesh such as cells (CS-

FEM)[ Liu et al. (2001); Nguyen (2008; 2012; 2013a;2013b); Wu and Wang (2013)], or nodes (NS-

FEM) [Liu et al. (2009a; 2009b); Nguyen (2011)], or edges (ES-FEM)[ Liu et al. (2009c); Nguyen 

(2009); Li et al. (2012; 2013)],or faces (FS-FEM)[ Feng et al. (2013)], then the smoothed Galerkin 

weak forms are evaluated based on these smoothing domains. The S-FEM models can improve 

significantly the accuracy of solid mechanics owing to the strain smoothing technique on the 

smoothing domains. 

In this paper, the edge-based strain smoothing technique is incorporated with the well-known three 

node Mindlin plate (MIN3) to give a so-called edge-based smoothed MIN3 (ES-MIN3). In the ES-

MIN3 models, the calculation of the system stiffness matrix is performed using strain smoothing 

technique over the smoothing domains associated with the edges of elements. The numerical results 

show that present method is immune from shear locking and can achieve high accurate solutions in 

static and vibration analysis of the Reissner-Mindlin plate. 
 

Governing equations and weak form for the Reissner-Mindlin plate 

Consider a plate under bending deformation as shown in Figure.1. The middle (neutral) surface of 

plate oxy is chosen as the reference plane that occupies a domain 2R . Let w be the deflection of 
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the plate and T = ( , )x y  be the rotations of the normal to the middle surface of the plate around y-

axis and x-axis, respectively. Then the unknown vector of three independent field variables at any 

point in the problem domain of the Reissner-Mindlin plates can be written as: 

 [ ]T

x yw  u  (1) 

 
Figure.1. positive directions of displacement u , v , w  and two rotation x , y for Reissner-

Mindlin plate 

Here we assume that the material is homogeneous and isotropic with Young’s modulus E  and 

Poisson’s ratio v . The governing differential equations of the static Reissner-Mindlin plate can be 

expressed as: 

 ( ) 0 inb Gkt   D κ β γ  (2) 

 0 inGkt p   γ  (3) 

 , onw w     β β  (4) 

in which t  is the plate thickness and ( , )p p x y  is a distributed load per an area unit, G and 

k = 5 6 are shear modulus and shear correction factor, respectively, bD  is the bending stiffness 

constitutive, κ and γ are the bending and shear strains, respectively, defined by 

 ,d w   L β γ β  (5) 

where ( , )x y       is the gradient vector and dL denotes a matrix of differential operators: 
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 (6) 

The standard Galerkin weakform of the static equilibrium equations for the Reissner-Mindlin plate 

is given by 

 T T

b sd d wpd
  
        κ D κ γ D γ  (7) 
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where the bending stiffness constitutive coefficients bD  and the transverse shear stiffness 

constitutive coefficients 
sD  are defined as 
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For the free vibration analysis of Reissner-Mindlin plates, the standard Galerkin weak form of the 

dynamic equilibrium can be written as 

 0T T T

b sd d d
  
         κ D κ γ D γ u mu  (9) 

where m  is the mass matrix of Reissner-Mindlin plate 
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where   denotes the mass density of the material. 

General FEM formulation for Reissner-Mindlin plate elements 

In the process of the FEM formulation of the plate, the problem domain Ω  is discretized into 

eN finite elements such that 1 2 3, ,
eN        and i j   , i j ,where eN  is the 

number of total elements. Then the finite element solution x yw     u  of a displacement 

model for the Reissner-Mindlin plate can be expressed as 

 
1

( ) 0 0
0 ( ) 0
0 0 ( )

n
IN

I I

I

I

N

N

N


 
 


 
  



x

u x d

x

 (11) 

where nN  is the number of total nodes of problem domain, ( )IN x  is the shape function at node I , 
T

I I xI yIw     d  is the nodal displacement vector associated to node I. 

Then the bending and shear strains can be expressed as 

 
bI I

I

sI I

I









κ B d

γ B d
 (11) 

where 
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I I

N x N

N y N
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  

  
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The discretized system stiffness matrix, Κ  can be expressed in terms of its bending, bK ,and 

transverse shear, 
sK ,components as 

 

1 1

e e

e e
i i

T T

b s b b b s s s

N N
T T

b b b b b b

i i

d d

d d

 

 

 

 
 

   

 

 

  

K K K B D B B D B

B D B B D B
 (14) 

For static analysis, the discretized system equations of the Reissner-Mindlin plate can be expressed 

as 

 Kd F  (15) 

where F  is the load vector and has the form of 

 
1

e

e
i

N
T T

b b

i

pd f pd f
 

 


    F N N  (16) 

in which bf  relates to the prescribed boundary loads. 

For the free vibration, the force form vanishes and we shall have 

  2 K M d 0  (17) 

where   is the natural frequency of the free vibration and M  is the global mass matrix 

 
1

e

e
i

N
T T

i

d d
 

 


  M N mN N mN  (18) 

Formulation of the MIN3 

The main assumption of MIN3 is that the rotations are linear through the rotational DOFs at three 

nodes of the elements and deflection is quadratic through the deflection DOFs at six nodes (three 

nodes of the elements and three mid-edge points). The deflection DOFs at three mid-edge points 

can be removed by enforcing continuous shear constraints at every element edge, and then the 

deflection is approximated only by vertex DOFs at three nodes of the elements. Numerical 

examples demonstrated that the MIN3 element can overcome shear-locking-free and produces 

convergent solutions [Tessler and Hughes (1985)]. 
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As shown in Figure.2, using the three-node triangular element mesh, the linear rotations x  and y  

can be expressed as 

 

3

1
3

1

( )

( )

x I x I x

I

y I y I y

I

N

N

 

 





 

 





x Nβ

x Nβ

 (19) 

 
Figure. 2 Three-node triangular element 

And the initial quadratic deflection w  can be expressed as 

 
6

1
I I ini

I

w R w w


  R  (20) 

where  1 2 3( ) ( ) ( )N x N x N xN  are the linear shape functions at node 

I .  1 2 3
T

x x x x  β and 1 2 3
T

y y y y     β are the rotational DOFs at three nodes of the 

element;  1 2 3 4 5 6
T

ini w w w w w ww is the deflection DOFs at six nodes (three nodes of the 

elements and three mid-edge points as shown in Table. 1), and R  is the row vector of quadratic 

shape functions given by 

 3(2 1), 4 ( 1,2,3; 2,3,1)i i i i i kR N N R N N i k      (21) 

Table 1 Nodal configuration for initial (unconstrained) and constrained displacement 

Shape functions Initial nodal 
configuration 

Continuous shear edge 
constraints 

, , edges( ) 0s n sw    
Constrained nodal 

configuration w  ,x y   

Quadratic Linear 

 

 
Three edge constraints 

  

 
Equations (19) and (20) can be directly used in formulating element matrices. However, it may be 

advantageous from the standpoint of nodal simplicity to condense out the mid-edge deflection 
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DOFs, 4w , 5w  and 6w in w . This can be accomplished by enforcing continuous shear constraints at 

every element edge as given by the following differential relation 

 , , edges( ) 0s n sw    (22) 

where s  denotes the edge coordinate and n  is the tangential edge rotation as shown in Figure.2. 
The enforcement of constraint (21) at three element edges yields 

 
 

3
1 1( ) ( ) ( )
2 8

1,2,3; 2,3,1; 3,1,2

i i j k xi xj k yj yiw w w b a

i j k

   
       

  

 (23) 

where 1 3 2a x x  , 2 1 3a x x  , 3 2 1a x x  , 1 2 3b y y  , 2 3 1b y y  , 3 1 2b y y  as shown in Figure.3. 
 
By substituting (23) into (20), there results a constrained deflection field exclusively in terms of 
vertex DOFs. 

 
3 3 3

1 1 1
I I I xI I yI x y

I I I

w N w H L 
  

        Nw Lβ Hβ  (24) 

where  1 2 3
T w w ww ,  1 2 3H H HH ,  1 2 3L L LL are the vectors of shape functions, 

with, 1,2,3I  ,given by 
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








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（ - ）

（ - ）

 (25) 

 
Then the element stiffness matrix can be finally obtained and written in the following form: 

 MIN3

e e

T T

e b b b s s sd d
 

   K B D B B D B  (26) 

where 

 
0 0
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0

I

b I

I I

N x

N y

N y N x
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 
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B  (27) 
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Figure.3 Three-node triangular element coordinate description 

In order to further improve the accuracy of approximate solutions and to stabilize shear force 
oscillations. It was suggested that sD  in (8) should be replaced by ˆ

sD  

 2 2
ˆ

s

e

Gkt

t h



D  (29) 

In which eh  is the longest length of the edges of the element and   is a positive constant [Lyly and 
Stenberg (1993)]. 

Formulation of ES-MIN3 

In this section, a new triangular element named an edge-based smoothed triangular element is 

established by combining the edge-based strain smoothing technique with the MIN3 (ES-MIN3). In 

this work, we incorporate the ES-FEM with the MIN3 to give a so-called ES-MIN3 for the plate 

elements. In the ES-MIN3, we do not use the compatible strain fields as in (11) but the smoothed 

strain fields over local smoothing domains associated with the edges of elements. Naturally the 

numerical integrations in (14) for the stiffness matrix are no longer based on elements as in standard 

FEM but on the edge-based smoothing domain k  ( 1,2, ,k N  ), where N  is the total number of 

edges in the 2D problem domains, for triangular elements, the smoothing domain for edge k  is 

created by sequentially connecting two end points of the edge and centroids of its surrounding 

elements. As shown in Figure.4, for interior edges, the smoothing domain k  for edge k  is formed 

by assembling two sub-domains of two neighboring elements; while for global boundary edge, the 

smoothing domain k  of edge k  is a single sub-domain, in this case, the strain and stain matrix can 

be calculated as same as those in FEM. 

In the present method, smoothing operation is applied over each smoothing domain, so the 

smoothed bending strain   and smoothed shear stain   can be calculated by 
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 (30) 

where  W x  is a given smoothing function that satisfies at least unity property 

 ( ) 1
k

kW d


  x  (31) 

 
Figure. 4. Edge-based smoothing domains in 2D problem created by sequentially connecting 

the centroids of the adjacent triangles with the end-points of the edge. 

In this study, the following simplest form of the smoothing function is used 

 
1/

( )
0

k k

k

k

A x
W

x


 


x  (32) 

where kA  is the area of the smoothing domain of the kth edge and is computed by 
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1
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e
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n
e

k j

j

A d A




     (33) 

where e

kn  is the number of elements around the edge k  ( 1e

kn  for the boundary edges and 2e

kn   
for inner edges, as shown in Figure. 4 ), e

jA  is the area of the j th element around the edge k . 

By using the edge-based strain smoothing operation, the smoothed strain of the smoothed strain of 

the smoothing domain s

k  in (30) can be expressed as follows 
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where ,k qA denotes the area of the sub-smoothing domain associated with inner edge 

k , ,k q and ,k q are bending strain and shear strain of the qth sub-smoothing domain, respectively. 

With the above formulation, the smoothed strains for the smoothing domain of edge k  can be 

expressed in the following forms: 
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 
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,
1

k

k

M

k b I k I
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x d

x d
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 

 





B

B

 (35) 

where kM  is the total number of nodes in the influence domain of edge k ,  ,b I kB x and  ,s I kB x are 

termed as the smoothed strain matrix that can be calculated as 

 
   
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1

1 1
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1 1
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b I k i bi k

ik

M

s I k i si k
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x A x
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x A x
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
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





B B
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 (36) 

Therefore the global stiffness matrices of the ES-MIN3 element can be assembled by 

 
1

kn

k k

i

K K  (37) 

where kK  is the smoothed element stiffness matrix given by 

 
k k

T T T T

k b b b s s s b b b k s s s kd d A A
 

     K B D B B D B B D B B D B  (38) 

The procedure of assembling the global stiffness matrix in the ES-MIN3 is exactly the same as the 

practice in the standard FEM. It can be easily seen from (37) that the resultant linear system is 

symmetric and banded (due to the compact supports of FEM shape functions), which implies that 

the system equation can be solved efficiently. 

Numerical results 

Static analysis 

Consider a flexible rectangular plate (0.314m × 0.414m) which is made of aluminum 

(  =2700kg/m3,  =0.3, and E =71GPa). The thickness of the plate is 0.001m. The plate is 

subjected to a uniform load of ( , )q x y =1Pa, and is given for clamp boundary condition. Uniform 

meshes of 2×N×N three-node triangular plate elements shown in Figure.5 is used in the 

computation, where N denotes the number of elements per edge. 
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Figure 5 Two rectangular plate models and the representative meshes: (a) clamped plate; (b) 

simply supported plate; (c) regular mesh using three-node triangular elements 
For static analysis, the deflection at the center point of the plate is computed; the result is plotted 

against the mesh density in terms of number of elements per edge N, as shown in Figure.6. It is seen 

that the ES-MIN3 achieves the higher accuracy compared to the DSG and MIN3 elements. 

 
Figure 6 Convergence of deflection of the plate at the center against the mesh density 

Free vibration analysis of plates 

In this section, we investigate the performance of the ES-MIN3 used for computing the natural  
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frequencies of plates. The geometry and material parameters of the plate are the same as in last 

section. All the edges of the plate are simply-supported and five uniform meshes of 2×N×N three-

node triangular plate elements with N=8, 12, 16, 20, 24 are used in the computation. The first six 

natural frequencies of the plate obtained from ES-MIN3 are listed in Table 2, for comparison, the 

analytical solutions and some other numerical results are also listed in the table. As indicated in the 

table, all the numerical results are in good agreement with the analytical results in low frequency 

range. The errors of the results for all these numerical methods become larger with the increasing of 

mode order. However, the results obtained using ES-MIN3 is much more accurate and converged 

much faster than those obtained using other methods. It is confirmed that the ES-MIN3 is efficient 

and can give high accurate solutions in free vibration analysis. In particular, the ES-MIN3 can 

achieve accurately the values of high frequencies of plate by using only coarse meshes. 

Table 2 Convergence of the first six natural frequencies (Hz) of the plate 

Meshing Methods 
Mode sequence number 

1 2 3 4 5 6 

8 

DSG 43.87 99.74 138.23 190.09 243.67 313.86 
ES-DSG 39.93 88.57 122.37 172.39 191.12 277.93 

MIN3 41.95 96.03 130.66 186.66 220.30 301.90 
ES-MIN3 39.86 87.09 120.98 171.40 178.50 271.09 

12 

DSG 41.71 92.82 125.83 173.07 204.74 272.24 
ES-DSG 39.32 84.41 116.79 161.88 168.01 251.05 

MIN3 40.27 88.14 120.48 168.61 182.61 263.15 
ES-MIN3 39.33 83.88 116.36 161.27 163.64 244.26 

16 

DSG 40.63 88.97 120.61 165.99 186.77 257.54 
ES-DSG 39.13 83.05 115.06 158.00 161.48 239.85 

MIN3 39.67 85.25 117.14 162.07 169.95 251.07 
ES-MIN3 39.15 82.84 114.88 157.55 159.77 236.19 

20 

DSG 40.04 86.62 117.94 162.08 176.45 250.25 
ES-DSG 39.05 82.47 114.31 156.07 159.02 234.67 

MIN3 39.40 83.89 115.63 158.91 164.29 243.79 
ES-MIN3 39.07 82.38 114.21 155.77 158.21 232.69 

24 

DSG 39.69 85.15 116.42 159.65 170.07 246.09 
ES-DSG 39.00 82.17 113.91 155.00 157.85 232.00 

MIN3 39.25 83.15 114.82 157.10 161.34 238.58 
ES-MIN3 39.02 82.13 113.86 154.81 157.42 230.83 
Analytical 38.95 81.61 113.11 152.72 155.78 226.89 
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Conclusions 

In this work, the edge-based smoothed finite element method is combined with the well-known 

MIN3 to give a so-called the ES-MIN3 for static and free vibration analyses of plates. The 

smoothed Galerkin weak form is adopted to formulate the discretized system equations. The 

numerical integration is performed over the smoothing domains associated with edges of mesh. 

Through the formulation and the numerical examples, some concluding remarks can be drawn as 

follows: 

1) The ES-MIN3 is straightforward and the implementation is as easy as MIN3 for the static and 

free vibration analyses of plates. 

2) The shear locking of the triangular plate elements has been successfully alleviated with ES-

MIN3 and the ES-MIN3 elements have only three DOFs at each vertex node without additional 

degrees of freedom, in addition, the ES-MIN3 only use the triangular elements which is a clear 

adbantage compared to quadrilateral elements when the geometry domain of plate is 

complicated. 

3) For both static and free vibration analyses, the results of the ES-MIN3 agree well with other 

methods. The ES-MIN3 gives much more accurate results than the DSG, MIN3 and is a good 

competitor to the ES-DSG. 

4) The ES-MIN3 works very well with triangular meshes and it is thus very promising to solve 

real engineering problems which usually are of complicated geometries with very accurate 

results. 
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Abstract 
The commercial applications of friction stir welding (FSW) to hard materials are limited by tool 
breakages. But the tool forces and the relations to tool geometries remain unknown. So, here we 
established a model on calculation of tool forces in FSW and examined how the tool design affects 
the temperature fields and the tool forces along the welding direction. Results indicate that 
temperature rises are very important for the tool forces in FSW. Both the increase of the shoulder 
size and the increase of the rotating speed can lead to the increase of the welding temperatures in 
FSW and then decrease the tool forces in the welding direction. Larger shoulder or higher rotating 
speed can increase the tool life. 

Keywords:  Friction stir welding, Finite element method, Tool force, Temperature 

Introduction 

Friction stir welding (FSW) has been invented for more than 15 years. Due to its solid joining 
nature, FSW has many advantages over the traditional fusion welding techniques, such as low 
distortion, low welding defects, fine grains in welding zone, etc., which makes it being successfully 
applied to aerospace, automobile, ship industries, etc. In FSW, a rotating tool is inserted into the 
butt of two welding plates and then translates along the welding line [Thomas et al. (1991); Mishra 
and Ma (2005)]. Based on the principles for FSW, friction stir processing (FSP) was developed by 
[Berbon et al. (2001)] as a genetic tool for microstructural modifications. FSW has been used for 
the joining of aluminum alloys [Ahmed et al. (2008); Altenkirch et al. (2008); Nielsen (2008); 
Fonda et al. (2008); Cabibbo et al. (2007)], magnesium alloys [Afrin et al. (2008) ; Gharacheh et al. 
(2006); Park et al. (2003)], stainless steels [Reynolds et al. (2003); Saeid et al. (2008)], titanium 
alloys [Mironov et al. (2008); Lee et al. (2005)], copper alloys [Park et al. (2004)], composite 
materials [Feng et al. (2008); Fernandez et al. (2004)] and even the joining of dissimilar materials 
[Kwon et al. (2008); Ouyang et al. (2006); Cavaliere et al. (2009)]. During the welding process, 
welding tool is believed to be the key component for a successful FSW [Elangovan et al. (2008); 
Zhang et al. (2009); Kumar and Kailas (2008)], especially for FSW of strong material [Bhadeshia 
and DebRoy (2009)]. Although the tool force in welding direction can be measured in experiments 
[Yan et al. (2005)], the theories for determination of the tool forces in FSW should be needed for 
the development of reliable, lasting and cost effective welding tools and even for the optimization 
of welding tools with lower costs. So, here we presented a method for calculation of tool forces. 
Temperature rises are believed to be one of the key factors to affect the plasticized material flow 
near the welding tool [Zhang and Zhang (2009); Nandan et al. (2007)]. So, the calculated tool 
forces, the temperature rises and the different tools are considered together for the examination on 
how the tool design affects the temperature fields and the tool forces along the welding direction. 

Model description 

ABAQUS was used with the combination of the user subroutine which was compiled by 
FORTRAN code for the description of a modified coulomb friction law [Zhang (2008)]. Eight node 
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thermo-mechanical brick elements are used for the mesh generation of the workpiece. For 
convenience of mesh generation with brick elements, a circular workpiece with the radii of 30mm is 
considered. The model has been validated for the temperature and material flow during FSW of 
AA6061 [Zhang and Zhang (2008); Zhang et al. (2011); Zhang and Zhang (2007); Zhang and 
Zhang (2009)]. The applied axial pressure is selected to be 70MPa, the pre-heating time 1.5s and 
the traverse speed 140mm/min for the current computations. The inflow temperature is set to be the 
room temperature (25°C). The boundary of the welding plate is treated as Eulerian type, on which 
the motion of the material points can be independent of the meshes. Arbitrary Lagrangian—
Eulerian (ALE) method [Belytschko et al. (2000)] is combined with the adaptive meshing to avoid 
excessive element distortions. Four different tool profiles are used for the numerical comparisons, 
as shown in Fig.1. For the tool with a shoulder diameter of 20mm, three rotating speeds, i.e. 
500rpm, 550rpm and 600rpm are used to study the effect of rotating speed on tool force. For other 
cases, the rotating speed is set to be 500rpm. 

12mm

1mm

3mm

1m
m

 

12mm

1mm
1m

m

3mm

4=α

 
(a) Tool I (b) Tool II 

10mm

1mm

3mm  

8mm

1mm

3mm  
(c) Tool III (d) Tool IV 

Figure 1 Schematics of welding tools 

As shown in Fig.2, the tool forces in FSW can be determined by the hydraulic pressure and the 
frictional stresses on contact surfaces, 

 ∫∫∫ +θ+θ=
211 S

2t
S

1t
S

1Long dSpdScospdSsinpF  (1) 

where p is the hydraulic pressure and pt frictional stress. S1 and S2 are the pin-plate contact area and 
the shoulder-plate contact area, respectively. 
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Figure 2 Calculation of tool forces in FSW 

The hydraulic pressure can be obtained from the trace of the stress tensor in FSW, 

 )(trace
3
1p ijσ−=  (2) 

where σij is the Cauchy stress tensor which can be computed using the constitutive equation, 

 e
klijklij C ε=σ  (3) 

where Cijkl is the elasticity tensor and e
klε is the elastic part of the strain( p

klkl εε − ). The total strain 
can be computed using the strain displacement equation, 

 ( )i,jj,iij uu
2
1

+=ε  (4) 

where ui is the displacement. The boundary condition used for the inflow and outflow regions are 
ui=0 for i=2, 3 and ui,t=140mm/s for i=1. 
The predictor-corrector method is used for the calculations of the plastic strain, 
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where λ is the plastic rate parameter, σ' is the deviatoric stress, and σ  is the von Mises effective 
stre4ss. The yield function can be defined as, 

 0)( =−= Tf sσσ  (6) 

where σs is the yield stress which is the function of temperature.  
The temperature is determined by solving the heat transfer equation 
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where ρ is the density, c is the specific heat, k is the thermal conductivity, q is the heat flux on the 
contact area and nx, ny, nz represent the directions. The temperature dependent values of c and k can 
be found in [An and Liu (1998)]. Q is the heat generated by the plastic deformations, 

 p
ijijQ εσ=   (9) 

where p
ijε  is the strain rate. 

The heat flux on the contact area q is, 

 γη tpq =  (10) 

where η is the fraction of frictional heat entering the workpiece (90% in current work), γ  is the 
relative velocity between the tool and workpiece. 
The general finite element form for the heat transfer equation can be obtained by the spatial 
discretization, 

 PKTTC =+  (11) 

where C is the heat capacity matrix, K the thermal conductivity matrix and P is the thermal load 
matrix which is determined by the mentioned internal heat source, the heat flux on contact surface 
and the boundary conditions. Explicit forward difference integration method is used to solve this 
equation. 
The displacement required to compute total strain can be determined solving the equation of 
motion, 

 ttiijij uF ,, ρσ =+  (12) 

where Fi is the body force per unit volume and ui,tt is the acceleration. 
The classical finite element form of the above equations can be obtained by spatial discretization, 

 int
'' PPuM −=  (13) 

where M is the mass matrix, P' load matrix and int
'P  internal nodal forces. Explicit central 

difference integration method is used for the computation of displacements and accelerations of 
nodes. The load matrix consists of the contact forces, normal (pn) and tangent (pt). The contact 
forces can be expressed in terms of displacements of the contact points by the penalty algorithm 
[Zhang et al. (2005)] with consideration of the shear failure criterion, 

 ( )*δ−−−= m
n

s
nnn duduEp  for both sliding and sticking states  (14) 
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where nE  is penalty factor for normal contact, which can be taken from 1 to 100 times of the 
element stiffness of the representative underlying welding material according to the overclosures in 
calculations. ∗δ  is the gap. ndu  is the normal displacement. The superscripts m and s represent the 
mater (tool) and slave (welding plate) contact surfaces. The displacement for master is considered 
to be zero in this calculation. 

Results and discussions 

The computed temperature fields around the tool are shown in Fig. 3. The maximum temperature 
for Tool I in 500rpm and 140mm/min is 430 C , as shown in Fig. 3(a). The experimental measured 
temperature is about 440 C  under the same welding conditions and tool sizes [Chen and Kovacevic 
(2003)], which can verify the developed model for heat transfer. When conical pin is used, the 
maximum temperature is decreased slightly to 426 C , as shown in Fig. 3(b). Compared with the 
variation of pin shape, the effect of shoulder size on temperature is more obvious. When the 
shoulder radius is changed to 10mm, the maximum temperature is decreased to 384 C , as shown in 
Fig. 3(c). With the further decrease of the shoulder radius to 8mm, the maximum temperature can 
be further decreased to 344 C , as shown in Fig. 3(d). The observation on effect of shoulder size on 
temperature is consistent to previous studies [Zhang et al. (2009)]. Usually, higher rotating speed is 
used for smaller shoulder. So, two new cases for Tool III (Fig. 1) with higher rotating speeds are 
adopted for comparisons. When the rotating speed is increased to 550rpm, the maximum 
temperature can be increased to 393 C , as shown in Fig. 3(e). With the further increase for the 
rotating speed to 600rpm, the maximum temperature can be increased to 400 C , as shown in Fig. 
3(f). 
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Figure 3 Temperatures in different cases: (a) Tool I in 500rpm ( CT 430max = ); (b) Tool II in 
500rpm ( CT 426max = ); (c) Tool III in 500rpm ( CT 384max = ); (d) Tool IV in 500rpm 

( CT 344max = ); (e) Tool III in 550rpm ( CT 393max = ); (f) Tool III in 600rpm ( CT 400max = ) 

Temperature fields are important for the plasticization of the material near the welding tool. So, it 
can significantly affect the frictional force calculation and even the tool forces. Frictional stresses 
along selected paths A=>B=>C are shown in Fig.4 for different cases. The frictional stress on the 
selected path is very similar for Tool I and Tool II. When the conical pin is adopted, the friction 
stress on the contact surface is increased slightly. The friction stress can be increased due to the 
decrease of the shoulder diameter and the decrease of the rotating speed. With consideration of the 
temperature fields shown in Fig.3, the frictional stress can be increased with the decrease of 
temperature in FSW. Moreover, the frictional stress on shoulder-plate interface is lower than the 
one on the pin-plate interface. But with the increase of the temperature due to the increase of 
rotating speed or increase of shoulder size, the friction stresses on pin-plate and shoulder-plate 
interfaces become similar. 
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Figure 4 Comparison of frictional stress in different cases 

The calculated forces for different cases are shown in Fig. 5. When Tool I with 500rpm is used, the 
calculated force in welding direction is 3.4kN. But when conical pin is adopted under the same 
welding conditions, the tool force in welding direction is increased to 4kN due to the decrease of 
temperature. When smaller shoulders are used for Tool III and Tool IV, the tool forces in welding 
direction is obviously increased due to the obvious decrease of temperatures. This is the reason that 
the larger shoulder can increase the tool life in manufacture. The experimentally measured 
transverse force is about 8kN under the rotating speed of 500rpm and the shoulder diameter of 
20.3mm for FSW of AA2524 [Yan et al. (2005)]. In fact, AA6061 can be believed to be softer than 
AA2524 due to the smaller yield stress. So, it can be deduced that the transverse force for FSW of 
AA6061 should be smaller than the one in FSW of AA2524 under the similar welding conditions. 
For Tool III in 500rpm, the transverse force in FSW of AA6061 is 6.5kN. The comparison with 
Ref. [Yan et al. (2005)] shows that the computed transverse force in current model is reasonable. 
For smaller shoulder (Tool III), the increase of the rotating speed can decrease the tool force in 
welding direction apparently. This means that higher rotating speed should be used in manufacture 
for smaller shoulder in FSW, which can lead to more temperature rises. With the increase of the 
temperature, the material becomes softer and then the tool force in welding direction can be 
decreased.  
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Conclusions 

1) Temperature rise is very important for the tool force in FSW. Higher temperature can lead to 
softer material near the welding tool and the decrease the tool forces in welding direction. 

2) Both the increase of the shoulder size and the increase of the rotating speed can lead to the 
increase of the temperatures in FSW and then decrease the tool forces in welding direction. 

3) Larger shoulder or higher rotating speed can increase the tool life. 
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Abstract 
The finite element (FE) models were developed to predict the compressive response and energy-
absorbing capability of composite tube reinforced PVC foams. A vectorized user material 
subroutine (VUMAT) was employed to define Hashin’s 3D damage criteria for the composite tube 
to model the corresponding deformation and failure mechanisms. Good agreement was obtained in 
terms of the load–displacement traces, the deformation and failure modes. Using validated models, 
parametric studies were further carried out to investigate the crushing characteristics of composite 
tube reinforced foam to optimize the composite tube configurations within the foam.  
 
It has been shown that reinforcing the foams with composite tubes results in a significant increase in 
both their compressive strength and energy absorption relative to their plain counterparts. It has also 
been shown that the 12.5 mm carbon fibre tube reinforced foam out-performs the 10 and 8 mm tube 
reinforced foam based sandwich panel in term of energy absorption. The energy absorption 
increased with increasing of both foam density and tube diameters. 

Keywords:  Finite Element, Hashin 3-D Criteria, User-defined subroutine, Carbon tube reinforced 
foam, Energy absorption. 

Introduction 
 
As a result of their superior specific strength and stiffness characteristics, excellent fatigue 
properties and impressive corrosion resistance, composite materials, such as carbon fibre reinforced 
plastic (CFRP) are currently finding widespread use in a wide range of high-performance 
engineering structures. An additional attractive feature of these lightweight materials is their ability 
to absorb significant energy under certain well-defined loading conditions. Extensive testing has 
shown that composites, when produced in a tubular form and loaded in compression, are capable of 
absorbing significant energy through a range of failure mechanisms including fibre fracture, matrix 
cracking, debonding and delamination [Farley and Jones (1992)]. Over the years, this impressive 
energy-absorbing capability has attracted the interest of many vehicle manufacturers, including 
Chrysler and Ford. Indeed, [Jacob et al. (2002)] calculated that only 600 grams of composite is 
required to absorb the energy of a medium-sized car travelling at 35 mph. Alia investigated the 
energy-absorbing characteristics of polymer foams reinforced with small carbon fibre reinforced 
epoxy tubes [Alia et.al 2014]. Figure 1a highlights the extraordinary failure characteristics 
associated with composite materials, where a 10 mm diameter CFRP tube is being crushed at a low 
rate of strain. These images give evidences that these failure modes of carbon tube are typical ones 
of those observed in larger diameter tubes, with extensive splaying, fibre fracture and matrix 
cracking. Zhou et al. investigated the failure mechanism and energy absorption capacity of both 
carbon and glass rods experimentally. The progress failure of carbon and glass fibre rods subjected 
to compression was examined and shown in Figure 1b that the carbon fibre rod under compression 
demonstrates more ductile failure than the glass fibre one [Zhou et al. (2013)]. Clearly, the failure 
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pattern of the rod influences its energy absorbing capacity. If buckling failure can be avoided the 
energy absorption will be maximized. Therefore, it is necessary to introduce constraints to 
composite tubes or rods. An effective way to apply such constraints is to embed them into PVC 
foam, so that a progressive crushing of composite tube or rod can be realised.  The study exhibits 
failed PVC foam core with embedded carbon fibre and glass fibre pins. Both carbon and glass fibre 
rods turn into dust, which indicate tests with successful constraints offered by PVC foam. The 
energy-absorbing capacity of a composite tube or rod is most frequently evaluated by determining 
its specific energy absorption (SEA) capability in J/kg. SEA values can vary greatly, for example, 
from 20 kJ/kg for a pultruded glass fibre/epoxy [Jacob et al. (2002)] to values well in excess of 100 
kJ/kg for carbon fibre-based systems [Hamada (1993)]. The precise value depends on a number of 
parameters, including the geometry of the tube, its fibre architecture, as well as the mechanical 
properties of the matrix phase. For example, Hamada and co-workers showed that the energy-
absorbing capacity of a 55 mm diameter CFRP tube decreased by fifteen percent in passing from a 
unidirectional tube to one with its fibres oriented at +/-25°. A number of researchers have studied 
the influence of specimen geometry on the energy-absorbing capability of composite tubes. 
[Thornton et al. (1979); Thornton and Edwards (1982)] investigated geometrical effects in the 
energy-absorbing response of tubes based on circular, square and rectangular cross-sections and 
showed that the former out-performed both their square and rectangular tubular counterparts. 
[Farley et al. (1986)] conducted tests on carbon and Kevlar fibre reinforced tubes, with ply 
orientations typical of those used in sub-floor beam structures and showed that the tube diameter to 
thickness ratio played a significant role in determining its subsequent strain energy-absorbing 
capacity. Similar trends have been observed by [Alia et al.（2014)] following tests on circular 
composite tubes, with values increasing by over fifty percent as the D/t ratio is reduced from 
approximately 42 to 6. This evidence suggests that the use of very low values of D/t can lead to 
greatly enhanced energy absorption in tubular structures. Following these initial tests on small 
diameter reinforcements, individual tubes were embedded in a polymer foam and crushed at quasi-
static rates of strain  
 

         
Figure 1 Failure modes of the composite tube and rods subject to crushing load (a. tube, b. rods) 

 
Composite sandwich structures are increasingly finding use in a wide range of lightweight load-
bearing engineering structures. Sandwich structures, such as those used in high-performance 
aerospace components, are typically based on thin composite. The variation of the specific energy 
absorption of circular CFRP tubes with diameter/thickness ratio by [Alia et al. （2014)]. The tube 
embedded in a polymer foam and skins bonded to a low density foam or honeycomb core. The skins 
are usually thin, often rendering these lightweight panels highly susceptible to damage by a hard 
projectile, such as that associated with runway debris or hail. A number of investigations have 
focused on the potential hazard resulting from an uncontained turbine engine failure on outer parts 
of an aircraft [Shockey (1997), Rouse et.al (1997). In such sandwich structures, the skin sheets 
carry bending loads, whilst the core resists transverse shear and through-thickness indentation 
forces. Therefore, to enhance the load carrying capacity it is desirable to maximize the through-
thickness stiffness and strength of the core. One approach to achieve this goal is to add reinforcing 
pins to the core, with the ends of the pins embedded in woven carbon fibre skin sheets.  [Cartie and 
Fleck (2003)] undertook the theoretical analysis and revealed that the through-thickness stiffness 

a b 
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and strength are relatively insensitive to the pin arrangements in pyramidal, tetrahedral and random 
patterns. 
 
Since experimental trials are usually time-consuming and costly, it is evident that modelling the 
crushing behavior to investigate the energy-absorbing characteristics using commercial finite 
element software would be great interest. Once these models are verified, they can be used to 
predict the response of rods and tube reinforced foam based on different configurations, loading and 
boundary conditions without undertaking experimental tests. A number of numerical work has been 
carry out to modeling the response of composite tubes. Carla McGregora developed a model to 
predict the damage propagation, failure mode and energy absorption in triaxially braided composite 
tubes under axial compression using LS-DYNA [Carla McGregora et.al (2010)].  The two-ply and 
four-ply square tubes were modeled to predict energy absorbing of front rail structures components 
on vehicular under axial crushing. A micromechanical model incorporated as a subroutine coded 
into the ABAQUS implicit by [Beard and Chang (2002)] to simulate the complete crushing process 
of plug-initiated triaxially braided composite tubes with promising initial results. The developed 
model was incorporated into ABAQUS/Explicit to model dynamic response of tube under crushing 
load by [Flesher (2006)] Another damage model on composite (Mat_58) in LS-DYNA with a lower 
accuracy that the predicted SEA values of un-initiated tubes were 30-40% lower than experimental 
results [Xiao et al. (2009)]. A developed model for composite tube was only able to capture the 
axial crushing features of plug-initiated braided composite tubes accurately [C.J. McGregor et al. 
(2007)], however the simulation of the this model on un-initiated tubes was not successfully on 
failure modes due to model instability, there was a discrepancies between predicted and observed 
failure modes.  
It is a challenging task to develop a model that is able to capture both the energy absorption and 
failure mode. A few researchers have attempted to model crushing of composite tubes and to 
simulate a similar splaying mode of failure. Mamalis et al. developed a finite element modeling to 
simulate axial collapse of CFRP square tubes under static and dynamic load. The model introduced 
a third layer to model the resin layer into pulverized debris during axial crushing. The deletion of 
the failure elements in the middle layer resulted a low energy absorption [Mamalis et al. (2006)]. A 
splaying mode of failure on glass/polyester tubes has been developed by Silcock et al using LS-
DYNA [Silcock et al. (2006)]. The model employed a spotweld approach and pre-defining a debris 
wedge to simulate a delamination, initiation and propagation of the splaying failure mode. Although 
the failure modes were simulated successful, the correlation between measured and predicted load-
displacement profiles was lower. The most successful model to simulate the splaying mode of 
failure on tube was developed by Pinho et al. using a decohesion element incorporated into 
ABAQUS. Both the delamination and the transverse tearing through thickness between the 
composite layers fronds were simulated. Both the load and failure modes was captures reasonably, 
however only a portion of the propagation during the crushing process was modeled. [Pinho et al. 
(2004)] 
 
Although a few numerical modeling developed to simulate the response of composite using 
commercial software LS-DYNA and Abaqus. However, those such as ABAQUS only has a number 
of failure criteria for composite materials modeled using 2D elements, such as plane stress and 
continuum shell elements [Carla McGregor (2010)]. Further, none of these criteria consider strain-
rate effects in composite materials, which is clearly important in dynamic studies. The 2D elements, 
with the existing failure criteria, are not capable of taking large through-the-thickness rate-
dependent deformations into account. Therefore, it is necessary to develop a constitutive model 
with associated failure criteria suitable for simulating a composite material using 3D solid elements.  
Limited numerical modeling was developed to investigate the structural response of composite 
using three-dimensional 3D solid elements. Recently, Thuc et al developed a FE models which were 
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validated using experimental data from tests on FMLs based on a 2024-O aluminium alloy and a 
woven glass–fibre/polypropylene composite. The rate-dependent failure criteria for a unidirectional 
composite were used, which were based on the modified Hashin’s 3D failure criteria [Thuc et al. 
(2013]. The constitutive model and failure criteria were then implemented in ABAQUS/Explicit 
using the VUMAT subroutine.  Based on the previous research [Thuc et al. (2013], A further 
parametric studies were carried out to investigate the influence of the properties of the aluminium 
alloy on the blast resistance of FMLs for aerospace applications. A vectorized user material 
subroutine (VUMAT) was employed to define Hashin’s 3D rate-dependant damage constitutive 
model of the GFPP. [Thuc et al. (2014)] Sandwich panels based on three-dimensional woven S-
glass/epoxy skins and a crosslinked PVC core were modelled using finite element techniques to 
investigate the effect of through-the-thickness stitching on the blast resistance of the panels by 
[Guan et al. (2014)]. The finite element model accurately predicted the failure modes and deformed 
shapes of the sandwich panels over the range of impulsive loading conditions. 
 
The superior mechanical properties provided by a roll wrapped composite tube manufactured 
predominantly using high modulus (T700) unidirectional pre-preg carbon fibre oriented to provide 
maximum strength in the lateral (length-ways) axis, also the use of pre-preg reinforcement oriented 
at 90° to ensures that the tube has good crush/burst strength around the section of the tube. Their 
superior mechanical properties offers special energy absorption which mean that tubes of the same 
weight as an aluminium or steel tube can be much stronger, or that tubes of the same strength can be 
much lighter, contribute more energy absorption subject to compressive crushing.  
 
This paper presents numerical modeling of compressive structural behavior of PVC foam core 
panels reinforced by CFRP tubes. Here, the foam was modeled as a crushable foam material with 
strain hardening. A vectorized user material subroutine (VUMAT) was employed to define 
Hashin’s 3D damage criteria for the composite tube to model the corresponding deformation and 
failure mechanisms. Energy absorption of the sandwich panels made with different densities of the 
cores was also investigated. Modeling results were compared with the experimental results, in terms 
of load-displacement relationships, deformation and failure modes. Reasonably correlation was 
obtained.  
 

2 Finite element modeling 
 
2.1 PVC foam  
Numerical models were developed to simulate the mechanical response of the tube reinforced foam 
subjected to comparison. The PVC foam core in the structure was modeled as a crushable foam 
subjected to compressive loading with rate-dependent strain hardening and both shear and ductile 
failure criteria. It was assumed that the Poisson’s ratio of all of the foams was 0.32. The 
phenomenological yield surface proposed by [Deshpande and Fleck (2001)] for a closed-cell foam 
material, given by: 

( )[ ][ ] 0
31

1 2222
2 ≤−+

+
≡ ymq σσα

α
φ

                                           (1) 
where σ y  is the uniaxial yield strength of the foam in tension or compression, q  is the Von Mises 
stress, and σ m  is the mean stress. The term α defines the shape of the yield surface, which is given 
by 
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where k and tk  are related to the ratios of the initial uniaxial yield stress o
cσ and the hydrostatic 

tensile yield stress tp to the hydrostatic compressive yield stress o
cp , respectively. 

The yield stress in hydrostatic compression, cp  describes the development of the size of the yield 
surface and is given as: 
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where vol
plε  is defined as the plastic volumetric strain in the volumetric hardening model, and is set 

equal to axial
plε  the compressive plastic strain. The term, cp  can therefore be deterimed from a 

compression test on the foam. Mechanical properties of the foams investigated are shown in Table 
1. 

Here, it is assumed that the response of a rate-dependent solid obeys the uniaxial flow rate 
definition, which is given as: 

( , , )pl plh qε ε q=                                                   (4) 

in which the term h is a strain-hardening function, plε  is defined as the equivalent plastic strain, and 
the parameterθ is the temperature. The rate-dependent hardening curves can therefore be expressed 
as: 

)()(),( plplyplpl R εεσεεε  =                                                         (5) 

in which plε  and R are defined as the equivalent plastic strain-rate and the stress ratio (= σ σ/ y ) 
respectively, which are given as: 

dt
t

pl plpl∫= 0
:

3
2 εεε  and R=σ σ/ y                                                     (6) 

Damage initiation in the PVC foam was modelled by applying a ductile damage criterion combined 
with a shear damage criterion. The former assumes that the equivalent plastic strain at the onset of 
damage is a function of the stress triaxiality (ratio of the pressure stress to the effective stress) and 
strain-rate. The latter criterion assumes that the equivalent plastic strain at the onset of damage is a 
function of the shear stress ratio and strain-rate. The fracture strains corresponding to the initiation 
of ductile damage and shear damage and the related strain-rate need to be specified. 

Table 1 Mechanical properties of the foams investigated used in this study [Zhou et al. (2012)]. 

 C40 C80 C130 C200 
Density (kg/m3) 40 80 130 200 
Compressive modulus (MPa) 37 97 160 280 
Compressive strength (MPa) 0.45 1.3 2.6 4.8 
Compressive fracture strain 0.65 0.7 0.7 0.7 
Tensile modulus (MPa) 28 66 110 175 
Tensile strength (MPa) 0.7 2.0 3.8 6.0 
Shear modulus (MPa) 13 30 47 75 
Shear strength (MPa) 0.5 1.2 2.3 3.5 
Shear fracture strain 0.08 0.23 0.30 0.30 
Work of fracture in tension (kJ/m2) 0.21 0.44 0.76 1.33 
Work of fracture in shear (kJ/m2) 4.5 12.6 27.6 44.2 
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Poisson's ratio 0.32 0.32 0.32 0.32 
 

 

2.2 CFRP Tube 
 
2.2.1 Carbon fibre woven composites 
 
The superior mechanical properties provided by a composite tube manufactured predominantly 
using high modulus (T700) unidirectional pre-preg carbon fibre oriented to provide maximum 
strength in the lateral (length-ways) axis, also the use of pre-preg reinforcement oriented at 90° to 
ensures that the tube has good crush/burst strength around the section of the tube. Given that a roll 
wrapped carbon fibre composite tubes tubes are manufactured from special high-modulus Toray 
T700 unidirectional pre-preg carbon fibre oriented at 0° (down the length of the tube) and 
unidirectional E-Glass oriented at 90° (around the section of the tube) by placing fibres in a 
[0,90,0,90,0] pattern. The overall strength of tube equal 50% CF at 0° and 50% CF at 90° direction. 
A constitutive model and failure criteria suitable for simulating the solid geometry composite using 
3D solid elements was employed to summate the failure mechanism of carbon fire tubes. 
 
Failure criteria for laminated composites are available in ABAQUS, which can be applied for panel 
coordinate and continuum shell elements only. However, none of these existing criteria consider the 
third direction through-the-thickness and strain-rate effects in the composite material in a 
cylindrical coordinate system using 3D solid elements. In order to develop a constitutive model and 
failure criteria suitable for simulating the composite tube using 3D solid elements, a 3D rate-
dependent failure criteria for a anisotropic composite is developed by modifying Hashin’s 3D 
failure criteria [Hashin (1980), Thuc et.al (2012)], to include rate-dependent elastic moduli and 
strength properties. The failure criteria, with the related constitutive model, are implemented into 
ABAQUS/Explicit using a VUMAT subroutine provided by ABAQUS [ABAQUS Theory Manual. 
6.11(2011)]. 
 
The material behaviour within the cross section is same in the lateral axis and roll directions 
according to the material test data provided by the manufacturer. Therefore, the developed Hashin’s 
3D failure criteria [Thuc et.al (2013] are able to simulate overall response of a roll wrapped 
composite layer in a cylindrical coordinate. The failure functions may be expressed as follows: 
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where X1t, X1c, X2t, X2c, S12, S13 and S23 are the various strength components [18] and dft, dfc, dmt 
and dmc are the damage variables associated with the four failure modes.  

The response of the material after damage initiation (which describes the rate of degradation of the 
material stiffness once the initiation criterion is satisfied) is defined by the following equation: 

       εσ ⋅= )(dC  , ijijij C εσ ⋅=
                                                                                    (11) 
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where Cij is a 6 x6 symmetric damaged matrix, whose non-zero terms can be written as: 

Γ−−= )1()1( 3223111 vvEdC f                      
Γ−−−= )1()1)(1( 3113222 vvEddC mf  
Γ−−−= )1()1)(1( 2112333 vvEddC mf  
Γ−−−= )()1)(1( 233121112 vvvEddC mf  
Γ−−−= )()1)(1( 311232223 vvvEddC mf                                                          (13) 
Γ−−−= )()1)(1( 322131131 vvvEddC mf  
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where the global fibre and matrix damage variables as well as the constant Γ  are also defined as: 

)1)(1(1 fcftf ddd −−−=
 

)1)(1(1 mcmtm ddd −−−=                                                                                     (14) 
)21/(1 133221311332232112 vvvvvvvvv −−−−=Γ  

 
where Ei is the Young’s modulus in the i direction, Gij is the shear modulus in the i–j plane and vij is 
the Poisson’s ratio for transverse strain in the j-direction, when the stress is applied in the i-
direction. The Young’s moduli, shear’s moduli, Poisson’s ratios and strengths of the CFPP are 
given in Table 2 and 3. The factors smt and smc in the definitions of the shear moduli are introduced 
to control the reduction in shear stiffness caused by tensile and compressive failure in the matrix 
respectively. The following values are recommended in [ABAQUS Theory Manual (2011)]: smt = 
0.9 and smc = 0.5. 

                                  Table 2. Properties data for the CFRP tube 

E1 
(MPa) 

E2 
(MPa) 

E3 
(MPa) 

G12 
(MPa) 

G13 
(MPa) 

G23 
(MPa) 

v12 
(MPa) 

v13 
(MPa) 

v23 
(MPa) 

ρ 
(kg/m3) 

70 70 10 8.6 8.6 8.6 0.1 0.3 0.3 1600 
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          Table 3. Damage initiation data for the CFRP tube 

X1T
 

(MPa) 
X1C 

(MPa) 
X2T

 

(MPa) 
X2C 

(MPa) 
S12 

(MPa) 
S13 

(MPa) 
S23 

(MPa) 

600 570 600 570 280 280 280 

 
2.2.2. Strain-rate effects in the mechanical properties 
The effects of strain-rate on the mechanical properties of a composite material are typically 
modelled using strain-rate dependent functions for both the elastic modulus and the strength. Yen 
developed logarithmic functions to account for strain-rate effects in a composite material as follows 
[Yen (2012)]: 
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and the subscript RT refers to the rate-adjusted values, the subscript 0 refers to the static value, 
11−=ε  is the reference strain-rate, ε  is the effective strain-rate, C1 and C2 are the strain-rate 

constants, respectively. 

 

2.3 Cohesive elements and material properties 
The resin layer at the interface between 0° lateral axis and oriented at 90° across its diameter plies 
was modelled using cohesive elements available in ABAQUS [ABAQUS Users Manual (2011)]. 
The elastic response was defined in terms of a traction-separation law with uncoupled behaviour 
between the normal and shear components. The default choice of the constitutive thickness for 
modelling the response, in terms of traction versus separation, is 1.0, regardless of the actual 
thickness of the cohesive layer. Thus, the diagonal terms in the elasticity matrix and density should 
be calculated using the true thickness of the cohesive layer as follows: 

c
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c
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ss t
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c

t
tt t

EK =  , cctρρ =                                                      (17)  

The quadratic nominal stress and energy criterion were used to model damage initiation and damage 
evolution, respectively. Damage initiated when a quadratic interaction function, involving the 
nominal stress ratios, reached unity. Damage evolution was defined based on the energy 
conjunction with a linear softening law. The mechanical properties of the cohesive elements were 
obtained from [Karagiozova et al. (2010)]. 
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3 Implementation of the material model in ABAQUS/Explicit 
 
The user defined VUMAT subroutine was developed to implement the material model and failure 
criteria described in the previous sections in ABAQUS/Explicit. During each time step of 
computation, this subroutine is compiled and enables ABAQUS/ Explicit to obtain the required 
information regarding the state of the material and the material mechanical response at each 
integration point of each element. The Hashin’s 3D failure criteria outlined in Eq. (7-10) are 
calculated, and the elastic modulus and strength values are adjusted for strain-rate effects using Eq. 
(14) base on these stresses computed within the VUMAT subroutine using the given strains and the 
material stiffness coefficients. The element status, which determined by the failure criteria, is then 
changed from 1 to 0 when an element fails. Accompanying the change of element status, the 
stresses at that material point are reduced to zero and it no longer contributes to the model stiffness. 
The element is removed from the mesh when all of the material status points of an element have 
been reduced to zero. 

The 3D tube reinforced foam panel consisted of the foam, the composite and the cohesive layers as 
three separate parts. The PVC foam core and composite layers for CFRP tubes were meshed using 
C3D8R elements, which are eight-noded, linear hexahedral elements with reduced integration and 
hourglass control. The  mesh generation and boundary conditions shown in Figure 2. The interfaces 
between the composite layers were created using eight-node 3D cohesive elements (COH3D8). The 
core size is 30×30×20 (in mm) and the diameters of the tube modelled included 8, 10 and 12.5 mm.  
The loading platens on both the top and bottom of the panel are meshed using rigid surface 
elements. The compressive load is applied to the top platen, with an only degree of freedom in the 
vertical direction. The bottom platen is fully fixed. Given that the panels were symmetric in nature, 
a half of each panel can be modeled with the appropriate boundary conditions applied along the 
planes of symmetry. A condition of general contact interaction was defined between the two 
neighboring layers of composites. Surface-based tie constraints were imposed between the 
composite layer and the cohesive layer to model adhesion between the adjacent layers. The contact 
interaction property for interaction between the foam and composite layer was also defined.  

 

 
 

Figure 2 The geometry, mesh, boundary and loading conditions of the tube reinforced foam model. 
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4 Results and discussion  
 

 
          Figure 5 Load-displacement traces of individual carbon tube in diameter of 8, 10 and 12.5 

mm under compression load. 
 

 

    
 

 

 

 

 

 

 

    

    
a. Progress failre of crushing 

     
b. Top view of the crushing of tube 

 
Figure 6 Comparison of progress deformation and failure for 10 mm CFRP tubes between test FE 

modeling.  
The modeling for tube reinforced foam panel was developed based the rods reinforced foam. Prior 
to model the foam panel with embedded tube, the individual tube with foam support has been 
simulated and valuated with the experimental test on the tube. Figure 5 shows comparison of load-
displacement traces obtained from FE prediction and the corresponding experimental results of the 
8 and 12.5 mm tube individually. Reasonably good correlation has been obtained between the 
measurements and the numerical modeling in terms of the initial stiffness, the first peak load, 
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plateau load and damage evolution. It clearly shows that the predicted load from FE modelling is in 
a reducing trend after the first peak load during the compression process.  

Figure 6 shows the comparison of progress deformation and failure for 10 mm CFRP tubes between 
test FE modelling. The basic features of the extensive splaying, fibre fracture and matrix cracking 
for the crushing tube were captured. The failed tubes is displayed the crushing states in which 
indicates a progress collapse of tubes. However, the failure modes of FE shows less extensive 
splaying of fibre may caused by the automatic remove of the failed element. The exact material data 
for the resin and fiber in longitudinal and circular direction can improve the failure modes. 

 
Figure 7 Comparison of load-displacement traces of C130 foam embedded in carbon tube in 

diameter of 8, 10 and 12.5 mm. 

 

Here, PVC foam panels with densities of 40, 80 and 130 kg/m3 are embedded CFRP tubes in three 
diameters, i.e. 8, 10 and 12.5 mm. Figure 7 shows load-displacement traces obtained from 
numerical modeling and the corresponding experimental results of the 8 and 12.5 mm embedded in 
130 kg/m3 PVC panel. The test results of a plain PVC foam panel without any CF tube are also 
shown in the figure to evident the enhancement of carbon tube. Again, agreements between the 
experimental results and the finite element simulations are very good, with well captured features in 
the initial stiffness, the peak load, the damage evolution and the densification.  Clearly, the 
resistance load increased significantly up to a average plateau load of 11.3 and 22.7 kN for the 8, 
and 12.5 mm tube reinforced foam panel respectively. It noted that the plateau load of 12.5 mm 
reinforced form panel is 8 times of the plain form panel without embedded tube. It also indicates 
that the resistance force increased with diameter of embedded tube form 11.3 kN for the 8 mm tube 
to 22.7 kN for the 12.5 mm tube reinforced foam.  
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C130T8 Test           C130T8 FE                  C130T10 Test        C130T10 FE 

a) Cross-sections 
 

                              
 

b) Ctushed foam panels 
 
Figure 8 The comparison of cross-secion on tube embeded foam and fialure modes of curshed panel. 

Figure 8 shows the cross-sections comparison of deformation and failure modes for C80 foam core 
panel with embedded CFRP tubes obtained from test and FE modelling. The core structure was 
deformed by 75% from its original configuration. The basic features of the foam crushing failure 
and the pin failure were captured. The failure modes of FE shows less crushing debris due to the 
failed elements removed automatic by the element control. The failed tubes is displayed the 
crushing states in which indicates a progress collapse of tubes embedded in the PVC foam. The 
more of the crushed failure modes of the tube reinforced panel are show in figures. The failure also 
indicates that strong constraint from the foam forces the CFRP tubes failure crushing along their 
longitudinal axis, which explains the enhancement of foam. However, the crushing failed elements 
in the modeling may cause element penetration with each other, which underestimates resistance of 
the tube to the compressive load. 

  
          Figure 9 Comparison of load-displacement traces between individual carbon tube in diameter 

12.5 mm and tube embedded in C130 foam under compression load. 
 

The comparison of the load-displacement traces between individual tube, tube embedded in foam, 
and whole panel with a density of 130 kg/m3 and embedded CF tube in diameters of 12.5 mm are 
exhibited in Figure 9. The dash line corresponding to the FE prediction whilst the solid line 
corresponding to the experimental test. An examination of the response of tube shows that the 
individual tube without foam constraint in a reduce trend during compression crushing, whilst the 
tube embedded in foam contribute huge resistance and energy absorption during crushing, also 
shows a increasing trend at the final stage of foam densification. The predicated load-displacement 

ICCM2014, 28th-30th July 2014, Cambridge, England

211



cure of the embedded curve evident that the tube contribute over 80% load and energy absorption of 
foam panel and the embedded tube over perform more than twice of individual tube without foam 
support for the case of 12.5 mm tube embedded in C130 foam. This evidence clearly supports the 
suggestion that embedded tube in foam panel can modify the failure process and greatly enhance 
the crush performance of the tubes.  

 
          Figure 10 Comparison of energy absorption for individual tube and tube reinforced foam den 

between FE prediction and experimental test results. 
 

Figure 10 shows the comprehensive comparison of energy absorptions obtained from experimental 
tests and FE predictions for individual and embedded carbon tube in diameters of 8, 10 and 12.5 
mm in foam panel with density form 40 to 130 kg/mm3. The green bar is FE prediction in the bar 
chart. In general, correlation is quite good between test data and FE predication for the individual 
tube on the energy bar chart with a difference less than 5%, whereas the difference on the tube 
reinforced foam slight higher, which may caused by the estimated parameters for the interaction 
between tube and foam core. The FE predictions for the 40 kg/m3 foam panels are slightly lower 
than those of experimental measurements, whilst such the predictions for the higher density panels 
are slightly higher. The possible reason is that due to the weak constraint offered by the foam with 
the lower density foam, in the modeling such crushing causes element penetration with each other, 
which underestimates resistance of the tube to the compressive load. In the case of tube in higher 
density foam, the strong constraint from the foam forces the CFRP tubes failure crushing along their 
longitudinal axis, which offer continue resistance load without buckling failure and crushed totally. 
The FE simulation is ideal situation compare to the real state of experiment test. 
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Conclusions 
User-defined constitutive models and strain-rate dependent failure criteria have been developed and 
implemented into finite element models to simulate load-displacement traces of PVC foam panels 
with embedded carbon fibre tubes, which are compared with the corresponding test results. 
Reasonably good correlation has been obtained between the experimental results and FE predictions, 
in terms of the initial stiffness, the peak load and the damage evolution. Here, three densities of the 
foam and three sizes of the CFRP tubes are investigated. In addition, energy absorption features of 
the sandwich core structures are captured by the modelling. The results show that the embedment of 
CFRP tubes inside PVC foam core is a very effective way to enhance energy absorption of this 
novel sandwich structure.  

This evidence clearly supports the suggestion that embedded tube in foam panel can modify the 
failure process and greatly enhance the crushing performance of the tubes. This study also shows 
the advantage of FE modeling to predict and present the load of individual components for 
structural design analysis and optimization. The user-defined subroutines can be further developed 
to simulate more complex failure mechanisms of fibre reinforced composites. 
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Abstract 
Perforation damage of fibre metal laminates (FMLs) subjected to projectile impact was modelled 
using the finite element (FE) analysis. Here, FMLs studied covered stacking sequences of 2/1 and 
3/2 FMLs, which were made with different aluminium alloys (6161-O, 6061-T6, 7075-O) and glass 
fibre reinforced polymer (GFRP) layers. A vectorized user-defined material subroutine (VUMAT) 
was developed to define Hashin’s 3D rate-dependant damage criteria for the GFRP. The subroutine 
was implemented into the commercial finite element code ABAQUS/Explicit to simulate the 
deformation and failure of FMLs. The aluminium alloy layers were modelled as an isotropic elasto-
plastic material by Johnson-Cook plasticity and the related damage criterion.  The resin layer was 
simulated using cohesive elements, defined in terms of traction-separation. Good agreement was 
obtained between the simulations and the experimental results, in terms of the load–displacement 
traces, the deformation and failure modes.  

Keywords: Impact, Fibre metal laminates, Hashin 3-D Criteria, Finite Element, Progressive Failure 
 

1. Introduction 
Fibre metal laminates (FMLs) are advanced composite structural materials that have been attracting 
interest from a number of researchers to investigate the impact resistance [Reyes and Cantwell 
(2000); Vogelesang and Vlot (2000)]. In recent years, a number of studies had been conducted to 
investigate the low and high velocity impact behaviour of fibre metal laminates. Caprino et al. 
[Caprino et al. (2004)] performed low-velocity impact tests on fibre metal laminates made of 2024-
T3 sheets and S2-glass/epoxy prepreg layers. Various impact masses, velocities, and energies were 
applied in the tests to investigate the influence of these factors on the impact response. For 
comparison purposes, similar tests were also performed on monolithic 2024-T3 sheets with the 
equivalent thickness. Abdullah and Cantwell [Abdullah and Cantwell (2006)] studied the impact 
behaviour of a glass fibre reinforced polypropylene FMLs and the results showed that the FML 
offered an impressive resistance subject to low and high velocity impact. They found that FMLs 
absorb more energy during plastic deformation in the aluminium and composite layers.  A low 
velocity impact tests on glass fibre-based FMLs has been conducted by Vlot and Fredell. The FMLs 
offer a superior impact to both an aluminium alloy and a carbon fibre reinforced composite. [Vlot 
and Fredell (1993)]. Vlot also conducted impact tests on an aluminium alloy and different types of 
FML and composites [Vlot (1996)]. There was a crack at the carbon and aramid fibres based FMLs 
and the energy absorption lower than that of a glass fibre reinforced FML. A inspection on the 
tested specimens showed that the FMLs exhibited a similar indentation in size to those plain 
aluminium alloy. Vlot et al. conducted impact tests on GLARE and plain aluminium and showed 
that the FML exhibited an initial cracking energy. They alos found that the impact damage 
resistance of these FMLs increased with increasing glass/epoxy content [Vlot et al (1999)]. 
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A numbers of FE modeling have been developed to simulate the impact response of FMLs using 
numerical echniques. Guan et al investigated the impact response of fibre metal laminates based on 
a woven polypropylene (PP) fibre reinforced composite  and an aluminium alloy at velocities up to 
150 m/s. Both the predicted failure modes and displacement of the FMLs was good agree with the 
test data [Guan et al,(2009)]. Payeganeh et al. developed a number of FE models to investigate the 
resistance force traces, deflection, in-plane strains and stresses in of FMLs subjected to low velocity 
impact loading [Payeganeh et al. (2010)]. The results shown that the stacking sequence, the masses 
and velocities of the impactor were important parameters in determining the impact response of the 
FMLs.  Lannucci et al studied the failure mode the impact load on FMLs. Modelling of composite 
damage subjected to impact within the intermediate strain rate regime may be generally categorized 
into four approaches [Lannucci (2006)], i.e. (1) failure criteria, (2) fracture mechanics, (3) plasticity 
or yield surface, and (4) damage mechanics. The Tsai-Wu failure criterion describes the failure 
surface in stress or strain space [Tsai and Wu (1971)]. However, it is a significant disadvantage to 
use stress-based failure criteria to model brittle materials as the scale effect in relation to the crack 
length in the same stress field cannot be modelled properly. Lee et al. [Lee et al. (2001)] 
investigated the penetration and perforation behaviour of a 6061-T6 aluminium plate and a C12K33 
carbon fibre reinforced 6061-T6 aluminium metal-matrix composite plate subjected to projectile 
impact using an explicit finite element code, LS-DYNA3D. Perforation of the plate was found to 
occur under all of the studied impact conditions. The deformation behaviour of the plate and 
projectile as well as the projectile post-perforation velocity and the deceleration of the projectile 
were strongly dependent on the plate properties and impact velocity. Payeganeh et al. developed 
explicit FE models to investigate the contact force history, deflection, in-plane strains and stresses 
of 2024-O 2/1, 5/4 and 2024-T3 2/1, 5/4 FMLs subjected to low-velocity impact [Payeganeh et al. 
(2010)]. Failure shear strain and tension cut-off stresses were specified as failure criteria for 
aluminium layers. The failure of fibre laminate was simulated using Tsai–Wu failure criterion by 
specifying tensile cut-off stress based on the ultimate tensile stress of the fibre. 
 
Although a few numerical modeling developed to simulate the response of composite using 
commercial software LS-DYNA and Abaqus. However, those such as ABAQUS only has a number 
of failure criteria for composite materials modeled using 2D elements, such as plane stress and 
continuum shell elements [Carla McGregor (2010)]. Further, none of these criteria consider strain-
rate effects in composite materials, which is clearly important in dynamic studies. The 2D elements, 
with the existing failure criteria, are not capable of taking large through-the-thickness rate-
dependent deformations into account. Therefore, it is necessary to develop a constitutive model 
with associated failure criteria suitable for simulating a composite material using 3D solid elements.  

A limited numerical modeling were developed to investigate the structural response of composite 
using three-dimensional 3D solid elements. Recently, Thuc et al. developed a FE models which 
were validated using experimental data from tests on FMLs based on a 2024-O aluminium alloy and 
a woven glass–fibre/polypropylene composite. The rate-dependent failure criteria for a 
unidirectional composite were used, which were based on the modified Hashin’s 3D failure criteria 
[Thuc et al. (2013]. The constitutive model and failure criteria were then implemented in 
ABAQUS/Explicit using the VUMAT subroutine.  Based on the previous research [Thuc et al. 
(2013], A further parametric studies were carried out to investigate the influence of the properties of 
the aluminium alloy on the blast resistance of FMLs for aerospace applications. A vectorized user 
material subroutine (VUMAT) was employed to define Hashin’s 3D rate-dependant damage 
constitutive model of the GFPP. [Thuc et al. (2014)] Sandwich panels based on three-dimensional 
woven S-glass/epoxy skins and a crosslinked PVC core were modelled using finite element 
techniques to investigate the effect of through-the-thickness stitching on the blast resistance of the 
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panels by [Guan et al. (2014)]. The finite element model accurately predicted the failure modes and 
deformed shapes of the sandwich panels over the range of impulsive loading conditions. 
This paper presents numerical modeling of structural behavior of fibre metal laminates subjected to 
impact loading for aerospace applications. Here, Johnson–Cook strain hardening and damage 
criterion were employed to simulate the fialure of aluminiym layers. A vectorized user material 
subroutine (VUMAT) was employed to define Hashin’s 3D damage criteria for the composite layer 
to model the corresponding deformation and failure mechanisms. Energy absorption of the fibre 
metal laminates plates made with different configurations of the liminates layers was also 
investigated. Modeling results were compared with the experimental results, in terms of load-
displacement relationships, deformation and failure modes.  
 
3 Finite element modeling 
 
The two material layers in the FMLs, i.e. the composite and the aluminum alloy, exhibit very 
different mechanical behaviors. Therefore, different constitutive models were used to simulate the 
behavior of the metal and composite plies. The aluminium alloy layers were modelled as an 
isotropic elasto-plastic material by Johnson-Cook plasticity and the related damage criterion.  
ABAQUS/Explicit [Hibbitt et al. (2011)] was used to develop numerical simulations of the FMLs 
subjected to projectile impact. Numerical modeling was undertaken on the 6061-O, 6061-T6 and 
7075-O FMLs outlined in Table 1. 

Table 1 Johnson–Cook constants and static tensile strength for aluminium alloys 
Aluminum 

type 
A 

(MPa) 
B 

(MPa) n C D1 D2 D3 D4 
Strength 

(MP) 
Al 6061-T6 324 114 0.42 0.002 0.13 0.13 -1.5 0.011 332 
Al 6061-O 360 105 0.73 0.083 0.013 0.025 -1.7 -0.4 310 
Al 7075-O 535 658 0.71 0.024 -0.068 0.451 -0.95 0.036 551 

 

 
3.1. Aluminium layers 
 
The aluminium alloy was modelled as an elasto-plastic material included a rate-dependent 
behaviour. Temperature effects in the aluminium alloy were not taken into account. The Johnson– 
Cook material model was used in the form as below: 
 

                                                                           (1) 
 

where  is the equivalent plastic strain;  and  are the equivalent plastic and reference strain rate 
and A, B, C and n are material parameters. Damage in the Johnson–Cook material model is 
predicted using the following cumulative damage law: 

                                                                                                        (2) 
in which 

                                                              (3) 

ICCM2014, 28th-30th July 2014, Cambridge, England

217



where is the mean stress normalised by the equivalent stress and  is the increment of 
equivalent plastic strain during an increment in loading. D, is a function of the mean stress and the 
strain rate. The parameters D1, D2, D3, and D4 are constants. Failure is assumed to occur when D = 
1. Hence the current failure strain, , and thus the accumulation of damage,. The constants in the 
Johnson–Cook model for the three alluminium alloys used in this study are given in Table 2. The 

Young’s modulus, Poisson’s ratio and density of the various aluminium alloys were taken as E = 
73.5 GPa, ѵ = 0.3 and ρ = 2700 kg/m3, respectively. 
 
3.2. Glass fibre reinforced composite layers  
 
3.2.1. The 3D damage model for the composite material 
A constitutive model and failure criteria suitable for simulating the solid geometry composite using 
3D solid elements was employed to simulate the failure mechanism of glass fire layers. Failure 
criteria for laminated composites are available in ABAQUS, which can be applied for panel 
coordinate and continuum shell elements only. However, none of these existing criteria consider the 
third direction through-the-thickness and strain-rate effects in the composite material in a coordinate 
using 3D solid elements. In order to develop a constitutive model and failure criteria suitable for 
simulating the composite tube using 3D solid elements, a 3D rate-dependent failure criteria for a 
anisotropic composite is developed by modifying Hashin’s 3D failure criteria [Hashin (1980), Thuc 
et.al (2012)], to include rate-dependent elastic moduli and strength properties. The failure criteria, 
with the related constitutive model, are implemented into ABAQUS/Explicit using a VUMAT 
subroutine provided by ABAQUS [ABAQUS Theory Manual. 6.11(2011)]. 
Given that a woven glass fibre composite layer is produced by placing fibres in a [0/90] pattern, the 
material behaviour within the plane of the laminate is similar in those two directions according to 
the material test data provided by the manufacturer. Therefore, the developed Hashin’s 3D failure 
criteria [Thuc et.al (2013] be able to simulate overall response of a roll wrapped composite layer in 
a cylindrical coordinate. The failure functions may be expressed as follows: 
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where X1t, X1c, X2t, X2c, S12, S13 and S23 are the various strength components and dft, dfc, dmt and dmc 
are the damage variables associated with the four failure modes.  
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The response of the material after damage initiation (which describes the rate of degradation of the 
material stiffness once the initiation criterion is satisfied) is defined by the following equation: 

εσ ⋅= )(dC  , ijijij C εσ ⋅=
                                                                                      (8) 
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where Cij is a 6 x6 symmetric damaged matrix, whose non-zero terms can be written as: 

Γ−−= )1()1( 3223111 vvEdC f  

Γ−−−= )1()1)(1( 3113222 vvEddC mf  

Γ−−−= )1()1)(1( 2112333 vvEddC mf  

Γ−−−= )()1)(1( 233121112 vvvEddC mf  

Γ−−−= )()1)(1( 311232223 vvvEddC mf                                                          (10) 

Γ−−−= )()1)(1( 322131131 vvvEddC mf  

12144 )1()1)(1( GdsEdsdC mcmcmtmtf −−−=  

23155 )1()1)(1( GdsEdsdC mcmcmtmtf −−−=  

13166 )1()1)(1( GdsEdsdC mcmcmtmtf −−−=  
where the global fibre and matrix damage variables as well as the constant Γ  are also defined as: 

)1)(1(1 fcftf ddd −−−=
 

)1)(1(1 mcmtm ddd −−−=                                                                                     (11) 

)21/(1 133221311332232112 vvvvvvvvv −−−−=Γ  
 

where Ei is the Young’s modulus in the i direction, Gij is the shear modulus in the i–j plane and vij is 
the Poisson’s ratio for transverse strain in the j-direction, when the stress is applied in the i-
direction. The Young’s moduli, shear’s moduli, Poisson’s ratios and strengths of the CFPP are 
given in Table 2 and 3. The factors smt and smc in the definitions of the shear moduli are introduced 
to control the reduction in shear stiffness caused by tensile and compressive failure in the matrix 
respectively. The following values are recommended in [ABAQUS Theory Manual (2011)]: smt = 
0.9 and smc = 0.5. 
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                                  Table 2. Properties data for the GFRP composite 

E1 
(MPa) 

E2  
(MPa) 

E3 
(MPa) 

G12 
(MPa) 

G13 
(MPa) 

G23 
(MPa) 

v12 
(MPa) 

v13 
(MPa) 

v23 
(MPa) 

ρ 
(kg/m3) 

13 13 2.4 1.72 1.72 1.72 0.1 0.3 0.3 1800 
 

Table 3. Damage initiation data for the GFRP composite 

X1T
 

(MPa) 
X1C 

(MPa) 
X2T

 

(MPa) 
X2C 

(MPa) 
S12 

(MPa) 
S13 

(MPa) 
S23 

(MPa) 

320 240 320 240 140 140 140 
 

 
2.2.2. Strain-rate effects in the mechanical properties 

The effects of strain-rate on the mechanical properties of a composite material are typically 
modelled using strain-rate dependent functions for both the elastic modulus and the strength. Yen 
[Yen (2012)] developed logarithmic functions to account for strain-rate effects in a composite 
material as follows: 
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and the subscript RT refers to the rate-adjusted values, the subscript 0 refers to the static value, 
11−=ε  is the reference strain-rate, ε  is the effective strain-rate, C1 and C2 are the strain-rate 

constants, respectively. 

2.3 Cohesive elements and material properties 

The resin layer at the interface between 0° lateral axis and oriented at 90° across its diameter plies 
was modelled using cohesive elements available in ABAQUS [ABAQUS Users Manual (2011)]. 
The elastic response was defined in terms of a traction-separation law with uncoupled behaviour 
between the normal and shear components. The default choice of the constitutive thickness for 
modelling the response, in terms of traction versus separation, is 1.0, regardless of the actual 
thickness of the cohesive layer. Thus, the diagonal terms in the elasticity matrix and density should 
be calculated using the true thickness of the cohesive layer as follows: 
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c

s
ss t

EK = , 
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EK =  , cctρρ =                                                      (14)  
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The quadratic nominal stress and energy criterion were used to model damage initiation and damage 
evolution, respectively. Damage initiated when a quadratic interaction function, involving the 
nominal stress ratios, reached unity. Damage evolution was defined based on the energy 
conjunction with a linear softening law. The mechanical properties of the cohesive elements were 
obtained from [Karagiozova et al. (2010)]. 

3 Implementation of the material model in ABAQUS/Explicit 

The user defined VUMAT subroutine was developed to implement the material model and failure 
criteria described in the previous sections in ABAQUS/Explicit. During each time step of 
computation, this subroutine is compiled and enables ABAQUS/ Explicit to obtain the required 
information regarding the state of the material and the material mechanical response at each 
integration point of each element. The Hashin’s 3D failure criteria outlined in equations (4-7) are 
calculated, and the elastic modulus and strength values are adjusted for strain-rate effects using 
equations (11) base on these stresses computed within the VUMAT subroutine using the given 
strains and the material stiffness coefficients. The element status, which determined by the failure 
criteria, is then changed from 1 to 0 when an element fails. Accompanying the change of element 
status, the stresses at that material point are reduced to zero and it no longer contributes to the 
model stiffness. The element is removed from the mesh when all of the material status points of an 
element have been reduced to zero. 

The fibre metal laminates consisted of the aluminum, the composite and the cohesive layers as three 
separate parts. The aluminum and composite layers for CFRP tubes were meshed using C3D8R 
elements, which are eight-noded, linear hexahedral elements with reduced integration and hourglass 
control. The mesh generation and boundary conditions shown in Figure 1. The interfaces between 
the composite layers were created using eight-node 3D cohesive elements (COH3D8). The plate 
size is 75×75 (in mm).  The initial velocity applied to the projectile, with an only degree of freedom 
in the vertical direction. The plate edges are fully fixed. Given that the panels were symmetric in 
nature, a quart of each panel was modeled with the appropriate boundary conditions applied along 
the planes of symmetry. A condition of general contact interaction was defined between the two 
neighboring layers of composites. Surface-based tie constraints were imposed between the 
composite layer and the cohesive layer to model adhesion between the adjacent layers. The contact 
interaction property for interaction between the aluminum and composite layer was also defined.  

 
Figure 1 The geometry, mesh, boundary and loading conditions of the model for FMLs. 
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4 Results and Discussion  
 
The developed finite element models have been simulated to predict the structural behaviour of 
fibre metal laminates subject to perforation loading. Modeling results were compared with the 
experimental results, in terms of load-displacement relationships, energy absorption, deformation 
and failure modes. The perforation loading on individual layers has been modeling firstly to 
validation the FE modeling. The perforation prediction on FMLs has been compared with the 
experimental data. 
 
 

     
 

a. Aluminum layers                             b. GFRP composite layers 
 
 

Figure. 2 Comparison of load-displacement traces of perforation tests for individual layers on 
aluminum and GFRP 

 
Figures 2a show the comparison between the experimental and the numerical load-displacement 
traces for the individual layers of the 6061-o and 7075-O aluminums.  The peak loads from the 
numerical predictions and the experimental tests for these layers were 750  and 3105 N, 
respectively. The former are only 3.1% and 9.2% higher than the latter, respectively. Also the 
predicted initial stiffness and the displacement at the peak load for the two aluminum were shown a 
good agreement with the corresponding experimental results. The predicted perforation energies 
were 5.8 and 20.8 J respectively, which are only 5.8% higher and 6.4% higher than the 
corresponding experimental results. Figures 2b present the comparison between the experimental 
and the numerical load-displacement traces for the 0.5 mm 3-ply and 1 mm 5-ply composite layers 
respectively subjected to a low velocity impact. The load-displacement traces shows that the 
stiffness is lower at beginning and the traced start liner up after the displacement of 1 mm. The peak 
loads from the numerical predictions and the experimental tests for these layers were 1015 and 1692 
N, respectively. The former are only 4.1% and 7.2% higher than the latter, respectively. Also the 
predicted initial stiffness and the displacement at the peak load for the two GRP skins were in 
reasonably good agreement with the corresponding experimental results. The predicted perforation 
energies were 3.35 and 5.51 J respectively, which are only 5.8% higher and 6.4% higher than the 
corresponding experimental results. The fibre metal laminate was simulated using the validated 
individual layers. 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

222



    
a. 6061-O based FMLs                                     b. 7075-O based FMLs 

 
 

Figure. 3 Comparison of load-displacement traces of 2/1 and 3/2 fibre metal laminates between FE 
and experimental tests. 

 
 

The finite element models using the constitutive models and failure criteria presented in the figure 2 
were developed to simulate the critical perforation impact tests of various fibre metal laminates. 
Figures 3a and 3b show the simulated and the related experimental load-displacement traces of 2/1 
and 3/2 FMLs plates made with 3-ply and 5-ply composite layers respectively subjected to low 
velocity impact. Figure 3a shows the 0.5 mm thick 6061-O aluminum and 3-ply GFRP based 
FMLs. The load-displacement traces show a linear up stiffness until the fist peak load. The 
predicted peak loads for the 6061-O based 2/1 and 3/2  FMLs plates were 203 and 355 Newtons, 
respectively, which are 2.4% and 6.0% higher than the experimental results respectively. The 
predicted initial stiffness and the displacement at the peak load for the targets were in good 
agreement with the corresponding experimental results. The predicted perforation energies were 
11.09 and 23.65 Joules, respectively. In comparison with the experimental results they were slightly 
higher, respectively.  
 
Figure 3b shows the 1 mm thick 7075-O aluminum and 5-ply GFRP based FMLs. The load-
displacement traces show a linear up stiffness up to the displacement of 1 mm. The stiffness 
reduced and shows a lower liner stiffness before up to first peak load. The reduced stiffness maybe 
caused by the delamination between aluminum and composite layer which cased the stiffness 
reduced.  The predicted peak loads for the 7075-O based 2/1 and 3/2  FMLs plates were 7100 and 
12900 Newtons, respectively, which are 5.4% and 8.1% higher than the experimental results 
respectively. The predicted initial stiffness and the displacement at the peak load for the targets 
were in reasonably agreement with the corresponding experimental results. The predicted 
perforation energies were 74.4 and 132.5 Joules, respectively. In comparison with the experimental 
results the results still slightly higher.  
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 0.5mm 6061-O + 0.5mm 3-ply GRP 

3/2 

 

 
 

 
 

 1mm 7075-O + 1mm 5-ply GRP 
Figure  5 Comparison of the simulated and experimental failure modes of 3/2 FMLs plates made 

with 3-ply and 5-ply composite 
Figures 5 show the comparison of the simulated and experimental failure modes of 3/2 FMLs plates 
made with 3-ply and 5-ply composite subjected to an on-set perforation impact. The basic features 
of the experimental failure modes for all the FMLs plates were well simulated, in terms of the cross 
cracks at the rear face and the local deformation mode at the target centre. Since the difference 
between the FMLs plates was thickness of aluminum and the number of composite plies in the 
composite layer, the experimental failure modes for these two FMLs plates were quite similar. The 
FE simulate the delamination of resin between composite and aluminum.  

 
Figure. 6 Comparison of load-displacement traces of impact tests on 2/1 and 3/2 7075-O based fibre 

metal laminates between FE and experimental tests. 
Finite element models of other types of FMLs plates subjected to a low velocity impact were also 
developed include the strain rate effects to broaden the validation. Figures 6 show the numerical 
simulations of the experimental load-displacement traces for the 3/2 FMLs plates made with 5-ply 
composite cores respectively subjected to an on-set perforation impact. Very good correlation was 
obtained between the experimental results and the numerical simulations, in terms of the overall 
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initial stiffness, the peak load and the perforation process. The predicted peak loads for these two 
FMLs plates were 970 and 1551 N, respectively, which are only 5.4 % and 5.8 % higher in 
comparison with the experimental results, respectively. The predicted initial stiffness and the 
predicted displacement at the peak load were also shown  reasonably agreement with the 
corresponding experimental results. The predicted perforation energies for these two plates were 
103.4 and 175.5 J, respectively. Compared to the experimental results, the FE were reasonable 
higher. 

 
 

Figure. 7 Comparison of energy absorption of 2/1, 3/2 and 4/3 fibre metal laminates between FE 
and experimental tests. 

Figures 7 show the comparison between the the perforation energy and the corresponding test 
results in a chart form. Clearly, very good correlation was obtained. The green bar show the FE 
prediction of the modeling and all the FE results are slight higher than the experimental data as the 
load-displacement traces shown in early figure. The possible reason may caused by the contact 
parameters used for the contact between projectile and FMLs, the strain rate of the modeling, 
elements control of the modeling. In further studies, more points can to be predicted by using 
validated numerical models in order to draw out the reliable relationship,  In fact, the finite element 
models developed are well validated based on the reasonably good prediction compare to the test 
results.   
 

Conclusions 
Finite element models have been developed to simulate the structural behaviour of fibre metal 
laminates with various stacking sequences and three different aluminium alloys subjected to impact 
loading. Hashin’s 3D failure criteria, incorporating strain-rate effects in the GFPP is implemented 
into ABAQUS/Explicit using a vectorized user-defined material subroutine (VUMAT). Very good 
correlation has been obtained between the numerical simulations and the experimental results, in 
terms of load-displacement traces, peak load and perforation energy. A reasonable agreemetn bas 
been shown in deformation mode and failure mode. 
The validated finite element models, which cover the configurations of 2/1, 3/2 and 4/3 laminates 
made with different layers included 3-ply and 5-ply composite and various thinckness of 
aluminiums are ready to be used for further parametric studies of FMLs subjected to different 
loading conditions. The evidence suggests that the impact resistance and energy absorption 
increased with the increasing of laminates thickness and area density. Both the peak load and erergy 
absorption of 6061-T6 overperform than the 6061-O based fibre metal laminates, however the 
specifii erergy absorption of later slight higher than former. It also a suggests that the 7075-O alloy 
offers the best impact resistance and energy absorptions. 
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Effects of inlet pressure and inlet flow rate on the flow field in a 

pressure-swirl atomizer 
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The dual-fuel circuit pressure-swirl atomizers are numerically studied by the finite 
volume method with the inside kerosene flowing under the boundary condition of 
mass-flow-inlet (300L/h~580L/h) and pressure-inlet (1.44MPa~3.04MPa) 
respectively. It is suggested that the velocity magnitude of the area near the wall of 
outlets, as significant parts of the internal flow filed of the atomizer, increases nearly 
linearly with the flow rate and the pressure of inlets. Furthermore, outlet flow rate 
slowly increases with the increasing inlet pressure under the pressure-inlet boundary 
condition and the fuel supply pressure of vice orifice increases fast with the 
increasing inlet flow rate under the mass-flow-rate boundary condition. Therefore, the 
inlet pressure and flow rate significantly affect the performances of atomizers.  

Keywords: Swirl atomizers, inlet flow rate, inlet pressure, atomization performance 

0  Introduction 
Due to recent trends toward direction of higher thrust to weight ratio, high power to 
weight ratio, high reliability and low fuel consumption of aero-engine technology, 
how to improve the performance of the engine is still the focus of research in the field 
of the aviation. The atomizer of aviation engine is an inevitable necessity component 
due to fuel into the combustion chamber of the aviation engine in the form of droplets 
or spray is burned, the characteristics of atomization directly determine the 
combustion efficiency and stability of aero-engine. This process involves the fuel 
atomization performed by centrifugal atomizer. There are many types of centrifugal 
atomizers, which highlight the advantages of large fuel adjustment range, and ensure 
that better fuel atomization quality can still be obtained at the condition of low 
volume, meeting the requirements of the stability and complete combustion of the 
aviation turbine in different altitude. It is believed that in-depth study of the dual 
centrifugal atomizer to improve engine performance has a crucial role. 
 
During the last decade, a number of numerical and experimental researches by many 
scholars were conducted on the atomizer considering different perspective and 
methods. [Jain M et al.(2014)] conducted a detailed experimental study to understand 
the role of Reynolds number and geometry on the flow coefficient, spray angle and 
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droplet size in a spray atomizer. [Chen et al.(2010)] experimentally compared the 
effects of different operating conditions under which primary and secondary fuel line 
working at the same time on spray angle, indicating that the gap between the two 
situations is obvious. [Tratnig, A et al. (2010)] carried out an experimental study to 
evaluate mean diameter of liquid droplet caused by physical properties of working 
fluid. Although researches on the atomizer has achieved some profound 
understandings [C. J. Wang Et al. (2009); Zhang Et al. (2003); Chatterjee S et al. 
(2014); M. Yue Et al. (2003); Y. D. Kong Et al. (2007); Han Z et al. (1997); Datta 
AFan Y, et al. (2000); Fan Y et al.(2014)], due to small size of atomizer and the 
complexity of its internal flow field, significant details of the flow field cannot be 
captured only relying on experiments. And researches regarding the effects of inlet 
pressure, inlet flow on the flow field inside the atomizer are not deep enough and 
comprehensive. Henceforth, this study is devoted to investigate the law of 
dependence of inlet pressure, inlet flow on the flow field inside the atomizer using 
FLUENT software of computational fluid dynamics. 

1  Physical model and calculation methods 

1.1 computational model 
A schematic of structure of the double line pressure swirl centrifugal atomizer and 
fuel flow inside the atomizer is shown in Fig. 1. Primary and secondary fuel line is 
consist of swirl chamber, swirl groove and fuel orifice respectively. When it is 
working, fuel is accelerated in swirl groove of primary and secondary fuel line and 
then rotated in swirl chamber and finally sprayed to orifice in the form of rotating 
film which is spread into a cone by centrifugal force. The fuel becomes relatively 
small particles under the effect of the air.  

 
Figure 1. A schematic of cross-section of the atomizer and fuel flow inside it[C. J. 
Wang Et al. (2009))] 
1.2 numerical calculation method 
Due to fuel was injected into the atomizer at a relatively high speed at the inlet and 
then generated high-speed rotation at swirl chamber, the flow belonged to turbulent 
flow. Therefore, numerical simulation of the flow field of fuel in the atomizer also 
involves turbulence model, and standard k ε− turbulence model was selected in this 
study. To analyze the flow characteristics of this three-dimensional model and 
simplify the problem, the following assumptions of the flow are adopted: (1) 
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incompressible;（2）gravity cannot be ignored. The governing equations are expressed 
as follows: 
Continuity equation:  

( ) 0ρυ∇⋅ =


         (1) 

Momentum equation: 
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1C ε、 2C ε 、 3C ε  is empirical constant and 1
1.44C ε

= 、 2
1.92C ε

= is the default value in 

FLUENT. Where ρ is  density; µ  is kinematic viscosity; υ


 is velocity vector; p  

is pressure; f


 is combined external force. 

1.3 mesh-independent verification 
In the current work, CFD (Computational fluid dynamics, CFD) FLUENT software 
was used for numerical simulation. In order to improve the efficiency and accuracy, 
structural hexahedral mapped mesh generated by the pre-processing software ICEM 
was used, as shown in Figure 2. By comparing the amount of each of the grid 1.247 
million and 1.181 million, the velocity magnitude of the line y = o through diameter 
at the outlet is shown in Figure 3, indicating that two lines almost overlap by the 
mesh-independent verification. Therefore, using 1.181 million mesh could meet the 
requirements of numerical simulation and analysis. 

   
Figure 2. Mesh of calculated domain  Figure 3. Mesh independence verification 
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 1.4 boundary conditions 
During the calculation, the 3rd aviation kerosene is used as the working medium. The 
properties of the 3rd aviation kerosene used in the computation are a density 
=800kg/m3, the dynamic viscosity coefficient=0.00144Pa.s, the surface tension 
=0.0268N/s, the boundary conditions are as follows: 

（1） The inlet pressure is 1.44, 1.84, 2.04, 2.64, 3.04Mpa respectively; 
（2） The inlet flow rate is 300, 370, 440, 510, 580 L/h respectively; 
（3） Total Guage pressure is 0MPa at the outlet; 

2  Results and discussion  

2.1 local flow field (pressure, velocity distribution) inside atomizer 
Internal filed of the atomizer under the condition of primary and secondary fuel 
supply pressure as the same 370MPa was numerically calculated. The pressure and 
velocity distribution is shown in Figure 4 wherein Figure (a), Figure(b) displays the 
contours of the pressure and velocity in plane of Z=0 respectively. It can clearly be 
seen from Fig. 4 that the pressure has an apparent gradient in swirl chamber of 
primary and secondary fuel line, furthermore, due to the large pressure gradient in the 
secondary fuel line, there is an obvious area of low pressure in the center of swirl 
chamber. Correspondingly, after the fuel inflowing the inlet, velocity of the fuel was 
gradually increased, and increased rapidly after flowing into swirl groove and then 
fuel generated the acceleration and rotation in swirl chamber, finally was sprayed in a 
cone under the centrifugal force. The velocity maldistribution of the fuel in the 
swirling groove is dedicated to a sudden contraction of flow channel and its irregular 
structure. The geometric structure of the swirl chamber is gradually tapered, thus 
velocity magnitude of the fuel increases rapidly, reaching a maximum at the outlet, 
which provides the necessary conditions for the fuel in form of droplets into the 
combustion chamber. 

 
              (a) Contours of pressure       (b) Contours of velocity  

Figure 4. Schematic of flow field in the atomizer  

2.2 Effect of inlet pressure on average velocity of annular area at outlet and outflow 
rate . 
Jet speed at the outlet where near the central area of the outlet is air and near the edge 
of the annular area of the outlet is the fuel directly determines the fuel atomization 
quality. The average velocity of the area was extracted to explore the dependence of 
fuel inlet pressure and inlet flow rate on it. Figure 5 (a) is the curve of the effect of 
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inlet pressure on average velocity of annular area at outlet. It shows that, when the 
inlet pressure is 1.44, 1.84, 2.24, 2.64, 3.04Mpa, the average velocity in the annular 
area is 35.1, 39.5, 43.6, 47.6, 51.4 m/s correspondingly. When the inlet pressure 
equally spaced (0.4Mpa) increases, the velocity increases 4.4, 4.1, 4.0, 3.8 m/s 
separately. Namely as the inlet pressure (1.44-3.04Mpa) increases, the velocity 
magnitude of annular area at outlet is almost linearly increased, however the growth 
rate of velocity slows gradually. Therefore, in the situation of sufficient fuel supply 
and complete combustion, increasing inlet pressure of atomizer, the more fuel into the 
combustion chamber, greater combustion power can be generated. However, 
increasing the inlet pressure is not completely converted to an increase of the average 
velocity. Accordingly, when design the atomizer, a fact that with increased pressure 
(a range), the increasing trend of combustion power became slowly should be fully 
considered. 
 
Outlet flow rate is one of the most critical indicators of the performance of the 
atomizer. Exploring the influence of geometric parameters or different operating 
conditions (inlet pressure) on the outflow rate has an important significance to guide 
the design and development of the atomizer. This paper focused on the effects of inlet 
pressure on the outlet flow rate, as shown in Figure 5 (b). It apparently demonstrates 
that when the inlet pressure is1.44, 1.84, 2.24, 2.64, 3.04Mpa, outlet flow rate is 0.136, 
0.153, 0.169, 0.183, 0.196 kg/s respectively. When the inlet pressure equivalently 
spaced (0.4Mpa) increases, the outlet flow rate increases 0.017, 0.016, 0.014, 0.013 
kg/s accordingly. That is, as the inlet pressure (1.44-3.04Mpa) increases, outflow rate 
is almost linearly increased. but a trend of the increase rate gradually becoming 
slower has appeared. It is proved once again that a fact that with inlet pressure (a 
range)increased, the trend of increase of burning power becoming slower should be 
took full account when design atomizer.   
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Figure 5. The effect of inlet pressure on the local flow field 

2.3 Effect of inlet flow rate on the average velocity of annular area of the outlet and 
fuel supply pressure of the secondary line 
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As described in section 2.2, studying the average velocity of annular area of the outlet 
has great significance. The law of the impact of the inlet flow rate on the velocity is 
shown in Fig 6(a). Seen from the figure, when the flow rate of the inlet is 300, 370, 
440, 510, 580L/h, the average velocity of annular area of the outlet is 14.8, 18.7, 22.8, 
26.6, 32.5 m/s separately. While the inlet flow rate equally spaced (70L/h) increases, 
the velocity increases 3.9, 4.1, 4.8, 5.9 m/s respectively. That is with the increase of 
the inlet flow rate (300-510L/h), the velocity of annular area of the outlet is gradually 
increased, and the increase rate becomes gradually faster. Consequently, in condition 
of combustion chamber is large enough and fuel combustion is compete, compared to 
adjust the inlet pressure, adjusting inlet flow rate (in a range) can remarkably enhance 
the combustion efficiency .  
 
Fuel supply pressure is one of the indicators of the performance evaluating the 
atomizer, maximization of fuel supply efficiency in the atomizer is one of the 
fundamental purposes of numerous researches. The relationship between flow rate 
and supply pressure of the fuel in the secondary line was considered in this paper as 
shown in Figure 6(b).It is shown that when the inlet flow rate is 300, 370, 440, 510, 
580L/h, supply pressure of the fuel of the secondary line is 5.5, 8.4, 11.9, 16.2, 
20.9Mpa respectively. While the inlet flow equally spaced (70 L/h) increases, supply 
pressure of the fuel of the secondary line increases 2.9, 3.5, 4.3, 4.7Mpa respectively. 
That is, with inlet flow rate (300-510L/h) increased, the supply pressure of the fuel of 
the secondary line increases, and the increase rate gradually becomes faster. It can be 
explained that the fuel in the secondary domain, the more fuel supplied to the inlet 
passage (300-510L/h) ,leading to area of air contact with fuel is larger, the flow 
resistance is increased accordingly. It is seen that, when the primary and secondary 
fuel line operate simultaneously, a consideration that the increasing the flow rate (a 
range) makes the resistance of secondary fuel line increase and the effect that increase 
rate becomes faster should be premeditated in design of the atomizer. 
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Figure 6. The effect of inlet flow rate on the local flow field 

3  Conclusions 
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（1） With inlet pressure (1.44-3.04Mpa) increased, the average velocity of annular 
area of the outlet almost linearly increases, slightly emerging a trend that as the 
pressure increases, the increase rate will be slower. But the velocity sharply 
increases with the increasing inlet flow rate (300-510L/h), while the increase rate 
gradually goes up. Compared to adjust the inlet pressure (a range) , changing the 
inlet flow rate(a range) can more validly enhance combustion efficiency in the 
time of atomizer design.  

 
（2） With the inlet pressure (1.44-3.04Mpa) increased, the outlet flow rate almost 

linearly increases, effect of air resistance on the fuel also reveals a relationship of 
linear increase, but increase of the flow rate tends to be slower. When improve 
combustion efficiency of the atomizer, this effect that increasing pressure (a 
range), the outlet flow increases correspondingly, but the increase rate slows 
down should be given full consideration.  

 
（3） With the increasing inlet flow rate, the fuel supply pressure of secondary line 

increases, but the increase rate gradually becomes faster. The more fuel supplied 
to secondary passage, the greater chance of fuel contacting with air is, and the air 
resistance on the fuel becomes larger. Designing a atomizer especially primary 
and secondary passage operates at the same time, it is concentrated on the fact 
that with inlet flow rate increased, resistance of secondary line is increased and 
the growth rate becomes faster.  
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Abstract 
Particle flow code (PFC) is widely used to model deformation and stress states of 
rockfill materials. The accuracy of numerical modelling with PFC is dependent upon the 
model parameter values. How to accurately determine model parameters remains one of 
the main challenges.  In order to determine model parameters of particle flow model of 
rockfill materials, some triaxial compression experiments are performed, and the 
inversion procedure of model parameters based on response surface method is proposed. 
Parameters of particle flow model of rockfill materials are determined according to 
observed data in triaxial compression tests for rockfill materials. The investigation 
shows that the normal stiffness, tangent stiffness and friction coefficient of rockfill 
materials will slightly increase with increase of confining pressure in triaxial 
compression tests. The experiments in laboratory show that the proposed inversion 
procedure behaves higher computing efficiency and the forecasted stress-strain relations 
agree well with observed values. 

Keywords:  micromechanical model, rockfill materials, parameter inversion, triaxial 
compression tests, response surface method 

1. Introduction 

Rockfill materials are widely used to construct dams. The deformation characteristics of 
rockfill materials commonly are numerically simulated by distinct element method and 
PFC software. The accuracy of numerical modelling with PFC is dependent upon the 
model parameter values. How to accurately determine model parameters remains one of 
the main challenges. Some researchers have tried to determine the micromechanical 
model parameters of granular materials experimentally. Masson performed a set of 
distinct element simulations of the filling and the discharge of a plane rectangular silo 
with variable values of particle mechanical parameters. The analysis of the influence of 
friction and stiffness of contacts showed that these parameters played a major role in the 
flow kinematics and in the stress field during filling and discharge processes [Masson 
and Martinez (2000)]. Bagherzadeh developed a novel approach for the two-
dimensional numerical simulation of the phenomenon in rockfill using combined DEM 
and FEM. All particles were simulated by the discrete element method as an assembly 
and after each step of DEM analysis, each particle was separately modeled by FEM to 
determine its possible breakage [Bagherzadeh et al. (2011)]. Hosseininia presented a 
model to simulate the breakage of two-dimensional polygon-shaped particles. In the 
model, each uniform (uncracked) particle was replaced with smaller inter-connected 
sub-particles which are bonded with each other [Hosseininia and Mirghasemi (2006)]. 
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Renzo performed a mathematical modification of Mindlin’s tangential solution and 
demonstrated formally its advantages with respect to the commonly used model [Renzo 
and Maio (2005)]. Coetzee presented a method for determining the parameters of 
cohesionless granular material. The particle size and density were directly measured and 
modeled. The particle shapes were modeled using two to four spheres clumped together. 
The remaining unknown parameter values were determined using confined compression 
tests and angle of repose tests [Coetzee et al. (2010)]. Koyama proposed a numerical 
procedure to determine the equivalent micro-mechanical properties of intact rocks using 
a stochastic representative elementary volume (REV) concept and a particle mechanics 
approach. More than 200 models were generated in square regions with side lengths 
varying from 1 to 10 cm, using the Monte Carlo simulation technique [Koyama and Jing 
(2007)]. Kulatilake performed laboratory experiments and numerical simulations to 
study the behavior of jointed blocks of model material under uniaxial loading. The 
effect of joint geometry parameters on the uniaxial compressive strength of jointed 
blocks was investigated [Kulatilake et al. (2001)]. Each particle has material parameters 
(micro-parameters) that influence the particle macro-behaviors. The accuracy of PFC 
model depends on the micro-parameters of model. How to accurately determine PFC 
model parameters remains one of the main challenges. 
 
PFC2D models the movement and interaction of circular particles by the distinct element 
method (DEM), as described by Cundall and Strack (1979). The overall constitutive 
behavior of a material is simulated in PFC2D by associating a simple constitutive model 
with each contact. The constitutive model acting at a particular contact consists of three 
parts: a stiffness model, a slip model, and a bonding model. The stiffness model 
provides an elastic relation between the contact force and relative displacement. The 
slip model enforces a relation between shear and normal contact forces such that the two 
contacting balls may slip relative to one another. The bonding model serves to limit the 
total normal and shear forces that the contact can carry by enforcing bond-strength 
limits. González-Montellano performed the experimental to determine values for several 
of the microscopic properties-the particle density, modulus of elasticity, particle-wall 
coefficient of restitution, particle-particle coefficient of restitution, and the particle-wall 
coefficient of friction-of maize grains and olives, required for use in DEM simulations 
[González-Montellano et al. (2012)]. Yoon developed a new approach for calibrating 
contact-bonded particle models using ‘experimental design’ and ‘optimization’ in 
uniaxial compression simulation. These were applied to calculate an optimum set of 
microparameters used in generation of models to be tested in uniaxial compression 
simulations [Yoon (2007)]. Belheine calibrated the micro-mechanical properties of the 
numerical material using numerical triaxial tests in order to match the macroscopic 
response of the real material. Numerical simulations were carried out under the same 
conditions as the physical experiments. The pre-peak, peak and post-peak behaviors of 
the numerical material were studied [Belheine et al. (2009)]. Chen investigated the 
failure mechanism and the limit support pressure of a tunnel face in dry sandy ground 
by using discrete element method. The contact parameters of the dry sand particles were 
obtained by calibrating the results of laboratory direct shear tests. A series of three-
dimensional DEM models for different ratios of the cover depth to the diameter of the 
tunnel were then built to simulate the process of tunnel face failure [Chen et al. (2011)]. 
Deluzarche proposed a methodology to define the resistance of the 2D particles so that 
the same probability of breaking blocks may be reproduced as in a 3D material. The 
model used the discrete element code PFC2D and considered breakable clusters of 2D 
balls. The different parameters were determined from experimental data obtained from 
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laboratory tests performed on rock blocks [Deluzarche and Cambou (2006)]. Alaei 
simulated single crushing tests and triaxial tests on the Purulia dam’s material to 
validate the presented model for rockfill material. The obtained results demonstrated the 
accuracy of the adopted model and the model’s capability for considering a rockfill 
material’s strength, deformation and crushing behaviour [Alaei and Mahboubi (2012)]. 
Even if some procedures has been proposed to determine micromechanical parameters 
of rockfill materials, the common drawback of these estimating procedures lies in lower 
fitting and predicting precision. Response surface methodology is a collection of 
statistical and mathematical techniques useful for developing, improving, and 
optimizing processes in which a response of interest is influenced by several variables 
and the objective is to optimize this response. Response surface methodology has been 
widely applied in inverse solution of soil-water transport model parameters [Saha et al. 
(2010)], parameter optimization [Muthuvelayudham and Viruthagiri (2010)], nutritional 
parameter optimization [Kunamneni et al. (2005)]. The aim of the paper is to propose a 
new procedure for determining PFC model parameters of rockfill materials from triaxial 
compression tests and to validate effectiveness of proposed inversion approach through 
experiments in laboratory. 

2. Numerical simulations for triaxial compression tests using PFC software 

PFC model is based on the simulations of the motion of granular material as separate 
particles. Using the soft particle approach, each particle contact is modeled with a linear 
spring both in the contact normal direction and contact tangential direction, as shown in 
Figure 1. The particles are allowed to overlap and the amount of overlap is used in 
combination with the spring stiffness to compute the contact force components. 

 
Figure 1.  DEM contact model 

 
The normal stiffness of a particle is secant stiffness. The relation between normal force 
and normal displacement is expressed as follows 

 nnn UkF =  (1) 

Where Fn denotes total normal force, kn denotes normal stiffness, Un denotes total 
normal displacement. The shear stiffness of a particle is a tangent stiffness. The relation 
between increment of tangent force and increment of tangent displacement is expressed 
as follows 

 sss UkF ∆−=∆  (2) 

Ball 

Ball 

ks 

kn 

f 
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Where sF∆  denotes the increment of shear force, ks denotes tangent stiffness, sU∆  
denotes the increment of shear displacement.The slip model is defined by the friction 
coefficient at the contact f [dimensionless], where f is taken to be the minimum friction 
coefficient of the two contacting entities. 
 
In order to determine the model parameters of rockfill materials, some triaxial 
compression tests of rockfill materials are performed in laboratory. The largest size of 
rockfill particles is 100mm, as shown in Figure 2. The smallest size is 0.1mm. The 
diameter of test model is 300mm. The height is 700mm, as shown in Figure 3. Variation 
of deviatoric stress (principal stress difference: σ1-σ3) versus axial strain in triaxial 
compression test of rockfill materials is depicted in Figure 4. σ1 is major stress (axial 
stress), and σ3 is minor stress (confining pressure). These test data are available for 
parameter estimation of PFC model of rockfill materials. 
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Figure 2.  Particle size distribution for rockfill materials 

 
Figure 3.  Triaxial compression test of rockfill materials 
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Figure 4.  Variation of deviatoric stress versus axial strain in triaxial compression 

test of rockfill materials 

D 

H 

ICCM2014, 28th-30th July 2014, Cambridge, England

238



 
Figure 5.  Simplified PFC2D model of triaxial compression test of rockfill materials 
 
After taking into account of symmetrical characteristic of triaxial compression test 
model, PFC model is simplified into two dimensions for simulating triaxial compression 
test of rockfill materials, as shown in Figure 5. The radius of rockfill particle in PFC2D 

model is approached as 20mm according to the average radius of rockfill particle. 
Influences of normal stiffness, tangent stiffness and friction coefficient of rockfill 
materials on stress-strain relation are simulated with PFC model, as shown in Figure 6, 
7 and 8. 
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Figure 6.  Influence of normal stiffness of rockfill materials on stress-strain 

relations (Confining pressure 1200kPa) 
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Figure 7.  Influence of tangent stiffness of rockfill materials on stress-strain 

relations (Confining pressure 1200kPa) 
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Figure 8.  Influence of friction coefficient of rockfill materials on stress-strain 

relations (Confining pressure 1200kPa) 

3. Parameter inversion procedures for PFC model using response surface method 

Based on the response surface method, the relation between unknown PFC model 
parameters of rockfill materials and deviatoric stress in triaxial compression test is 
approached as [Rosa et al. (2009); Bas and Boyaci (2007)]. 

 ∑∑
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Where )(xks  is principal stress difference (σ1-σ3) at loading step k, a, bi and ci are 
unknown coefficients, x is unknown model parameter vector after dimensionless 
procedure. 
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Where nk~ , sk~ and f~  denote initial evaluating values of model parameters according to 
prior to information. 
 
Taking the first loading step as an example, the left items of following equations can be 
calculated by simulations using PFC2D software under the given model parameter 
combinations 

 ),,()(1
1 fkkss sn=x  (6) 

 ),,()(2
1 fkkkss snn ∆+=x  (7) 

 ),,()(3
1 fkkkss snn ∆−=x  (8) 

 ),,()(4
1 fkkkss ssn ∆+=x  (9) 

 ),,()(5
1 fkkkss ssn ∆−=x  (10) 

 ),,()(6
1 ffkkss sn ∆+=x  (11) 
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1 ffkkss sn ∆−=x  (12) 

Where 1.0=∆ nk , 1.0=∆ sk , 1.0=∆f , is1 denotes principal stress difference computed in 
the first loading case under i-th parameter combination, which is computed by using 
PFC2D software. There exist 7 unknown coefficients and 7 equations. So, the 7 unknown 
coefficients in response surface functions in the first loading case can be determined by 
solving linear equation set with MATLAB software. The unknown coefficients in 
response surface functions for other loading steps may be deduced by analogy. 
 
Initial evaluating parameter values of PFC model of rockfill materials are listed in Table 
1, where ρ denotes particle density, which is a known constant, cσ denotes confining 
pressure in triaxial compression test. 

Table 1.  Initial evaluating parameter values of PFC model of rockfill materials 
nk~ / N/m sk~ / N/m f~  ρ / kg/m3 cσ / kPa 
8.0e7 8.0e7 0.9 2800 400 
1.2e8 1.2e8 0.9 2800 600 
1.4e8 1.4e8 1.0 2800 1200 

 
After performing a lot of numerical simulations for triaxial compression test with PFC 
software, the coefficients of response surface functions for every load step under 
different confining pressure are computed and listed in Table 2, 3 and 4. 
Table 2.  Coefficients of response surface functions for every load step (Confining 

pressure 400kPa) 
Load step a b1 b2 b3 c1 c2 c3 

1 -26.0 -1505.0 870.0 1230.0 850.0 -400.0 -600.0 
2 -1255.0 -2800.0 2625.0 3515.0 1600.0 -1250.0 -1650.0 
3 -120.0 -3325.0 685.0 4040.0 1850.0 -250.0 -1800.0 
4 1793.0 2870.0 -5005.0 -1260.0 -600.0 2550.0 900.0 
5 6447.0 -12430.0 1370.0 -155.0 6500.0 -700.0 450.0 
6 9443.0 -12030.0 -4455.0 -720.0 6400.0 2250.0 800.0 
7 -4291.0 3205.0 5305.0 1240.0 -950.0 -2750.0 100.0 
8 -20630.0 25270.0 5960.0 11940.0 -12000.0 -3100.0 -5400.0  
9 -24579.0 31465.0 -2645.0 20555.0 -15150.0 1250.0 -8850.0  
10 -54751.0 52535.0 21190.0 36745.0 -26050.0 -10600.0 -17050.0  

Table 3.  Coefficients of response surface functions for every load step (Confining 
pressure 600kPa) 

Load step a b1 b2 b3 c1 c2 c3 
1 -3733.0 5510.0 1670.0 1090.0 -2600.0 -800.0 -500.0 
2 -2702.0 4855.0 1130.0 875.0 -2250.0 -500.0 -250.0 
3 -3957.0 7280.0 1170.0 1445.0 -3500.0 -500.0 -350.0 
4 -13691.0 19685.0 945.0 9075.0 -9750.0 -250.0 -4050.0 
5 -6514.0 19105.0 -2110.0 -1610.0 -9150.0 1100.0 1400.0 
6 3683.0 26660.0 -13130.0 -17845.0 -13000.0 6500.0 9550.0 
7 -9866.0 42955.0 -9960.0 -10210.0 -21150.0 5000.0 5900.0 
8 -12339.0 59555.0 -15075.0 -15865.0 -29650.0 7250.0 8850.0 
9 1064.0 47920.0 -26850.0 -19710.0 -23700.0 13000.0 10900.0 
10 -61362.0 101415.0 -10325.0 34545.0 -50450.0 4850.0 -15950.0 
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Table 4.  Coefficients of response surface functions for every load step (Confining 
pressure 1200kPa) 

Load 
step a b1 b2 b3 c1 c2 c3 

1 457.0 -625.0 835.0 -265.0 550.0 -350.0 150.0 
2 -234.0 160.0 1090.0 850.0 300.0 -400.0 -300.0 
3 1150.0 -2275.0 620.0 1380.0 1850.0 -100.0 -500.0 
4 48694.0 -98960.0 -3070.0 2385.0 52700.0 1800.0 -850.0 
5 -3356.0 4500.0 2495.0 1905.0 -1000.0 -1050.0 -250.0 
6 -10869 15845.0 -2075.0 11170.0 -6750.0 1150.0 -4800.0 
7 -3229.0 9035.0 4210.0 -4680.0 -3050.0 -1900.0 3600.0 
8 29202.0 -5755.0 -17810.0 -30510.0 4050.0 8700.0 16200.0 
9 -89748 75030.0 52945.0 53025.0 -36500.0 -25750.0 -24550 
10 -94191 126100.0 16225.0 48875.0 -62400.0 -8150.0 -22050 

 
Figure 9.  Response surface of deviatoric stress (f=1.0, Confining 

pressure=400kPa) 
 
The objective function of estimating PFC model parameters for rockfill materials is 
defined as Root Mean Square (RMS) 

 ∑
=

−=
N

k

m
kk ss

N
J
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2])([1min x  (13) 

Where J is objective function of parameter inversion, m
ks is the observed principal stress 

differences for the-k loading step in triaxial compression tests of rockfill materials, N is 
the number of loading step. Equation (13) is an optimization problem with non-
constrained conditions and can be solved with some optimization algorithms. So, the 
inverse problem for parameter estimation is transformed into optimization problem and 
can be solved with BFGS optimization algorithm [Broyden (1970); Andonegi et al. 
(2011)]. According to observed data in triaxial compression tests of rockfill materials, 
as shown in Figure 4, and response surface functions, as shown in Table 2, 3, and 4, as 
well as BFGS optimization algorithm, unknown PFC model parameters of rockfill 
materials are identified and listed in Table 5. 
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Table 5.  Identified PFC model parameters of rockfill materials 

kn /MN/m ks /MN/m f cσ / kPa 
86.504 83.224 0.9175 400 
128.88 124.45 0.9192 600 
144.31 137.12 1.0389 1200 

 
From Table 5, it will be found that the normal stiffness is slightly larger than tangent 
stiffness and nearly equal to tangent stiffness. Based on identified PFC model 
parameters of rockfill materials, variations of deviatoric stress versus axial strain in 
triaxial compression test of rockfill materials under different confining pressure are 
simulated again. The differences between observed deviatoric stresses and predicted 
ones are depicted in Figure 10, 11 and 12. From these figures, we can find that predicted 
values by PFC model agree well with the experimental ones. 
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Figure 10.  Comparison between experimental values and predicted ones in triaxial 

compression test (Confining pressure 400 kPa) 
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Figure 11.  Comparison between experimental values and predicted ones in triaxial 

compression test (Confining pressure 600 kPa) 
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Figure 12.  Comparison between experimental values and predicted ones in triaxial 

compression test (Confining pressure 1200 kPa) 
 
The further investigation facts that the normal stiffness, tangent stiffness and friction 
coefficient will increase with the increase of confining pressure σ3, as shown in Table 5 
and in Figure 13 and 14. The relations between constitutive model parameters of 
particles and confining pressures can be expressed as follows 

 βσα )( 3

a
n P

k =  (14) 

 ζσψ )( 3

a
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Where α, ψ and m are coefficients of empirical equations, β, ζ and n are exponents of 
empirical equations, Pa is atmosphere pressure, Pa =100kPa. After regression analysis, 
the coefficients and exponents of empirical equations are determined as follows: 
α=51.1, β =0.437, ψ =50.5, ζ=0.423, m=0.763, n=0.120. 
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Figure 13.  Variation of normal stiffness and tangent stiffness versus confining 

pressure 
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Figure 14.  Variation of friction coefficient versus confining pressure 

4. Conclusions 

1) A new inversion procedure is proposed to determine PFC model parameters of 
rockfill materials. Based on the response surface method, the relation between unknown 
PFC model parameters of rockfill materials and deviatoric stress in triaxial compression 
test is approached. By comparing forecasted stress-strain curves with observed ones, the 
effectiveness of proposed model parameter inversion procedure is validated by 
experiments in laboratory. 
 
2) The investigation facts that the normal stiffness is slightly larger than tangent 
stiffness and nearly equal to tangent stiffness. The normal stiffness, tangent stiffness and 
friction coefficient will increase with the increase of confining pressure. 
 
3) The nonlinear relations between constitutive model parameters of particles and 
confining pressures are presented. But the expressions and its coefficients only supply 
references because the number of samples is not large enough. How to determine pro-
fractured mechanical characteristics of rockfill materials should be further investigated 
in the future. 
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Abstract 

The Finite-Discrete Element Method (FEM/DEM) is a promising tool to analyze the 
tire-sand interactions. However, it usually requires a long driving distance to 
investigate the tire running behavior on the sand road which will lead to a large-scale 
simulation model. The Alternately Moving Road Method is proposed in this study to 
reduce the size of the simulation model: the sand road which has been passed over by 
the tire is removed and same size of road specimen is laid in front of the tire 
simultaneously. This method possesses the ability to keep the road scale constant and 
acceptable in the simulation of arbitrary length sand roads. Numerical model of tire 
driving on sand road is established to verify the feasibility of the method. And the 
simulation results are compared with the current experimental results to validate the 
feasibility and effectiveness of the method. 

Keywords: Alternately Moving Road Method, Tire-sand interactions, FEM/DEM, 
Running behavior 

1 Introduction 

The in-depth study of the tire-sand interactions is significant to the design and 
parameter match of off-road vehicles. Recently, as the rapidly developed of computer 
technology, numerical method becomes an efficient and economic approach for the 
research of this field. The Finite Element Method (FEM) and the Discrete Element 
Method (DEM) are two frequently used methods. The FEM, which is based on the 
continuous theory, possesses the advantage of describing the tire characteristics 
[BIRIS et al., (2011); Cuong et al., (2013); González Cueto et al., (2013); Li and 
Schindler, (2013); Moslem and Hossein, (2014)], and the DEM is appropriate to 
model the granular futures such as large displacement of the sand [Khot et al., (2007); 
Knuth et al., (2012); Nakashima et al., (2007); Smith and Peng, (2013); Zhang et al., 
(2012)]. Thus, it is quite nature to use the DEM and the FEM together (FEM/DEM) 
to taken into account the advantages of the two method in the investigation of tire-
sand interactions, where the sand can be modeled by using the DEM and the tire 
model can be discretized into finite elements. 

The FEM/DEM method has been used by David [David et al., (2001)], Nakashima 
[Nakashima and Oida, (2004); Nakashima et al., (2008), (2009)] and Zhao [Zhao and 
Zang, (2014a), (2014b)] to investigate the tire-soil interactions and proved to be an 
effective tool. In these literatures, the discrete elements were contact with each other 
and with the finite elements, and the contact detection was the most time consuming 
part. Although various kinds of contact detection algorithms were applied by 
researchers to improve the computing efficiency, it is still the bottleneck problem for 
the application of this method due to large amount of discrete elements, especially for 
a longish test road. In this study, the 3D FEM/DEM is applied to investigate the tire-
sand interactions and the Alternately Moving Road Method (AMRM) is proposed to 
keep a constant number of discrete elements for the simulation of arbitrary length test 
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roads. 

The structure of the paper is as follows: Sect. 2 briefly introduces the basis for the 
application of the FEM/DEM to the investigation of the tire running behavior on sand 
terrain. Sect. 3 illustrates the principle of the AMRM according to two-dimensional 
schematics. Sect. 4 presents the detailed FEM/DEM numerical example of a rigid tire 
running on sand road, where the feasibility of the AMRM is also displayed. The 
conclusions of this study are listed in Sect. 5. 

2 The basis for analyzing tire running behavior by using FEM/DEM 

The motions of the discrete elements and the finite element nodes are governed by the 
Newton’s Second Law. For arbitrary element i, the equations are expressed by Eq. (1) 
(used for both discrete elements and finite element nodes) and Eq. (2) (only used for 
discrete elements). 

2 2( / )i i im d dt u F                                                    (1) 
2 2( / )i i iI d dt  M                                                   (2) 

where mi and Ii are the mass and inertia moment of element i, respectively; ui and θi 
are the displacement and the rotation angle of element i, respectively; Fi and Mi are 
the total external force and centroidal moment of element i, respectively. Eqs. (1) and 
(2) are solved by the explicit finite difference method. 

The contact models for elements are shown in Fig. 1, where hij is the overlap of two 
contact elements; vi, vj, ωi and ωj are the velocity and angular velocity of element i 
and j, respectively; Oi, Oj are the mass center of the discrete element i and j, 
respectively; C is the contact point of the elements; Fn is the normal force, and Fs, 
taken Coulomb friction law into account, is the tangential force among elements. Fn,e 
and Fn,v are the normal spring and the normal damping forces, respectively; Fs,e and 
Fs,v are the tangential spring and the tangential damping forces, respectively. The 
spring and damping forces are calculated by the Hertz-Mindlin theory [Balevičius et 
al., (2004)] for both the two types of contact, where the finite elements are regarded 
as spheres with infinite radius [Han et al., (2000)]; μ is the friction coefficient. 

 
(a) Discrete elements model (b) Discrete and finite element model (c) Interaction forces 

Figure 1. Contact models among elements 

The concept of analyzing tire-sand interactions by using the FEM/DEM is illustrated 
in Fig. 2. The discrete elements contact with each other and with the finite element 
tire. Consequently, the tire drawbar pull N, vertical reaction force P and slip ratio s 
can be derived from Eqs. (3) - (5). 

 N G R                                                      (3) 

yP f                                                        (4) 
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(1 / ( ))s r  v                                                    (5) 

where f is the contact force between the finite elements and the discrete elements; G=
∑fx+ and R=∑fx- are the gross traction force and the resistance, respectively; v and ω 

are the translational speed and the angular velocity of the tire; r is the tire radius. 

 
Figure 2. The tire-sand analysis system by using the FEM/DEM 

3 The Alternately Moving Road Method 

It is obvious that the sand outside a certain distance of the tire center have less 
influence on the tire running behavior. Thus, during the tire running process, the sand 
which is run over by the tire could be removed and new sand could be laid in front of 
tire to form new road. Accordingly, the Alternately Moving Road Method is proposed 
and the specific steps are as follows: first, the sand road sample, which is a section of 
the whole road, is established. Then, the initial sand road is assembled by combining 
two road samples in sequence. After that, the tire is placed on the sand road and starts 
to run. The alternation is performed when the tire travels a proper distance. The 
execution flowchart of the method is shown in Fig. 3, where T is the current 
calculation time; Tter is the termination time, Δt denotes the time step of the explicit 
time integration. 

 
Figure 3. The execution flowchart 
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3.1 The establishment of sand road sample 

Firstly, the discrete elements which are randomly distributed in a given domain are 
generated. There might be contact among the elements but no overlaps, contact forces 
or confining stress at this stage. Thus the elements should be rearranged to a steady 
state under self-weight to simulate the real sand. The boundary of the domain is 
constrained by rigid walls during the rearrangement process and the C-grid algorithm 
[Williams et al., (2004)] is applied for the contact detection among the discrete 
elements. The Discrete Element Set (DES) at the stable stage is the so-called sand 
road sample (recorded as DES S), as illustrated by two-dimensional schematic in Fig. 
4. To facilitate the descriptions later, the element sequence numbers in the schematic 
are recorded as 1 ~ N; the coordinates of arbitrary element i are recorded as X: Sx,i, Y: 
Sy,i; the length of the sample is equal to a; The constraint boundaries of the rigid wall 
are X: [0, ]a , Y: [0, ]b . The contact detection regions for the C-grid algorithm are also 
set to be X: [0, ]a , Y: [0, ]b . 

 
Figure 4. The sand road sample 

3.2 The assembly of the initial sand road 

The initial sand road consists of two sand road samples mentioned in Sect. 3.1. The 
sand road sample DES S is duplicated into two DESs and recorded as DES A0 and 
DES A1. The DES A0 and DES A1 are arranged in sequence along the X direction to 
assemble the initial sand road, as illustrated in Fig. 5. The total element number of the 
initial sand road is 2N. This is realized by adding the constant value a to the X 
coordinate of each element in DES A1. Simultaneously, the element sequence 
numbers of DES A1 are changed into N+1 ~ 2N. The coordinates of arbitrary element 
i in DES A1 are X: Sx,i-N+a, Y: Sy,i-N. Other parameters of the elements are unchanged. 
The constraint boundaries of the rigid wall are altered into X: [0,2 ]a , Y: [0, ]b . The 
contact detection regions for the discrete elements are also altered as X: [0,2 ]a , Y: 
[0, ]b .  

 
Figure 5. The initial sand road 

3.3 The Alternately Moving Road process 

The tire is placed at the center position of the DES A0, as illustrated in Fig. 6, and 
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vertical load including self-weight of the tire and external load is loaded to the tire 
mass center. A constant angular velocity ω and corresponding translational speed v 
are enforced to the mass center of the tire after the vertical reaction force between the 
tire and the road is equal to the given vertical load. Then the tire starts to run along 
the X direction under specific slip ratio conditions. 

 
Figure 6. Initial position of the tire 

The Alternately Moving Road process is performed when the tire arrives at the 
alternate point, where DES A0 has almost no influence on the tire running behavior 
and the distal end of the DES A1 is not serious damaged. In this study, the alternate 
point is at the center position of the DES A1 as illustrated in Fig. 7.  

 
Figure 7. The alternate point for the AMRM 

Then the elements of DES A0 are removed and the road sample DES S (established in 
Sect. 3.1) is duplicated again and recorded as DES A2. The element coordinates of 
DES A2 are altered by adding the constant value 2a to the X coordinate of each 
element and the element sequence numbers are recorded as 1 to N. The coordinates of 
arbitrary element i are X: Sxi+2a, Y: Syi after the alternation. Then, the DES A1 and 
DES A2 form a new sand road, as illustrated in Fig. 8. The constraint boundaries of 
the rigid wall are altered into X: [0,3 ]a , Y: [0, ]b . The contact detection regions for the 
discrete elements are also changed into X: [0,3 ]a , Y: [0, ]b .  

 
Figure 8. The first time of sand road alternation 
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Repeat the alternate process along the tire running direction and the tire running 
behavior on arbitrary length of sand road can be investigated with constant number of 
discrete elements. The alternate principles are as follows: for the kth alternation, if k 
is odd, the element sequence number is set to be 1~N; else if k is even, the element 
sequence number is set to be N+1~2N; The coordinates for arbitrary element i should 
be changed into X: Sxi+(k+2)a, Y: Syi for k is odd, and to be X: Sxi-N+(k+2)a, Y: Syi-N for 
k is even; The constraint boundaries of the rigid wall and the contact detection regions 
for the discrete elements should be changed into X: [ , ( 2) ]ka k a , Y: [0, ]b . 

4 Numerical examples 

Three-dimensional numerical model of tire running on sand road is established based 
on the soil-bin experiment in [Shinone et al., (2010)] to validate the feasibility and 
effectiveness of the AMRM in the investigation of the tire-sand interactions, where 
the sand road is modeled by discrete elements and the tire is discretized into finite 
elements. And the tire running behavior under different slip ratio is also investigated. 

4.1 The sand road sample 

Firstly, the discrete elements, which are randomly distributed in a given domain of X: 
[0,735] , Y: [0,480] , Z: [0,280] , are generated, as illustrated in Fig. 9. The friction 
coefficient between the discrete element and the rigid wall is set to be 0.3. The 
displacement contour of the discrete elements in Z direction during the rearrangement 
process under self-weight is shown in Fig. 10. The time history of the total 
gravitational potential energy (TGPE) is shown in Fig. 11. The value shows a 
decreasing trend and tends to be stable after 1.1 s of rearrangement. Then the 
rearrangement process is completed. The porosity value for the final state is about 
0.32. The discrete element set is stored as the road sample. It should be noticed that 
this paper is focusing on the validation of the effectiveness of the AMRM, thus the 
radius range of the discrete element is 6~7 mm which is larger than the real sand. 

 
Figure 9. The configuration of the discrete element after the initial generation 

Discrete element parameter: Young’s Modulus: 75000 MPa, Poisson’s Ratio: 0.3, Density: 
2400 kg/m

3, Element number: 45551, Friction coefficient: 0.3. 

 
(a) t=0 s                                         (b) t=0.365 s 
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(c) t=0.730 s                                  (d) t=1.095 s 

Figure 10. The displacement counter of the discrete elements in Z direction 

during the rearrangement process under self-weight (front view) 

 
Figure 11. Time history of the TGPE of the discrete elements 

4.2 Models of the initial sand road and the tire 

The initial sand road consists of two road samples as illustrated in Fig. 12. The model 
size parameters are refer to the soil-bin experiment in [Shinone et al., (2010)]. The 
discrete element number is 91102, the length of the initial sand road is 1470 mm 
which is two times of the sand road sample illustrated in Sect. 4.1. The parameters of 
the discrete elements are the same as the ones in Sect. 4.1.  

 
                                             (a) Front view                                    (b) Left view 

Figure 12. The models of the initial sand road and the finite element tire 
Parameters of the tire: Young’s Modulus: 2 MPa, Poisson’s Ratio: 0.49, Density: 1800 kg/m

3, 
Element number: 1344. 

The tire is placed on the sand road. Vertical load of 1295 N including the self-weight 
of the tire and the external vertical load is loaded to the center of the tire. The tire 

ICCM2014, 28th-30th July 2014, Cambridge, England

253



 
 

sinks onto the sand road until the vertical reaction force between the tire and road 
reached 1295 N. Afterwards, constant angular velocity of 0.5 rad/s and corresponding 
translational speed are enforced to the tire center, and the tire travels towards the X 
direction under 30% slip ratio. The tire deformation is neglected for the given 
experimental inflation pressure of the tire in [Shinone et al., (2010)]. The friction 
coefficient between the tire and the sand road is set to be 0.4. 

4.3 The alternately moving road process 

The tire running along the X direction and the alternation of the sand road is 
performed when the tire running a distance of k*735 mm, where k is alternate times. 
The displacement counter of the discrete elements in Z direction during the traveling 
process is shown in Fig. 13: Fig. 13(a) is the initial configuration; Fig. 13(b) shows 
the rut of the tire at time 0.777 s; when the tire travels a distance of 735 mm, the first 
alternation is performed, as shown in Fig. 13(c); then, the tire continues to move, and 
the rut of the tire at 1.58 s is shown in Fig. 13(d); After 1470 mm of travel, the second 
alternation is performed, as illustrated in Fig. 13(e); The total tire traveling distance is 
1560 mm, and the final configuration is shown Fig. 13(f). During the running process, 
the length of the sand road keeps a constant value of 1470 mm, the total number of the 
discrete elements keeps a constant value of 91102. 

The simulation is carried out on a PC. The principal characteristics of the PC are Intel 
Core i3-2100 1.58GHz (CPU), 2.00GB (RAM) and Windows XP Home Basic SP3 
32bit. The elapsed time for the above numerical test is approximately 72 hours.  

 
(a)                                                                   (b) 

 
(c)                                                                   (d) 

 

 
(e)                                                                   (f) 

Figure 13. Displacement counter of the discrete elements under the rolling tire in 

30% slip ratio 
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4.4 Tire running behavior 

Fig. 14 shows the vertical reaction force as a function of the traveling distance under 
the 30% slip ratio condition. It can be seen that the vertical reaction force shows an 
abrupt fluctuation at the initial stage. The possible reason is that there is a vertical 
downward velocity when the tire was placed on the sand road (see Sect. 4.2 for detail), 
this lead to an impact between the tire and the road. Afterward, the tire vertical 
reaction force tend to be stable and its value fluctuates around 1295 N which is the 
given load value. 

 
Figure 14. The vertical reaction force during the traveling process 

Fig. 15 shows the drawbar pull as a function of the traveling distance under the 30% 
slip ratio condition. Analogous to the abrupt fluctuations of the vertical reaction force, 
the drawbar pull also shows a dramatic fluctuation at the initial stage because the tire 
traction force G is proportional to the vertical reaction force. After that the drawbar 
pull value is relatively stable without any abrupt fluctuations at the alternate point and 
its value fluctuates around 75 N. The possible reason for the fluctuations of the 
drawbar pull is the large radius values of the discrete elements. 

 

Figure 15. The tire drawbar pull during the traveling process 

Fig. 16 shows the tire sinkage value as a function of the traveling distance under the 
30% slip ratio condition. It can be seen that the tire sinkage value increases 
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dramatically at the initial stage due to the unbalance vertical force acting on the tire. 
Then its value fluctuates around the value of 45 mm and there are no abrupt 
fluctuations at the alternate point.  

 
Figure 16. The tire sinkage during the traveling process 

Fig. 17(a) presents the flow trend of the discrete elements in the X-Z plane under the 
rolling tire with 30% slip ratio. Herein, the velocity vectors of the elements are used 
to display their flow trend. It can be seen that the flow trend can be divided into two 
areas: the forward area flow in clockwise direction due to the bulldozing force of the 
tire and the rear area in anticlockwise direction because of the traction force of the 
rolling tire (digging effect). This result agrees qualitatively with the experimental 
result [Zhuang, (2002)] as illustrated in Fig. 17(b). 

 
(a) Simulation result                         (b) Experimental result [Zhuang, (2002)] 

Figure 17. Flow trend of the sand particles under a rolling tire 

A constant angular velocity of 0.5 rad/s and corresponding translational velocity for 
different slip ratios according to Eq.(5) are loaded to the mass center of the tire to 
further analyze the influence of the slip ratio on the tire running behavior. Fig. 18 
illustrates the tire equivalent sinkage values (the average sinkage value under each 
slip ratio) as a function of the slip ratios. It can be seen that the equivalent tire sinkage 
values are rise with the increase of the slip ratio. And the trend becomes steeper when 
the slip ratio is larger. This agrees qualitatively with the experimental results in 
[Shinone et al., (2010)]. However, the simulation results are larger than the 
experiment results. The possible reason is that the parameters in this study are 
decided by a trial and error preliminary computation to ensure the numerical stability 
at this stage. And the selection of the microscopic parameters among the discrete 
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elements has strong effects on its macroscopic mechanics. 

 
Figure 18. The relation between tire sinkage and slip ratio 

Fig. 19 illustrates the equivalent values (the average drawbar pull value under each 
slip ratio) of the drawbar pull as a function of the slip ratios. It can be seen that the 
drawbar pull shows an increasing trend when the slip ratio is less than 25%, and its 
value tend to be stable when the slip ratio is larger than 25%. Such whole developing 
trend agrees qualitatively with the experimental result in [Shinone et al., (2010)]. It 
should be noticed that there is a large difference between the simulation results and 
the experimental results when the slip ratio is less than 15%. The possible reason for 
this phenomenon is the larger translational speed of the tire for the smaller slip ratio 
condition according to Eq. (8), and this leads to larger tire bulldozing resistance. The 
drawbar pull values have a little decrease after the slip ratio value is larger than 35%. 
This is because the bulldozing force is even larger due to the larger tire sinkage 
values under these slip ratio conditions. It should also be noticed that all the drawbar 
pull values are smaller than the experimental results because of the larger sinkage 
values, as shown in Fig. 19, which leads to larger bulldozing resistance. 

 
Figure 19. The relation between tire drawbar pull and slip ratio 

4.5 Discussions 

As can be seen from the Fig. 14, Fig. 15 and Fig. 16, the alternate moving road 
process is stable and effective for the simulation of tire running behavior on arbitrary 
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length sand roads. 

As can be seen from Fig. 17, Fig. 18 and Fig. 19, the tire slip ratio has strong effect 
on its running behavior. The sinkage value of the tire rises with the increases of the 
slip ratio due to the tire traction effect (digging effect). This leads to the increase of 
the bulldozing resistance which is the main resistance for tire running on sand road. 
The drawbar pull shows a steeper increasing trend when the slip ratio is less than 25% 
and the values tend to be stable when the slip ratio is larger due to the dramatically 
increase of the resistance under these slip ratio conditions. 

The comparisons between the simulation results and current experimental results 
show that the FEM/DEM is a straightforward and effective tool to investigate the tire 
running behavior on sand road, where the flow trend of the sand particles under a 
rolling tire, the drawbar pull and the sinkage of the tire and the dynamic parameters 
such as vertical acceleration value of the tire can be obtained expediently and 
reasonably. 

5. Conclusions 

From the above investigation, following results can be obtained: 

(1) The Alternately Moving Road Method is proposed and applied to the FEM/DEM 
simulation of tire running behavior on the sand road. This method possesses the 
ability of simulating arbitrary length of sand road with constant discrete element 
numbers. Numerical simulation results show that the method is stable and effective. 

(2) The tire running behavior such as the normal reaction force, tire drawbar pull, tire 
sinkage and flow trend of the sand particles can be obtained conveniently by the 
FEM/DEM. The comparisons between the simulation and current experimental 
results show that FEM/DEM is an effective and promising approach to simulate the 
tire running behavior on the sand terrain. The current research work is not only 
appropriate for the tire-sand interactions, but also suitable for the investigation of 
other terramechanics problems such as soil cultivation process. 

Plans for the future work are to improve the accuracy of the method. The size effect 
of the discrete elements and the new discrete element interaction models considering 
the rolling resistance [Ai et al., (2011); Jiang et al., (2005); Kuhn and Bagi, (2004)] 
should be investigated. 
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Abstract
Modelling problems in structural analysis requires of a statistical approach that allows us to take
into account the random nature of the variables as well as the uncertainties involved in the problem
being  analysed.  However  neither  all  statistical  models  are  valid  nor  all  assumptions  are
mathematically or physically reasonable. The aim of this paper is twofold: (a) to explain how to
build statistical models with mathematical and physical coherence, and (b) to describe the most
common  mistakes  made  when  building  or  selecting  mathematical  and  statistical  models.  We
provide some interesting tools to carry out this important task and present some examples that show
the inconveniences and consequences derived from an incorrectly established model.

Keywords:  Location-scale stable families, Structural analysis statistical models, Specification of
multivariate joint distributions, Extreme Values, Probability papers.

Introduction

Before selecting a model to solve a given engineering problem, a very important step consists of
dedicating sufficient time to study the problem under consideration in some depth. This means that
the engineer must understand the problem, the variables and the implied physical relations, which
should be  present  in the  model.  For  example,  an engineer  dealing with a  breakwater  needs to
understand that the large waves and winds are the most important agents implied in design. This
means that maxima events and then maxima extreme value distributions must be considered. The
limited or unlimited range of the random variables involved is also relevant, because this permits
excluding  either  the  Weibull  or  Frechet  type  of  distributions.  Ignoring  these  aspects  leads  to
unconservative or very expensive solutions which are engineeringly regrettable.

It is also convenient to use simple models, that is, as parsimonious as possible and dimensionally
consistent. In this line, the Buckingham theorem plays a fundamental role and should be the first
step in equation modelling. Apart from reducing the number of variables involved and avoiding us
to be concerned about dimensions, it permits us to check if the selected variables are sufficient or
need to be completed with additional variables to reproduce a physical problem or phenomena.

Another important decision to be made when building models is the selection of the families of
random variables  used to  reproduce the  real  ones.  In  this  context,  the  designer  must  take into
account the variable ranges and be aware that not all distribution families are valid for reproducing
all types of variables. In this context, one should know that some distributions are valid only for
dimensionless variables (Poisson, beta,  binomial,  etc.)  and that some distributions are not scale
(geometric, chi-squared, etc.) or location (gamma, log-normal, etc.) stable. For example, selecting
non-scale families means that the resulting models will not be valid for variables when written in
terms of different measure units, and then they are inadequate.

Since a statistical analysis requires the joint distribution of all variables involved, the selection of a
multivariate model is crucial too. In this line it is important to use feasible models. We point out
that  in  some  cases  a  lack  or  an  excess  of  simplifying  assumptions  can  lead  to  undefined  or
inexistent models, respectively.
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As a final example, the designers should be aware of the existence of different probabilistic papers
(maximum, minimum, etc.) and that not all data points but only those in the tail of interest must be
used when dealing with extremes. Ignoring these facts can be catastrophic.

Since we consider that all these issues are very relevant for engineers, they are discussed with some
detail in this paper.

The aim of this paper is twofold. On one hand we introduce some considerations to be taken into
account when building statistical models and, on the other hand, we point out some problems we
can find when these aspects are not considered. Besides, we provide some tools to facilitate this task
together with several examples for a better comprehension of the concepts discussed.

The paper is organized as follows. In Section 2 we present a brief review of some of the statistical
models proposed in different Civil Engineering fields. In Section 3 we make some considerations
about  the  units  of  the  random  variables  and  their  moments.  In  Section  4  we  emphasize  the
importance of the Buckingham theorem in order to build parsimonious and dimensionless models.
In Section 5 we deal  with extreme values and probability papers.  In Section 6 we explain and
discuss different possibilities to define multivariate models and finally, in Section 7 we give some
conclusions.

Some statistical models proposed in the literature
In the Civil engineering literature it is becoming more frequent to find statistical approaches. For
example, reliability analysis has reached all engineering fields. Due to the abundant bibliography
dealing with this issue, as a sample and for illustration purposes, Table  1 shows a list of some
examples of distributions used in the Civil Engineering literature.

Table 1: Some probability distribution families used in the literature together with the
corresponding engineering variables.

VARIABLE DISTRIBUTION VARIABLE DISTRIBUTION
Geometric and mechanical 
properties

log-normal and normal Maximum wave height reverse Weibull

Material properties
normal, two- and three-
parameter Weibull

Two successive wave 
periods

bivariate Weibull and bivariate
Rayleigh

Excedences of wave height 
or significant wave height

Generalized Pareto Significant wave heights
Weibull, generalized gamma, 
generalized beta kind I and 
beta kind II

Stress range

Raleigh, wide-band, 
Weibull, beta, log-
normal, Rice’s and 
normal distributions

Significant wave height 
and wave period

Box-Cox + bivariate normal, 
bivariate log-normal and 
bivariate Plackett

Loads
Poisson, Gumbel and 
normal

Small wave heights in 
large depths

Rayleigh

Wind speed
Frechet, Gumbel, reverse 
Weibull and log-normal

Joint density of significant
wave height, wave period 
and current and wind 
speeds

Marginals transformed to 
normals by Box-Cox 
transformation plus 
multivariate normal

Wave period log-normal Wave height
Rayleigh distribution and 
reverse three-parameter 
Weibull

Fatigue life Weibull
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It is relevant to say that some of the used models above are theoretically justified and some are used
just  for  convenience  or  to  facilitate  calculations  or  mathematical  derivations.  For  example,  the
normal model is justified when the random variable being modelled is the sum of a large enough
number of other variables. This occurs frequently in strength of materials where in a cross section
of  volume  all  the  subelements  add  efforts  or  collaborate  to  resistance.  Poisson  and  gamma
distributions have been proved to correspond to rare events and the time of occurrence of the r-th
event, respectively. The Weibull, Gumbel and Frechet extreme value distributions and their reverse
versions are justified because they are the limit distributions of maxima or minima, which are very
important in Civil Engineering design because in general only maxima (waves, winds, earthquakes,
temperatures, etc.) and minima (draughts, fatigue strength, temperatures, etc.) values lead to failure.
However, it is not uncommon to see minima models erroneously used for maxima or vice versa.
The  generalized  Pareto  distribution  is  justified  because  it  arises  as  a  limit  distribution  for
exceedances (large waves, winds, etc.) over or shortfalls (rain, temperature, etc.) under a threshold.
Rice and Rayleigh distributions are also derived from theoretical models of waves.

Contrary, other distributions, such as the log-normal that arises in order to reproduce asymmetric
data, the generalized beta and the models based on the Box-Cox transformation that are used to fit
different data histograms, etc. have convenience as motivation.

In the Structures field, for example, [O’Connor and Kenshel (2013)] use the normal distribution to
describe  concrete  material  properties,  [O’Connor  and  Enevoldsen  (2009)]  propose  Log-normal
distributions  for  modelling  structural  parameters  and  uncertainties  associated  with  modelling,
[Simiu et al. (1980)] assume the Fretchet distribution for the wind speed and [Pourzeynali and Datta
(2005)] suggests the Raleigh distribution to model the stress range.

In the Material  Science field,  [Castillo and Fernández-Canteli  (2009)] develop a fatigue model
using a three-parameter Weibull distribution for a normalizing variable representing the whole S-N
field based on a unique distribution function, [Koller et al. (2009)] validate the use of a log-Gumbel
fatigue regression model and [Przybilla et al. (2011)] propose a method to obtain the distribution of
fracture stress  as a  three-parameter  Weibull  cumulative distribution function (cdf)  referred to a
uniaxially and uniformly tensioned surface element. We can also mention the case of Coast and
Ocean Engineering where [Ferreira and Guedes Soares (1999)] assume significant wave heights to
follow Beta distributions, [Ferreira and Guedes Soares (1998)] use the Generalized Pareto densities
for  excedences  of  wave  heights  and  significant  wave  heights,  or  [Ochi  (1992)]  proposes  the
Generalized Gamma distribution for significant wave heights.

Another field with a wide variety of stochastic models is Transportation. Some examples are [Lo et
al. (1996)] who propose independent Poisson link counts or [Castillo et al. (2012)] who develop a
bayesian  network  considering  that  the  different  traffic  variables  follow  a  generalized  beta
distribution. Multinomial models were assumed by [Clark and Watling (2005)] for route flows and
shifted-gamma distribution was used by [Castillo et al. (2013)] for modelling the traffic flows.

From the list of publications above we can realize that a large set of distributions has been used.
Detected  inconsistencies  in  some  of  the  proposed  models  motivates  the  current  paper,  which
presents essential aspects to be considered when building statistical models.

Some considerations on units of the random variable and their moments
One  common  mistake  when  building  statistical  models  is  to  ignore  that  not  all  families  of
distributions are valid for all types of variables. We need to be aware that parameters of statistical
families have units. In particular, the mean has the same dimension as the random variable and the
variance the squared dimensions.
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Example 3.1 (Exponential distribution) For the exponential distribution Exp(λ) we have: 

E [X ]=1/λ ; Var [X ]=1/λ2. (1)

Since the dimension of  1/λ2  is the square of the dimension of 1/λ, the inverse of the variable unit,
the dimensions are consistent in this case. 

Example 3.2 (Beta distribution) ∼For the beta distribution, X Beta(a,b) we have: 

E [X ]= a
a+b

; Var [ X ]= ab

(a+b)2(a+b+1)
. (2)

This  implies  that  X  must  be  dimensionless,  because  in  the  term  a+b+1  a  and  b  must  be
dimensionless; otherwise they cannot be added to 1 (dimensionless). Once that a and b have been
recognized as dimensionless, E[X] and Var[X] are also dimensionless (see (2)). 

Example 3.3 (Weibull distribution) ∼ For the Weibull distribution, X W(λ,k) we have: 

E [X ]=λΓ(1+ 1
k ); Var [X ]=λ2[Γ(1+ 2

k )−Γ2(1+ 1
k )] , (3)

which implies that k must be dimensionless and λ must have the same dimensions as X, and that the
Weibull model can be made consistent for variables of any dimensions. 

Example 3.4 (Gamma distribution) ∼If  the random variable X is Gamma X W(λ,k),  the random
variable X+a with a≠0 is not gamma any more. This means that the gamma family is not stable
with  respect  to  changes  in  location  and  has  important  consequences,  because  the  gamma
distribution cannot  be  used  for  location variables,  such  as  temperatures.  More  precisely,  if  a
random temperature is gamma measured in Celsius degrees, it is not gamma when measured in
Farenheit or Reamur degrees. Thus, using the gamma family for temperatures is inadequate and
misleading. 

Other  examples  of  dimensionless  families  are  the  binomial,  negative  binomial  and  Poisson.
Contrary, normal distributions are examples of statistical families compatible with any dimension.

Parsimonious and dimensionless models: The Buckingham theorem
When a mathematical or statistical model is built, a dimensional analysis of the variables involved
must be initially carry out as this allows us to understand some deep relations among these variables
and help to avoid dimensional contradictions. Besides, it is recommendable to build a dimensionless
model in order to prevent dimensional inconsistencies and in some cases to reduce the problems
associated  with  precision  in  numerical  evaluations.  Finally,  it  is  important  to  work  with
parsimonious models, that is, the simplest models explaining all the aspects to be considered. To
these  aims  the  Rayleigh  method  of  dimensional  analysis  and  its  formalization  proposed  by
[Buckingham (1915)] plays a fundamental role. To illustrate, we propose the following example. 

Example 4.1 (Corbel Example. Dimensionless variables)  The example deals with a reliability
analysis of a corbel by means of the strut-and-tie model represented in Figure 1. In this case we
assume two possible failure modes, defined by the limit-state functions H 1 and H 2 : 

H 1 ≡ f s As−F v tanθ−Fh=0, (4)

H 2 ≡ f c Ab−F v=0 (5)
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where  F v and F h are the applied vertical and horizontal forces, respectively,  f s and  f c are the
strength of the steel and of the compressed concrete, θ is the angle between the compression strut
and the tie, As is the cross sectional area of the passive reinforcement and Ab is the area where the
action is applied.

Figure 1: Corbel Example. Strut-and-tie model.

The failure curve can be expressed as the minimum value of the previous limit-state functions, that
is, 

H = min {H1, H2} (6)

Based on the Buckingham Π Theorem, we get the dimensional decomposition shown in Table  2,
where [F] and [L] denote force and length magnitudes, respectively. We see that the n=7 variables
set up a dimensional matrix with rank q=2. Applying the Buckingham Π Theorem, we conclude that
the model (6) is equivalent to another with p=n−q=5 dimensionless parameters (ratios).

Table 2: Corbel Example. Dimensional decomposition.

 F v F h f s f c θ As
Ab

 [F] 1 1 1 1 0 0 0

 [L] 0 0 -2 -2 0 2 2

If  we  use  f s and  As as  reference  or  normalizing  variables,  we  obtain  the  following  new
dimensionless variables:

F v
∗= F v

f s As
; F h

∗= F h

f s As
; f c

∗= f c

f s
; θ∗=θ ; Ab

∗= Ab

A s
, (7)

and the new mathematical expression for the model (6) becomes: 

H ∗ = H
f s As

= min {1−F v
∗ tanθ∗−F h

∗ , f c
∗ Ab

∗−F v
∗} , (8)

where the asterisks refer to dimensionless variables. The main advantages of using the Buckingham
theorem are: 

1. The model presents p=5 variables instead of n=7, which implies a reduction in the problem
complexity. 

2. The variables are independent from any units being considered, avoiding possible dimensional
mistakes.  Moreover,  the  normalization  modifies  the  variable  ranges  and  reduces  possible
numerical precision problems. 
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3. The variable H ∗ becomes more meaningful than the associated dimensional variable H because
its  value  can  be  compared  for  different  cases  when  the  steel  characteristics  (area  and  yield
strength) are kept constant. 

We point out that the dimensional results can be recovered at the end of the process, undoing the
change proposed in (7). 

Extreme values and probability papers
In the engineering design of structures we need to deal with extreme values, that is, maxima (for
example,  loads,  moments,  etc.)  or  minima  (for  example,  strength  properties).  In  such  cases,  a
careful  selection  of  extreme  value  distributions  to  approximate  the  distribution  of  extremes  is
required. In this paper we deal only with maxima, but the minimum problem is similar. In order to
see  if  a  cdf  F(x)  can  be  approximated  for  maxima  by  a  reverse  Weibull,  Gumbel  or  Frechet
distribution we can use the following theorem by [Castillo (1988)]. 

Theorem 1 If F(x) is the cumulative distribution function of a random variable and 

lim
ε →0

F−1(1−ε)−F−1(1−2ε)
F−1(1−2ε)−F−1(1−4 ε)

=2c. (9)

then  F(x)  can  be  approximated  in  its  right  tail  by  a  Frechet  distribution  if  c>0,  a  Gumbel
distribution if c=0 and a Weibull distribution if c<0. 

In particular, if the range of F(x) is limited it cannot be approximated by a Frechet distribution and
if it is unlimited, we cannot use a Weibull distribution.

As some interesting examples,  Table  3 shows the corresponding approximating distributions of
some of the most common distributions for maxima and minima.

Table 3: Corresponding approximating distributions for maxima and minima of the most
common distributions.

Distribution
Domain of Attraction

Distribution
Domain of Attraction

Maximal Minimal Maximal Minimal

Normal Gumbel Gumbel Uniform Weibull Weibull

Exponential Gumbel Weibull Weibull Weibull Gumbel

Log-normal Gumbel Gumbel Weibull Gumbel Weibull

Gamma Gumbel Weibull Cauchy Fréchet Fréchet

Gumbel Gumbel Gumbel Pareto Fréchet Weibull

Gumbel Gumbel Gumbel Fréchet Fréchet Gumbel

Rayleigh Gumbel Weibull Fréchet Gumbel Fréchet

M = maxima m = minima M = maxima m = minima

The previous method permits determining the extreme value distributions associated with a given
one F(x). However, in practice we do not have this information but only data. In this case we can
plot this data on a Maximal Gumbel probability paper, as shown in Figure 2. Then, looking to its
right tail and determining whether the data trend is straight or has positive or negative curvature, we
can decide about Gumbel, Weibull or Frechet as approximating distributions, respectively.

Building multivariate statistical models
In this section we deal with the problem of defining the joint multivariate density of all the variables
which are relevant to the problem under consideration.
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There are several ways to define the joint density of a multivariate model. These methods can be
classified as underdetermined, overdetermined and uniquely determined methods, depending of the
number of imposed conditions. 

Figure 2: Maximal Gumbel probability paper illustrating the relevant zone. 

In order to uniquely determine a multivariate model with an underdetermined method, we have to
add  some  extra  conditions.  In  the  case  of  the  overdetermined  methods,  the  solution  is  not
guarantied. For a more detailed description of these methods, see [Arnold et al. (1992,1999,2001)]
and [Castillo et al (2014)].

The following example illustrates the cases of overdetermined and underdetermined methods.

Example 6.1 (Normal conditionals model) [Arnold et al (1999)] demonstrate that there are two
families of bivariate distributions with normal conditionals, that is, with conditionals X|Y=y and
Y|X=x which are normals: (a) the normal and (b) a family with regression lines and conditional
variances given by: 

E (X∣Y= y) = μ1( y)=−
m12 y2+m11 y+m10

2(m22 y2+m21 y+m20)
, (10)

var (X∣Y= y) = σ1
2( y )= −1

2(m22 y2+m21 y+m20)
, (11)

E (Y∣X =x ) = μ2( x)=−
m21 x2+m11 x+m01

2(m22 x2+m12 x+m02)
, (12)

var (Y∣X=x) = σ2
2( x)= −1

2(m22 x2+m12 x+m02)
, (13)

where the m’s are constants.

One example of a normal density is shown in the left plot of Figure 3, where the linear regression
lines are shown on the top projection and the normal marginals in the left and right projections.
Similarly, the right plot corresponds to a non-normal family, which shows projected non-linear
regression lines and non-normal marginals.

If we assume normal conditionals alone, the resulting model is undefined, but if in addition we
assume that the X|Y regression line is a proper third degree polynomial, we are in front of an
inexistent or impossible model as we can conclude from Equation (10).
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The simplest method to define a joint density corresponds to the independent model in which all
variables are independent, so that it is sufficient to define the univariate marginals. However, when
variables are dependent, the model complicates.

Figure 3: Two illustrative examples of bivariate densities with normal conditionals: normal
(left figure) and non-normal (right figure). 

Example 6.2 (Corbel Example.  Selecting probability distribution families) In this  example we
select and discuss the probability distribution families associated with the variables involved in the
corbel example introduced previously. To simplify and because the steel manufacture companies
are  very  reliable,  we  can  assume f s and As as  deterministic.  Thus,  we  only  have  the  random
variables  F v , F h , f c , Ab and θ . In addition we can assume that all variables are independent.
With the exception of  F v and F h , this is a reasonable assumption because they involve forces,
material  strengths,  areas  and  a  design  angle,  whose  values  are  undoubtedly  independent.
Furthermore,  we  assume  the  independence  of  F v and F h .  This  implies  that  only  marginal
distributions are needed in order to build the statistical multidimensional model.

Table  4 shows  the  selected  marginal  distributions,  the  associated  parameters  and  the
corresponding ranges.

Table 4: Corbel Example. Marginal distribution functions for the dimension variables.

Dimension Variable Lower Upper Assumed Assumed Parameters

Variable Type Bound Bound Distribution Shape Scale Location

f s  Deterministic 455124 kN/m2 455124 kN/m2

As  Deterministic 5.92e-4 m2 5.92e-4 m2

F v
Random: Extreme

Value
positive value positive value 3P Max- Weibull 0.21 36.209 kN 68.846 kN

F h
Random: Extreme

Value
negative value positive value 3P Max- Weibull 0.236 9.776 kN −4.225kN

f c Random: General positive value positive value Gamma 149.50
142.5 kN/m2

Ab Random: General positive value positive value Gamma 1.45
0.031 m2

θ Random: General π/6 π/3 Generalized Beta
α=2
β=15

π/6 −1

Now,  given  these  selected  distributions,  we  can  obtain  the  distributions  for  the  associated
dimensionless problem. With this aim, first we represent As and f s by their expected values, i.e.,
As≡E [As]=μAs

and f s≡E [ f s]=μ f s
, obtaining the following new dimensionless variables: 

F v
∗=

Fv
μ f s

μA s

; F h
∗=

F h
μ f s

μA s

; f c
∗=

f c
μ f s

; Ab
∗=

Ab
μA s

,
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and the limit-state function: 

H ∗ = H
μ f s

μ As

= min {1−Fv
∗ tanθ−F h

∗ , f c
∗ Ab

∗−F v
∗}. (14)

For  the  new  non-dimensional  variables  appearing  in  equation  (14),  Table  5 shows  the
corresponding  distributions  and  associated  dimensionless  parameters.  The  values  have  been
obtained using  μ f s

=455124 kN /m2 and μA s
=5.92e-4 m2 .

Table 5: Corbel Example. Marginal distribution functions for the dimensionless variables.

Dimensionless Assumed Assumed Parameters

Variable Distribution Shape Scale Location

F v
∗

3P Maximum Weibull 0.21 0.134 0.256

F h
∗

3P Maximum Weibull 0.236 0.036 −0.016

f c
∗

 Gamma 149.5 3.13e−04

f s Gamma 1.45 52.365

θ∗ Generalized Beta =2, β=15 π/6 −1

Table  5 shows  that  only  the  scale  and location parameters  are  affected  by  the  normalization.
Moreover, the parameters of the Generalized Beta distribution remain constant because they are
associated with the dimensionless variable θ∗=θ . Finally, the statistical families in Table 4 remain
in Table 5 because all of them are stable with respect to scale changes.

However, there exists another way to deal with the dimensionless problem without using scale-
stable distributions. The process consists of obtaining the dimensionless sample data before fitting
the distribution parameters. 

One of the most important methods to define dependent multivariate models is Bayesian networks,
which are defined by means of a directed acyclic graph G together with the conditional distributions
of each of the involved variables given their parents, as follows: 

f (x1 ; x2 ;…; xn)= f 1( x1) f 2( x2∣x1) f 3( x3∣x1 ; x 2)… f n( xn∣x1 ; x2 ;… ; xn−1)=∏
i=1

n

f i( xi∣π i) , (15)

where πi are the parents of the variable X i in the directed acyclic graph G. Bayesian networks are
the  simplest  way to  reproduce  complicated  multidimensional  families  of  distributions  avoiding
incompatibilities.

Example 6.3 (Corbel Example. A multivariate model)  In this example we determine a multivariate
model associated to the previously dimensionless corbel example.

From equations (4) and (5) we know that 

H 1
∗ = f 1(F h

∗ ,F v
∗ , f s

∗ , As
∗ ,θ) (16)

H 2
∗ = f 2( F v

∗ , f c
∗ , Ab

∗) , (17)

where H 1
∗ and H 2

∗ are the dimensionless limit-state functions, using μA s
and μ f s

.
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In order to correctly define the joint distribution of these limit-state functions, we have to carry out
an analyses of the dependence relation among the involved variables. In this example, we assume
independence among all variables, except between F v and  F h , because these forces are usually
related.

Due to the fact that variables involved in H 2
∗ are independent we can compute the joint probability

by means of the set of all marginal, that is, 

f (H 2
∗)= f (F v

∗ , f c
∗ , Ab

∗)= f (Fv
∗) f ( f c

∗) f (Ab
∗) , (18)

However, in the case of the , H 1
∗  applying equation (15) to determine this joint probability, we get:

f (H 1
∗) = f (F v

∗ , F h
∗ , f s

∗ , As
∗ ,θ) =

= f (F h
∗) f (F v

∗∣Fh
∗) f ( f s

∗∣F h
∗ , F v

∗) f (As
∗∣F h

∗ , F v
∗ , f s

∗) f (θ∣F v
∗ , F h

∗ , f s
∗ , As

∗) =
= f (F h

∗) f (F v
∗∣Fh

∗) f ( f s
∗) f (As

∗) f (θ) , (19)

which requires to know the conditional distribution of  F v
∗ given F h

∗  .

With this aim, we represent the data (F h
∗ , F v

∗) (see left Figure 4) and observe that they exhibit the
following linear regression: 

F v
∗=3.99 F h

∗+0.31 . (20)

Next, we find that the residuals follow a maximal Weibull model (see right Figure 4): 

F R(r ) = exp{−[1−k ( r−λ
σ )]

1/ k}; 1−k( r−λ
σ )⩾0. (21)

Figure 4: Data and regression line for the Corbel example and residuals given on a Normal
probability plot. 

Combining this expression with the regression equation (20) leads to the final model for F v
∗∣F h

∗

F F v
∗∣F h

∗( f v
∗∣ f h

∗)=exp{−[1−k( F v
∗−3.99 F h

∗−0.31−λ
σ )]

1/ k} (22)

only valid for 

1−k( F v
∗−3.99 F h

∗−0.31−λ
σ )⩾0 (23)
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Then, the estimation of the Weibull parameters using the maximum likelihood method leads to 

k=0.262;        σ=0.218;        μ=−0.0789.

In this way, the joint probability of this multivariate model becomes defined and we can evaluate
the failure probabilities. 

Conclusions
The following conclusions can be drawn from this paper: 

1. Random variables and the parameters of statistical distributions are dimensional. These must be
taken into consideration when statistical models are selected, otherwise, inadequate models can be
obtained leading to important dimensional problems. 

2. A previous dimensional analysis of the variables involved must be performed before building a
model. This leads to a deep understanding of the relations among the involved variables, avoids
dimensional  inconsistencies  and reduces  numerical  precision problems.  In  this  direction,  the  Π
Buckingham theorem is the most convenient and recommendable tool to be used. 

3. Identification of the adequate extreme value distribution is very important in real practice. There
are theorems that allow us to decide which of the Weibull, Gumbel or Frechet distributions or their
reverse versions corresponds to a given cdf F(x). 

4. We must be aware of the fact that different probability papers exists. With respect to extreme
value analysis there are two Gumbel probability papers, one for maxima and one for minima. It is
important to realize that only the tail of interest must be plotted and fitted. 

5. Care must be taken in selecting the adequate multivariate joint density functions. In this line, we
must be aware that an excess of assumptions leads to impossible models, and a lack of them, to
undefined models.  Finally,  Bayesian networks is  the  most  adequate  method to  define the joint
distributions,  based on a directed acyclic graph and the conditional distributions of each of the
random variable given their parents. 
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Abstract
This paper presents dynamic modeling of tensegrity robots rolling over the ground. We have de-
veloped a 6-strut tensegrity robot that deforms its body for rolling locomotion over the ground.
Designing tensegrity structures and control laws appropriate to locomotion experimentally has con-
sumed much time and labor. Dynamic simulation of tensegrity robot rolling is thus required to
reduce time and labor in experimental trials.

We have formulated a set of dynamic equations of motion of tensegrity robots. Our tensegrity
robots consist of rigid struts and elastic actuators. Elastic actuators, which act as tensile elements,
shrink by applying air pressure into the actuators. Applying air pressure to designated actuators
deforms the tensegrity structure, which allows the structure roll over the ground. We have simulated
the rolling of two icosahedron tensegrity robots; one consists of 24 actuators while the other consists
of 12 actuators. Experimental evaluation validated our dynamic simulation.

Keywords Tensegrity, Rolling, Dynamics, Modeling, Simulation

Introduction
Locomotion has been a main research issue in robotics and many robots have been proposed in the
past decade including wheel robots, crawler robots, and legged robots. Recently, much attention has
been paid to soft-bodied robots, which employ deformable bodies consisting of soft materials. Such
soft-bodied robots can deform their body for locomotion. Deformable bodies are useful for obstacle
avoidance and narrow passage locomotion. On the other hands, it is difficult to build larger bodies
since soft materials deform naturally under gravity. To cope with this problem, we have proposed
to introduce tensegrity structures into robot bodies.

Tensegrity structures consists of a set of rigid elements connected by elastic elements. Rigid
elements, which are referred to as struts, act as bones of a robot while elastic elements, which are
referred to as tensile elements, provide softness to the robot. Tenesgrity structures have been applied
robot locomotion [Aldrich et al. (2003); Paul et al. (2006); Arsenault and Gosselin (2008)]. Most
tensegrity robots employ crawling for locomotion. For dynamic locomotion, we have proposed
tensegtity robots that roll over the ground [Shibata et al. (2009)] and developed a six-strut tensegrity
robot driven by pneumatic McKibben actuators [Koizumi et al. (2012)]. Activating an appropriate
set of actuators in sequence, a tensegrity robot rolls over the ground. Unfortunately, determining a
sequence of appropriate actuators for locomotion requires much time since it is performed using a
real robot in trial and error manner. Additionally, we have many choices in tensegrity structures.
We have to select structures appropriate to rolling locomotion. This selection would require much
time.

Determining actuator sequence and selecting tensegrity structures would be performed on a
computer once we have establish a dynamic simulation of rolling tensegrity structures. Thus, we
will establish dynamic modeling of rolling tensegrity structures and perform simulation of rolling
of tensegrity robots.
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(a) (b)

Figure 1: Prototype of six-strut tensegrity robot

Tesegrtity Robots
Figure 1-(a) shows a prototype of six-strut tensegrity robots. This prototype consists of 6 rigid

struts and 24 pneumatic McKibben actuators. The struts are made of aluminum and are 570 mm
in length. Two rigid balls of diameter 45mm are attached to the both ends of each strut to help the
rolling of a tensegrity robot. McKibben actuators shrink by applying air pressure and extend via
external forces. Namely, McKibben actuators act as elastic elements. The actuators can generate
force of 800 N at air pressure of 0.5MPa. Contraction ratio is almost 34% without load and 20%
under the load of 3N by at air pressure of 0.5MPa. Air pressure to the actuators is applied externally
through air hoses.

Figure 1-(b) shows geometric description of a six-strut tensegrity robot. Let us attach numbers
1 through 12 to individual vertices of the tensegrity robot. Then, each strut or each actuator is
specified by a pair of numbers corresponding to its both ends. A six-strut tensegrity forms an
icosahedron, consisting of eight regular triangles and twelve non-regular isosceles triangles. One
triangle is contacting to the ground when this tensegrity robot is in equilibrium, implying that each
equilibrium can be specified by its corresponding triangle.

Figure 2 describe successive rolling of a six-strut tensegrity robot. The prototype can perform a
successive rolling over a flat ground by applying air pressure to a sequence of actuator pairs.

Dynamic Modeling of Tensegrity Rolling
Let us summarize the dynamic of a rigid body. Let us attach body coordinate system C− ξηζ to

the body while fix space coordinate system O−xyz to space. Orientation of a rigid body is described
by rotation between the two coordinate systems. Let us introduce quaternion q = [ q0, q1, q2, q3 ]

T

to describe the orientation of a rigid body [Kuipers 2002]. This quaternion must satisfy qTq =
q20 + q21 + q22 + q23 = 1. The orientation matrix of a rigid body is then given as

R(q) =

 2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

 . (1)
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(a) (b) (c)

(d) (e) (f)

Figure 2: Successive rolling of a six-strut tensegrity robot

The first, second, and third columns of the above matrix correspond to unit vectors along ξ-, η-, and
ζ-axes. Angular velocity vector of a rigid body is described as

ω = 2H(q) q̇ = −2H(q̇) q, (2)

where

H(q) =

 −q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 .

Let J be inertia matrix of a rigid body and τ = [ τξ, τη, τζ ]
T be a set of external moments

around ξ-, η-, and ζ-axes applied to the body. Then, dynamic equation of rigid body rotation is
formulated as:

q̈ = −r(q, q̇) q − 2HT(q) J−1

(
(H(q)q̇)× (JH(q)q̇)− 1

4
τ

)
, (3)

where

r(q, q̇) = q̇Tq̇ + 2νqTq̇ +
1

2
ν2(qTq − 1) (4)

with positive constant ν. This r(q, q̇) originates from stabilization of holonomic constraint qTq −
1 = 0 [Baumgarte (1972)]. Denoting the right hand of Eq.3 by h(q, q̇, τ ), dynamic equation of
rigid body rotation is simply described as q̈ = h(q, q̇, τ ).

Let us formulate the motion of the i-th strut. Let 2L be the length of the struts. Assume that each
strut is uniform with its mass m and inertia matrix J . Let Ci be the center of motion of the i-th strut
and xi denote its position. Let us attach coordinate system Ci − ξiηiζi to the i-th strut. Assume that
ζi-axis lies on the line between the both end of the strut and ζi be unit vector along ζi-axis. Letting
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(a) (b) (c)

(d) (e) (f)

Figure 3: Simulation result of rolling of six-strut tensegrity robot

fi and τi be external force and moment applied to the i-th strut, equations of motion of the strut are
given by

mẍi = fi, q̈i = h(qi, q̇i, τi). (5)

Recall that vertices of a six-strut tensegrity robot have their own numbers. Let Rl be a set of
numbers adjacent to vertex l via elastic elements. Let yl be the position vector of vertex l. Let
j and k be vertex numbers at both end points of the i-th strut. Position vectors of the points are
given by yj = xi + Lζi and yk = xi − Lζi. Let fela(yl,yn, ẏl, ẏn) be viscoelastic force generated
by an elastic element connecting vertices l and n. Then, the resultant force applied to vertex j is
formulated as

f+
i =

∑
l∈Rj

fela(yj,yl, ẏj, ẏl). (6)

Similarly, the resultant force applied to vertex k is given by

f−
i =

∑
l∈Rk

fela(yk,yl, ẏk, ẏl). (7)

Additionally, we will apply penalty method to formulate contact forces from the ground. Assum-
ing that the ground is specified by z ≤ 0, contact force applied to a vertex of which position is
represented as x = [ x, y, z ]T is given by

fcon(x) =

{
0 (z > 0)

−Kz − Cż (z ≤ 0)
, (8)
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(a-1) start (a-2) end
(a) experiment

(b-1) start (b-2) end
(b) simulation

Figure 4: Six-strut tensegrity robot rolling from planar symmetric contact

where K and C represent elastic and viscous coefficients of the ground. Contact forces applied to
vertices j and k is then formulated as fcon(yj) and fcon(yk).

Consequently, the resultant force and moment applied to the i-th strut are formulated as:

fi = f+
i + f−

i + fcon(yj) + fcon(yk) +mg, (9)
τi = (Lζi)×

(
f+
i − f−

i + fcon(yj)− fcon(yk)
)
, (10)

where g represents the acceleration of gravity. Solving equations of motion of all struts numerically,
we can simulate the motion and deformation of a tensegrity robot.

Simulation Results
We have performed dynamic simulation of rolling of a six-strut tensegrity robot. Figure 3 shows
a sequence of snapshots of a result. Red circles describe vertices contacting to the ground while
yellow ones are not in contact with the ground. At first, a regular triangle is in contact with the
ground (Figure 3-(a)). Then, the body deforms (Figure 3-(b)) and one vertex of the regular triangle
loses its contact (Figure 3-(c)). Namely, the tensegrity robot is out of equilibrium, yielding rotation
around the line between the two contacting points (Figure 3-(d) and (e)). Finally, one vertex contacts
to the ground, resulting that a non-regular isosceles triangle is in contact with the ground (Figure
3-(f)).
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(a-1) start (a-2) end
(a) experiment

(b-1) start (b-2) end
(b) simulation

Figure 5: Six-strut tensegrity robot rolling from planar symmetric contact

Contact between a six-strut tensegrity robot and the ground can be specified by the triangle
contacting to the ground. Contact specified by a regular triangle is referred to as axial symmet-
ric contact while contact represented by a non-regular isosceles triangles is referred to as planar
symmetric contact. Note that we have eight axial symmetric contacts and twelve planar symmetric
contacts. Rolling of a six-strut tensegrity robot corresponds to a sequence of transitions among the
twenty contacts.

We have found that driving a pair of pneumatic McKibben actuators yields 1) transition from
axial symmetric contact to its neighboring planar symmetric contact, or 2) transition from planar
symmetric contact to its neighboring planar symmetric contact [Koizumi et al. (2012)]. Let us
examine if the above two transitions can be simulated. Figure 4 shows experimental and simulation
results of transition from axial to planar symmetric contacts. We have found that experimental and
simulation results meet well. Figure 5 shows experimental and simulation results of transition from
planar contact to its neighboring planar symmetric contact. The simulation result agrees with the
experimental result. As a result, we conclude that dynamic simulation of rolling tensegrity robots
works well.

Let us simulate the rolling of another tensegrity structure. Figure 6 shows a star-shaped tenseg-
rity structure. This structure consists of six struts and twelve actuators. Each actuator connects one
end point of a strut and the center of another strut. Note that no actuators contact to the ground
during rolling. We have simulated transitions from axial and planar symmetric contacts. Figure 7
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Figure 6: Star-shaped tensegrity robot

(a-1) start (a-2) end
(a) transition from axial symmetric contact

(b-1) start (b-2) end
(b) transition from planar symmetric contact

Figure 7: Simulation results of rolling of star-shaped tensegrity robot
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shows simulation results. Figure 7-(a) shows an axial symmetric contact transits to its neighboring
planar symmetric contact. Figure 7-(b) describes a planar symmetric contact transits to its neighbor-
ing axial symmetric contact. These results suggest that this star-shaped tensegrity robot can perform
rolling from any contact to another.

Conclusion
We have established dynamic simulation of tensegrity robot rolling. It turns out that rolling of a
six-strut tensegrity robot can be simulated and simulation results agree with experimental results.
Additionally, we have simulated the rolling of a star-shaped tensegrity robot. Through simulation,
we have found that this tensegrity robot can perform rolling locomotion.
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Abstract 
This paper is about how solving two dimensional multi-crack problems with arbitrary distribution 
by the virtual boundary meshless least squares method. In this article, the local domain where a 
single crack is contained would be treated as twain subdomain when solving multi-crack problem. 
And this method incorporates the point interpolation method (PIM) with the compactly supported 
radial basis function (CSRBF) often used in boundary-type meshless methods to approximately 
construct the virtual source function on the virtual boundary corresponding to each subdomain. 
According to the definition about sub-domain in this paper, the added extra sub-domains on the 
boundary extended along the crack surface as “conventional sub-domain method” in the direct 
boundary element method do not have to be considered, thereby reducing the computational, 
especially avoiding this calculation error caused due to inadequate number of the elements or with 
the collocation points configured on the boundary of the additional sub-domains and its improper 
configuration. In addition, since the configuration of virtual boundary has a certain preparability, 
the integration along the virtual boundary can be carried out over the smooth simple curve that can 
be structured beforehand (for 2D problems) to reduce the complicity and difficulty of calculus 
without loss of accuracy, while ‘‘Vertex Question’’ existing in BEM can be avoided. 

Keywords:  Virtual boundary, Meshless, Least squares, Radial basis function, Multi-crack 

1. Introduction 

Generally speaking, crack, multi-crack or micro-crack are pre-existed in engineering components 
[1] and structures [2], brittle or quasi-brittle materials, and so on. As is known to all, the stress 
intensity factor can be used to describe the stress field of the crack tip and predict crack growth in 
fracture mechanics. So the stress intensity factor for the calculation of a crack or multi-crack 
analysis also is very important. In fact, the equation with solving crack problem is easily established, 
but the exact solution is quite difficultly obtained, especially in multi-crack problems. That is, the 
analytic methods, such as the westergaard method [3], the complex variable function method [4], 
conformal mapping [5] and so on, can only solve the simple or regular crack problem, and complex 
or irregular crack problems need resort to numerical methods.  

The boundary element method (BEM) is an important kind of numerical methods, and it is 
suitable for analyzing a large field gradient function of the problem and also can better calculate the 
stress concentration. Some scholars solve the crack problems by the BEM, such as Z.H. Yao, P.B. 
Wang and H.T. Wang et al. [6-7] use dual BEM to analyze the numerous micro-cracks, Q.H. Qin and  
Y.W. Mai [8] employ the BEM for crack-hole problems in thermopiezoelectric materials, E.D. 
Leonel and W.S. Venturini [9] use the dual boundary element formulation to analysis of multi-
fractured domains, X.Q. Yan [10] analyzes the stress intensity factors of multiple circular arc cracks 
in a plane elasticity plate by employing the BEM, and so on. But the BEM still has its own 
drawbacks. It is shown that the coefficient matrix is asymmetric and its construction is time 
consuming in the process of calculation. In addition, the treatment of singular integration is 
inconvenient and takes much more time, and there is mimicry singular integral whilst reducing 
calculating precision, especially when solving the related physics quantities on the boundary, which 
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is called “Boundary Layer Effect”. Fortunately, the virtual boundary element least square method 
proposed by the authors in the literature [11-19] can avoid above described drawbacks in BEM, 
since its coefficient matrix is symmetric and it does not involve singular integral. 

According to the definition about sub-domain in this paper, the added extra sub-domains on the 
boundary extended along the crack surface as “conventional sub-domain method” in the direct 
boundary element method do not have to be considered, thereby reducing the computational, 
especially avoiding this calculation error caused due to inadequate number of the elements or with 
the collocation points configured on the boundary of the additional sub-domains and its improper 
configuration. In addition, since the configuration of virtual boundary has a certain preparability, 
the integration along the virtual boundary can be carried out over the smooth simple curve that can 
be structured beforehand (for 2D problems) to reduce the complicity and difficulty of calculus 
without loss of accuracy, while ‘‘Vertex Question’’ existing in BEM can be avoided.  

The rest of the paper is organized as follows. In Section 2, the radial point interpolation method 
and the stress intensity factor are described in brief. In Section 3, the calculation scheme for solving 
multi-crack problems by virtual boundary meshless least squares method is derived in detail, and 
the related processing technologies in the calculation of multi-crack problems are introduced. In 
Section 4, numerical examples are presented to demonstrate the efficiency and validity of the 
method proposed in the paper. Finally, a summary is given in Section 5 to conclude this paper. 

2. The radial point interpolation method and the stress intensity factor 

2.1 The radial point interpolation method 
Consider a scalar function u(x) defined in the problem domain  , the approximation function 

uh(x) of u(x) is represented by a set of scattered interpolation nodes, and uh(x) can approximates u(x) 
at a point of interest x . By the reference [16], the RPIM function interpolation expression 
augmented with polynomials can be rewritten as [20-27] 

T T

1 1
( ) ( ) ( ) ( ) ( )

n m
h

i i j j
i j

u R a p b
 

     R a p bx x x x x                                        (1) 

In which, ( )iR x  is the compactly supported radial basis function (CSRBF) proposed by Wu [28], n  
is the number of RBFs in the defined domain of the calculation point x , namely 

 4 2 3( ) (4 16 12 3 )iR r r r r   x                                                    (2) 
where i ir d x x , in which id  is the dimension of the local support domain for CSRBF (shown 
in Fig. 1), and 

(1 )     for 0   1      
0                   other

r r
r

  
 


                                                   (3) 

and ( )jp x  is polynomial basis functions in two-dimensional coordinates  T ,x yx , m  is the 
number of polynomial basis functions. The vector a  of coefficients for RBFs is  T

1 2 na a a , 
and the vector b  of coefficients for polynomial is  T

1 2 mb b b . Then, coefficients ia  and jb  
are constants yet to be determined. 

In order to determine ia  and jb  in Eq. (1), a support domain is formed for the point of interest at 
x , and n  field nodes are included in the support domain. Coefficients ia  and jb  in Eq. (1) can be 
determined by enforcing Eq. (1) to be satisfied at these n  nodes surrounding the point of interest x . 
Then, the n m  unknown coefficients ia and jb in Eq. (1) can be obtained by the following 
equations 
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1 1

( ) ( ) ( )
n m

i I i j I j s I
i j

R a p b u
 

  x x x 　 1, 2, ,I n                      (4) 

1
( ) 0

n

j I I
I

p a


 x 　 1, 2, ,j m  　     　       　                         (5) 

where Eq. (5) is m  constraint conditions added using the orthogonality between ( )j Ip x ( 1,2, ,I n  ) 
and a  to solve n m  variables in Eq. (1). Combing Eqs. (4) and (5) yields the following set of 
equations in the matrix form 

s   
   

   

a u
B

b 0
                                                                           (6) 

where the moment matrix B  is 

1 1 1 1 1 1

1 1

1 1 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) 0 0

( ) ( ) 0 0

n m

n n n n m n

n

m m n

R R p p

R R p p

p p

p p

 
 
 
 
 
 
 
 
  

B

 
     

 
 

     
 

x x x x

x x x x
=

x x

x x

                                  (7) 

Using Eq. (6) and by Eq. (1), we can obtain 

 T T -1 T( ) ( ) ( ) ( )s shu
   

    
   

u u
R p B N

0 0
x x x x                                  (8) 

where the vector su  of function values is  T

1 2 nu u u , and the RPIM shape functions can 
be expressed as 

 T T T -1( ) ( ) ( )N R p B x x x                                                                      

 1 2 1          ( ) ( ) ( ) ( ) ( )n n n mN N N N N   x x x x x     (9) 

And the RPIM shape functions ( )N x  corresponding to the nodal displacements vector su  are 
obtained as 

 T
1 2( ) ( ) ( ) ( )nN N NN x x x x                                             (10) 

Therefore, Eq. (8) can be rewritten as 
T

1
( ) ( )

n
h

s i i
i

u N u


 N ux x                                                                     (11) 

In this paper, in order to further improve the accuracy and computational efficiency, the idea of 
RPIM with CSRBF is incorporated to approximately construct the virtual source function ( )k   
( 1,2k  ) in VBEM. 

 
 
 
 
 
 
 

 
 

 
Figure 1. Computing model of single 
      domain problem for the meshless 
      VBEM 

Figure 2. Local coordinate description  
of the crack tip displacement 
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
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Figure 3. Diagrammatic sketch of 
multi- 
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2.2 The stress intensity factor 
In a given 2D Cartesian coordinate system, for the composite crack problems with containing Ⅰ 

and Ⅱ  type, the displacement 1u  and 2u  along 1x 、 2x  direction at crack tip point x  can be 
expressed respectively as (shown in Fig. 2) 

2 2
1 cos 1 2sin sin 1 2cos

2 2 2 2 2 2 2 2
K Kr r

u
G G

    
 

   
        

   

    
Ⅰ Ⅱ           (12) 

2 2
2 sin 1 2cos cos 1 2sin

2 2 2 2 2 2 2 2
K Kr r

u
G G

    
 

   
         

   

    
Ⅰ Ⅱ        (13) 

In which, KⅠ and KⅡ are the stress intensity factors respectively corresponding to Ⅰ and Ⅱ type; 
r  is the distance between the calculation point x  and the crack tip point x ,   is the angle between 
the radial vector r  and the axis 1x ; in addition, 2(1 )G E   , and 3 4    (Plane strain 
problem), (3 ) / (1 )      (Plane stress problem). 

By Eqs. (12) and (13), when  turn counterclockwise an angle  , the displacement along 1x 、 2x  
direction at the crack tip point x  can be denoted respectively as 

  1 21 ,   ( 1)
2 2 2 2
K Kr r

u u
G G

 
     
 

Ⅱ Ⅰ                                   (14) 

and, when  turn clockwise an angle  , the corresponding displacement is 

 1 21 ,   ( 1)
2 2 2 2
K Kr r

u u
G G

 
       
 

Ⅱ Ⅰ                               (15) 

By Eqs. (14) and (15) simultaneous solution, KⅠ and KⅡ can be obtained, namely 

2 2( ) 2
1

u u G
K

r



 


 Ⅰ ,  1 1( ) 2

1
u u G

K
r



 


 Ⅱ                               (16) 

For ease of comparison to the stress intensity factor K  by different loads and under different 
geometric scales, need to introduce dimensionless stress intensity factor F . From the reference [29], 

( )F K a  , in which   is a reference stress and a  is crack half-length. 

3. The calculation scheme for solving multi-crack problems 

The idea for solving the multi-domain problems (shown in Fig. 3) by virtual boundary meshless 
least squares method has been given in the reference [16], and the virtual source function on the 
virtual boundary about each subdomain is approximately constructed by the boundary-type radial 
point interpolation method [20]. Here, according to basic idea of the literature [16], the idea for 
solving multi-crack problems is presented. According to the literature [16], there is  

(1) (2) ( )[ ( ), ( ), , ( )]n   J     

2 2 2( ) ( ) ( ) ( )

1 1 1 1

              ( ) ( ) ( ) ( )
l l l
u u P

l
pu u

j l j l

N N Nn
l l l l

l i j i j l i j i j
l i j j N

u u p p
   

 


     

 
           
  

  
 x x

x x x x  

2 2 2( ) ( ) ( ) ( )

( ) 1 1 1

            ( ) ( ) ( ) ( )
G G

G Gks
j ks j ks

M M
k s k s

J i j i j J i j i j
G i j j

u u p p
  

 
   

           
  

   
x x

x x x x            (17) 

In which, (1) (2) ( )[ ( ), ( ), , ( )]n  J     is the square deviation functional of the multi-domain 
composite problem about virtual source function ( ) ( )i

k   ( 1,2k  ; 1,2, ,i n  ), and the above 
equation established must satisfies the given actual boundary conditions of the original problem and 
the corresponding connection conditions between the adjacent subdomains at the same time. n  is 

ICCM2014, 28th-30th July 2014, Cambridge, England

283



 
 

the number of subdomains within the problem given. u
l   and p

l   are called the exterior 
displacement and traction boundary of l , respectively, l

uN  is the number of real boundary nodes 
whose displacement is known on the boundary l   (namely u

l  ), while l
pN  the nodes 

number of known traction with outward normal direction on the boundary p
l  ;  ( ) ( )l

i ju x  and 
( ) ( )l
i jp x  are the known displacement and traction values along ith direction at the jth boundary point 
jx  on the exterior boundary u

l   and p
l   of lth subdomain, respectively; l  and l  are 

weight coefficient about the displacement and traction of the lth subdomain, respectively; G  is the 
overall serial number of the current internal boundary ks  (namely G

ks ), GM  is the over-fulfilled 
collocation number on G

ks , J  and J  are weight coefficient about the displacement and traction 
on G

ks , respectively. By solving Eq. (17), the virtual source function ( ) ( )l
k   ( 1,2k  ; 1,2, ,l n  ) 

can be obtained. As soon as the virtual source function ( ) ( )l
k   is known, the corresponding physical 

value at x  about each subdomain can be calculated through the following equations, namely 
( ) * ( )( ) ( , ) ( )

l

l l
i ik kS

u u dS x x   

( ) ( )( ) ( , ) ( )
l

l l
ij ijk kS

dS   x x   

( ) * ( )( ) ( , ) ( )
l

l l
ij ijk kS

dS   x x   

( ) * ( )( ) ( , ) ( )
l

l l
i ijk j kS

p n dS  x x                                                    (21) 

It can be known from Eqs. (18) and (21), Eq. (17) is the square deviation functional about virtual 
source function ( ) ( )i

k   ( 1,2k  ; 1,2, ,i n  ) that is the unknown function on the virtual boundary 
iS . Unlike the conventional VBEM, ‘virtual boundary meshless’ mentioned in the paper means that 

the virtual source approximate functions ( ) ( )i
k   ( 1,2k  ; 1,2, ,i n  ) constructed in the meshless 

VBEM are not dependent upon the geometric mesh generation of the computing element. That is to 
say, the idea of RPIM with CSRBF is incorporated to approximately construct the virtual source 
function. And a kind of background-mesh can be employed about the numerical integration of 
virtual source function in the method. Such as Eqs. (18) and (21), the virtual boundary lS  will be 
separated into em  elements and there are ge  Gauss spots within each element, then their Gauss 
numerical integral of ( ) ( )l

iu x  and ( ) ( )l
ip x  can be expressed  respectively as 

( ) * ( ) * ( )

1 1

( ) ( , ) ( ) ( ) ( , ) ( )
l l
e e

l

m e
l l e e l e

i ik k g ik g k gS
e g

u u dS w u 
 

   x x x      

* ( )T ( )

1 1

           ( ) ( , ) ( )
 

 
l l
e em e

e e l e l
g ik g g s k

e g

w u  Nx                (22) 

( ) * ( ) * ( )

1 1
( ) ( , ) ( ) ( ) ( , ) ( )

e g

l

m e
l l e e l e

i ijk j k g ijk g j k gS
e g

p n dS w n   
 

   x x x      

* ( )T ( )

1 1
           ( ) ( , ) ( )

 

 
e gm e

e e l e l
g ijk g j g s k

e g

w n  Nx            (23) 

Substitute Eq. (22) and Eq. (23) into Eq. (17), then we can see that (1) ( )[ ( ), , ( )]n J    will 
change as the vector of the entire virtual source function values ( )l

s
  ( 1,2, ,l n  ), so 

(1) ( )[ ( ), , ( )]n J    can be expressed as (1) (2) ( )[ , , , ]n
s s s
  J    . In order to obtain the solution ( )l

s
  

( 1,2, ,l n  ), the variation is being made for Eq. (25), namely 
0 J                                                                     (24) 

Let Ns  be node number on all virtual boundaries of multi-domain complex issues, then the 
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unknown vector of entire node function values A  can be recorded as a unified manner, namely 

   TT(1)T (2)T ( )T
1 1 1 2 2 1 2 2 1 2, , , n

s s s Ns Ns               A     

 T

1 2 2   Ns                                                   (25) 

From Equation (24), we get the governing equation for solving the unknown virtual source 
function values at all nodes on all virtual boundaries. Equation (24) can be rewritten in matrix form 
as follows [16] 

 KA B                                                                   (26) 
In the above equation,  2 2st Ns Ns

k


K =  is a symmetric coefficient matrix; A  is the vector of the 
unknown virtual source function values (2 1)Ns ; B  is the right term that can be obtained based on 
the boundary conditions.  
Definition of crack subdomain 

Suppose that is the number m  of cracks contained in whole domain Ω , and the local domain of 
each crack is treated as two sub-domains. So whole domain is artificially divided into 2 +1m sub-
domains, in which the boundary +

i  and -
i   of each crack is respectively referred to as the upper 

and lower boundaries of the crack (or left and right boundaries), as shown in Figure 4. Respective 
sub-domain can be artificially defined corresponding to the boundary +

i  or -
i  of each crack, 

namely sub-domain +
iΩ  corresponding to +

i . That is, there is twain sub-domain corresponding to 
each crack. And sub-domain *Ω  is considered as “Substrate domain” in addition to the crack sub-
domains defined. 

On numerical implementation of this method terms, the definition of the configuration shape of 
the crack has a certain degree of arbitrariness, such as rectangular or semi-circular or semi-elliptical 
and so on. And the selection of its shape and size hardly affects the result of the calculation. 
Compared with “conventional sub-domain method” in the direct boundary element method [30], the 
added extra sub-domains on the boundary extended along the crack surface do not have to be 
considered according to the definition about sub-domain in the paper, thereby reducing the 
computational, especially avoiding this calculation error caused due to inadequate number of the 
elements or with the collocation points configured on the boundary of the additional sub-domains 
and its improper configuration. 

Element division near the crack tip by equal proportions 
Due to stress gradient with larger changes on the vicinity of the crack tip, therefore, how the 

elements are reasonably distributed on the actual boundary near the crack tip to get a better 
numerical solution will be very important. Through numerical integration practice, we decorate the 
desired nodes in order to define the elements required near the crack tip for the numerical 
integration based on "proportional" mathematical ideas in the paper, thereby decide the division and 
distribution of element near the crack tip. The ideas of the specific implementation: suppose that a  
is crack half-length, and denote a BA


. Here, point A  is regarded as the crack tip, the desired 

nodes ia  are arranged from point B  to point A according to the calculation formula 
(1 ) (1 )i n

ia q a q   ( 1, 2, , ;   1)i n q  , in which q  is scale factor. When i n , the position 
corresponding to na  is the crack tip A . 

4. Numerical Examples 

4.1 There is a through-wall crack with crack half-length 1 mma   at the center position of the plate 
of side length 100 mml  , as shown in Figure 5. The load of perpendicular to upper and lower plate 
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edge is uniform distribution of tension, and it is expressed as 1 MPa  . Young's modulus of 
elasticity E=2.1×106 MPa, Poisson’s ratio ν=0.3. 

Now, employ the method proposed in this article to calculate the above issues. The problem can 
be artificially divided into three sub-domains, namely one referred to as the subdomain *Ω  of 
"Substrate domain" and the other two sub-domains 1

+Ω  and 1
-Ω  belonging to crack definition, as 

shown in Figure 6. For crack sub-domain 1
+Ω , 22 elements are divided on the crack boundary 1

+  
based on "proportional" mathematical ideas, and three internal boundaries corresponding to 1

+Ω  take 
straight line edge and its each one is divided into 20 elements. Then there are a total of 104 
elements on all actual boundaries corresponding to 1

+Ω . However, for the virtual boundary 1
+S  of 

1
+Ω , employ a circle configuration of radius 1 1.22 mmr  , and 45 elements are evenly distributed 

on 1
+S . However, for sub-domain 1

-Ω , its actual and virtual boundaries are divided by using the 
same method as the processing subdomain 1

+Ω . For the subdomain *Ω  of "Substrate domain", its 
outer boundary SΓ  is formed by the four straight line edges and 20 elements on each one are evenly 
distributed, then the element implementation of its internal boundary, namely element number and 
distribution, should be the same as the division corresponding to crack subdomain. However, for 

*Ω , exist simultaneously inner virtual boundary *
inS  and external one *

exS , and their configuration 
all are a circle with the radius 3 72 mmr   and  4 1.9 mmr  , respectively. And 45 elements are 
evenly distributed on *

inS  or *
exS . All nodes on inner and external virtual boundaries add up to 180, 

namely DOF number is 360. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With employing Westergaard’ stress function method [29] to calculate the stress intensity factor of 
this example, the analytical solutions obtained is MPa  ( 1.7725 MPa ), and the numerical result 
in accordance with the method proposed in the paper for solving the stress intensity factor is 
1.7758 MPa , its numerical error is 1.86‰. However, under the same degree of freedom, the 
comparison of the numerical results of the literature [31] about BEM J integral method and 

Figure 4. Diagrammatic sketch of containing
multiple cracks 

Figure 5. Calculation diagram of single crack 

Figure 7. Calculation figure of three collinear cracks Figure 6. Discretization of single crack 

（a）

（b）

（c）

*
exS

*
inS
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F

displacement discontinuity method with the analytical solutions and the numerical solutions in the 
paper is shown in Table 1.  
4.2 There are three collinear through-wall cracks with crack half-length 1 mma   of each crack for 
the plate with side length 100 mml  , as shown in Figure 7. The load of perpendicular to upper and 
lower plate edge is uniform distribution of tension, and it is expressed as 1 MPa  . Young's 
modulus of elasticity E=2.1×106 MPa, Poisson’s ratio ν=0.3. In addition, the center distance of 
adjacent cracks denotes d , and the distance between adjacent crack tips is 2 /a d . 

Now, employ the method proposed in this article to calculate the above issues. The problem can 
be artificially divided into seven sub-domains, namely one referred to as the subdomain *Ω  of 
"Substrate domain" and the other six sub-domains +

iΩ  and -
iΩ  ( =1,2,3i ) belonging to crack 

definition. Then the whole region Ω  is divided into seven sub-domains, namely iΩ  ( 1,2, ,7i   ), 
and the discrete processing program on actual and virtual boundary of each subdomain is same as 
one of the previous example. However, the comparison of the numerical results of calculating the 
normalized stress intensity factor AK , BK , CK  at crack tip A, B, C. by the method proposed in the 
paper with them of employing the BEM with 45 displacement discontinuity element[32] and based 
on the stress function method[33] is shown in Table 2. And by comparison with the literature [32], 
the method proposed has fewer degrees of freedom for calculating the same problem, thus 
calculation efficiency can be improved. And the results of the method proposed is numerically more 
to be close to them of the literature [33] by comparison with the literature [32]. 

Tab.1 the stress intensity factor for the single crack 

K Analytical 
solution J integral method [31] Displacement discontinuity method [31] The method of

this paper
result (MPa) 1.7725 1.7867 1.9303 1.7758 

error —— 8 ‰ 8.9 ％ 1.86 ‰ 

Tab.2 the normalized stress intensity factor for three collinear cracks 

 
 

AK  BK  CK  

The paper [32] [33] The paper [32] [33] The paper [32] [33] 

0.05 0.99885 0.9961 1.00083 0.99851 0.9961 1.00040 0.99876 0.9963 1.00063 

0.1 0.99951 0.9972 1.00150 0.99959 0.9973 1.00164 1.00058 0.9982 1.00252 

0.2 1.00370 1.0015 1.00585 1.00483 1.0026 1.00702 1.00799 1.0059 1.01030 

0.3 1.01067 1.0085 1.01296 1.01480 1.0126 1.01710 1.02170 1.0195 1.02407 

0.4 1.02058 1.0184 1.02297 1.03115 1.0288 1.03353 1.04285 1.0405 1.04529 

0.5 1.03381 1.0317 1.03631 1.05666 1.0540 1.05913 1.07405 1.0714 1.07663 

0.6 1.05118 1.0490 1.05383 1.09643 1.0932 1.09915 1.12046 1.1171 1.12316 

0.7 1.07447 1.0722 1.07724 1.16144 1.1571 1.16456 1.19261 1.1881 1.19558 

0.8 1.10743 1.1049 1.11032 1.27891 1.2724 1.28348 1.31668 1.3104 1.32136 

0.9 1.16105 1.1581 1.16439 1.55727 1.5405 1.56454 1.59952 1.5835 1.60685 

2 /a d
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5. Conclusions 

1. The ideas of the virtual boundary meshless least squares method with radial point interpolation 
have been formulated for solving multi-crack problems. However, the given numerical examples 
indicate its high accuracy and high efficiency. 

2. The point interpolation scheme with compactly supported radial basis function is introduced into 
the method so that no element mesh is required in this method. Consequently, this method has 
the advantages of boundary-type meshless methods. It can be used for the calculation and 
analysis of complex question. 

3. By comparison of “conventional sub-domain method” in the direct boundary element method, 
the added extra sub-domains on the boundary extended along the crack surface do not have to be 
considered according to the definition about sub-domain in the paper, thereby reducing the 
computational, especially avoiding this calculation error caused due to inadequate number of the 
elements or with the collocation points configured on the boundary of the additional sub-
domains and its improper configuration. 
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Abstract 

This study couples geochemistry with geo-hydraulics to enable time-dependent modelling for the 
treatment of acidic groundwater using an alkaline permeable reactive barrier (PRB). This is the first 
such model developed for acidic groundwater generated from acid sulfate soil which is useful to 
address the adverse effects such as massive fish kills, corrosion of concrete and steel structures and 
unfavourable conditions for vegetation. The remediation process has been successful to date with a 
slight decrease in efficiency caused due to chemical clogging by secondary mineral precipitates, 
which reduces the porosity and hydraulic conductivity of the reactive medium. To predict these 
changes numerically, governing equations were incorporated into finite different codes, 
MODFLOW and RT3D. An original geochemical algorithm was developed for RT3D to simulate 
chemical reactions occurring in the PRB. The results and the model predictions are in agreement, 
confirming the hydraulic conductivity reduction due to mineral precipitation was only 3% at the 
entrance phase of PRB. 

Keywords:  Geochemical algorithm, Finite different modeling, Hydraulic conductivity reduction, 
Permeable reactive barrier, Acid sulfate soil 

Introduction 

The Australian coastal floodplains have been undergoing environmental and socio-economic 
problems due to the acid sulfate soils (ASS), which are spread over 3 million hectares of land 
(White et al., 1997). The oxidation of pyritic soil is increased due to the growing population and 
resulting changes in land use such as construction of deep flood mitigation drains which promote 
the generation of sulfuric acid. One of the injurious processes resulting is the leaching of heavy 
metals such as aluminium (Al) and iron (Fe) to adjacent water bodies. The acid sulfate soil research 
team at the University of Wollongong has been examining several engineering solutions such as 
weirs and floodgates, which have been mounted near Broughton Creek, Shoalhaven Floodplain, 
New South Wales (NSW) (Indraratna et al., 2001). These methods were capable to prevent pyrite 
oxidation, but were unable to treat prevailing acidity deposited in the soil (Indraratna et al., 2005). 
A noteworthy progress was achieved through a pilot-scale permeable reactive barrier (PRB) 
installed at Manildra Group’s Environmental Farm in October 2006. Recycled concrete aggregates 
were utilised as the reactive material to neutralise the acidic groundwater (Golab et al., 2006). This 
PRB is a promising technique for sustaining a groundwater pH from alkaline to neutral (pH 10.0-
7.2) and removing dissolved Al and total Fe below 2 and 0.5 mg/L, respectively inside the PRB. 
Even though the total performance was acceptable, a slight decrease in pH inside the PRB was seen 
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due to armouring of the reactive media by the Al- and Fe precipitates in the forms of oxy/hydroxide 
minerals. According to Regmi et al., (2011), laboratory column experiments have indicated a 50% 
reduction in the actual acid neutralisation capacity (ANC) of the recycled concrete compared to its 
theoretical ANC. 
 
This study presents the model developed to couple geochemistry with geo-hydraulics in the 
remediation of acidic groundwater, which has not been carried out in the past, especially for time-
dependent modeling and performance verification. The commercial numerical codes, MODFLOW 
and RT3D were used to couple groundwater flow with reaction kinetics. An original geochemical 
algorithm was developed to feed into RT3D which captures the geochemical reactions taking place 
in the PRB (Indraratna et al., 2014). This model is advantageous to practicing environmental 
engineers and scientists who have to work with the acid sulfate soil related problems. 
 
Methodology 
 
The pilot-scale PRB 
 
In October 2006, the pilot-scale PRB (17.7 m long, 1.2 m wide and 3 m deep) was mounted at the 
study site, such that it intersects the region of maximum groundwater flow. Geo-textile material was 
used to shield the reactive media from physical clogging by soil and other fine debris inflowing the 
barrier. There are 36 observation wells and 15 piezometers installed inside, up-gradient and down-
gradient of the PRB (Figure 1) to observe the phreatic surface variations, groundwater chemistry 
and hydraulic gradients. 
 

  
 

Figure 1. (a) and (b) Pilot-scale PRB and the observation wells and piezometers at study site 
(Pathirage et al., 2014) 

 
Monthly field visits were carried out to monitor the water quality parameters in monitoring wells 
such as pH, ORP, and temperature and groundwater elevation in piezometers. These were directly 
measured onsite every month from the installation time to date. Groundwater samples were 
analysed according to APHA (1998) guidelines for acidic cations (total Fe, Al3+), major cations 
(Ca2+, Mg2+, Na+, K+), anions (Cl- and SO4

2-), acidity and alkalinity. More elaborated details of the 
contents discussed in the paper can also be found in previous publications of the second Author and 
his research students in Computers and Geotechnics and ASCE Journals. Authors acknowledge 
Elsevier Publication for allowing permission to re-use some of technical content published in 
Computers and Geotechnics. 
 
Mathematical model 
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The transition state theory (Eqn. 1) was used to develop the geochemical algorithm. This algorithm 
comprised of most leading reactions taking between acidic groundwater and the alkaline minerals 
existing in the recycled concrete. 
 











−−=

eq
eff K

IAPkr 1  

 
where, r is the rate of mineral precipitation (r > 0) or dissolution (r < 0), keff is the effective rate 
coefficient, IAP is the ion activity product, and Keq is the solubility constant for the reaction. 
 
PRHEEQC software was used to calculate the saturation indices (SI) useful to compute the values 
for IAP/Keq as shown in Equation 2. The effective rate coefficient (keff) for each substance in 
Equation 1 was a calibrated value and expected to be spatially invariant and time independent 
during the simulation (Table 1) (Indraratna et al., 2014). 
 

( ) ( )eqKIAPSI loglog −=  
 

Table 1. Calibrated keff values from the data provided by Regmi et al., (2011) 
Mineral phase keff (mol/L.s) 
Ca2+ 2.27 x 10-7 
Al3+ 6.86 x 10-8 
Total Fe (Fe2+ and Fe3+) 5.87 x 10-8 

 
The precipitated secondary minerals which accumulate on the recycled concrete were assumed to be 
immobile. The pore space occupied by each mineral was calculated from their molar volume. 
Hence, the total volume change was calculated by the volume employed by mineral precipitates 
minus the volume gained by the dissolution of alkaline minerals in recycled concrete. The resulting 
porosity change was calculated using Equation 3 (Indraratna et al., 2014). 
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k
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0  

 
where, n0, nt are the porosities initially and at time t respectively, Mk is the mineral molar volume, 
Rk is the overall reaction rate of the mineral, Nm is the number of minerals from 1 to k. 
 
The associated change in hydraulic conductivity was calculated by the normalised Kozeny Carmen 
equation (Eqn. 4) (Pathirage et al., 2012, Li et al., 2006). 
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where, K0 and K are hydraulic conductivities initially and at time t, ∆nt is the change in porosity at 
time t.  
 
The finite different numerical codes: MODFLOW and RT3D were coupled to simulate the transport 
of the main cations in the field. MODFLOW did not update the associated change in hydraulic 
conductivity due to mineral precipitation/dissolution at each time step. In order to enable that, a 

(1) 

(2) 

(3) 

(4) 
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mathematical model was established to capture the changing hydraulic conductivity via the change 
in head (h) (Eqn. 5). The methodology for obtaining Equation 5 is elaborated in Indraratna et al., 
(2014). 
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where, b is the aquifer thickness, S is the storage co-efficient, and μ, C, D are integral constants. 
  
It was important to update the porosity and hydraulic conductivity changes at each time step due to 
the changes in volume fractions of precipitated and dissolved minerals. For instance, when the 
simulation was carried out for the 1st time step, the resulting porosity and hydraulic conductivity 
should be updated for the 2nd time step. This was capable through Equation 5 which determines the 
resulting head as that was a vital input for MODFLOW to carry on the simulation for subsequent 
time steps. The developed geochemical algorithm fed into RT3D was coupled with MODFLOW by 
the advection, diffusion and dispersion equation (Eqn. 6). MODFLOW and RT3D were run 
contemporarily to obtain the concentrations of reactants at each time step. In this study, 
dissolution/precipitation reactions were taken into account by replacing λ with, r in Equation 1 
multiplied by M. 
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where, R is the retardation coefficient, C is the aqueous species concentration, D is the 
hydrodynamic dispersion coefficient, v is the seepage velocity and λ is the first-order decay 
constant. 
 
Model application to PRB 
 
The reactive transport analysis was carried out along the centreline of the PRB representing the 
whole PRB. The width of the PRB (1.2 m) was discretised into 0.1 m intervals (Figure 2). The 
acidic groundwater inflowing the PRB was expected to be in chemical equilibrium. The flow 
domain was a fully saturated system with specified head boundaries and a mean hydraulic gradient 
of 0.006, observed according to the field data from 2006 to 2012. The top, bottom and lateral faces 
of the flow domain were no-flow boundaries. 
 
 
 
 

(5.a) 

(5.b) 

(5.c) 

(6) 
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Figure 2. Discretisation of the centreline of the PRB 
 
Results and Discussion 
 
The model output presented the profiles of pH, Al and total Fe concentrations. Figure 3 shows the 
favourable comparisons found between the model predictions and field measurements for pH, Al 
and total Fe concentrations for 2012, which is after 6 years of installation of the PRB. In 2012, the 
up-gradient groundwater pH fluctuated between 3.2 and 4.1 with an average of 3.6, while the pH 
inside the PRB was neutral, ranging from 6.7 to 7.4 with an average of 7. It is obvious from both 
field measurements and simulation results that the pH at the entrance zone of the PRB is lower than 
that of at the middle and exit zones. This is possibly because of the exhaustion of alkaline material 
of the reactive media during the neutralisation of acidic groundwater. Additionally, the armouring 
and clogging of the reactive media due to the secondary mineral precipitation is also accountable 
for the small decrease in pH at the entrance of the PRB. 
 
The highest Al3+ concentration detected up-gradient of the PRB was 32 mg/L for 2012. Both field 
monitoring results and simulation results show that the Al3+ reduced promptly within the PRB to 
less than 1 mg/L. Similarly, high concentrations of total Fe in the up-gradient of the PRB were also 
detected with a rapid decrease to less than 0.5 mg/L within the PRB. The rapid decrease in Al and 
total Fe shows that they are precipitated in their oxy/hydroxide forms. 
 
The porosity and hydraulic conductivity would be decreased as a disadvantage of the secondary 
minerals precipitation inside the PRB. Nevertheless, the computed decrease in hydraulic 
conductivity for last six years was only 3%, which is not substantial because of the granular sized 
recycled concrete aggregates (d50=40 mm) used in the PRB. Moreover, this slight decrease is 
supported by the detected stable piezometric heads within the PRB over the last 6 year monitoring 
period, which shows no risk of clogging prolong to failure of the PRB (Figure 4). 
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Figure 3. Field observed results and model predictions of pH, Al and Fe concentrations in the 
upstream and PRBn for 2012 

 

 
 

Figure 4. Groundwater elevations inside the PRB with respect to time (P7-P12 are the six 
piezometers inside the PRB) (updated after Regmi 2012) 

 
Conclusion 
 
MODFLOW and RT3D were run simultaneously to simulate flow and the reactive transport of 
dominant mineral components. The simulated pH and the Al3+ and total Fe concentrations were in 
good agreement with the observed field data. The developed mathematical model captures the 
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change in hydraulic conductivity due to mineral precipitation/dissolution. The associated hydraulic 
conductivity reduction after six years of operation is only 3% in the PRB. Moreover, this is 
confirmed by the steady piezometric heads inside the PRB. The performance of the PRB for the last 
six years confirms that recycled concrete is a low cost suitable reactive material for using in PRBs 
for the remediation of acidic groundwater in typical acid sulfate soil terrain. The average pH within 
the PRB was around 7. The pH of the entrance zone of the PRB has been decreasing slowly, 
compared to that of the middle and exit zones. This is attributed to hindrance of the alkalinity 
generating materials in recycled concrete as well as by secondary mineral precipitates accumulating 
on the reactive surface and in pore spaces of the materials.  
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Abstract 
A model to calculate the locally resolved tangential contact forces of the wheel rail contact with 
respect to contact kinematics, material and surface properties as well as temperature is introduced. 
The elasticity of wheel and rail is modeled as an elastic layer consisting of point contact elements 
connected by springs to each other and to the wheel. Each element has two degrees of freedom in 
tangential directions. The resulting total stiffness matrix is reduced to calculate only the position of 
the elements in contact. Friction forces as well as contact stiffnesses are incorporated by a nonlinear 
force-displacement characteristic, which originates from a detailed contact model. The contact 
elements are transported through the contact zone in discrete time steps. After each time step an 
equilibrium is calculated. For all elements, their temperature and its influence on local friction are 
regarded by calculating friction power and temperature each time step.  
 
Keywords:  Rolling Contact, Discrete Elements, Contact Stiffness, Temperature 

Introduction 

To calculate the tangential contact forces in wheel rail systems for e.g. vehicle dynamics, a 
profound knowledge of the creep force characteristic is necessary. To achieve this, the creep 
dependent distribution of tangential forces inside the contact zone is necessary. Especially at higher 
slip the temperature in the contact zone becomes high enough to effect significantly on the 
tangential forces. 
Many approaches have been made to calculate the tangential force distribution. Kalker [Kalker 
(1967); Kalker (1990)] developed the program CONTACT to calculate contact forces. This 
program assumes Hertzian contact and halfspace assumption to calculate the traction forces. Due to 
halfspace assumption the computation times are very high. Approaches have been made to reduce 
computation time compared to CONTACT [Kalker (1982); Polach (2000)], however these do not 
include temperature effects. 
In [Sextro (2007)] a numerical model for the wheel rail contact is developed. The contact zone is 
discretized and each partial area is described by a point contact element. A single point contact 
element includes differential contact stiffness as well as a nonlinear partial friction force. By 
applying deformations on the point contact elements, which are deduced from the kinematics of 
wheel and rail, the tangential force distribution in the contact zone can be calculated. Also 
temperature and its influence on the friction coefficient are regarded in this approach. 
In [Tomberger et. al (2011)] a model for the wheel rail contact comprising roughness interfacial 
fluids and temperature is shown. The tangential contact is discretized using independent contact 
stiffnesses as suggested in [Sextro (2007)]. The modeling method is based on FASTSIM, but allows 
varying coefficients of friction. In a micro contact model the effects of interfacial fluids and 
temperature on the friction coefficient are calculated with respect to roughness, contact kinematics 
and material properties.  
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Also, the Finite Element Method has been used to calculate forces in the rolling contact. 
Nackenhorst [Nackenhorst (2004)] used an arbitrarian lagrangian eulerian formulation for 
calculating contact forces using the Finite Element Method for stationary rolling contact. By 
splitting the motion into rigid body motion and elastic deformation and solving the transportation 
problem of wheel and rail elements through the contact zone similar to transport problems in fluid 
dynamics. The contact forces can be calculated by this method retaining a fine mesh in the contact 
zone and a large mesh outside of it. 
In [Wen et al. 2011] and [Zhao and Li 2011] the tangential forces in wheel rail contact where 
calculated using Finite Elements models. However, temperature effects were not taken into account 
and the computation time for these models is very high. 
The model presented here is based on the approach by Sextro [Sextro (2007)]. Instead of using 
independent point contact elements, the elasticity of wheel and rail is modeled by an elastic layer, to 
better model the elastic deformation inside the contact zone. The algorithm used in this model 
computes the tangential contact forces at stationary rolling by computing equilibrium of the forces 
caused by the elastic layer and the tangential contact forces. Additionally, the influence of 
roughness and temperature can be investigated with this model. 

Contact Kinematics 

The kinematics of a rigid wheel rolling over a rigid rail under slip angle α and angular velocity ω 
are depicted in Fig. 1. 
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Figure 1, Wheel and Rail Schematic  

 
The wheel shown in Fig. 1 a) is moving relative to the inertia frame I in Ix-direction with constant 
velocity v0. The contact patch shown in Fig. 1b) is described by the reference system A, which is 
also moving with the wheel center in Ix-direction with velocity v0. A point on the wheel’s surface in 
contact is described by the wheel fixed coordinate system W, which is rotated relative to the inertia 
system around the Iz-axis by a constant angle α. The angular velocity of the wheel is defined 
relative to the wheel fixed coordinate system W with 
 
 [ ]TIW

W 0ω0ω = . (1) 
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The inertia system I is fixed on the rail. The tangential velocity of the point W0 on the wheel in the 
contact is dependent on the angular velocity and the slip angle α and can be calculated by 
 
 [ ]TW

I
I RRvv 0αsinωαcosω00

−−= . (2) 

 
The longitudinal slippage s can be calculated with 
 
 

0

0

v
Rv

s
ω−

= . (3) 

 
In the following, all vectors will be given in coordinates of the W-system, unless noted otherwise. 

 
Contact Model 
 
Modelling approach 
 
The creep force characteristic of wheel and rail is highly dependent on the elastic deformations 
inside the contact area. The elasticity of wheel and rail is modeled as an elastic layer consisting of 
discrete elements having an elasticity equivalent to the combined elasticity of wheel and rail. A 
detail of the elastic layer is shown in Fig. 2 a). The layer consists of coupled massless point contacts 
P connected by springs with spring stiffnesses ∆ck,x and ∆ck,y in tangential direction to each other. 
The layer is also coupled by springs with stiffnesses ∆cx and ∆cy to the rigid wheel in Wx- and Wy- 
direction respectively.  
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Figure 2, Elastic Layer and Contact Area 

 
If the point P is inside the contact area, a nonlinear tangential force ),,( ´,PPNT rFF





∆µ applies, which is 
described in detail later in this paper. P´ is a point which is fixed on the rail, so ´,PPr

  is the sliding 
distance of P, which is also the displacement of P relative to the rail. The tangential forces cause 
deformations which influence the neighborhood around the contact area and vice versa. Therefore, 
not only the contact area but also the surrounding area Atotal is modeled with the elastic layer. The 
size of the total area Atotal is not as large as the total wheel’s surface but large enough, that 
deformations at the edge of the total area are diminishing small compared to the deformations inside 
the contact area. The discretised elliptical contact area with the surrounding total area is shown in 

a) b) 
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Fig. 2 b). The total area is discretised in rectangular partial areas with the dimensions ∆x and ∆y. 
The position of the contact area border in drive direction is referred in the following as leading 
edge. The elastic layer can be described by a set of linear coupled equations. The relation between 
force and displacement with respect to the wheel coordinate system W is: 
 
 


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




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
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
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
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



oP

iP

oooi

ioiiT
r
r

CC
CCF

,

,

0
. (4) 

 
The force and displacement vectors in this equation have been sorted for point elements inside the 
contact area with index i and outside the contact area with index o. The displacement vectors can be 
written as 
 
 [ ]TiyPixPiyPixPiP rrrrr ,,2,,2,,1,,1, =  and [ ]ToyPoxPoyPoxPoP rrrrr ,,2,,2,,1,,1, = . (5) 
 

xPr ,  and yPr ,  are the displacements of the point P in x- and y-direction respectively. 
In order to reduce computational effort, the equation system is reduced to calculate only the forces 
and displacements inside the contact area. The displacements of the points outside the contact area 
can be calculated by the second row of the block matrix equation Eq. (4): 
 
 

iPoooioP rCCr ,
1

,
−−= . (6) 

 
Inserting Eq. (6) in the first row of Eq. (4) leads to 
 
 ( )

iP
C

oooiiiT rCCCF

red

,
1

  

−−= . (7) 

 
So, the relation between tangential forces and tangential displacements in contact can be described 
by a linear equation system with reduced stiffness matrix Cred. 
 
Nonlinear Tangential Force 
 
The elasticity of wheel and rail is modeled as described above. Due to the roughness of surfaces in 
contact a normal pressure dependent contact stiffness develops. Furthermore, the tangential force 
for sticking and sliding conditions has to be applied at point P. This is regarded by a nonlinear force 
displacement characteristic, derived from a detailed micro contact model [Neuhaus and Sextro 
(2013)]. Using this model, the tangential force including the transition from sticking to sliding can 
be computed using measured rough surfaces for different nominal normal pressures. The curves 
achieved from this simulation can be approximated by adequate analytical functions for efficient 
use in the rolling contact model. Figure 3 shows a result using this micro contact model. The 
development of the normalized force while moving two surfaces tangentially against each other is 
shown. The slope at normalized tangential displacement of zero can be interpreted as contact 
stiffness while sticking. Full sliding is indicated by a gradient of zero of the force displacement 
curve. 
Pure sticking only exists when no tangential force applies; afterwards the curve rises nonlinear and 
continuously goes over to sliding. This curve can be approximated well by an exponential function. 
In case of monotone relative movement in constant direction this force displacement characteristic 
can be used to model sticking and sliding, because the displacement vector always points in the 
same direction as the velocity vector. 
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Figure 3, Tangential Force 

 
The tangential force on a single point contact P is dependent on the sliding distance of P and thus of 
the magnitude of ´,PPr

  and its direction. As mentioned above, it can be calculated by an exponential 
law which approximates the force displacement characteristic seen in Fig. 3 with 
 
 

´,

´,´,1μ
PP

PPWrk
NT r

r
eFF PPc 






 −∆=∆

−  (8) 

 

where 
´,

´,

PP

PPW

r

r
 is the unit vector pointing opposite to the sliding direction.  

The corresponding differential normal force is calculated according to a given normal pressure 
distribution. The normal pressure distribution can be achieved for example by using the Hertzian 
Theory, Finite element calculations or measurement results. 
 
Simulation procedure 

The rolling contact is simulated by transporting the elastic layer as described above through the 
contact area in discrete time steps ∆t. The transporting velocity relative to the contact coordinate 
system A given in coordinates of the wheel system W is 

 [ ]Tt
A Rv 00ω−= . (9) 

 
In order to maintain a constant grid, the value of ∆t is chosen in a way that an element is transported 
the distance ∆x in one time step. So, the position 

0Wr
 of point W0 is equal to the position of its 

successor in negative x  -direction after one time step if 
 
 

R
xt

ω
∆

=∆ . (10) 

 
Because P’ is fixed to the rail a relative differential displacement PWr ,0



∆ between W0 and P´ applies 
after each time step ∆t. It is the displacement between a point on the rigid wheel and a point on the 
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rigid rail after one time step and can be expressed relative to the contact coordinate system A 
assuming small angles α by 
 
 [ ] tRRvr T

PWA ∆−−=∆ 0αωω0´,0
 (11) 

 
or with respect to the wheel coordinate system W by 
 
 [ ] tvRvr T

PW ∆−−=∆ 0αω 00´,0
. (12) 

 
This differential relative displacement PWr ,0



∆  is added to the position vector of P´, ´Pr
 , after each 

time step.  
For new elements entering the contact area at the leading edge, the position vector ´Pr

 is set to their 
position vector Pr

 immediately before entering the contact, such that 0´,





=PPr . After applying the 
relative differential deformation for one time step, an equilibrium between the nonlinear tangential 
force defined in Eq. 8 and the forces from the elastic layer is found according to Eq. 7 by 
 
 0, =− TWiPWred FrC  (13) 
 
with  
 
 [ ]TT

nkR
T
R

T
RR FFFF ,1,1, ∆∆∆=   (14) 

 
where nk is the number of elements in contact. 
The equilibrium for Eq. 13 is found by using the Newton Raphson method. Firstly, the gradient of 

the tangential force 
iP

T

r
F

,∂
∂ has to be calculated, which can be done due to the analytical description of 

the force displacement characteristic. Secondly, the Jacobian J is calculated by adding the force 
gradient of the nonlinear tangential force to the constant gradient emerging from the reduced 
stiffness matrix shown in Eq. 15: 
 
 

T
T

red
iP

r
F

CJ
,

∂

∂
+=  (15) 

 
Using the Jacobian from Eq. 15, a differential displacement can be calculated and added to the 
displacement vector iPW r , iteratively until the equilibrium condition of Eq. 13 is fulfilled within an 
relative error εrel. 
  
 

NrelTiPred FFrC με, <−  (16) 

 
After finding the equilibrium for a defined tolerable error ε a new time step is calculated until a 
steady state is reached in the contact area. This is usually the case, when an element entering the 
contact area at simulation start has crossed and left it at the trailing edge. 
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Temperature Model 
 
Caused by high contact pressure in the wheel rail contact and consequently high friction power, the 
temperature in the contact zone plays an important role to describe the friction behavior correctly. 
Therefore, this effect is considered in this model. The model used here is adapted from the 
temperature model described in [Sextro (2006)]. The friction power for a single element can be 
calculated by 
 
   =∆ RP  PR vF∆ . (17) 
 
The heat source Hq can be calculated relating the friction power to a partial area 
 
 yxA

A
P

q R
H ∆∆=∆

∆
∆

= , . (18) 

 
Assuming a high Peclet number, Knothe and Liebelt [Knothe and Liebelt (1990)] showed, that the 
three dimensional heat transfer problem can be reduced to a two dimensional problem for a strip in 
x-direction using the approximated heat transfer equation 
 
 

2

2

0 z
T

x
Tv

∂

∂
=

∂
∂ κ  (19) 

 
with the thermal diffusivity defined as 
 
 

WW

W
W cρ

λ
κ = , (20) 

 
where Wλ denotes the heat conductivity, Wρ the density and Wc the specific heat capacity of the 
wheel [Sextro (2006)]. Assuming a constant heat source, the temperature distribution in x-direction, 
the temperature at time step j can then be calculated using the temperature at the element at time 
step j-1 by 
 
 22

1
2 TTT jj ∆+= − . (21) 

 
The temperature difference T∆ is computed as 
 
 

xq
v

T
W

HWW ∆=∆
λ

ακ
π 0

2  (22) 

 
with Wα as the heat partitioning factor between wheel and rail. For low slippage the factor can be 
assumed to be 0.5, this means heat is equally distributed between wheel and rail. Otherwise it can 
be calculated from the velocities of the contact relative to wheel and rail. For details see [Sextro 
(2006)]. Using this approach, the maximum temperature occurs at the trailing edge due to the 
assumption of constant heat distribution, but in fact the temperature reaches its maximum shortly 
before the trailing edge due to the not-constant heat distribution. However this procedure can be 
used to regard temperature influence because the temperature distribution in the main contact area 
where most of the forces are transmitted is approximated well. 
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In principle, due to the mutual interaction between friction power, temperature and friction 
coefficient, an iterative loop inside the computation of a single time step is necessary. This can be 
skipped, because the temperature and thus the temperature dependent friction coefficient converge 
within the time step simulation. The temperature dependent friction coefficient at time step j+1 is 
assumed to be approximate equal to the temperature dependent friction coefficient at time step j. 
Using this procedure usually a steady state is reached after an element is transported through the 
complete contact area. 
 
Thus the temperature dependent friction coefficient of time step j+1 is calculated using a linear 
relationship between the friction coefficient µ0 and temperature at time step j 
 
 









−=≈+

E

j
jj T

T
1μμμ 01  (23) 

 
where ET defines the slope of the temperature dependency. 
  
 
Results 

The equations above have been implemented in MATLAB to model the rolling contact. The results 
shown in the following are normalized and therefore have qualitative character. This will be done in 
future by comparing the deformations of the elastic layer with the deformation computed by a Finite 
Element model and adapting the spring stiffnesses to minimize the deformation difference. 
Nonetheless the results show that the effects in rolling contact can be modeled plausibly. For the 
simulations, the normal pressure has been calculated according to Hertzian theory. The normalized 
normal pressure distribution 

 
max

*

N

N

p
pp =  (24) 

is shown in Fig. 4. The x* and y* coordinates have been normalized to the ellipsis half axes. 

 
Figure 4 Normal Pressure Distribution 

 
Fig. 5 shows the tangential force in x-direction normalized to the maximal transmittable tangential 
force with 
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The simulation has been performed at pure longitudinal slip s of 0.008. The leading edge is seen 
front right. A zone with sticking friction, behind the leading edge can be identified with a linear 
rising tangential force towards the trailing edge shown in Fig. 5a)  where almost no sliding velocity 
exists, as shown in Fig. 5b). Also a region with sliding friction can be seen towards the trailing edge. 
Here, the shape of the tangential force distribution equals the normal pressure distribution and the 
sliding velocities rise towards the trailing edge. The step in the shown tangential force at the leading 
edge and at the transition from sticking to sliding is caused by the coupling stiffnesses. Qualitatively 
the shape of the tangential force distribution matches well with Kalker’s theory and Finite element 
calculations. 

a) b)  
Figure 5 Tangential Force Distribution and Sliding Velocity 

In Fig. 6 the tangential forces in x- and y-direction for a longitudinal slip s of 0.008 and slip angle α 
of 0.5 degrees are shown. 

a) b)  
Figure 6 Tangential Force Distribution in x- and y-Direction 

Compared to pure longitudinal slip, the total tangential force in x-direction is significantly lower, 
because lateral forces in y-direction occur at this slip angle, which is shown in Fig. 6b). Also the 
area with sliding friction is larger compared to the case with pure longitudinal slip in Fig. 5. 

The friction power for each partial area ∆PR and the temperature difference ∆T relative to the 
surrounding are shown in Fig. 7 a) and b) respectively for combined slip. The friction power 
reaches its maximum just before the trailing edge due to the tangential force and sliding velocity 
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distribution. In the sticking region, the friction power is zero. As described at the temperature model, 
temperature reaches its maximum at the trailing edge. 

a) b)  
Figure 7 Friction Power and Temperature 

 
The computing time for one simulation was 19 seconds on an Intel i7 processor using 2 of 4 cores. 
This is quite low compared to computationally intensive Finite Element models. 

Conclusions 

A model for calculating the tangential forces in the wheel rail contact comprising contact stiffness 
and temperature has been developed. The model is based on the rolling contact model of Sextro 
[Sextro (2006)]; however the point contacts are coupled with each other to model an elastic layer 
which represents the elasticity of wheel and rail. Also, a nonlinear tangential force is applied to the 
coupled massless points, to model contact stiffness as well as sticking and sliding friction. The set 
of equations for describing contact and surrounding area can be reduced to compute only forces and 
displacements inside the contact area which reduces computation time. The simulation is carried out 
in discrete time steps, in which the elastic layer is moved through the contact area and an 
equilibrium is calculated after each time step. Temperature and its influence on the friction 
coefficient are calculated as in the model of Sextro [Sextro (2006)] assuming a high Peclet number 
and constant heat source distribution. This is a satisfying approximation for the exact solution of 
elliptical heat source distribution. 
The simulation produces plausible results for tangential force distribution under pure longitudinal 
and combined slip. Friction power and temperature distribution match qualitatively well compared 
to other modeling methods.  
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Abstract 
This paper will propose a new uncertain analysis method for dynamics problems involving hybrid 
uncertain parameters. The Polynomial Chaos (PC) theory is systematically integrated with the 
Chebyshev inclusion function theory to deliver a new hybrid uncertain analysis approach termed as 
PCCI method, in which the former is applied to solve the random uncertainty and the latter is used 
to account for the interval uncertainty. The PCCI method is non-intrusive, which does not require 
the amendment of the original solver for different and complicated dynamics problems. As a result, 
the PCCI method can be implemented easily. The interval mean (IM) and the other is interval 
variance (IV) are proposed as the evaluation indexes. The proposed hybrid uncertain analysis 
method may produce the similar accuracy of the combination of Monte Carlo method and scanning 
method, and it saves the computational cost much. 

Keywords: Hybrid uncertainty, Polynomial Chaos, Chebyshev inclusion function  

1. Introduction 
In the field of uncertain research, the probabilistic method has been widely studied with the 
development of a series of techniques. The probabilistic methods can be classified into two types: 
statistic methods and non-statistic methods. Statistic methods have been derived to include a variety 
of approaches. The Monte Carlo method is the widely used statistic method for uncertain analysis 
due to the easiness of its implementation. However, the large number of sampling points of the 
Monte Carlo method limits its scope of applications, especially for complicated or time-consuming 
problems. Thus, the Monte Carlo method is often used as the reference of other probability 
methods. The non-statistic methods mainly include differential analysis approaches and the 
spectral-based stochastic finite element methods.The spectral-based stochastic finite element 
method employs a series expansion, like Karhunen-Loeve expansion, to represent stochastic 
processes, in which the Galerkin method is used to transform the original control equation with 
uncertain parameters to several equations without uncertain parameters. This is the main process of 
Polynomial Chaos (PC) expansion, and also the basis for Stochastic Response Surface Methodology 
(SRSM) (Isukapalli 1999). The (Xiu and Karniadakis 2003) presented an algorithm to model the 
input uncertainty and its propagation in incompressible flows, where the stochastic input was 
represented spectrally via an orthogonal polynomial functional from the Askey scheme. Compared 
with the solutions obtained by the Monte Carlo simulation, the generalized PC method shows better 
efficiency. 
 
In the non-probabilistic uncertain methods, the interval model is experiencing popularity, because it 
makes it possible to measure the uncertainties for uncertain-but-bounded parameters, without 
requiring complete information of the system and only with knowing lower and upper bounds of an 
uncertain parameter. After the appearance of Moore’s work (Moore 1966), several interval methods 
have been proposed to solve the static problems (Moore 1966; Ishibuchi and Tanaka 1990). Based 
on the interval arithmetic, the interval method can directly calculate the upper and lower bounds of 
the response, but one of the shortcomings is the overestimation caused by the wrapping effect, 
which is inherent in interval computation. 
 
In interval analysis, how to reduce the overestimation becomes one of the key issues in interval 
analysis (Wu, Luo et al. 2013; Wu, Zhang et al. 2013). Some special techniques should be 
contained in interval computation to control the overestimation, such as the interval Taylor series 
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method (Alefeld and Mayer 2000; Jackson and Nedialkov 2002) and Taylor model method (Berz 
and Makino 1999; Wu, Zhao et al. 2005), or a combination of these two methods (Lin and Stadtherr 
2007). However, the Taylor series and model based interval methods generally require the explicit 
expression of the govern equations. Recently, Wu et al (Wu, Zhang et al. 2013) proposed a 
Chebyshev inclusion function for ODEs with interval parameters, without requiring the explicit 
expression of governing equations. For nonlinear ODEs, the Chebyshev inclusion function-based 
method can control overestimation better than the Taylor model method. This method has also been 
applied to solve the DAEs with interval parameters (Wu, Luo et al. 2013) for multi-body dynamics. 
The Chebyshev inclusion-based method (Wu, Luo et al. 2013; Wu, Zhang et al. 2013) has shown 
several merits in solving dynamic problems with uncertainty, including effective control of interval 
overestimation, and non-intrusive characteristic which can also be applied as a general method to 
solve black-box type problems. 
 
As aforementioned, it can be seen that most works in this field were mainly focused on either the 
random parameters or the interval variables. The studies including both types of uncertainties are 
relatively small, although many engineering problems in nature involve both types of uncertainties 
simultaneously. The research about the mixed uncertainties is mainly focused on the reliability-
based design (RBD). In (Qiu and Wang 2003; Du, Sudjianto et al. 2005), the authors attempted to 
deal with variables characterized by a mixture of probability distributions and interval uncertainty, 
where the optimization method was used to find the values of random and interval variables while 
the reliability index was the worst scenario. It can be found that these RBD methods are mainly 
focused on static problems, while vehicle analysis problems often involve dynamics, which requires 
the solution of the differential equations with longer computational time. In dynamics problem, the 
simulation period is often divided to many discrete time steps, so the computational cost will be 
prohibitive, if the optimization is directly incorporated in each discrete time step. 
 
This paper will mainly focus on the dynamics problems with hybrid uncertainties of random 
parameters and interval parameters. Due to the complexity and high computational cost of vehicle 
dynamics, this study will propose a more effective and efficient PCCI method to solve the dynamic 
problems with hybrid uncertainties. The PC theory is applied to solve the random uncertainty and 
the Chebyshev inclusion function theory is used to handle the interval uncertainty.  

2. Polynomial Chaos theory for random parameters 
The fundamental idea of polynomial chaos is that the random process of interest can be 
approximated by sums of orthogonal polynomials of random independent variables (Xiu and 
Karniadakis 2003). For a deterministic model with random inputs, if the inputs are represented in 
terms of the set { } 1

n

i i
ξ

=
, the output metrics can also be represented with the same set, as the 

uncertainty of the outputs is solely because of the uncertainty of the inputs (Isukapalli 1999) . A 
random process ( )Y κ , viewed as a function of the random event κ , can be expanded in terms of 
the orthogonal polynomial chaos as: 

( )( )
0

( ) j j
j

Y yκ φ κ
∞

=

=∑ ξ                               (1) 

Here yj represents the deterministic coefficients to be estimated, ( )jφ ξ  are the generalized Askey-
Wiener polynomial chaos of order j, according to the multi-dimensional random variable 

1( ,..., )nξ ξ=ξ  (Xiu and Karniadakis 2003). For uniformly distributed random variables the basis are 
Legendre polynomials, for Gaussian random variables the basis are Hermite polynomials, and more 
basis for other random variables can be find in (Xiu and Karniadakis 2003). In this paper, only the 
uniformly distribution random variables are considered, and other random variables can be dealt 
with in the same way. In the numerical implementation, we have to employ finite terms to 
approximate the accuracy value. If we remain s terms, ( )Y κ  can be expressed by 

( )( )
-1

0
( )

s

j j
j

Y yκ φ κ
=

=∑ ξ                              (2) 

The Legendre polynomial forms a complete orthogonal basis in the L2 space consisting of the 
uniformly random variables, i.e. 

2,i j i ijφ φ φ δ=                                           (3) 
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where ijδ  is the Kronecker delta, and .,. denotes the ensemble average inner product. 

( ) ( ) ( ) ( ) ( ),f g f g w d= ∫ξ ξ ξ ξ ξ ξ                         (4) 
Here ( ) ( )1 2 n

w =ξ  is the weighting function of Legendre polynomials. With the orthogonality, the 
coefficient yi in Eq. (2) can be obtained via the following expression 

( ) ( )2 2

, 1i
i i

i i

Y
y Y d

φ
φ ω

φ φ
= = ∫ ξ ξ ξ                            (5) 

Once getting the coefficients, the statistics characteristics can be obtained. The mean of Y is given 
by the 0th order term in the stochastic expansion, and the variance of Y can be expressed by the sum 
of square of other terms multiplying with 2

iφ  

     ( )
-122 2 2

0
1

,  
s

i i
i

y Y Y yμ σ φ
=

= = − =∑      (6) 

The coefficients of the PC expansion can also be obtained through the collocation method, by using 
the model outputs at some selected collocation points to regress the coefficients (Isukapalli 1999). 
The collocation points are selected from the roots of the polynomial, which is one order higher than 
the polynomial chaos expansion. Once the collocation points selected, the least square method can 
be used to produce the coefficients, i.e. 

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

0 1 -1 11 T

0 -1

,   
s

T

N s N

φ φ

φ φ

−
⎡ ⎤
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⎢ ⎥⎣ ⎦

ξ ξ
y X ξ X ξ X ξ Y X ξ

ξ ξ

L

M O M

L

  (7) 

where ( ) ( ) T
1 ... NY Y= ⎡ ⎤⎣ ⎦Y ξ ξ denotes the model output vector at the collocation points, N denotes 

the number of collocation points, [ ]T0 1 1, ... sy y y −=y is the coefficients vector of polynomial chaos 
expansions, ( )X ξ  is the transform matrix, and 1,..., Nξ ξ  denote the collocation points in a n-
dimensional space. 

3. Chebyshev method for interval parameters 
The PC method expanses the function with random variables by the sum of some orthogonal 
polynomials, and the corresponding orthogonal polynomials are determined by the distribution of 
random variables. This section will consider the interval variables. 
 
Define a real interval [x] as a connected nonempty subset of real set R , expressed as 

[ ] [ ] { }, :x x x x R x x x= = ∈ ≤ ≤ ,    (8) 
where x  and x  denotes the lower and upper bounds of [x], respectively. Any interval [x]=[a, b] can 
be transformed to the expression of [ ] [-1, 1]η = , so we only consider the interval [ ] [-1, 1]η =  in this 
paper. (Wu, Zhang et al. 2013) proposed the Chebyshev inclusion function to estimate the bounds 
for an interval function, and to control the overestimation in interval arithmetic. The Chebyshev 
inclusion function will be introduced here briefly, more information can be found in (Wu, Luo et al. 
2013; Wu, Zhang et al. 2013).  
 
Firstly, for one dimensional interval function ([ ])f η , the pth order Chebyshev inclusion function is 

[ ] [ ]( ) [ ]( ) [ ]0 0
1 1

1 1 cos
2 2

p p

i i i
i i

f f f C f f iη η θ
= =

= + = +∑ ∑    (9) 

where =arccos( ) [0, ]θ η π∈ , and ( )= cosiC iη θ  denotes the Chebyshev polynomial with order i. The 
coefficients fi can be calculated by 

( ) ( ) ( ) ( ) ( )
+1 +11

21
1 1

2 2 2 cos cos
+1 +11

p p
i

i j i j j j
j j

f C
f dx f C f i

p p

η η π η η θ θ
π πη−

= =

= ≈ =
−

∑ ∑∫  (10) 
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where the interpolation points jη  are defined as the zeros of Chebyshev polynomial with order p+1: 
2 1cos ,  ,  1,..., +1

+1 2j j j

j
j p

p

πη θ θ −
= = =     (11) 

Equation (10) is given with the Gaussian-Chebyshev interpolation integral formula.  
 
Denote the Chebyshev polynomial ( )iC η as ( )iψ η , the Chebyshev inclusion function can be 
expressed as 

[ ] [ ]( ) [ ]( ) [ ]( )0
1 0

1
2

p p

i i i i
i i

f f f C η γ ψ
= =

≈ + =∑ ∑η η    (12) 

Similar to the SRSM, the interpolation points are chosen to build the Chebyshev inclusion function, 
and the least square method is used. The Legendre polynomials in the transform matrix are required 
to change to the Chebyshev polynomials as 

( ) ( )( ) ( ) ( )
( ) ( )

( ) ( )

0 1 -1 11 T

0 -1

,  where 
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M k M
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η η
γ X η X η X η f X η

η η
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  (13) 

where M denotes the number of interpolation points, T
1[ ( )... ( )]Mf f=f η η denotes the model output 

vector at the interpolation points, T
0 1 1[ , ... ]kγ γ γ −=γ denotes the coefficients vector of Chebyshev 

polynomials. It is noted that 0 ([ ])=1, ([ ])= cos [ ]=[-1,1], 1iC C i iη η θ ≥ , so 0 ([ ])=1ψ η , and 
([ ])=[-1,1], 1i iψ ≥η . Based on the interval arithmetic, we can calculate the bounds of the interval 

function as follows: 

[ ] [ ]( ) [ ]
-1

0
=1

= + -1,1
k

i
i

f γ γ⎛ ⎞
⎜ ⎟
⎝ ⎠
∑η     (14) 

4. The hybrid uncertain analysis method 
In this section, both the random and interval variables are considered in ( ,[ ])F ξ η . The function 
contains an n-dimensional random variable ( 1,  1)nU∈ −ξ  and an m-dimensional interval variable 
[ ]=[-1, 1]mη . Hence, the output of the function will have the characteristics of both random and 
interval variables, and the PCCI method will integrated the PC method with the Chebyshev based 
interval method. 
Consider the random variable ξ  only, and use Eq. (2) to expand the function ( ,[ ])F ξ η  

1

0

( ,[ ]) ( )
s

j j
j

F β φ
−

=

=∑ξ η ξ      (15) 

Here we use jβ  denotes the PC coefficients. Since the left side of Eq. (15) contains both the 
interval variable [ ]η  and the random variable ξ , while ( )jφ ξ  at the right side is the Legendre 
polynomials which is only the function of ξ , the coefficients jβ  will be a function with respect to 
[ ]η , namely ([ ])jβ η . Use the Chebyshev expansion Eq. (12) to the coefficients ([ ])jβ η , obtaining 
its Chebyshev inclusion function 

1

,
0

[ ]([ ])= ([ ])
k

j j i i
i

β β ψ
−

=
∑η η     (16) 

Here ,j iβ  denotes the element in the coefficient matrix β  with k rows and s columns. Substitute Eq. 
(16) into Eq. (6), the mean and variance will be obtained as follows: 

( ) ( ) ( ) ( )
21 1 1 1

2 2 2 2
0 0, j,

0 1 1 0

[ ] [ ] = ([ ]),  [ ] [ ] ([ ])
k s s k

i i j j i i j
i j j i

μ β β ψ σ β φ β ψ φ
− − − −

= = = =

⎛ ⎞= = = ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑η η η η η η    (17) 

Since the expression of the mean and variance contain interval variables, the two statistics will also 
be interval numbers: interval mean (IM) [ ]μ  and interval variance (IV) 2[ ]σ , respectively. Based 
on the Chebyshev polynomials, the IM [ ]μ  can be expressed as 

( ) ( )
1 1

0 0, 0,0 0,
0 1

[ ] [ ] [ ] [ ] = ([ ])= + [-1,1]
k k

i i i
i i

μ β β ψ β β
− −

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑η η η   (18) 
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Similarly, the IV 2[ ]σ  may be expressed by 

( )
221 1 1 1

2 2 2
, ,0 ,

1 0 1 1
[ ] [ ] ([ ]) = + [-1,1]

s k s k

j i i j j j i j
j i j i
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∑ ∑ ∑ ∑η η       (19) 

Since [ ]μ  and 2[ ]σ  are the functions with respect to the interval numbers [-1,1], the above 
equations (18) and (19) still involve the overestimation (Moore 1966) according to the interval 
arithmetic, particularly, when the evaluated functions are multimodal. Here, the bounds of IM and 
IV can be calculated respectively as 

[ ] ( ) ( )
1 1
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k k
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η η      (21) 

In interval analysis, the scanning method or global optimization algorithms are often applied to the 
above equations, in order to solve the “min” and “max” problems to obtain the bounds. In this case, 
the overestimation of the interval computation can be well controlled. 
 
Since the evaluated functions may be multimodal, the global optimization algorithms have to be 
used in order to find the minimum and maximum values for the lower bound and upper bound of 
IM and IV, respectively. Based on the explicit expressions of IM and IV, both the scanning method 
and the global optimization algorithm can efficiently find the bounds for IM and IV. If the 
dimension of the interval variables is less than 3 (m<3), the scanning method (Buras, Jamin et al. 
1996)can directly produce accurate bounds. However, for the high dimensional problems, some 
global optimization algorithms, such as the genetic algorithm, particle swarm algorithm, and 
simulated annealing algorithm, may be more effective.  

5. The uncertain analysis of vehicle dynamics 
To demonstrate the effectiveness of the proposed PCCI method in engineering, the 4-DOF roll plan 
model of vehicles (Blanchard, Sandu et al. 2009) is studied in this section. The roll plan model is 
shown in Fig. 1.  
 
There is an added mass M on the roll bar, which denotes the driver, the passenger, and other object 
in the vehicle. The d denotes the distance from the added mass position to the left end of the roll 
bar. The vehicle body is presented by a roll bar with mass m, length l, and inertia I. The mass of left 
tyre and right tyre is mt1 and mt2, respectively, and the tyre stiffness is kt1 for the left side and kt2 for 
the right side. Considering the nonlinear stiffness of suspension, the linear stiffness is denoted by ki 
and the nonlinear stiffness is represented by ik′ , where i=1for the left suspension and i=2 for the 
right suspension. The damping ratio for the left suspension and right suspension is noted as c1 and 
c2, respectively. 

x1

xt1 xt2

x2

y1 y2

mt1 mt2

kt1 kt2

k1 k2
c1 c2

l

d
M m

1k ′ 2k ′

 
Figure. 1 The roll plan model of a vehicle 
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Assume that there are some uncertain parameters in this system, including the stiffness of the 
suspension 1 2 1 2, , , k k k k′ ′ , the added mass M, and the position of added mass d. The stiffness 
parameters are considered as random variables, assuming that they satisfy the uniform distribution. 
For the added mass and its position, it is practically hard to obtain their probability distribution, but 
their variation ranges are limited inside some intervals. Therefore, the added mass M and its 
position d are described as interval parameters. The uncertain and other parameters are shown in 
Table 1. 
 

Table 1 Parameters of the roll plan model 
Parameters m 

(kg) 
mt1,mt2 (kg) c1,c2 

(N/(m/s)) 
1 2, k k  (N/m) 1 2, k k′ ′  (N/m3) 

values 580 36.26 710.7 U(19000, 
20000) 

U(95000,105000) 

Parameters l (m) I (kg.m2) kt1,kt2 (N/m) M (kg) d (m) 
values 1.524 63.3316 96319.76 [150, 250] [0.5, 1] 

 
The road input is given in Fig. 2, and the vehicle velocity is 16 km/h. The left tyre moves upgrade 
from 0m, and reaches the highest position 0.1m where the horizontal displacement is 1m. Keeping 
the height 0.1m unchanged until the left tyre goes downgrade, which is asymmetrical to the upward 
slope. The right tyre moves along a similar track to the left one, but its upgrade starts from 0.6m of 
the horizontal displacement, and its maximum height is 0.08m. The output of the roll plan model 
are defined as the deformation of the suspension, i.e. 1 1 1= - tz x x  and 2 2 2= - tz x x . 

 
Figure 2  The road input 

Due to the uncertainty of suspension stiffness, the added mass, and its position, the output should 
also be uncertain. The hybrid uncertain analysis method is used to solve this problem. Replacing the 
function ( ,[ ])F ξ η  in Fig. 1 by the output of this roll plan model, we can obtain the IM and IV of 
the output. In this paper, we choose the order of PC and Chebyshev inclusion function as 4 (p=4), 
and the scanning method with 20 symmetrical scanning points in each dimension of interval 
parameters is used to compute Eqs. (20) and (21), which provides accurate bounds information. To 
validate the proposed method, the Monte-Carlo-Scanning test is also performed, in which the 
number of Monte Carlo sampling points is 1000, and 20 scanning points are used in each dimension 
of interval parameters, so the total number of the system is 1000×202=400,000. The proposed 
method takes about 180.4s to obtain the results, while the Monte-Carlo-Scanning test takes 9915.3s, 
which is more than 50 times than that of the proposed method. 
 
The IM and IV of the output are shown in Fig. 3-6. The results show that the IM of the PCCI 
method are close to the IM of the Monte-Carlo-Scanning test, and the test results of IM are 
contained in that of PCCI tightly. So the PCCI method can provide sufficient accuracy to the 
interval mean. For the IV, the intervals of the PCCI method do not contain all the intervals obtained 
by the reference test, but there is only small difference between them. Thus, the PCCI method can 
also provide good estimation for interval variance. 
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Figure 3  IM of z1          Figure 4  IM of z2 
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Figure 5  IV of z1      Figure 6  IV of z2 

6. Conclusions 
This paper has proposed an uncertain analysis method, termed as PCCI, for systems involving 
hybrid uncertain parameters, namely the random parameters and interval variables. In this method, 
the PC method is applied to deal with the random uncertainty and the Chebyshev-based interval 
method is proposed to handle the interval uncertainty. The evaluation indexes are proposed, which 
include the interval mean (IM) and interval variance (IV). To validate the PCCI method, a Monte-
Carlo-Scanning test scheme is proposed, by combining the Monte Carlo method and the scanning 
method to calculate the two types of evaluation indexes. A 4-DOF vehicle roll plan model is used to 
demonstrate the effectiveness of the proposed PCCI method, in which the stiffness of the 
suspension are regarded as random parameters, while the added mass and its position are considered 
as interval parameters. The numerical results show that the PCCI method can provide accurate 
numerical results for both types of the evaluation indexes. Furthermore, the PCCI method only 
takes 180.4s, but the Monte-Carlo-Scanning test takes 9915.3s. In addition, the PCCI method is a 
kind of non-intrusive method, so it can be used to solve black-box type problems. 
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A series of experimental investigations and numerical analyses is presented into the 
compression response in contour core sandwich panels based on carbon fibre 
reinforced plastic (CFRP). The contoured-cores were fabricated using a hot press 
moulding technique and then bonded to face sheets based on the same material, to 
produce a range of lightweight sandwich panels. The results are compared with the 
numerical predictions offered by a finite element analysis (FEA).The predictions of 
the FEA generally show reasonably good agreement with the experimental 
measurements. 

Keywords: CFRP, Contoured Sandwich Panel, Finite element Analysis  

1. Introduction 

Sandwich panels are continuously being improved by developing new structural 
geometries with minimum weight and compact volume for automobile, aeroplane, 
marine and construction industries. Sandwich panels with fiber reinforced plastic 
skins and cellular core , have been shown to offer superior stiffness ,strength and 
energy absorption properties compared to their monolithic counterparts  

A potential new class of energy absorbing aluminium egg box structure was 
introduced to understand the collapse mechanism. Experiments suggested that egg-
boxes deform by either the rotation of a stationary plastic hinge or by a travelling 
plastic knuckle, depending upon the in-plane kinematic constraints imposed upon the 
egg-box (Zupan M, 2002). Egg-box shaped energy absorbing structures made of 
fabric composites were fabricated to find out the compressive characteristics and 
energy absorption capacity. The energy absorption per unit mass of composite egg-
box panels made of different types of material and stacking sequences was calculated 
and compared with (Seong Hwan Yoo 2008). Compressive tests on foam-filled 
composite egg-box panels were carried out to assess their performance as energy 
absorbers. Material type, number of plies and stacking angle were varied. Collapse 
trace of the core was used to estimate energy absorption capacity. It was found that 
the foam-filled composite egg-box sandwich panels had a good energy absorption 
capacity with a stable collapse response resembling the ideal energy absorber (S.H. 
Yoo, 2010 ). 

In this paper, the compressive properties of contoured core sandwich panels based on 
carbon fiber reinforced materials are investigated. Particular focus is placed on 
identifying the influence of the number of unit cells and the thickness of the cell walls 
in determining the compression behavior of the panel. The experimental results are 
compared with the numerical predictions offered by a finite element analysis (FEA). 

 
 
 

ICCM2014, 28th-30th July 2014, Cambridge, England

316



2. Experimental procedure 

2.1 Geometry and fabrication  

The geometry of the CFRP contoured core panel are effectively the same as those of 
composite egg-box panel used in (Chunga J.G 2007).An aluminium mould was used 
to produce the shaped structure used in ref (Chunga J.G 2007). The mould was 
manufactured by using a numerically-controlled milling machine. Prepreg 
carbon/epoxy sheets were used to fabricate the composite cores.  

2.2. Sandwich panels 

A hot press was used to produce all of the contoured sheets for the sandwich panels. 
In order to manufacture the composite contour cores, the composite prepreg was 
placed between the upper and lower moulds, and then cured according to the 
manufacturer’s recommended processing cycle. Once the hot press had cooled to a 
temperature below 60 C, the sheet was removed from the mould and visually 
inspected for defects. The contoured sheet was then bonded to the upper and lower 
skins using a two part epoxy adhesive (Araldite 420 A/B). The contoured sandwich 
panel was then heated in an oven to a temperature of 120 C for approximately 1 h in 
order to cure the adhesive. Two sizes of rectangular test specimen were prepared. 
Initially, the effect of increasing the number of cells in the core was investigated for a 
constant cell wall thickness. Here, (1x1) and (2x2) unit cells were investigated in 
order to understand the effect of varying unit cell in contoured sandwich panels. 
Following this, the effect of varying the cell wall thickness 0.50mm, 1.00mm and 
1.50mm were investigated for a constant size of (2x2) unit cells specimen.  

3. Finite element analysis 

The responses of the contoured-core sandwich panels under compression loading 
were modelled using the ABAQUS/Standard finite element software package. A 
quarter model was proposed to save the model running time in abaqus, whilst 
applying the appropriate boundary conditions. In Fig. 1, three-dimensional shell 
elements (S4R) were used to model the contoured core part. The core and the platten 
were connected using a contact interaction formulation. The nodes along the upper 
and lower edges were fully constrained, except in y-direction at the upper edge. 
Displacements were applied uniformly to the nodes at the apex of the unit cell to 
simulate compression of the core. Hashin’s damage model assuming, an initial linear 
elastic behavior followed by evolution of damage, was used to predict the behavior of 
the composite. The models were used to simulate initial failure and to predict the 
compression strength of the panels. Table 1 Properties of the materials used to 
produce the contoured-core sandwich panels for Finite element analysis. 

 

 

 
Figure 1. Loading conditions used in the contoured-core model 

Load 

 Deformable Core Discrete Rigid 
Platten 

ICCM2014, 28th-30th July 2014, Cambridge, England

317



 

Table 1. Properties of the materials used to produce the corrugated-core 

sandwich panels for CFRP. 

 

Symbol Values (CFRP) Property 

E11 48 GPa Young’s modulus in longitudinal direction  

E22 48 GPa Young’s modulus in transverse direction 

E33 1 GPa Young’s modulus in thickness direction 

G12 9 GPa In-plane shear modulus 

G13 ,G23 9 GPa Through-thickness shear modulus 

12   0.1 In-plane Poisson’s ratio 

13 , 23  0.1 Through-thickness Poisson’s ratio 

Xt 550 Longitudinal tensile strength 

Xc 150 Longitudinal compressive strength 

Yt 550 Transverse tensile strength 

Yc 150 Transverse compressive strength 

St 120 Transverse shear strength 

SL 120 Longitudinal shear strength 

 

4. Results and discussion 

4.1. The effect of varying the number of unit cells  

The effect of varying the number of unit cells on the compression strength of the 
CFRP sandwich panels is shown in Fig.2.A comparison of the finite element 
predictions and the experimental measurements indicates that the influence of the cell 
number is accurately predicted. 

 
Figure 2. Comparison between measured and FE predictions for compression 

strength for CFRP as a function of number of unit cells 

(1x1) (2x2) 
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4.2. The effect of cell wall thickness 

The final part of this study investigated the influence of varying the thickness of the 
cell wall on the compressive properties of the contoured panels. Fig.3 shows the 
variation of strength of the CFRP contoured panels as a function of wall thickness. As 
expected, the strength increases highly with wall thickness. The compression strength 
of the CFRP contoured panel with a wall thickness of 1.50 mm is impressive, with a 
value in excess of 15.98 MPa being recorded. A comparison of the finite element 
predictions and the experimental measurements indicates the good agreement. 
 

 
Figure 3. Comparison between measured and FE predictions for compression 

strength for CFRP as a function of cell wall thickness  
 

5. Conclusion 

Contoured-cores, manufactured using an aluminium profiled mould, have been used 
to produce a range of lightweight sandwich structures. The compressive behavior of 
carbon fiber reinforced composite material has been investigated both experimentally 
and numerically. The predictions offered by the numerical models were found to be in 
reasonably good agreement with the experimental data. 
 
Reference  

Chunga J.G., Changa S.H., Sutcliffe M.P.F.. (2007) Deformation and energy absorption of composite 

egg-box panels, Composites Science and Technology 67, 2342–2349. 

Seong Hwan Yoo, Seung Hwan Chang.(2008) An experimental study on energy absorbing structures 

made of fabric composites, composite structure86,211-219. 

Yoo S.H., S.H. Chang, M.P.F. Sutcliffe .(2010) Compressive characteristics of foam-filled composite 

egg-box sandwich panels as energy absorbing structures, composite part-A 41,427-434 

Zupan M, Fleck NA, Ashby MF. (2002) The collapse and energy absorption of egg-box panels. In: 

Ghosh A, Snders T,Claar D, editors. Processing and properties of lightweight cellular metals and 

structures. Pennsylvania: TMS. 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

319



                                                                                                            
 

A 3D Knowledge-Based On complicated Mould Design system 

*A.K. Haldar¹, J. Mathew
1
, W.J.Cantwell

2
,and Z Guan

1
 

1School of Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH, U.K. 
2 Department of Aerospace Engineering(ARIC), Khalifa University of Science, Technology and 

Research (KUSTAR),PO Box 127788,AbuDhabi,UAE  

* a.k.haldar@liv.ac.uk 

 

This paper presents the basic structure of an interactive knowledge to design and 
manufacture the complicated mould profile with the help of CAD/CAM system. The 
basis of this system arises from an analysis of the mould design process for to design 
the complicated sandwich structures for aerospace industries. This system covers both 
the mould design process and mould knowledge management. CAD mould design 
integrates the intelligent design process and knowledge management with many 
developed interactive tools in a commercial solid modelling software environment. 
Manufacturing process of this mould including G-code generation with CAM 
software and Computer Numerical Control machining.  

Keywords: CAD/CAM, G-code, Mould Design 

1. Introduction  

The core parts in Sandwich panels are continuously being improved by developing 
new structural geometries with minimum weight and compact volume for automobile, 
aeroplane, marine and construction industries to offer superior mechanical properties. 
The general method of 3D finishing of a free-form surface is to use a ball endmill to 
trace along the part surface by maintaining an acceptable tolerance (Chang et al. 
1991). Gouging is the main problem in 3D finishing. When a ball endmill cutter is 
used, the cutter radius must be smaller than the smallest radius of concave curvature 
to avoid gouging (Lee and Chang 1991). Choi and Jun (1989) introduced an 
algorithm which avoids gouging by comparing each cutter contact (CC) point with 
adjacent CC points which locate within the projection of the ball endmill on the 
XYplane. Another approach is to use a polygon surface to verify gouging (Kuragano 
et al. 1988). When there is a self-intersection in the polygon surface, the portion 
bounded by the self-intersection lines is trimmed. The existing methods rely on 
discrete point data approximation, which does not guarantee the avoidance of 
gouging. Consequently, a robust procedure to extract machining constraints directly 
from a free-form surface description is desirable. 
 
This paper introduces fundamental CAD/CAM concepts of a sophisticated geometric 
structure which can be used for designing sandwich panels for various engineering 
applications. In ProEngineer (3DCAD) a new part model accurately captures a design 
from a concept through solid feature-based modelling and enables us to graphically 
view the product before it is manufactured. This system integrates the initial mould 
design with both knowledge base and interactive commercial CAD/CAM. 
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2. Surface design and mould machining 

The contoured mould was designed in commercial CAD/CAM software and  
manufactured to a high precision using a computer-controlled numerical milling 
machine (CNC) which is composed of following steps: 

1. A part model design by scoping the design parameters of the structure. 
2. Create a part model by following the required design parameters. 
3. Transfer the part model to triangulate surfaces in ProToolmaker(CAM)  to 

create the CNC programme in G codes. 
4. Set the raw materials in Haas CNC milling machine and manufacture the 

desired mould through roughing and finishing operations. 

2.1 A part model design by scoping the design parameters of the structure: 

 
The proposed mould design is the combination of two different sectional profiles 
which is presented in fig 1.And the detail design of the cell is mentioned in fig 2. 
  

Figure1: Plan view and section Geometry of contoured profile 
 
section A-A, 
From Fig 1, r refers to the radius of the curve, which is 4 mm for the proposed design, 
α is the angle, H is the theoretical height and h is the actual height of the profile.  
 
As shown in fig.2, the radius of the curvature can be calculated as: 

  
 r q s    (1) 
Where 
 cosq r    
By substitution the value of q in equation (1) 
                                                                   (1 cos )s r    (2) 
The actual height   can be found as: 

 2h H t    (3) 

 

 

 
  

Section A-A Section B-B See fig 2 
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Where  
 tant p s    
 sinp r    
By substituting the value of t in equation (3), the relation between theoretical and 
actual heights can be described as: 

                                                            
12 1

cos
h H r



 
   

    (4) 

Finally, the actual height can be defined as:  
       

 tan 12 1
2 cos

h x r




 
   

 
  (5)  

 
Figure 2: detail design of the cell 

 
 
For section B-B 
The radius and slop of the cell is same as in section A-A. But theoretical and actual 
heights are H* and h* respectively.  
An important measure of the geometry can be calculated as:  

 
2

x
y 


  (6) 

The theoretical height    can be defined as: 
 * tanH y       (7) 

The actual height   in section B-B, can be found as:       
 * * 2h H t    (8) 

By substituting the value of t and    in equation (7), the actual height can be defined 
as: 

 * tan 12 1
cos2

h x r




 
   

  
  (9) 
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2.2 Create a part model by following the required design parameters: 

 

1. To avoid irregularity on a smooth 
surface, the 3D CAD drafting process 
was carefully designed. The basic 
geometry is simple even though due to 
the complexity to pattern, a virtual 
design of the contoured shapes was 
started from a plain flat 3d shape in 
ProEngineer software as shown in step1 

 

2. A basic convex geometry of radius 
4mm was drawn with an angle of 50

and 20 mm width, as per the design data 
in A-A plane. 

 
3. The geometry of step 2 was revolved 
about the vertical axis drawn in the 
sketching plane to get the convex shape. 

 
4. In this step, the revolved shape was 
patterned/duplicated. There were 10 
members duplicated in both, X and Y 
direction each at a distance of x=20 mm. 

 
5.In this step, the concave geometry was 
drawn as per the design data in B-B 
plane. For this drawing, the edges of the 
existing entity were used by selecting it 
with Use Edge tool.  
6. The geometry of step 5 was Revolved 
about the vertical axis drawn in the same 
plane and material removed from the 
model to create the concave shape. 
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7. In this step, the revolved shape was 
patterned/duplicated. There were  9 
members duplicated in both, X and Y 
direction each at a distance of x=20 
mm. 
 

 

 
 

8. Round tool was used to remove the 
material by creating smooth transitions 
between existing geometry. The rounds 
were created by selecting edges are 
constructed tangent to the surfaces 
adjacent to the selected edges. 

 
9. The Shell feature was selected to 
hollows out the inside of a solid model, 
by leaving a shell of a specified wall 
thickness. The entire plane surface was 
Selected to remove from the model to 
create final contoured ply of 0.2mm. 
 

 

10. Finally, the rectangular sketch was 
extruded to the contoured ply, drawn in 
step 9 to create the top and bottom parts 
of the mould as mentioned in the 
step10. 

 
 
Table1: Steps to create a part model by using ProEngineer software 
 
2.3 Transfer the part model to triangulate surfaces in ProToolmaker(CAM)  to 

create the CNC programme in G codes: 

 

In this section, the 3D part model was converted to IGES format and opened in 
ProToolmaker in order to create the manufacturing process. ProToolmaker is virtual 
manufacturing software which could simulate and modify the manufacturing process 
in a digital environment. When the file had loaded in ProToolmaker, a graphics 
window was opened and started to triangulate the surfaces for viewing. Triangulation 
converts the geometric surfaces into triangles. These triangles were used for both, to 
display on the screen and the machining process. Initially a roughing program was 
created to remove the bulk waste material from the workpiece with a toroidal carbide 
cutter, had 6mm diameter and 1mm corner radius was used in CNC machining. 
Cutting speed and feed used for this operation were 130m/min and .2mm/rev 
respectively. A Depth cut of 1mm was used in each passes in z direction. In this stage 
final finishing was left in as shown in fig 3. 
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Figure 3: Material left for finishing is 0.5mm in x, y and z direction. 
 

 
 

Figure 4: Milling cutter on smooth concave profile. 
 
To get the final smooth profile as shown in fig 4, a carbide ball end milling cutter 
with 2 cutting edge was used with the cutting speed of 150m/min, feed per tooth 
0.05mm and Depth cut of 0.1mm.The small concave radius of 4 mm was produced on 
final profile by using ball end mill cutter of 3mm radius. 
 

2.4 Set the raw materials in Haas CNC milling machine and manufacture the 

desired mould through roughing and finishing operations: 

Three axis Haas CNC milling machine was used to manufacture the mould. A milling 
machine is a machine tool that removes metal as the work is fed against a rotating 
multipoint cutter. In NC system, operating instructions are given to the machine as G-
codes. The work piece was clamped to the machine bed which can move horizontally 
in X and Y axis. And the milling tool can move in Z axis which is perpendicular to 
the horizontal plane. 

The toroid end mill has two cutting edges with a radius of 1mm, each cutting edge 
almost overlapping at the centre line of the cutter. This design eliminates the 
unfavorable cutting action that takes place at the tool centre of a conventional full 
radius end mill, where the cutting speed goes down to zero. Cutting speed and feed 
used for this operation were 130m/min and .2mm/rev respectively. A depth cut of 1 
mm was used for the roughing operation. 

A ball nose endmill has a semisphere at the tool end are ideal for machining three 
dimensional contoured shapes or work pieces with complex surfaces. The stepover 
value (along with the tool size) will determine whether the model has a smooth finish, 
or tooling marks are visible. Models with a smaller stepover take longer to cut. 
Stepover is the distance the tool moves over between subsequent passes. A ball nose 
end mill cutter with 6mm diameter and 0.1mm stepover were used to finish the 
mould. The used Cutting speed and feed for this operation were 150m/min and 
.05mm/rev respectively. 
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Figure 5: Milling cutter and work piece in Haas CNC milling machine 

3. Conclusions 

This paper present the method of complex shaped mould design by using computer 
aided manufacturing technique. The proposed technique explained the automation of 
complex surface machining for better machining quality. The design process of the 
framework as a sequence of different steps develops the design pattern to shape the 
final contoured mould.  
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Abstract 

Shape memory polymers (SMPs) are a kind of intelligent material with response to the external 
temperature stimulus. It can recover from a deformed state (temporary shape) to its initial state 
(permanent shape). In this work, the thermo-mechanical behavior and shape memory effect of a 
SMP-based porous plate is modeled by the finite element method using a 3D constitutive equation. 
The whole process of shape memory of porous SMP plate includes loading at high temperature, 
decreasing temperature with constant load, unloading at low temperature and recovering the initial 
shape by increasing temperature. The results demonstrate the thermo-mechanical deformation of 
SMP structure.  

Keywords:  Smart material and structure, Shape memory polymers, Constitutive model, Porous 
plate, Shape memory effect 

1 Introduction 

As an intelligent macromolecule material, applications of shape memory polymers (SMPs) have 
evoked great interest since the 1980s. Because of their light weight, good durability, large 
deformation and shape recovery, SMPs provide several advantages over shape memory alloys and 
ceramics, such as low density, high shape-fixed strain, easy operation, tailorable critical transition 
temperature and part of them bio-compatible. Therefore, it has great potential application in the 
textile, biomedical materials, defence and Military and so on [Behl, Zotzmann and Lendlein (2010); 
Leng, Lan, Liu and Du (2011); Hu, Meng, Li and Ibekwe (2012); Mather, Luo and Rousseau 
(2009)]. Since the first shape-memory polynorbornene successful development in the world, in the 
past two decades various SMP materials have been developed out [Lendlein A and Kelch S (2002); 
Takahashi et al. (1996); Yang et al. (2003)].  
 
It has the ability to retain the deformed shape when subjected to external heat, moisture, electrical 
and magnetic stimulation factors can be restored to the original shape, which has a memory function 
to the initial shape. Thus, the storage and release of strain [Meng and Hu (2009); Nelson (2008); 
Lendlein and Kelch (2002)] can be achieved. Thermally isotropic SMP is the most basic and 
common of such materials. Achievement of storage and release of strain is due to the occurrence of 
glass transition of SMPs, as the temperature changes [Takahashi, Hayashi and Hayashi (1998)]. The 
thermomechanical cycle process in the SMPs involves the following four steps: loading at high 
temperature, cooling under constant load, unloading at low temperature and heating under free load. 
The elastic, viscoelastic and thermal deformation, and shape memory effect are displayed in this 
process. The above mentioned high and low temperatures denote temperatures above the end and 
below the beginning of glass transition of SMPs. To obtain relatively high mechanical properties, 
several researches have worked on SMP composites reinforced by variety of fibers and particles 
[Yang, Huang, Le, Leng and Mai (2012)]. These composite materials with shape memory that use 
of continuous fibers as reinforcement and use of thermosetting SMP as matrix have a very large 
potential application. In recent years, they have been widely appreciated in the space expanded 
structure [Keller and Lake (2003); Gall and Lake (2003)]. In the study of the constitutive models of 
thermotropic SMPs, which the representative study are as follows. e.g. [Tobushi, Hashimoto, 
Hayashi and Yamada (1997)] developed a thermomechanical constitutive model by modifying a 
standard linear viscoelastic model [Tobushi et al. (1997)]. The model involved a slip element due to 
internal friction and took account of thermal expansion. Therefore, a SMP linear constitutive model 
of thermodynamic properties is established. Considered the large deformation characteristics of 
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SMP, Tobushi et al. further proposed a nonlinear constitutive model based on the above work 
[Tobushi, Okumura, Hayashi and Ito (2001)]. These models are macroscopic and experienced but 
thermodynamic internal mechanism of SMP materials has not been considered. Liu et al. proposed a 
three-dimensional, small strain, linear elastic, and rate-independent SMP thermodynamics 
constitutive equations [Liu et al. (1997)]. The model can roughly predict the change trend and 
recovery of shape memory of SMP materials on different constraints. But this model does not 
consider the impact of the SMP viscoelastic. Zhou, Liu and Leng formulated a 3D 
thermomechanical constitutive equation of SMPs [Zhou, Liu and Leng (2009)]. However, 
applications of these constitutive equations are limited due to the lack of experimental data for 
material parameters. Another type of constitutive model of SMPs is the micromechanics-based 
method, such as the phase transition and the mixture theory. Liu, Gall, Dunn, Greenberg and Diani 
(2006) proposed a 3D linear elastic constitutive model for small deformation that considers the 
molecular mechanism of the shape memory. Chen and Lagoudas established a thermomechanical 
constitutive model for large 3D deformation of SMPs. A review of advances of constitutive 
relations of SMPs was given by Zhang and Yang very recently. 
 
However, these constitutive equations of SMPs are so complicated and contain so many material 
parameters that it is difficult to apply them in practical engineering. The lack of experimental data 
for material parameters restricts the finite element implementation of the constitutive models. It is 
necessary to develop applicable constitutive equations with physical definitions and the finite 
element procedure for complicated deformation of SMPs. Actually, the available 3D finite element 
program and numerical investigations are very limited in existing literature. 
 
In this paper, by considering the elastic, viscoelastic and thermal deformation of isotropic SMPs, we 
propose a three-dimensional form of a thermomechanical constitutive equation for isotropic thermal 
actuated SMPs, with defined physical significance. A finite element procedure based on the present 
constitutive model is implemented by using user material subroutine (UMAT) of ABAQUS, and 
some numerical examples are provided to illustrate the 3D deformation and shape memory effect of 
SMPs. 

2 Thermomechanical constitutive model of SMPs 

SMP thermodynamic constitutive equation plays an important role to the commercial aerospace 
industry adopting SMPs into their structures. In recent years, the research of the constitutive 
equation has been a hotspot and has made a lot of achievements. However, due to the complexity of 
the mechanism of SMP itself, research is continuing. 
 
Tobushi et al. proposed a one-dimensional linear constitutive model for SMPs of polyurethane 
series [Tobushi et al. (1996)]. Shi et al. gave a three-dimensional constitutive equation of SMP in a 
rate form [Shi et al. (2013)]. 
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where E  is Young’s modulus and   is coefficient of thermal expansion.   and    are viscosity 
coefficient and retardation time, respectively, depending on the temperature.  , s t T  is creep 
residual strain, unrecovered part of the creep strain, while  s  is retardation strain. It is noted that 
as the temperature is above the glass transition region, i.e. h g wT T T T   , where  gT  is the glass 
transition temperature and wT  is temperature amplitude of the glass transition region, the creep 
strain can be recovered completely, which means  the   ,s

t T  does not appear. Within the glass 
transition temperature region, i. e. hT = gT  + wT >T  >  lT =  gT − wT , there is a critical value of creep 
strain at which part of the creep strain becomes irrecoverable while for the case below glass 
transition temperature, the creep residual strain is a constant.  The constitutive equations, with the 
temperature-dependent parameters, can reflect the thermo-mechanical behavior of different types of 
SMP materials.         
     

                                 

              
Within the range of glass transition of SMP, material parameters are strongly temperature-
dependent, which can be expressed 
 

exp 1g

g

T
X X K

T

  
   

  
                                                                                                 （2）       

where gT   is the glass transition temperature,  X denotes one of the material parameters E 、 、

、C  and l . K  is a coefficient corresponding to parameter  X . 

3 Introduction of model 
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Figure 2.  Displacement–time diagram showing  

the thermomechanical behavior of SMP 
 
 In order to realize analysis of thermo-mechanical behavior of the porous SMP plate, a simplified 
model is established. As shown in Fig.1, the model size is 100*100*5mm, the through holes of 5 * 
5mm square uniformly distributed on the planar plate. Boundary conditions are set as follows: four 
sides in the edge are fixed and a specific displacement is imposed in the central region of the 
surface of the plate. 
 
4 Numerical results and discussion 

Figure 1. The simplified model 

of porous SMP plate 
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4.1 Experiment model and its shape-memory process 

In this work, the UMAT program of SMP three - dimensional constitutive equation was developed, 
with the help of user material subroutine interface provided by the ABAQUS platform. Based on 
the correctness of the program, a series of numerical simulation of porous SMP plate were carried 
out. The entire process of numerical simulation has four steps. In the first step, a loading rate 
1.5mm/min at 343k is applied displacement into 1mm. In the second step, temperature is reduced 
from 343K to 313K at the rate of 4.5k/min and the model remains loaded 1mm until the cooling 
process completed. In the third step, the model keeps the temperature 313k state and relieved the 
displacement, completing the unloading process at the low constant temperature. In the fourth step, 
temperature is rises from 313K to 343K at the rate of 4k/min without external load. The recovery 
process is completed with the heating. The time-displacement curve of whole thermodynamic cycle 
and deformation process of structure were shown in Fig. 2. Despite the presence of a small residual 
stress, the final residual strain is very small, so it can be considered to achieve a reasonable 
recovery effect.  

4.2 Effect on the recovery of the different applied displacement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Due to the viscoelastic properties and the temperature dependence of the SMP material, different 
applied displacement has a direct impact on the final curve. The effects that different applied 
displacement loads on the central region of porous SMP plate are studied. The four throughout the 
thermodynamic cycle are contrasted. In four experiments, the heating rate and cooling rate maintain 
constantly. The different displacement is applied on the model. First, all displacement is 0 before 
being applied displacement in four groups. Again, the loaded specimen is maintained while 
reducing the temperature of specimen. Then, part of the strain is restored during unloading. Finally, 
the results of recovery are different because of different applied displacement. As shown in Fig. 3 
different applied displacement has great influence on the final residual strain. Residual strain 
becomes smaller with displacement load reduced from1.2mm to 0.6mm., 

4.3 Effect on the recovery of the different heating rate 

As the temperature-dependent material properties of SMP, different heating rate for the restoration 
of the loaded displacement has impact. Keeping constant applied displacement, the heating rate 
impact the recovery of residual strain. As shown in Fig. 4, the characteristic of the recovery process 
varies from fast to slow and the turning point follows the glass transition temperature. It is the main 
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reason viscosity coefficient and delay time and other parameters are reduced at high temperature. 
With heating rate reduced from 3k/min to 1.5k/min, residual strain is decreasing. Whether full 
recovery of residual strain or not is directly affected by different heating rates. When the heating 
rate is less than 1.5k/min, the residual strain nearly completely recovered. It is mainly reason that 
the SMP is a viscoelastic material.  

4.4 Effect on the recovery of the different thickness 

In the structural design of the porous plate, it is inevitable to choose a reasonable thickness and the 
hole opening ratio based on recovery rate of residual strain and mechanical performance’s 
requirements therefore study of influence of this parameter is important. As shown in Fig. 5, the 
thickness of plate were set to 2mm, 3mm, 4mm, 5mm, 6mm when the hole opening ratio , heating 
and cooling rate are constant. The greater the thickness of the porous SMP plate, the smaller the 
strain in thickness direction. The strain needed to restore is reduced in this case. Therefore, different 
thicknesses of porous SMP plate have a significant impact for the final residual strain in the stage of 
heating and recovery. 

4.5 Effects of structural parameters on the recovery process  

The structure should select the appropriate the hole opening rate in order to save costs. Whether 
different hole opening ratio will affect result of recovery or not. Thickness of model is 3mm and 
heating, and cooling rates held constant. The applied displacement of 5mm is imposed on the center 
region of porous SMP plate. The hole opening ratio of the porous plate were set to 0, 7.84%, 
17.64%, 31.36%, and 49%. With the increase of the hole opening ratio, the mass of the porous SMP 
plate is reduced. As shown in Fig. 6, the effect of different hole opening ratio for results of recovery 
is small.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Conclusions 

Based on the correctness of the SMP three-dimensional constitutive equation, a series of numerical 
simulation were carried out. The results show that the present 3D thermo-mechanical constitutive 
model can be used effectively to describe the complicated mechanical behavior of SMP. 
Experiments show that property of SMP material has strong temperature dependence. So the 
reasonable control of temperature is essential for the control of the mechanical behavior of SMP. 
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Figure 6. Time-displacement curves 

in different hole opening ratio 
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Whether full recovery of residual strain or not is directly affected on the thickness of the porous 
plates. However, the effect of hole opening ratio is small. The porous SMP plate has excellent 
thermo-mechanical property and the structure can be designed according to the needed.  
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Abstract 
The relations between the Poynting effect, in which a cylinder elongates or contracts 
axially under torsion, and the axial force-twist effect, in which the twist of a 
torsionally loaded cylinder is affected by the axial loading, are investigated using 
second-order elasticity for an elastic homogeneous cylinder. The explicit expressions 
for the two effects and their relations are presented. The relations show that under 
tension: (a) negative Poynting effect implies negative axial force-twist effect, (b) 
positive axial force-twist effect implies positive Poynting effect, whereas (c) the 
converse statements are not true. Further results show that (a) the Poisson ratio 
captures the difference between the two effects, and (b) reduced elastic coefficients, 
which uniquely characterize the effects, lead to universal relations between the effects 
and the applied loading. Both effects also exhibit a strong inverse power law 
dependence on the radius.  

Keywords: Axial force-twist effect, Poynting effect, torsion-axial loading, 
second-order elasticity 

 
Introduction 
Soft materials may exhibit complex nonlinear behavior such as the Poynting effect, in 
which a cylinder elongates or contracts axially under torsion. Poynting (1909) 
experimentally found that some metals exhibited the positive effect, i.e., they 
elongated axially under torsion. Recently, Janmey et al. (2007) found that networks of 
semiflexible biopolymers such as actin, collagen, fibrin and neurofilaments, exhibited 
the negative Poynting effect. 
 
Wang and Wu (2014) showed that in contrast to the Poynting effect, an axial 
force-twist effect may also exist. It refers to their theoretical result that the twist of a 
cylinder under combined torsion and axial loading can be affected by the axial 
loading. The axial force-twist effect can also be positive or negative. The former 
means that both the twists produced by the axial loading and torsion are in the same 
direction, while the latter means that the twists produced by them are in the opposite 
directions. Though Wang and Wu (2014) presented the solutions for the Poynting and 
axial force-twist effect, the relations between them were not investigated.  
 
This paper focuses on these relations, from which some fundamental conclusions can 
be drawn. The dependence of the two effects on the linear and nonlinear elastic 
constants is also studied. The organization of the paper is as follows. The derivation of 
the relations is first presented, followed by numerical results, a further discussion, and 
a set of conclusions. 
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Relations between the Poynting effect and the axial force-twist effect 
 
Figure 1 shows a cylinder of length L and radius R under combined axial loading P 
and torsion T. Here P represents either a tensile or compressive stress. The materials 
are nonlinear elastic, isotropic and homogeneous. The initial coordinates of a particle 
of the cylinder are chosen as (r, θ, z). The strain energy density of Murnaghan (1951) 
is adopted, i.e.: 
 

                2 3
1 2 1 1 2 3

2 22 2
2 3

l mW J J J mJ J nJλ m m+ +
= − + − + , (1) 

 
where λ and m are the second-order and l, m, n the third-order elastic constants, 
respectively, and J1, J2, and J3 are the strain invariants of the Lagrangian strain E. The 
detailed solutions of the stress and displacement fields are given in Wang and Wu 
(2014). For the purpose of deriving the relations between the effects, the results on the 
axial and circumferential displacements from the earlier paper are given below.  
 
The axial displacement uz under pure torsion loading can be written as: 
 

                                zu Dz= , (2) 

 
where D is the Poynting effect coefficient given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A homogeneous elastic cylinder with radius R and length L under 
combined torsion T and axial loading P. 
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2 2

2 6 3

4 4 8,      
4 (3 2 )D D

T n mD C C
R

λ m λm m
π m λ m

+ + +
= − =

+
. (3) 

 
Note that a change in the direction of T does not change the sign of D. The parameter 
CD is a reduced coefficient of the four elastic constants. It uniquely characterizes the 
quadratic relation between the Poynting effect and T. If a modified Poynting effect 

coefficient / DD D C=  is defined, then a universal relation between D  and T can 

be obtained: 
 

                           
2

2 6 .    
4

TD
Rπ

= −  (4) 

 
Furthermore, the circumferential displacement under combined axial loading P and 
torsion T is: 
 

                             L NLu u uθ θ θ= + , (5) 

where Luθ  represents the linear twist due to torsion T: 

                           4

2L T rzu
Rθ π µ

= , (6) 

and NLuθ  represents the nonlinear twist associated with the axial force-twist effect: 

                     
2

4 3

( 4 6 8 ) .
2 (3 2 )

NLu PT n m rz
Rθ

λ m λm m
π m λ m

+
+

=
+ +

−  (7) 

The axial force-twist effect coefficient can be defined as: 

                
4

NL

HL

u CH
u

Pθ

θ

−= = ,   
2

2

4 6 8
(3 2 )HC n mλ m λm m

m λ m
+ + +

+
= . (8) 

CH is a reduced coefficient which characterizes the relation between H and P. It is 
similar in form to CD. By defining the modified axial force-twist effect coefficient

/ HH H C= , a universal linear relation between H  and P can be obtained: 
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                               .
4
PH = −   (9) 

It can be seen from Eq. (7) that the axial force-twist effect only exists under combined 
axial loading and torsion, i.e., 0P ≠  and 0T ≠ . Eq. (8) implies that if H is positive, 

NLuθ  has the same direction as Luθ  and the axial force twist effect is positive; 

otherwise, it's negative. Because H depends on P and not T, two further observations 
can be made from Eq. (8): 
 
(1) Change of the direction of T does not change the sign of H.  
(2) Change of the sign of P changes the sign of H. 
 
Eqs. (3) and (8) show that materials with different elastic constants can have the same 
Poynting effect or the axial force-twist effect, provided the reduced coefficients of 
these materials are the same. Another observation of Eq. (3) is that for a particular m, if 

m and n are chosen in a way that makes ( 4 ) / 3 (4 8 ) / 2,n mm m+ = +  or 

8 6 0m nm + − = , then λ has no influence on the Poynting effect. A similar conclusion 

can be made for H on the basis of Eq. (8).  If m and n are chosen such that 

( 6 ) / 3 (4 8 ) / 2n mm m+ = + , or 6 6 0m nm + − = , then λ has no influence on the axial 

force-twist effect. 
 
The relation between H and D in dimensionless form can be obtained easily from Eqs. 
(3) and (8): 
 

                      2 2 6 2

2
/ 4 / 4 3 2
H D

P T R
λ

µ π µ λ µ
= −

+
. (10) 

Since / (2 2 )ν λ λ µ= + , the above equation can be rewritten as: 

                       2 2 6 2

2
/ 4 / 4 1
H D

P T R
ν

µ π µ ν
= −

+
.  (11) 

 
The term on the left-hand side represents the axial force-twist effect coefficient 
normalized by the axial loading, while the first term on the right-hand side represents 
the Poynting effect normalized by the torsion. An explicit relationship between the 
axial force-twist effect and the Poynting effect is thus established.  
 
Since ν is positive generally, several conclusions can be drawn from Eq. (11), 
assuming that the axial loading P is tensile: 
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(a) If D < 0, then necessarily H < 0,  
(b) If H > 0, then necessarily D > 0. 
(c) If H and D have different signs, then necessarily H < 0 and D > 0. 
 
It should be emphasized that the converses of (a) and (b) are not true, i.e., H < 0 does 
not necessarily imply D < 0, and D > 0 does not necessarily imply H > 0. A further 
observation is that the sign of H will change if the sign of P changes. Thus for the 
case of compressive axial loading, the above three conclusions should be changed to: 
 
(d) If D < 0, then necessarily H > 0,  
(e) If H < 0, then necessarily D > 0. 
(f) If H and D have the same sign, then necessarily H > 0 and D > 0. 
 
The Poisson ratio plays a key role since the difference between the normalized H and 
the normalized D is the term 2ν/(1+ν). This difference reaches its maximum when 
ν = 0.5, i.e., the material is incompressible. 
 
Finally, the size dependence of the Poynting effect can be judged from Eq. (3) to be 
inversely proportional to the sixth power of the cylinder radius. For the axial 
force-twist effect, Eq. (7) shows that the maximum circumferential displacement (r = 
R) is inversely proportional to the third power of the cylinder radius. Hence, the 
Poynting effect is relatively more important than the axial force-twist effect for small 
cylinders, and the reverse holds for large cylinders. 
 
Numerical results 
 
This section focuses on the influence of the elastic constants on the Poynting effect 
and the axial force-twist effect. The elastic constants of the soft materials were 
adapted from Wang and Wu (2013, 2014) for poly(acrylic acid) (PAA) gels and 
capillary muscles, respectively, and Catheline et al. (2003) for an agar-gelatin. The 
geometry of the cylinder is fixed as R = 0.002 m and L = 0.01 m. The applied axial 
loading and torsion may vary for different figures. 
 
Fig. 2 plots the H = 0 and D = 0 contours in the m−ν space, for m = −2420 kPa and n 
= −2350 kPa. The axial loading P is chosen as positive. It can be seen that the m−ν 
space is partitioned into three regions: Region I with H > 0 and D > 0, Region II with 
H < 0 and D < 0 and Region III with H < 0 and D > 0. 
 
Several interesting phenomena can be observed, in agreement with the conclusions (a) 
to (c) stated above. First, negative Poynting effect (D < 0) implies negative axial 
force-twist effect (H < 0) as shown in Region II. However, the converse is not true, 
i.e., negative axial force-twist effect (H < 0) does not imply negative Poynting effect 
(D < 0) necessarily, as shown in the small Region III. Secondly, positive axial 
force-twist effect implies positive Poynting effect (i.e., H > 0 means D > 0, as shown  
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Figure 2. Contours of the Poynting effect coefficient D = 0 (dashed line) and axial 
force-twist effect coefficient H = 0 (solid line) in m−ν space for a homogeneous 
elastic cylinder. The contours partition the space into three regions.  
 
 
in Region I). However, the converse is not true. Positive Poynting effect does not 
imply positive axial force-twist effect (i.e., D > 0 does not necessarily imply H > 0 as 
shown in region III). Moreover, when the two effects differ in sign, the Poynting 
effect must be positive and the axial force-twist effect must be negative (as shown in 
Region III). Region III, where the two effects have different signs, is generally small, 
suggesting that only careful choices in the material parameters can lead to different 
signs for the two effects.  
 
Fig. 3 plots H and D against the Poisson ratio ν. The material parameters are based on 
those of polymers with m = 10.3 kPa, m = −24.2 kPa and n = −23.5 kPa. The loadings 
are P = 10 kPa and T = 300 kPa·m3. It can be seen that when ν increases, both H and 
D decrease from positive to negative monotonically. Thus, the Poisson ratio can be an 
important parameter in controlling the two effects. Secondly, the magnitudes of H and 
D are of the order of 10-1, suggesting that the nonlinear effects can be significant. 
Note that ν1 and ν2 are the particular Poisson ratios which make H = 0 and D = 0, 
respectively. This figure further shows that (a) if H > 0, then D > 0, as shown when 
ν < ν1, (b) if D < 0, then H < 0, as shown when ν > ν2, and (c) if H and D have 
different signs, then H < 0 and D > 0, as shown when ν1 < ν < ν2.  
 
Fig. 4 shows how the linear elastic constants m and ν affect the Poynting effect and 
the axial force-twist effect. The parameters are m = −360 kPa, n = 20 kPa, P = 10 kPa 
and T = 1000 kPa·m3. It can be seen that there exists a m1 for which H is independent 
of ν. Similarly, there exists a m2 for which D is independent of ν. As mentioned above,  
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Figure 3. Dependence of H and D on the Poisson ratio ν, with m = 10.3 kPa, m = 
−24.2 kPa, and n = −23.5 kPa. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Dependence of H and D on the shear modulus m for different Poisson 
ratiosν =0.1, 0.3, 0.4 and 0.49, with m = −360 kPa and n = 20 kPa. 
 
 

m1 and m2 can be determined from the equations 1 1( 6 ) / 3 (4 8 ) / 2n mm m+ = +  and

2 2( 4 ) / 3 (4 8 ) / 2n mm m+ = + , respectively, yielding m1 = 363.3 kPa and m2 = 272.5 

kPa. A further observation is that the negative H and D values appear to have upper 
bounds, while the positive values are unbounded. More generally, however, D or H 
may either have a positive or negative bound, depending on the values of m and n.    
 
Fig. 5 shows how the nonlinear elastic constant m can significantly influence both 

effects. Here H and D are plotted against m for 62 10 ,m = ± ×  610±  and 0 kPa. The 

other elastic parameters are λ = 60 kPa and n = −23.5 kPa. The loadings are P = 0.01 
kPa and T = 10 kPa·m3. For this set of parameters, increasing m will decrease the 
magnitudes of the coefficients. Secondly, both effects are positive for negative m and 
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negative for positive m. Changing the sign of m will change the sign of both H and D. 
Thirdly, decreasing the magnitude of m will also decrease the magnitudes of H and D. 
The magnitudes can reach the order of 10-2 to 10-1 when m is small; thus the nonlinear 
behavior can be significant when the material is very soft with a small m.  
 

Fig. 6 plots H and D versus m for the same sets of m, with λ = 35700 kPa and n 
= −23500 kPa. The loadings are P = 0.01 kPa and T = 10 kPa·m3. The nonlinear 
effects are different from those shown in Fig. 5. For m positive, both H and D 
decrease to a negative maximum and subsequently decrease slowly to zero with 
increasing m. However, for m negative, they decrease monotonically to zero with m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Dependence of H and D on the shear modulus m for m = −2×106, −106, 0, 
106, 2×106 kPa, with λ = 60 kPa and n = −23.5 kPa. The loadings P = 0.01 kPa 
and T = 10 kPa·m3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Dependence of H and D on the shear modulus m for m = −2×106, −106, 0, 
106, 2×106 kPa, with λ = 35700 kPa and n = −23500 kPa. The loadings P = 0.01 
kPa and T = 10 kPa·m3. 
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Discussion 
 
Many biological materials, from soft to hard, are subjected to complex loading in their 
physiological environment. A few examples are described here. Arterial walls 
associated with human brain aneurysms were subjected to combined extension, 
torsion and inflation in finite element studies, in order to mimic the real physiological 
conditions (Tóth et al., 2005). The behavior of lumbar spinal units under torsion, 
compression and flexion/extension were also experimentally studied (Haberl et al., 
2004). It is also well-known that articular cartilage is subjected to combined 
compression and shear during normal activities (Mansour, 2003). Fatigue tests were 
conducted on cylindrical bovine cortical bone specimens under axial, torsional and 
combined axial-torsional loadings (Vashishth et al., 2001). Finite extension and 
torsion were applied on capillary muscles in order to characterize their behavior under 
physiological conditions (Criscione et al., 1999).  
 
Because of the prevalence of combined loadings, the Poynting effect and the axial 
force-twist effect may be highly relevant. In particular, large stresses may be 
generated by both effects if the specimen is confined in one way or another, i.e., the 
additional axial and rotational displacements are restrained. These large stresses can, 
for instance, alter the overall force balance and the cytoskeleton structure of cells, or 
the movement of a human red blood cell through narrow capillaries. The diameter of a 
human red blood cell is 7.0-8.5 mm, while that of narrow capillaries is smaller than 3 
mm (Bao and Suresh, 2003).  
 
The effects can also be utilized in the design of devices such as actuators and sensors. 
One can imagine a bio-inspired polymer actuator based on the axial force-twist effect, 
i.e., a torsionally loaded cylinder may generate an additional output twist, if subjected 
to an input axial force. By carefully selecting the elastic parameters of the materials 
and the structural dimensions, the amount of twist can be increased significantly and 
the desired output can be achieved. 
 
Conclusions 
 
Explicitly expressions for the Poynting effect, the axial force-twist effect and their 
relation are presented in this paper. The dependence of the relation on elastic 
constants is investigated.  
 
The results show that under a tensile stress P, (a) negative Poynting effect implies 
negative axial force-twist effect, (b) positive axial force-twist effect implies positive 
Poynting effect, and (c) if the two effects differ in sign, the Poynting effect must be 
positive and the axial force-twist effect negative. The loadings P and T' are such that 
(d) changing the direction of T will not change the sign of both effects, and (e) 
changing the direction of P will change the direction of the axial force-twist effect. 
Moreover, the Poynting and axial force-twist effects exhibit a very significant size 
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dependence, respectively of the inverse sixth and third power of the cylinder radius.  
 
Reduced elastic coefficients characterize universal relations between the effects and 
the applied loadings. The elastic constants m, ν and m have significant influence on 
the magnitude and direction of the Poynting and axial force-twist effects. For certain 
combinations of elastic constants, changing the sign of m can directly change the sign 
of the two effects. The two effects may have a positive or negative bound, depending 
on the elastic constants. From the perspective of material design, the elastic constants 
are thus of vital importance.  
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Abstract 

There is a growing interest in the use of computational fluid dynamics (CFD) modeling and 
simulations with detailed nasal airway models constructed from CT or MRI images for surgical 
planning and assessment of outcome of nasal surgery. As compared to rhinomanometry and 
acoustic rhinometry, which provide quantitative information only of nasal airflow, resistance, and 
cross sectional areas, CFD enables additional informations of airflow passing through the nasal 
cavity that help visualize the physiologic impact of alterations in intranasal structures. Therefore, it 
becomes possible to quantitatively measure, and visually appreciate, the airflow pattern (laminar or 
turbulent), velocity, pressure, wall shear stress, particle deposition, and temperature changes at 
different flow rates, in different parts of the nasal cavity.  The effects of both existing anatomical 
factors, as well as post-operative changes, can be assessed. With recent improvements in CFD 
technology and computing power, there is a promising future for CFD to become a useful tool in 
planning, predicting, and evaluating outcomes of nasal surgery. This presentation presents some of 
the recent studies performed in our research group related to clinical applications or assessment of 
nasal obstructions, Turbinectomy, Functional Endoscopic Sinus Surgery, Cleft palates and 
Rhinoplasty. I will also highlight our recent works in terms of modeling and simulations of nasal 
airflows due to the long duration wearing of N95 respirators. 

Keywords:  Computational Fluid Dynamics, Nasal Airways, Sinuses, Nasal Obstructions, 
Functional Endoscopic Sinus Surgery, Turbinectomy, N95 respirators 
 
Introduction 
 
The nose is the guardian angel of the respiratory tract. It has several important physiological 
functions which include air-conditioning, filtrating the inspired air, and smell. It also plays an 
important defence function, as the nose is the first place where foreign pathogens and allergens 
contact the host. To serve these important functions, a functional or patent nasal passage is 
essentially needed. A better understanding of how the nose functions is important and related to the 
treatment of respiratory related medical conditions such as snoring, Obstructive Sleep Apnea (OSA), 
and the contraction of diseases such as SARS and Bird Flu. Nasal obstruction is also a common 
complaint which is difficult to quantify clinically. The etiologic factors for nasal obstruction include 
anatomic variations of the nose and various local and systemic diseases. Hence, objective 
assessment of the nasal airway will aid diagnosis, treatment, research and medico-legal 
documentation.  
 
During the last 10 to 20 years, attempts have been made to quantify nasal functionality or patency. 
This is an exciting time in the field of rhinology with regard to basic research and clinical practices. 
The technological advancements and greater insight into understanding of normal nasal functions 
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and their relationship with other organs has spurred research in this field. Functional nasal airway 
measurement is important not only for research in nasal physiology, but is a useful and important 
diagnostic tool for patients with nasal or its related disorders. The sensation of nasal obstruction, 
nasal resistance and minimal cross sectional area are three distinct entities measuring nasal patency, 
which are closely related to each others. In a combination of these techniques, it represents the state 
of the art for a functional and quantitative study of the nasal airway. However, to date, it is still not 
possible to quantitatively measure the changes in nasal physiologic functions, which are caused by 
various type and degree of anatomical or pathophysiological changes of the nasal cavity and 
patency. 
 
The relevance of objective assessment of nasal resistance and patency has been documented in 
many rhinological situations: (a) In routine rhinological practice, it is particularly useful in the 
differential diagnosis and management of common nasal diseases, e.g., allergic or non-allergic 
rhinitis and nasal septum deformity. Objective testing is useful in appropriate decision-making. 
Routine employment of objective quantitative assessment will result in improved diagnosis and the 
medical management. (b) Measurement of nasal airway patency is very much appreciated in 
rhinological research, since it provides a quantitative piece of information on the changes of nasal 
mucosal response to intranasal application with allergens and any kind of physical and chemical 
agents. (c) It provides objective data on the nature of nasal airway that can be used as the 
medicolegal documentation. 
 
More recently, the advantages of computational fluid dynamics (CFD) enable researchers to obtain 
detailed flow patterns in the human upper airway by reconstructing models from computed 
tomography (CT) and Magnetic Resonance Imaging (MRI) images, which has become a new 
reliable trend of nasal airway exploration. However, there are very few reported comparisons of 
computational fluid mechanics simulation results with clinical measurements of airways conditions, 
let alone using the common techniques of rhinomanometry and acoustic rhinometry. It is generally 
agreeable that experimental investigations in nasal airway models give only limited compatibility 
with actual physiological conditions of the nose although the simplified experimental model allows 
for detailed examinations of various complicating effects. The lack of correlation studies between 
the engineering simulations and clinical practices, especially clinical examinations on actual nasal 
airway is a major reason as to why the engineering simulations have not found its way into the 
clinical examinations and also the lack of CFD related publications in clinical otolaryngology 
journals.  
 
The present research currently being carried out in the Department of Mechanical Engineering, 
Department of Otolaryngology and Department of Surgery within the National University of 
Singapore is therefore an attempt to bridge this gap by correlating the engineering simulations to 
actual physiological functions of the nasal airways. The present study will also attempt to establish 
the relations between the engineering simulation results and the measurements from 
rhinomanometry and acoustic rhinometry. These two methods provide complementary and 
important objective information concerning the nasal airway 
 
Rhinomanometry is well established as a useful clinical method for objective assessment of nasal 
patency. Nasal resistance to airflow is calculated from measurements of nasal airflow and transnasal 
pressure. Sstandardization of rhinomanometry was established in 1983 and accepted worldwide. 
The nasal resistance is calculated from the measurement of the nasal airflow at a fixed transnasal 
pressure point and is expressed in Pa/cm3/s. Three types of rhinomanometry can be used: active 
anterior rhinomanometry (AAR), active posterior rhinomanometry (APR), and passive anterior 
rhinomanometry (PAR). AAR uses a facemask, one nostril is sealed off with adhesive tape; a hard 
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plastic tube passed through the tape measuring the nasopharyngeal pressure. It is a dynamic test that 
studies nasal ventilation; showing the nature of the air stream and a difference in the shape of the 
inspiratory and expiratory limbs at the individual nasal cavity. This method is well standardized and 
it is the most common and accurate method for clinical use. The major disadvantage of this method 
is that it cannot be performed in the presence of a septal perforation or a complete unilateral nasal 
blockage. For PAR, a fixed airflow of 250cm3/s is blown through a nozzle into one nostril. The 
pressure induced by the nasal resistance to this airflow at a given level of the nozzle is measured. 
This is an easy and fast procedure that can be used even in infants. Nasal patency measurement on 
one side is still possible when the other side is completely blocked. It has been proven to be a 
qualitative as well as a quantitative method for the objective evaluation of the degree of nasal 
obstruction in patients with allergic rhinitis following the nasal allergen challenge. However, the 
sensitivity and accuracy of this measurement is somewhat lesser than AAR. 
 
In contrast, acoustic rhinometry does not measure airflow parameters but explores the geometry of 
the nasal cavity. The principle of acoustic rhinometry is that an audible sound (150-10,000 Hz), 
propagated in a tube, is reflected by local changes in acoustic impedance. This method provides 
estimates of cross-sectional endonasal areas and of the endonasal volume, and helps to define 
objectively the structural and mucosal components of the nasal passage. Since its introduction, there 
has been an explosion of research using this tool. Due to the rapid acquisition of data which can be 
completed in a minute, it has become a valuable clinical and research tool. Patient tolerance is 
excellent even in children. 
 
The proposed research is multi-disciplinary and multi-physics in nature and will not be possible 
without close collaborative efforts among engineers, clinicians and biomedical researchers. By 
examining the engineering analysis results with the respective clinical observations and 
measurements performed using rhinomanometry and acoustic rhinometry for actual nasal models of 
various medical conditions, the engineering analysis can be developed into a virtual objective tool 
to be used in clinical otolaryngology and to help in a more accurate diagnosis and documentation of 
nasal conditions.  
 
The main objective of this research is therefore to bridge the gap between the engineering analysis 
and simulations, and the clinical practices for assessing objectively the physiological conditions of 
nasal airways. The specific tasks are as follows: 
 

• To establish computational models of human nose based on CT and MRI imaging for 
various nasal conditions. 

• To investigate the relationship between the geometrical configuration of the nasal cavity and 
the simulated results for airflow and thermodynamic behaviour in healthy conditions and 
obstructive nasal diseases. 

• To correlate the simulation results to the nasal conditions assessed by rhinomanometry, 
acoustic rhinometry and clinical examinations. 

• To establish an in vitro nasal airway model with actual human nasal functional and 
physiological characteristics. 

• To develop a virtual objective tool to be used in clinical otolaryngology and to help in a 
more accurate diagnosis and documentation of nasal conditions. 
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Methodology 
 
The research performed involves both numerical and experimental studies. The main tasks for the 
numerical studies are modeling and simulations. Three dimensional surface models were first 
created by image segmentation of CT or MRI scans provided by the collaborators from clinicians. 
This was usually done using several commercially available softwares such as MIMICS 12.1 (The 
Materilize Group, Leuven, Belgium), Hypermesh 9.0 (Altair Engineering, Bangalore, India), and 
TGrid 4.0 (ANSYS, Inc., Canonsburg, PA, USA). Smoothing of the highly corrugated surfaces due 
to digitization was performed to facilitate computational meshing of the three-dimensional model. 
Smoothing of the boundary surface in such relatively larger 3-D nasal cavity will not affect the 
main flow pattern inside, but will help to decrease computational effort and increase computational 
efficiency. Computational fluid dynamics studies were carried out using Fluents for pure flow 
simulations or Adina for fluid structural interaction such as the interaction of soft plate and airflow 
for the analysis of obstructive sleep apnea. These tasks were performed at the Applied Mechanics 
Laboratory, National University of Singapore.  
 
The human subject studies, conducted in two phases were conducted at the Investigator trial unit, 
National University Hospital. A total of 100 volunteers (47 for the first phase and 53 for the second 
phase) was recruited for this study. The first phase was conducted over a period of five days and the 
second phase was conducted for another three days. The typical tasks involved the completion of 
study questionnaires, the performance of acoustic rhinometry, rhinomanometry, mucociliary 
clearance evaluation using saccharin tests, and smell test using the University of Pennsylvania 
Smell Identification test kits, 
 
Several nasal cavity models have been created based on CT or MRI of patients. The initial phase of 
the research focused on the analysis of nasal blockade or Inferior Turbinate Hypertrophy on the 
aerodynamic pattern and physiological functions of the turbulent airflow. Subsequent studies 
extended the flow simulations to particle deposition related to drug delivery as well as the thermal 
effect. The study was then extended to the other geometric effects such as septal deviation and 
septal perforation as well as the effect of various surgical procedures such as inferior turbinectomy 
and towards the later part of the research, on the effect of Functional Endoscopic Sinus Surgery 
(FESS) as well as nasal fractures. All the numerical simulations were examined and co-related to 
clinical observations and therefore most of the findings were in fact published in clinical journals 
related to otolaryngology such as the Laryngoscope, Rhinology, Journal of Aerosol Medicine and 
Pulmonary Drug Delivery, American Journal of Rhinology and Allergy, Respiratory Physiology 
and Neurobiology. As highlighted by one of the reviewers, there has been “a boom in the number of 
publications describing the flow patterns in the nasal cavity of various nasal pathologies, especially 
in clinical journals”.  
 
Results and Discussion 
 
A major portion of the project is to examine the effect of various pathological conditions on the 
nasal functions. Two pathological conditions related to septal deviation and inferior turbinate 
hypertrophy are the main focus of the study.  
 
In the nose model with septal deviation, major changes in the pattern of inspiratory airflow (e.g., 
flow partitioning and nasal resistance, velocity and pressure distributions, intensity and location of 
turbulence), wall shear stress and increasing of total negative pressure through the nasal cavity were 
demonstrated qualitatively and quantitatively. For the healthy nose, the main airflow occurs in the 
middle of the airway (between the inferior and middle turbinates around the septum), with the peak 
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velocity in this area. On the contrary, in the model with a septal deviation, the main airflow is found 
passing through the floor (left side) and superior part (right side) of the nasal cavity. In the healthy 
nose, the area with the highest intensity of turbulent flow was found in the functional nasal valve 
region, but it became less apparent or even disappeared in the septal deviation one. For healthy case, 
the pressure decreases smoothly along the airway from nostril to the nasopharyngeal region. 
However, for deviated nose, greater pressure gradient or abrupt pressure jump is found posterior to 
the site of deviation (more in the right side than the left). For the deviated nose, the air flow mainly 
goes through the upper passageway in the cavity; two noticeable vortex areas are detected. Vortex 
areas mainly locate near the nasal valve region and dorsal regions near the superior cavity. With a 
large inspiratory flow rate of 34.8 L/min, maximum transient velocities of 5.69 m/s and 7.67 m/s are 
detected inside the healthy and septum deviation noses respectively. A higher shear stress 
distribution is found in the floor of the left nasal cavity than that in the right side. This CFD study 
provides detailed information of the aerodynamic effects of nasal septal deviation on nasal airflow 
patterns and their associated physiological functions.   
 
In the healthy nose, the main respiratory air stream occurs mainly in the middle of the airway, 
accompanied by a diffused pattern of turbulent flow on the surface of the nasal mucosa. The peak 
value of turbulent flow is found in the functional nasal valve region. However, this aerodynamic 
flow pattern has partially or completely changed in the models with enlarged inferior turbinate. 
With an inhalation flow rate of 34.8 L/min, a maximum velocity of 5.69 m/s, 7.39 m/s and 11.01 
m/s, are detected respectively in the healthy, moderately and severely obstructed noses. Both total 
negative pressure and maximum shear stress has increased by more than three and two times, 
respectively, in severely blocked noses compared to the healthy one. Data of this study provide 
quantitative and quantitative information of the impact of inferior turbinate hypertrophy on the 
aerodynamic pattern and physiological functions of nasal airflow. By including the model of 
turbulent airflow, the results of this experimental study will be more meaningful and useful in 
predicting the aerodynamic effects of surgical correction of the inferior turbinate hypertrophy.  
 
Nasal patency is an essential condition that has a major impact on particle deposition.  For the 
healthy one, due to its complete existence of the MCA, the particle number escaping the cavity is 
the largest one; for moderately blocked nose, due to its relatively larger penetration via MCA (two 
thirds left) than the severely blocked one (one third left), the particle number escaping the cavity is 
larger than the severely blocked one. The particle percentage escaping the nasal cavity decreased to 
less than a half and one tenth for the moderately and severely blocked noses. Decreasing of flow 
rate and particle diameter increased the escaping ratio; however, zero escaping percentage was 
detected with the absence of airflow and the effect was less noticeable when the particle diameter 
was too small. The existence of inspiratory flow and head tilt angle helped to change the particle 
escaping ratio for the healthy nose; however, such changes were not significant for the moderately 
and severely blocked noses. Thus it is noted that the patients with nasal obstruction need to ensure 
the presence of a middle inspiratory flow rate, when using the nasal spray device for higher 
escaping ratio. To insert the spray deeper with particles beyond the MCA region or a decongestive 
treatment to increase the MCA may be necessary in patients with moderately or severely blocked 
noses as the effects of the changes of nose flow rate, initial particle velocity, particle diameter and 
head tilt angles for drug delivery are limited or even negligible. 
 
Another major portion of the research is the evaluation of surgical procedure on nasal airflow and 
particle deposition. The aim for one of these studies was to evaluate the effects of inferior turbinate 
surgery on nasal airway heating capacity using computational fluid dynamics (CFD) simulations. 
Heat transfer simulations were performed for a normal nasal cavity and others with severely 
enlarged inferior turbinates, before and following three simulated surgical procedures: (1) resection 

ICCM2014, 28th-30th July 2014, Cambridge, England

347



of the lower third free edge of the inferior turbinate, (2) excision of the head of the inferior turbinate 
and (3) radical inferior turbinate resection. The models were run with three different environmental 
temperatures. The changes of airflow pattern with the reduction of inferior turbinate were found to 
affect heat transfer greatly. However, the distribution of wall heat flux showed that the main 
location for heat exchange was still the anterior region. Under the cold environment, the nasal 
cavities with the head of inferior turbinate reduction were capable of heating the inspired air to 
98.40% of that of the healthy one; however, for the case with lower third of inferior turbinate 
excised, the temperature was 11.65% lower and for the case with radical inferior turbinate resection, 
18.27% lower temperature compared to the healthy nasal cavity. The healthy nasal cavity is 
therefore deemed to be able to warm up or cool down the inspiratory airflow under different 
environmental temperature conditions; for the nasal cavities with turbinate surgeries, partial inferior 
turbinate reduction can still sustain such heating capacity. However, too much or total turbinate 
resection may impair the normal function of temperature adjustment by nasal mucosa. 
 
In another piece of work, we examined the effect of nasal surgery on particle deposition and drug 
delivery. Intranasal medications are commonly used in treating nasal diseases. However, technical 
details of the correct usage of these medications for nasal cavity with obstruction are unclear. A 3-
dimensional model of nasal cavity was constructed from MRI scans of a healthy human subject. 
Nasal cavities corresponding to healthy, moderate and severe nasal obstruction were simulated by 
enlarging the inferior turbinate geometrically, which was documented by approximately one third 
reduction of the minimum cross sectional area for the moderate and two thirds for the severe 
obstruction. The discrete phase model based on steady state computational fluid dynamics was used 
to study the gas-particle flow. The results were presented with drug particle (from 7x10-5 to 10-7 m) 
deposition distribution along the lateral walls inside these three nasal cavities and comparisons of 
the particle ratio escaping from the cavity were also presented and discussed. Nasal patency is an 
essential condition that had the most impact on particle deposition of the factors studied; the particle 
percentage escaping the nasal cavity decreased to less than a half and one tenth for the moderately 
and severely blocked noses. Decreasing of flow rate and particle diameter increased the escaping 
ratio; however, zero escaping percentage was detected with the absence of airflow and the effect 
was less noticeable when the particle diameter was very small.  The existence of inspiratory flow 
and head tilt angle helped to improve the particle escaping ratio for the healthy nose; however, such 
changes were not significant for the moderately and severely blocked noses. Therefore, when using 
an intranasal medication, it is advisable to have a moderate inspiratory airflow rate and small size 
particles in order to improve particle escaping ratio. Various head positions suggested by clinicians 
do not seem to improve drug escaping ratio significantly for the nasal cavities with inferior 
turbinate hypertrophy.   
 
Another surgical procedure that has been examined is Functional Endoscopic Sinus Surgery (FESS). 
For the nasal cavities with FESS, the ostia may be enlarged and some ethmoid cells may also be 
removed. Therefore more airflow may be directed into the paranasal sinus regions, upper ethmoid 
and sphenoid sinus regions and thus affects their physiological functions. Moreover, the airflow 
inside was inappropriate to be assumed quasi-steady due to increased local Womersley and Strouhal 
numbers and  increased local inertial effects. 
 
Thus the study focused on the evaluation of the effects of a particular FESS case on unsteady nasal 
aerodynamic flow patterns and to attempt to answer whether there were existences of circulations 
inside the sinus regions. Different from previous steady state flow modeling, the study focused on 
unsteady airflow characteristics to investigate inertia effects. A 3-dimensional model of nasal cavity 
was constructed from CT scans of a patient with FESS interventions on right side nasal cavity. CFD 
simulations were then carried out for unsteady aerodynamic flow modeling inside the nasal cavity 
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as well as the sinuses.  Comparisons of the local velocity magnitude and streamline distributions 
inside the left and right nasal cavity and maxillary sinus regions were carried out. Due to the FESS 
procedures in the right nasal cavity, existences and distributions of local circulations (vortexes) 
were found to be significantly different for a same nasal airflow rate but at different acceleration, 
deceleration or quiet phases in the maxillary sinus region on the FESS side. Due to inertia effects, 
local internal airflow with circulation existences was continuous throughout the whole respiration 
cycle. With a larger peak inspiration flow rate, the airflow intensity inside the enlarged maxillary 
sinus increased significantly.  
 
The current model was the first attempt to investigate such abnormal aerodynamic behavior around 
the FESS and sinus regions with transient airflow conditions. Although the current model is based 
on one particular individual and may not be representative for FESS procedures, it still provides 
qualitative and quantitative information for better knowledge of the internal geometrical changes 
with surgical effects on aerodynamic differences. Existences of airflow circulations or re-
circulations inside the main nasal cavity volume were found for healthy nasal models. It was usually 
believed that the airflow going into the sinus region was negligible for a healthy nose, and possibly 
a small amount of airflow into the sinuses through ostia helped to maintain stable mass (nitric oxide) 
and humidity exchanges for the nasal cavity after the current manner of FESS, relatively larger 
amount of airflow were circulated into these regions and affected the local aerodynamic flow 
patterns. From engineering perspective, the open airway passage from the paranasal sinus regions to 
the nasal cavity behaves as a hollow cavity, which results in relatively smaller local pressure 
distribution with flow instability. Moreover, it was usually believed that the sinus regions were parts 
of the possible locations for productions of nitric oxide (NO). A relatively stable concentration of 
NO is needed to maintain a sterile local environment for a nasal breathing and respiratory systems 
to ensure normal functions related to human being host defense and local immunologic reactions. 
An uncinate process probably has a protective role in preventing deposition of bacteria and 
allergens in the sinuses during the inspirational phase. Thus for the current FESS case with the 
removal of uncinate process, the existences of continuous airflow and circulations inside the sinus 
regions may affect local nitric oxide re-distributions and its stability. Moreover with such 
circulations, bacterial infection rates may increase with possible depositions of bacteria and 
allergens in the sinus after FESS.  
 
The first phase of the human subject study demonstrated the concordance of all the various clinical 
tests used in the assessment of nasal physiology in allergic and healthy volunteers. Impaired nasal 
function due to temperature change was found to be more exaggerated in allergic rhinitis. Dynamic 
interval functional assessment at (e.g. rhinomanometry, nasal spirometry) can better accentuate and 
demonstrate nasal hypersensitivity as compared to traditional single-point static testing. The 
preliminary findings of the second phase of human subject study showed that the airway is likely to 
be blocked more with smaller nasal valve minimal cross sectional area why lying down compared 
to body upright position. This will cause a shift of the frequency spectrum of the breathing sound. 
Detailed analysis is being carried out. 
 
The team is currently embarking on the experimental study of “Objective Assessment of the Effects 
of long-duration wearing of N95 and surgical facemasks on upper airway functions” funded by the 
Ministry of Health involving 100 healthcare workers from the local hospitals and clinics. 
 
A list of the publications arising from the research is appended in the list of references. 
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Conclusion 
 
The existing CFD technology enables detailed study and objective measurements of the physical 
characteristics of the airflow within the anatomically exact numerical human nose models, which 
are constructed based on CT scan or MRI images. Although the predicted results from CFD study 
are derived from complex calculations which may not represent real life conditions, it does provide 
clinically useful and additional information in additional to typical clinical assessment such as  
rhinomanometry and acoustic rhinometry of the breathing airflow. Information that could be 
obtained from modeling and simulations include airflow pattern (laminar or turbulent), velocity, 
pressure, wall shears stress, and temperature changes under different flow rates in different part of 
nasal cavity, as well as the effect of various anatomical factors (e.g., septal deviation or perforation, 
inferior turbinate hypertrophy and turbinectomy, nasal and maxillary bone fracture, opening of 
rhinosinuses after surgery, and etc.). With the improvement in CFD technology and research, there 
is a promising future of this technique to become a useful tool in predicting outcomes and planning 
of nasal surgery.   
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Abstract 

A computer assisted objective grading system based on the asymmetry analysis of patient three-
dimensional surface models obtained from a 3D facial imaging system is developed for facial 
paralysis diagnosis. To overcome the subjectivity of traditional diagnosis methods, facial 
asymmetry grading is carried out according to fine registration result of the original and mirror 
facial meshes which do not rely on any landmarks. As a higher order property of 3D surfaces, the 
Principal, Gaussian and Mean Curvatures, Shape Index and Curvedness are introduced for grading 
the asymmetry of the faces as descriptions of the surface local features besides examining the local 
differences in distance between the original and mirrored surfaces. The present results show that the 
proposed approach is able to objectively assess the asymmetrical of human faces as well as to detect 
the improvement of the patients quite well.  

Keywords:  Computational Methods, Facial expression, 3D curvatures, Bell’s Palsy 
 

Introduction 

The face is three dimensionally complex consisting of many tissues namely, bone, soft tissue 
including fat and muscle, and overlying skin.  The soft tissue of the face is unique to the whole 
body as the underlying muscles are densely enveloped in a continuous layer making up the 
superficial musculoaponeurotic system or SMAS, which has direct attachments to the facial skin 
allowing for displacement of the facial soft tissues for facial animation.  This ability of animation 
makes us distinct from other primates and animals as we can produce a myriad of facial 
expressions.  Another unique feature is the presence of two opposite sides which in the ideal 
situation are mirror images against a vertical midline that bears the nose.  This kind of facial 
structure is the exception rather than the rule as a spectrum of asymmetry exists.  The extremes of 
asymmetry can be due to facial trauma, facial nerve injury and also in birth defects.  The physical 
and psychological suffering is immense as it is both a socially crippling disorder and also a possible 
functional disorder that can lead to problems with respect to vision, breathing, articulation, 
mastication, vocalization and many others.  Common problems in childhood are cleft lip and palate 
seen in 1:700 live births and in adulthood facial trauma that is often in association with injury to the 
soft tissue and underlying bone.  The loss of the soft tissue attachments between the bone, muscle 
and skin leads to descent of the affected site's soft tissues; together with loss of bone support and 
soft tissue scarring results in asymmetry and deformity.  The descent of soft tissues besides bony 
and skin changes is seen with the commencement of facial aging from the later 20's and continues 
relentlessly to produce the stigmata of the aged face. 
 
To date, the study on the soft tissue of the face has largely been limited to the two aspects, namely 
the bony changes via CT scan imaging and skin changes via external limited views of the other 
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lying skin such as with 2D photography. This has allowed for a large body of work on bone changes 
in congenital and acquired disease and a myriad of surgical options for skin closure in congenital 
and acquired disease such as post tumor resection.  Bone work and skin closure alone are not 
enough for the restoration of facial symmetry.  Bone restoration creates a stable bony platform and 
skin closure very often creates an intact skin pocket. The contour of the soft tissue contents which 
are three dimensional may be different from the normal side leading to postoperative asymmetry. 
We believe that the next step to improving facial surgery and analysis as a whole is the 
understanding of the whole 3D contour of the facial soft tissues allowing for mirroring and 
comparison to the contralateral side.  This will objectively quantify areas of excess and deficit, 
descent and contour change which can then be addressed appropriately for a full reconstruction. 
 
Appraisal or rating of facial deformity is usually required to assess the severity of the initial facial 
injury as well as the degrees of improvement due to the surgical or medical treatments. The 
appraisal or grading procedures can be broadly divided into qualitative and quantitative methods. 
Many of the existing methods are qualitative in nature and the grading often suffers from the lack of 
consistency among different clinicians as well as the difficulty in evaluating marginal changes 
during the follow-up treatments. The quantitative method analyses the extent of abnormal facial 
morphology and the degree of disproportion through various facial measurements (for example, 
Whittle, 2004, Farkas et al., 1993, Sandy, 2003) based on numerical data obtained from 
photographs or digital models obtained using 3D imaging equipment.  
 
With the proliferation of the use of computer systems and digital photography, a computer based 
system for the objective assessment of facial deformity or asymmetry based on 3D digital models is 
a viable solution for the clinicians having to assess the severity of the initial facial injury as well as 
the degrees of improvement due to the followed up medical treatments. The proposed solution will 
provide tangible improvements in health services delivery, patient care and health outcomes with a 
more repeatable and objective assessment of the patients’ conditions.    
 
On the mathematical methods for facial analysis in terms of asymmetry or facial deformity, many 
methods have been proposed for characterizing the parameters of a beautiful face and analyzing the 
differences between male and female faces, and between faces of people with different racial 
backgrounds. These methods can be grouped into two main categories: anthropometric studies 
using either 2D or 3D data, and studies using geometric algorithms using 3D data. Wang et al. 
(2009) measured nasal length, nasal tip-projection, dorsal height, radix height, nasolabial angle, and 
nasofrontal angle on 2D photos. These measurements were used to compare the nose shapes of 
healthy young Koreans with those of rhinoplasty patients. Choe et al. (2006) used 22 standard 
measurements from 2D photos to compare the differences in nose shapes between Korean 
American women and North American white women.  Szychta et al. (2011) analyzed 3D face 
models to compare the aesthetic results of post traumatic rhinoplasty. The analysis is based on two 
indices of the nasal proportions and four angles of the region computed from 18 anthropological 
points. Dong et al. (2010) used nine linear measurements, three angular measurements and seven 
proportions derived from a set of 17 landmark points on 3D face models to characterize Chinese 
nose and find the differences between males and females.  
 
The main objective of the present research is to develop a computer based system based on 3D 
images taken from patients using 3D imaging technique for objective and quantitative assessment of 
facial and nasal deformity. The proposed computer based system will be developed and tested for 
three clinical conditions and applications – facial deformity due to stroke and cleft lip and palate, 
congenital nasal deformity or nasal deformity due to facial or nasal trauma, and objective 
assessment of the mid face infra-orbital hollow and upper and lower cheek fullness, lower face 
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lower lip fullness, lip wrinkles (at rest and dynamic) and the oral commissure for facilitating facial 
reconstructive surgery. As a preliminary report, we will focus on the analysis of the facial symmetry 
of healthy human subject as a benchmark for future research. 

Methodology 

For the proposed study, a total of 100 healthy human subject volunteers have been recruited for the 
initial study from NUS students and staff. The approval from the relevant Institutional Review 
Board has been obtained for this study. Another 100 volunteers will be selected from the patients 
visiting the clinics of Otolaryngology and plastic and reconstructive surgery at the National 
University Hospital.  These human subjects and patients will form the database for the analysis. The 
100 patients are expected to be recruited from patients with cleft lip and palate, facial paralysis and 
patients with facial deformity due to facial trauma.  
 
For the first phase of this study, 100 healthy (without any facial deformities) participants were 
recruited. Participants involved in the study were at least 18 years old and students from the 
National University of Singapore. Among the scans, 55 were males and 45 were females. Most of 
the scans are Chinese with 3 Malays, 1 Indian and 1 Eurasian. Participants were required to remove 
their spectacles or clip up any hair that is covering their face to aid the measurement taking process 
that will be performed later on in the study. Before the facial scanning was carried out, 3 
photographs were required to be taken from each participant, the frontal, profile and the oblique 
views (Figure 1). 
 

 
Figure 1 Frontal, Profile and Oblique View of Participant 

 
The facial scanning was done using the Artec3D EVA white light scanner (Figure 2) acquired at the 
beginning of the proejct. It makes use of the white light technology which will not present any 
safety risk to people and does not produce the kind of magnetic radiation that can damage medical 
instruments. There is also no need for any special markers. Each facial scan lasts for about 20 
seconds.  The scans were taken in a quiet environment with good lighting to minimise the noise 
disturbances and to optimise the scans taken. The scans were taken at an optimal distance in order 
for them to be more accurate. 
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Figure 2: Artec3D Eva white light scanner 

 
The facial scans were initially proposed to be taken with the participants’ eyes open. However, due 
to the white light which may result in discomfort to the eyes and also due to the continuous blinking 
of the eyes by the participants, it might lead to inaccuracy and inconsistency of the scan. Hence, it 
was decided that the scans should be done with participants having their eyes closed. Two scans 
were also taken per participant and the scan of a higher quality and accuracy was chosen for data 
analysis.  
 
The scanned data had to be processed before they can be used. Fine alignment procedure was done 
by applying fine serial registration on the scan for a quality model. Then the model had to go 
through global data registration where the global registration algorithm converted all one-frame 
surfaces into a single coordinate system using information on the mutual position of each pair of 
surfaces. Upon successful global registration, all the processed data could be fused into a polygonal 
3D model. After which, tools in the software were used to correct any surface defects either due to 
scanning or registration errors. Lastly, texture will be applied to the scans. 
 
Before proceeding to take the facial measurements from the 3D scans, the scans had to be orientated 
in the right direction with respect to the axis. All facial scans were normalized to natural head 
posture with the origin set at the subnasale point, the x-axis pointing left, from right to left eye; y-
axis pointing vertically upwards, from chin to forehead; z-axis pointing outwards, in the nose 
direction.  
Landmarks were then manually placed on the scans using Artec Studio 9 software as shown in 
Figures 3 to 7. 
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Figures 3-7 Landmarks on facial scan 

 
In total, 16 landmarks were manually identified and placed on each scan. The x, y and z coordinates 
of each landmark were recorded (48 coordinates in total).  
 
Brief Description of the landmarks are as follows: 
 
Ectocanthion  : The point at which the outer ends of the upper and lower eyelids meet 
Endocanthion   : The point at which the inner ends of the upper and lower eyelid meet 
Cheilion   : The lateral most point at the angle of the lips 
Labiale Superius  : Midpoint of the vermilion line of the upper lip 
Alare    : The most lateral point on the ala of the nose 
Intertragic notch  : The small groove between the bump of cartilage between the ear and temple 
and earlobe 
Nasion   : The craniometrical point at the bridge of the nose where the frontal and 
nasal bones of the skull meet 
Pronasale   : The most prominent point on the nasal tip 
Trichion   : Point where the hairline meets the midpoint of the forehead 
Gnathion   : Lowest median landmark on the lower border of the mandible 
 
The coordinates were used to get the measurements for various dimensions of the facial features 
which includes the length of the right and left eyes, width and height of the face and others. There 
were 45 scans for females and 55 scans for males. The various dimensions measured for both the 
left and the right side of the face include the length of the eye, distance between the Intertragic 
Notch and Cheilion, distance between the intertragic notch and nasion, and lastly the distance 
between intertragic notch and ectocanthion.  
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Results and Discussion 
 
The measurements for the various dimensions for the left and right side of the face did not tally. 
This suggests that all the participants do not have a perfectly symmetrical face.  
 

  
Average 
(mm) 

Std. 
Deviation 

Distance between the eyes 37.65 3.05 

Length (right eye)  27.24 2.02 

Length  (left eye) 27.43 1.77 

Face Height 184.16 7.96 

Face Width 140.09 5.35 

Height/Width of face 1.32 0.07 

Length of Lips 44.94 3.38 

Angle of inclination of nose 13.34 3.96 
 

Table 1 Average and standard deviation for females 
 
T-tests were performed on different groups such as distance between the length of the right and left 
eyes, distance between the Intertragic notch (Left and Right) and Nasion, Distance between Left 
and Right Intertragic notch and left and right Cheilion respectively and lastly distance between right 
and left Intertragic notch with right and left Ectocanthion respectively.  An alpha value of 0.05 was 
used. From the t-tests, the P values are all more than 0.05, showing no statistical significance in all 
of the measurements.  
 

  
Average 
(mm) Std. Deviation 

Distance between the eyes 40.19 3.43 

Length (right eye)  27.86 1.78 

Length  (left eye) 28.08 1.78 

Face Height 
192.75 
 10.16 

Face Width 150.12 6.42 
Height/Width of face 1.29 0.07 
Length of Lips 47.84 4.18 
Angle of inclination of 
nose 12.76 3.74 

 
Table 2 Average and standard deviation for males 

 
Comparison of the difference in dimensions between females and males were tested using the t-test. 
Dimensions included difference between the length of the right and left eyes, Difference in the 
distance between the Intertragic notch (Left and Right) and Nasion, difference in distance between 
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Left and Right Intertragic notch with Left and Right Cheilion respectively, difference in distance 
between Right and left Intertragic notch with right and left Ectocanthion respectively, difference in 
the inclination of nose, difference in the face height and lastly the difference in face width. The 
alpha value of 0.05 was used. From the t-tests, the P values are all more than 0.05 except for 2 
which is the face height and the width of the face. The T-test for face height between the males and 
females obtained a value almost equal to zero, showing that the results are statistically significant. 
The mean of the face height for males is 192.75mm while the mean face height for females is 
184.16mm as shown in Table 3. 
 

t-Test: Two-Sample Assuming Unequal Variances 

  Face Height (Females) 
Face Height 
(Males) 

Mean 184.16 192.75 
Variance 63.38 103.29 
Observations 42 51 
Hypothesized Mean Difference 0   
Df 91   
t Stat -4.57   
P(T<=t) one-tail 7.61E-06   
t Critical one-tail 1.66   
P(T<=t) two-tail 1.52-05   
t Critical two-tail 1.99154   

 
Table 3 T-test for face height between females and males 

 
The T-test for face width has also proven to be statistically significant with the p value being close 
to zero. The face width mean for males is 150.12mm while for females is 140.09mm. This is shown 
in table 4. 
 
 
t-Test: Two-Sample Assuming Unequal Variances 
 

  Face Width (Females) 
Face Width 
(Males) 

Mean 140.0859524 150.1156863 
Variance 28.63356614 41.26434902 
Observations 42 51 
Hypothesized Mean Difference 0   
df 91   
t Stat -8.214317689   
P(T<=t) one-tail 6.88149E-13   
t Critical one-tail 1.661771155   
P(T<=t) two-tail 1.3763E-12   
t Critical two-tail 1.986377154   
 

Table 4: T-test for face width between females and males 
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Hence, this shows that the male has a greater face height as compared to females. The software 
developed was used to test a typical healthy subject as well as a patient with facial deformity. The 
software will be used in the coming study for patients. 
 
 

 
Figure 8 Sample output from the software developed 

 
The software will be used in the coming study for patients. 

Conclusions 

From the results, it can be seen that there are no one with perfectly symmetrical faces even though 
the difference measured is not large.  It was also observed that the face height and face width of 
males are generally larger than those of females. There is no other statistical significance between 
the other dimensions of facial measurements.  3D analysis using the Surface Analyzer indicated that 
RMS values of patients with facial deformities were generally larger than those of healthy 
participants. Distance Maps and Gaussian Maps also showed that faces of patients had higher 
asymmetry as compared to healthy participants.  

It should be noted that when surgeons perform reconstructive surgery for patients with facial 
deformities, they should not do the surgery solely based on the symmetry of the face but rather also 
seek the opinions of the patients involved. In the era of modern orthodontics when the soft-tissue 
paradigm and patient perception often dictate the success of treatment outcomes, it is not acceptable 
for the orthodontist to simply identify problems and proceed with treatment. There is also a need to 
understand individual differences in the perception of face symmetry by surgeons, patients and 
those involved in the treatment process to get optimal results (Jackson, et al., 2013)  
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Abstract 

  As a series study that discusses the deformation criteria based on the atomic elastic stiffness (AES), 
we performed various molecular dynamics simulations of perfect bulk, thin plate/wire, and tilt/twist 
grain boundaries (GBs) of bcc Fe. Contrary to our previous results of fcc Ni and Al, bcc Fe can 
reach the global instability, where all the atoms has negative AES and the system can’t follow up 
the stress increase anymore, prior to the local deformation or nucleation of lattice defects in the 
tensile simulation of bulk, plate and wires. We also discuss about the negative AESs of the tilt/twist 
GBs against various misorientation angles for comparison with the GB energy in the no-load 
equilibrium. Finally we perform tensile simulations on the (322) Σ11 and (111) S3 tilt GBs ([110] 
tilt axis) and revealed the change in the negative AES atoms and deformation morphology. 

Keywords: Local lattice instability, Atomic elastic stiffness, Surface, Grain boundary, Bcc Fe 

Introduction 

We considered the onset of local structural change as “local lattice instability” and attempted to 
find the criteria based on the atomic elastic stiffness (AES),	���� =△ ���/△ 
�, or the deformation 
resistance at each atom point [Yashiro and Tomita (2001)]. Here, the elastic stiffness coefficients 
are originally defined as the stress-strain gradient in the nonlinear elasticity [Wallace (1972)]. In the 
case of brittle material Si, we can observe the local to global unstable phenomena, i.e. the unstable 
stress drop of the whole system is triggered by the emergence of the det���� < 0 atoms [Yashiro and 
Fujihara (2011)]. On the other hand, we can’t conclude which is the first, the onset of precursor 
deformation or the emergence of det���� < 0 atoms in many cases of Ni and Al [Yashiro et al. 
(2006), Nishimura et al. (2010)]. In the present paper, we show the relationships between the AES 
and the system response of bcc-Fe, derived from our investigations on the AES in bulk, at the 
surfaces and grain boundaries. In order to eliminate the effect of thermal vibration in this discussion, 
all the simulations is implemented at extremely low temperature, T=0.1K. FS potential is adopted 
for bcc-Fe system. 

Unstable behavior of perfect bulk under [001] tension 

Figure 1 shows the change in the average, standard deviation of det���� , and the stress-strain curve 
of the perfect bulk Fe under [001] tension. The bulk is represented by a cubic periodic cell of 
20x20x20 unit lattices. The change in the number of det���� < 0	atoms is also indicated in the lower 
figure. The tensile simulation is implemented by usual strain control in a quasi-static manner; all the 
atom position is scaled according to the small strain increment, Δ
��=1.0×10��, at each time step 
of 1fs. Here, the cell lengths of Lxx and Lyy are also scaled to cancel the normal stress by the 
Poisson’s contraction. The system shows the unstable stress drop at the strain of 0.1252 due to the 
emergence of internal disorder or the structural relaxation as seen in the error bars of standard 
deviation of  det���� ; however, all the atoms already become det���� < 0 at the smaller strain of 

��=0.0982, i.e. the crystal already reached the global instability. The stress begins to decrease 

ICCM2014, 28th-30th July 2014, Cambridge, England

361



 
 

after that point, resulting in the stress-peak of 
smooth arch, without any local change in the 
lattice structure. Thus the crystal would show 
unstable elongation under stress control tension 
since it couldn’t follow up the stress increase 
anymore. We can thus conclude that the global 
instability is preceding to the local structural 
change in the bulk bcc-Fe under [001] tension. 
Here, we can’t track what happen after the 
global instability since we have no answer so far 
for the boundary condition about the external 
loading due to the time-scale gap. 

Unstable behavior of thin plate and wire 

Then we have investigated the effect of the 
initial structural inhomogeneity by surfaces, 
preforming tensile simulations on thin plates and 
wires eliminating the periodic boundary 
condition in the normal directions against the 
tensile axis. Figure 2 shows the results of the 
(100) and (110) surface plates under the [001] 
tension. The right diagram of the (110) plate 
shows same tendency as the perfect bulk above 
mentioned; the stress-strain curve shows smooth 

Figure 1.  Change in the average of det���� , 
number of det���� < 0 atoms, and the stress-
strain curve of bulk Fe under [001] tension. 
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Figure 2.  Change in the average of det���� , number of det���� < 0 atoms, and the stress-strain 
curve of thin plate Fe under [001] tension. 

(a) (100) surface plate (b) (110) surface plate 
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arch and all the atoms becomes det���� < 0 at the peak, although the unstable stress drop by the 
internal structural change is observed at the later strain of 
��=0.1130. Thus we can deduce that the 
global instability is prior to the local deformation from the (110) surface. On the other hand, the 
unstable stress drop initiates at the strain of 0.0947 in the case of the (100) plate, despite of the 
positive value of the average of det����  as often observed in fcc Ni and Al; i.e. the local deformation 
precedes to the global instability. The bottom of the left diagram reveals that det���� < 0 atoms 
emerge just before the stress drop and explode, then we can observe the onset of the local structural 
change and stress drop. Thus we can conclude that the local instability appears prior to the global 
one, in the case of (100) surface under the [001] tension. Both the wire models of (100)-(010) and 
(110)-(1�10) surfaces also shows same tendency, that is, the local structural change occurs from the 
surfaces before the global instability point. On the other hand, in the case of the [11����2] tension, both 
the thin plate of (111) surface and the wire of (111)-(1�10) surfaces shows the stress drop after the 
global instability or the smooth stress peak; thus we can deduce that the surfaces are not potential 
candidate of the local deformation, under the [112] tension of bcc Fe. 

Atomic elastic stiffness of symmetrical tilt/twist grain boundaries 

Figure 3 illustrates the number of det���� < 0 atoms and the grain boundary (GB) energy per unit 
area against the misorientation angle of the [110] tilt and the [001] twist GBs. Here infinite laminate 
structures of GBs are assumed under the periodic boundary conditions. The size of the simulation 
cells is different for each GBs due to the coincidence site lattice (CSL) so that we don’t discuss 
about the averages of det���� . We may recognize same analogy between negative atoms and GB 
energy, e.g. there is no det���� < 0 atoms on the (112) Σ3 tilt and Σ3 twist GBs, which are well-
known stable GBs as can be seen in the energy cusp. However, the number of det���� < 0 atoms 
shows more complicated change, contrast to the rather monotonic change of GB energy. For 
example, the (332) Σ11 tilt GB has many negative det����  atoms despite of the energy cusp, while 
the (111) Σ3 tilt GB has few det���� < 0 atoms although there is no remarkable cusp in the GB 
energy curve. 
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Figure 3.  Relationships between grain boundary energy and misorientation angle, and the 
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We then performed tensile simulations on the (332) Σ11 and the (111) Σ3 tilt GBs, in the direction 
normal to the GB plane (y-axis). Here we didn’t control the Poisson’s contraction or the lateral 
strain ε’ is fixed at zero during the simulations. The simulation results are summarized in Fig.4. As 
already indicated in Fig.3, the (332) Σ11 tilt GB has many negative atoms at the initial equilibrium; 
however, the negative atoms decrease and finally vanish by the external load during εyy=0~0.015, 
although there is no remarkable change in the stress-strain curve. Then atoms on the layers just 
above and below the GB planes become negative at the strain of 0.022, as recognized with the 
similar snapshot at εyy=0.0474 in Fig.5. The stress-strain curve shows the remarkable blunting of 
stress increase at εyy=0.0611. Figure 5 shows the internal change during the blunting-plateau 
response by the sign of det����  and central symmetry parameter of Atomeye [Li (2003)]. The bcc-
bct phase transition occurs from the GB and propagates in the grains, finally the bct phase covers 
whole the grains. We can find the negative AES atoms at the forward edge of the expanding phase, 
or at the migrating boundary. The strain hardening at the later stage is caused by this phase 
transition.  The crystal shows the highest peak at εyy=0.200 where a cleavage cracking emerges at 
the new boundary seen in the snapshot at εyy=0.151 in Fig.5. On the other hand, the stable (111) Σ3 
tilt GB doesn’t show GB migration but cleavage cracking at the first and highest peak of εyy=0.099, 
after showing pulse-like pop-up of negative AES atoms at εyy=0.020 and εyy=0.090. The negative 
AES atoms can be seen only at the GB as shown in Fig.6. From the GB energy at the initial 
equilibrium, the (111) Σ3 tilt GB is considered more stable than the (322) Σ11 one. In fact, the 
magnitude relation of the stress and strain of the first peak obeys this prediction; however, the later 
has deformability and shows better ductility than the former. 
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(a) (332) Σ11 tilt G.B. (b) (111) Σ3 tilt G.B. 
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Abstract

Many  geophysical  and  astrophysical  phenomena  such  as  magnetic  fields  generation,  or  the
differential  rotation  observed in  the  atmospheres  of  the major  planets  are  studied by means  of
numerical  simulations of the Navier-Stokes equations in  rotating spherical  shells.  Two different
computational codes, spatially discretized using spherical harmonics in the angular variables, are
presented.  The  first  code,  PARODY,  solves  the  magneto-hydrodynamic  anelastic  convective
equations  with  finite  a  difference  discretization  in  the  radial  direction.  This  allows  the
parallelization on distributed memory computers to run massive numerical simulations of second
order in time. It is mainly designed to perform direct numerical simulations.  The second code,
SPHO, solves the fully spectral Boussinesq convective equations, and its variationals, parallelized
on shared  memory architectures  and it  uses  optimized linear  algebra libraries.  High-order  time
integration methods are implemented to allow the use of dynamical systems tools for the study of
complex dynamics. 

Keywords:  Hydrodynamics,  Spherical  shells,  Parallelism, Direct  Numerical  Simulation,
Dynamical Systems

Introduction

The  Due  to  the  increase  of  computing  power  in  the  last  decades,  many  geophysical  and
astrophysical phenomena, such as magnetic fields generation, or the differential rotation observed in
the  atmosphere  of  the  major  planets,  are  studied  by  means  of  three-dimensional  numerical
simulations of the magneto-hydrodynamic or thermal convection equations in rotating spherical
geometries.  The  introductory  sections  of  [Dormy et  al.  2004;  Net  et  al.  2008],  among  others,
provide  good  reviews  of  the  state  of  the  art  on  this  subject.  The  difficulties  related  to  the
experimental studies, such as the radial gravity which can only be reproduced by means of either an
electrostatic radial field or approximated by the centrifugal force, enhance the importance of the
numerical approach in these fields. However, non-stationary tridimensional waves arise at the onset
of  convection  due  to  the  boundary  curvature,  and  thus  finding  a  solution  requires  very  high
resolutions. Frequently, as in [Pino et al. 2000], and [Plaut and Busse 2005], a two-dimensional
annular geometry is used to approximate the real problem. For this reason the development and
improvement of the numerical techniques provides the basis for such research. 

Several  numerical  codes  to  simulate  these  type  of  problems were  developed independently  by
different research groups and benchmarked in [Christensen et al. 2001]. A common feature of these
codes is that the velocity and magnetic fields are expressed in terms of poloidal and toroidal scalar
potentials following the formulation of [Chandrasekhar 1981]. For the spatial discretization of the
equations  on the  sphere,  many of  these  codes  use  pseudo-spectral  methods  based on spherical
harmonics basis functions in the angular variables, which provide highly accurate solutions with
relatively few grid points [Canuto et al. 1988]. These methods are based on transformations from
the spectral to the physical space [Orszag 1970]. The calculation of the quadratic terms, appearing
in the truncated equations, is performed in the physical space. The main differences between the
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codes  arise  in  the discretization along the radial  direction,  in  the  implementation  of  the boundary
conditions and in the time-stepping procedures. There exist however other approaches such as that of
[Kageyama and Sato 1995] that use finite differences or that of [Matsui and Okuda 2004] that use a
finite-element-method in all directions.

Most of the current tridimensional studies consist of direct numerical simulations of periodic, quasi-
periodic, and even turbulent flows to study the variation of the time-averaged physical properties in the
parameter space and to obtain scaling laws [Christensen and Aubert 2006; Oruba and Dormy 2014].
These numerical simulations are performed with second order time integration semi-implicit schemes
which only treat the diffusive terms implicitly. For a deeper understanding of the origin of the laminar
flows and their dependence on parameters, pseudoarclength continuation methods [Sánchez et al. 2004;
Sánchez et al. 2010], and the linear stability analysis of the time dependent solutions [Net et al. 2008;
Garcia et al.  2008] have been successfully applied thanks to the use of high-order time integration
methods which provide accurate enough solutions. On the other hand, high-order time integration can
also be useful for evolving turbulent flows efficiently [Garcia et al. 2014a]. 

In this paper two different computational parallel codes, spatially discretized using spherical harmonics
in the angular variables, are presented and their applicability for studying geophysical and astrophysical
problems is  discussed.  Also,  their  parallel  performance on the high performance computing center
MesoPSL (http://www.mesopsl.fr) is analyzed and possible improvements of the codes are suggested.

The first code, PARODY, solves the magneto-hydrodynamic anelastic convective equations, although
in this paper we only comment the Boussinesq implementation, with a finite difference discretization in
the  radial  direction.  This  allows  the  parallelization  on  distributed  memory  computers  to  perform
massive  numerical  simulations  of  second  order  in  time.  It  is  mainly  designed  to  perform  direct
numerical simulations and it has been widely used by many researchers, see for instance [Dormy et al.
1998; Raynaud and Dormy 2013; Schrinner et al. 2012; Schrinner et al. 2014].

The second code, SPHO, solves the fully spectral Boussinesq convective equations, and its variationals,
parallelized on shared memory architectures and it uses optimized linear algebra libraries. High-order
time integration methods [Garcia et al. 2014a; Garcia et al. 2010; Garcia et al. 2014b] are implemented
to allow the use of dynamical systems tools, such as that of [Sánchez et al. 2004; Sánchez et al. 2010;
Sánchez and Net 2013], for the study of complex dynamics.

The model and the equations

The thermal convection and magnetic field generation of a spherical electrically conducting fluid shell
differentially heated, rotating about an axis of symmetry with constant angular velocity  Ω=Ωk , and
subject to radial gravity g=−γ r , where γ is a constant, and r the position vector, is implemented in
the code PARODY. The mass, momentum, energy and induction equations are written by using an
usual formulation and non-dimensional units (see [Christensen et al. 2001; Dormy 1997; Dormy et al.
1998; Schrinner et al. 2012] for details). The units are the gap width, d=r o−ri for the distance, Δ T

(the difference of temperature between the innner and outer boundaries) for the temperature, d2
/ν for

the  time,  and (ρμηΩ)
1 /2 for  the  magnetic  field, ν being  the  kinematic  viscosity, μ the  magnetic

permeability, η the magnetic diffusivity and ri and ro the inner and outer radii, respectively. With these
units the equations governing the dynamics of the fluid in the rotating frame of reference are

                     (∂t v+ (v⋅∇)v−∇
2 v )E=−2Ω×v−∇ p+ (r /r o) RaT+ Pm

−1
(∇×B)×B ,                (1) 

                      ∇⋅v=0 ,                                                                                                                      (2)

                      ∂t T+ v⋅∇ T=Pr−1
∇

2T ,                                                                                            (3)
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                     ∂t B=∇×(v×B)+ Pm
−1

∇
2 B ,                                                                                      (4)

         
                     ∇⋅B=0.                                                                                                                       (5)

The non-dimensional parameters are the modified Rayleigh number Ra, the Prandtl  number Pr , the
magnetic Prandtl number Pm , the Ekman number E , and the radius ratio χ , They are defined by

                             Ra=
go αΔT d

νΩ
, E= ν

Ωd2 , Pr=ν
κ , Pm=

ν
η , χ=

r i

ro

,                                      

where α is the thermal expansion coeficient, κ is the thermal diffusivity, and go the gravity at the outer
radius.

The boundary conditions for the velocity field can be either no slip or stress free at both boundaries, or
mixed boundary conditions with no slip at the inner and stress free at the outer sphere. For the magnetic
field,  a conducting or  insulating inner  core can be imposed [Dormy 1997;  Schrinner  et  al.  2012],
although only the insulating case will be considered in this paper. The temperature is fixed at both
boundaries.

The solenoidal velocity field, v , is expressed in terms of toroidal, ut , and poloidal, up , scalar potentials
v=∇×(ut r)+ ∇×∇×(up r) . With the same expression for the magnetic field and by applying the
operators r⋅∇× and r⋅∇×∇×  to  the  Navier-Stokes  equation  (Eq.  (1)),  and r⋅ and  r⋅∇× to  the
induction equation (Eq. (4)), the equations for the potentials can be deduced. Finally, the functions
X=(ut ,up , bt ,b p ,T ) are expanded in spherical harmonic series up to degree L in the angular variables,

namely

                                    X (t , r ,θ ,φ )= ∑
m=−L

L

∑
l=∣m∣

L

X l
m(r , t)Y l

m(θ ,φ )                                                     (6)

with X l
−m

=X̄ l
m , and [u t]0

0
=[up]0

0
=[bt]0

0
=[b p]0

0
=0, to uniquely determine the four scalar potentials,  and

Y l
m
(θ ,φ )=Pl

m
(cos(θ))ei mφ , Pl

m being the normalized associated Legendre functions of degree l and

order m .  Since X l
−m

=X̄ l
m , only  the m≥0 amplitudes  are  retained.  With  the  latter  expansion,  the

equations can be written in terms of their complex coefficients X l
m
=X l

m
(t , r) which are functions of

time and radius. The coefficients of the nonlinear terms of Eqs. (1-5) are obtained following [Dormy
1997].

A similar model is implemented in the code SPHO without the induction equation (Eq. (4)). The energy
equation (Eq. (3)) is written in terms of the temperature perturbation Θ=T−T c from the conductive

state v=0,Tc=T c (r ). The unit for the temperature is ν
2
/ γαd 4. The main difference between the codes

arise in the radial discretization of the amplitudes X l
m
( t , r) , in the time-stepping techniques, and in the

parallel strategy used to solve the equations. All these issues are addressed in the following section.

ICCM2014, 28th-30th July 2014, Cambridge, England

369



Parallel implementation

The PARODY code

Finite differences are used on a non-uniform mesh of N r+ 1 points, stretched near the boundaries to
cope with thin Ekman-Hartmann layers. Although finite differences are local and less accurate with
respect to other discretizations such as global collocation methods, they are suitable for a parallel
implementation on distributed computers in the way we now describe. The radial grid is partitioned
among the processors, pi , i=1,. .. ,N p , each one having all the spherical harmonic amplitudes at
rd i

, ... ,r di+ ni
consecutive ni+ 1 radial points. The radial derivative operators are of second order except

in the case of the poloidal scalar velocity which is of fourth order. If centered finite differences are
used, to apply the derivative operators each processor pi has to communicate all the amplitudes at rd i

with pi−1, and all the amplitudes at rd i+ ni
with pi+ 1. In the case of the poloidal scalar velocity the

amplitudes at rd i+ 1 and at rd i+ ni−1 must also be send to processors pi−1 and pi+ 1, respectively. This
parallelization is suitable because the evaluation of the nonlinear terms is the most demanding task and
it is performed separately by each processor with the only need of communication for two vectors. 

Once the original equations  Eqs.  (1-5) are discretized a large system of
N=2(L2

+ 2L)N r+ (3L2
+ 6L+ 1)(N r−1) ordinary differential equations must be advanced in time.

For time-integration, semi-implicit methods are used, namely, only the diffusive terms are treated
implicitly with a Crank-Nicholson scheme, and the rest of the terms which include the non-linear and
the Coriolis terms are treated explicitly with an Adams-Bashforth method. Thus the linear systems of
equations to be solved at every step can be separated into spherical harmonic components, which can
be solved independently, so that only a set of small linear systems must be solved at each time step.
These linear systems are pentadiagonal in the case of the poloidal velocity and tridiagonal for the other
scalars. More specifically, the pentadiagonal matrix comes from the radial discretization of (∂t−Δ)Δ ,
while the tridiagonal matrices come from the radial discretization of ∂t−βΔ , where β=1 in the case of
the toroidal velocity potential, β=1/Pr in the case of the temperature equation, and β=1/Pm for the
equations of the magnetic field potentials.

The linear systems in PARODY are usually  [Dormy  et  al.  1998] solved with the parallel
implementation of the LU factorization described in [Lakshmivarahan and Sudarshan 1990]. The main
drawback of this solver is that it becomes sequential when decreasing the number of radial points of
each processor and increasing the number of processors significantly. In the current parallel LU
implementation a minimum of 4 radial points are needed for each processor. An implementation of a
parallel Krylov iterative solver [Barrett et al. 1994; Saad 1996] could improve the solution of the linear
systems. More precisely the IBiCGStab (Improved Stabilized version of BiConjugate Gradient
Squared) method is an alternative form to BiCGStab which only involves a single global reduction
operation instead of the usual 3 (or 4) [Yang and Brent 2002]. This solver allows to assign only one
radial point at each processor. Although this method is highly parallelizable because it only makes use
of matrix products, its performance (number of iterations) depends strongly on the condition number of
the matrix, which in our case is mainly influenced by the number of radial points and the time step used
in the time integration. Thus several tests, with different N r and time steps corresponding to different
physical regimes, must to be performed to compare the performance of both solvers. Preliminary
results addressing this issue will be shown later.
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The SPHO code

In contrast to PARODY, this code employs a collocation method on a Gauss-Lobatto mesh of N r+ 1
points ( N r−1 being the number of inner points). With this global discretization the radial grid can not
be partitioned into several processors of a distributed memory cluster for an efficient parallelization.
Thus the parallelization of the code is performed in the angular variables assuming shared memory
architectures to avoid communications. The linear discretized operators of the equations for the
spherical harmonics amplitudes are decoupled with respect to the order m. The same occurs for the
Legendre transforms needed for the computation of the nonlinear terms. Then, the triangular grid
{X l

m , m=0,... , L , l=m, ... , L} is partitioned among the processors by assigning a set of amplitudes
with consecutive order mdi

,... ,mdi+ ni
at each processor. In this case, the number of orders, ni+ 1 assigned

to each processor increases as mdi
increase, to maintain a similar number of amplitudes X l

m . Finally, the
fast Fourier transforms and the computations in the physical space needed for evaluating the nonlinear
terms are also parallelized by evenly partitioning the colatitude physical grid among the processors.

Once the thermal convection equations have been discretized a large system of ordinary differential
equations of size N=(3L2

+ 6L+ 1)(N r−1) must be integrated in time. Notice the smaller number of
equations with respect to the PARODY code. In SPHO the induction equation is not considered. If N v

variational equations are integrated the size of the systems becomes N v N+ N .

Two classes of high order (up to five) time integration methods are implemented in SPHO. The first
class of methods are the implicit-explicit (or fully implicit) backward differentiation formulas (IMEX-
BDF) methods [Garcia et al. 2010; Garcia et al. 2014b]. The IMEX methods treat the nonlinear terms
explicitly in order to avoid solving nonlinear equations at each time step. The Coriolis term is treated
either semi-implicitly or fully implicitly, giving rise to different algorithms. The use of matrix-free
Krylov methods (GMRES in our case) for the linear systems facilitates the implementation of a suitable
order and time stepsize control. In contrast to PARODY, the matrices of linear systems to be solved in
SPHO have dense blocks of dimension O(N r) (see [Garcia et al. 2010] for details on the structure of
these matrices). A second alternative implementation for the time stepping is the so called exponential
Rosenbrock methods proposed in [Hochbruck et al. 1998].  A wide range of numerical simulations has
shown that such exponential methods are more accurate by at least one order of magnitude than the
equivalent order IMEX scheme [Garcia et al. 2014a].  This is especially true when they are employed
with large time steps and at small Ekman number.

Performance of the codes in MesoPSL

In this section we investigate the performance of PARODY and SPHO codes on the high performance
computer MesoPSL, which consist of an array of 92 nodes with 16 cores and 64 Gb of memory ram
each one. More precisely, each node is a bi-processor with 8-cores Intel E5-2670 at
2,60 Ghz and the nodes are interconnected with infiniband QDR. 

Parody

Three different dynamo test cases, corresponding to different physical regimes with the same geometry
(χ=0.35) and Prandtl number (Pr=1), have been considered for studying the behavior of the iterative
solver. The first test case, T1 , corresponds to a laminar dynamo with Pm=5 at relatively high E=10−3
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and  weakly  supercritical  modified  Rayleigh  number Ra=100. This  is  the  benchmark  case  1  of
[Christensen  et  al.  2001].  The  radial  resolution  is N r=160 and  the  spherical  harmonics  truncation

parameter is L=64. The time integration is performed with a time step of Δ t=10−4 .  The second case,
T2 , corresponds to a chaotic dynamo with Pm=0.5 at E=10−4 and Ra=700. The radial resolution is
N r=256, the spherical harmonics truncation parameter is L=80 and the time step is Δ t=10−6. Finally

in the third case, T3 , the complexity of the dynamo with Pm=0.25  is increased because of the lower

E=3×10−5 and  higher Ra=2×103. The  radial  resolution  is N r=320, the  spherical  harmonics

truncation parameter is L=112, and the time step is Δt=3×10−7 .

As  commented  previously,  the  iterative  history  of  the  IBiCGStab  solver  depends  strongly  on  the
condition  number  of  the  matrices A2 and A1 coming  from  the  discretization  of (∂t−Δ ) Δ and  of

∂t−βΔ, respectively. These matrices depend on the time step, but also on the degree l of the spherical
harmonic amplitudes. The condition number of both matrices decreases with increasing the degree l,
thus we have only computed the condition numbers of the case l=1. For an easier implementation of
the iterative solver we solve all the linear systems for all X l

m as a single linear system, i.e, we perform
the same number of iterations for each l . Then, as the condition number decreases with l, the residuals
for the amplitudes decrease with increasing l . Tables (1) and (2), show the condition numbers of the
matrices A1 and A2 and their preconditioners, respectively.  When decreasing the time step, the matrix
A1 becomes close to a multiple of the identity, and the matrix A2 always has a larger condition number

than A1 . For the latter we have used a diagonal preconditioner to improve the convergence (see table
(1)) while minimizing the number of communications. For the former we have used a little bit more
complicated preconditioner that we explain below. In both cases left preconditioning is better than right
preconditioning.

Table 1. Condition number dependence on the radial resolution and the type of 
preconditioner with Δ t=10−4 .  M i A1 , mean left preconditioner  where M i is the Jacobi 
preconditioner with i iterations. For i=1 is the diagonal preconditioner.

                              N r         40       80         160        250       350        500

                             A1           5.6     25.3     112.8     295.7     595.3     1260.8  

                          M 1 A1        3.6     13.0      50.4      122.9     239.3     489.1

                          M 2 A1        1.5     3.8        13.1      31.2       60.3       122.8

                          M 3 A1        1.5     4.4        16.8      41.0       79.8       163.0

                          M 4 A1        1.1     2.2         6.8       15.9       30.4        61.6
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      Table  2.  Condition  number  dependence  on  the  radial  resolution  and  the  type  of
preconditioner. M i A2 , mean left preconditioner  where M i=P iQi is the preconditioner.  Pi

and Qi are  the  matrices  corresponding  to i Jacobi  iterations  with  matrices  D and A1 ,
respectively.

                              N r           40              80               160            250            350             500

                             A2        5.3×104    1.2×106    2.3×107    1.6×108    6.3×108    2.8×109

                          M 1 A2     4.3×102    4.1×103    5.5×104    3.2×105    1.2×106    5.0×106

    Δ t=10−4      M 2 A2     8.8×101    5.5×102    6.2×103    3.4×104    1.3×105    5.3×105

                          M 3 A2     8.3×101    6.0×102    6.5×103    3.6×104    1.4×105    5.6×105

                          M 4 A2     6.4×101    3.4×102    2.8×103    1.5×104    5.4×104    2.2×105

                              N r            40             80              160             250             350             500

                             A2        8.3×103    4.5×104    2.2×105    6.8×105    1.7×106    5.1×106  

                          M 1 A2     2.3×102    9.6×102    4.0×103    1.1×104    2.3×104    5.5×104

   Δ t=10−7       M 2 A2     5.9×101    2.4×102    9.8×102    2.4×103    4.9×103    1.1×104

                          M 3 A2     7.7×101    3.2×102    1.3×103    3.2×103    6.3×103    1.3×104

                          M 4 A2     2.9×101    1.2×102    5.0×102    1.3×103    2.6×103    6.0×103

Consider the matrix D coming from the discretization of the laplacian Δ with the appropriate boundary
conditions.  The  preconditioning  matrix  for A2 is M i=Pi Qi where Pi and Qi are  the  matrices
corresponding  to i Jacobi  iterations  with  matrices D and A1 , respectively  (see  [Barrett  et  al.  1994;
Saad 1996] for further details on preconditioning techniques). In all the cases we have set i=2 which
reduces significantly the condition number and for which the preconditioning operation only requires
one additional communication. See Table 2 for the dependence of the condition numbers on the type of
preconditioning, radial resolution and time step.

In figure (1) the run time for performing one time step when using the LU and IBiCGStab solvers is
plotted versus the number of MPI tasks for each of the cases considered. In all the cases the tolerance
for the IBiCGStab is set in a way that the mean physical properties (such as volume averaged kinetic
energy densities or the Nusselt number) differ by less than 3% with respect that obtained with the LU
solver  when starting  the  integration  from an initial  condition  as  in  [Christensen et  al.  2001].  The
solution at the previous time instant has been chosen as initial seed for starting the iterations. In the
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case T1 (Fig. 1(a)) due to the relatively large time step Δt=10−4 the
matrices are ill conditioned and the IBiCGStab solver requires at least 100 iterations for obtaining a

Figure 1. (a)  Run time for advancing one time step plotted versus the  number of MPI tasks for
the test case T1 . (b) and (c) are as (a)  but for the test cases T2 and T3 , respectively. (d) Same as
(a) but plotted versus the number of nodes when using 16 MPI task  for the test case T3 .  The
symbols and types of lines indicate:  iterative solver (*, dotted line) and direct solver (+, solid
line). 

residual  of  order 10−6 when  solving  the  linear  systems  with  the  matrix A2 . With  this  number  of
iterations the iterative solver requires considerably much more computing time than the direct one. For
the case T2 (Fig. 1(b)), the number of iterations is about 50 and thus the difference between the LU and
IBiCGStab  curves  decreases.  Finally,  for  the  case T3 (Fig.  1(c))  only  20  iterations  are  needed  to

achieve  a  residual  of  order 10−4 which  has  been  found  enough  for  obtaining  good  time-averaged
values.

Notice  in  the  slopes  of  the  curves  of  Figs.  1(b,c)  that  the  IBiCGStab  solver  has  slightly  better
scalability when using a larger number of processors. In this figure a degradation of the scalability is
also evident when using 16 processors because of the architecture of the computer (each node has 16
cores and there is thus competition for memory access). To address this issue in figure 1(d) the run time
is plotted versus the number of nodes when using 16 MPI task for the test case T3 . It is clear that is
better  not to use all  the cores of each node to avoid memory access competition,  in this way, the
computing time can be halved.
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SPHO

In this section we describe the performance of the code SPHO parallelized using OpenMP directives
and optimized by using basic linear algebra public libraries (GOTO [Goto and Geijn 2008] and ATLAS
[Whaley et al. 2000]) and the FFTW3 library for the fast Fourier transforms [Frigo and Johnson 2005].
A test for the integration of the variational equations [Hirsch et al. 2004] is also performed.

In figure 2(a) the run time for advancing one time step obtained with one core divided by the run time
obtained  by p cores ( p≤16 ) is  plotted  versus  the  number  of  equations  for  several  representative
resolutions which are shown in Table 3. The run time for advancing one time step with a fixed time step
integration  method  is  basically  that  for  computing  the  nonlinear  terms  and  for  solving  the  linear
systems which are solved by an LU method. Because a direct solver is used, the physical regime plays
no role and the performance depends only on the discretization mesh.

Figure 2. (a) The ratios t 1/ t p , where t p means the run time obtained with p processors, plotted
versus the number of equations. (b) Sequential run time for advancing one time step obtained
with the basic BLAS library divided by the sequential run time obtained with the ATLAS and
GOTO optimized libraries plotted versus the number of equations. (c) Test for the variational
equations: the relative error, ε , plotted versus the centered finite difference approximation step
h  for three tolerances (labeled on the curves) of the VSVO time integration code.

ICCM2014, 28th-30th July 2014, Cambridge, England

375



Table 3. Radial resolution, N r , and spherical truncation parameter, L , used in figures 
2(a,b).

            N r      24   32   38   50   60     72     80     88     94     106   120   130   150   170

             L       42   54   70   84   106   128   150   172   194   230   256   280   300   320

          
When the number of equations is relatively small (up to 2×106 ) the performance degrades when using
more than 8 cores because of the access memory competition, however, as the number of equations is
increased there is more computational work and the competition for the memory decreases, increasing
the performance.  We obtain speed ups S p=9 .1 for p=16 for the high resolution mesh N r=170 and

L=320, more specifically we obtain S p=1 .53 p0 .64 . Notice that the slope of the p-curves of Fig. 2(a)
increases with increasing p.

As commented before, when using a collocation method to radially discretized the equations, all the
radial operators of the original equations are substituted by dense matrices. When the evaluation of an
operator  is  required  all  similar  computations  are  grouped  to  call  efficient  implementations  of  the
matrix-matrix product subroutine DGEMM of BLAS. Also the Legendre transforms needed for the
evaluation of the nonlinear terms are implemented with this subroutine. In figure 2(b) the sequential
run time for advancing one time step obtained with the basic BLAS library divided by the sequential
run time obtained with the ATLAS and GOTO optimized libraries is plotted versus the number of
equations for the same resolutions as in Fig. 2(a). Important savings can be obtained with the GOTO
library for the larger number of equations where the run time can nearly be halved with respect the
basic BLAS library.

Finally, a test for the integration of the variational equations is performed in the following. Assume that
the  evolution  equation  for u∈ℝ

N , where u is  the  vector  of  all  the  unknowns  of  the  discretized
equations, is

                                      ∂t u=L0
−1 ( Lu+B (u,u ) ) ,                                                                                 (7)

and let u (t )=ϕ t (u0 ) be its solution with initial condition u (0 ) =u0 at t=0 . In the latter equation, L0 and

L are linear operators including the boundary conditions. The former is invertible, and the latter, for
the scheme used, includes the diffusive, the buoyancy, and the Coriolis terms. The operator B, which
will be treated explicitly in the IMEX-BDF formulae, will always contain only the nonlinear terms. The
variational equations along u (t ) are 

                                      ∂t u=L0
−1 ( Lu+B (u,u ) ) ,                                                                                 (8)

                                      ∂t v=L0
−1 (Lv+

1
2

( B (u+v ,u+v )−B (u−v ,u−v ) ))
¿

                                        (9)

with w (t )=(u (t ) ,v ( t ) )∈ℝ
2N the  solution  with  initial  condition w (0 )=(u0, v0) . The  property

Dϕ t (u0 )v0 =v ( t,v0 ) allows us to validate the numerical integration of Eqs.  (8-9):
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                                  v (t,v 0)=D ϕ t (u0 )v0≈
ϕ t (u0+hv0 )−ϕ t (u0−hv0 )

2h
= ṽ ( t,v0 ) .                           (10)

Algorithm

1. Initialise u0, v0∈ℝ
N , the final time at which the errors will be computed, t>0, and the step for

the centered formula h> 0.
2. Integrate t time units the variational equations Eqs.  (8-9) with initial  condition (u0, v0) .
3. Integrate t time units the original system Eq. (7) with initial conditions u0 +hv0 and u0−hv0 to

obtain ϕ t (u0 +hv0 ) and ϕ t (u0−hv0 ) , respectively.

4. Compute ṽ (t,v0)=(ϕ t (u0 +hv0 )−ϕ t (u0−hv0 )) /2h .

5.  Check the error

                                              
∥ṽ (t,v0 )−v ( t,v0 )∥

∥v ( t,v0 )∥
                                                                             (11)

Notice  that ε=ε (t,u0, v0, h,tol ) , where tol=εa=εr is  the  tolerance  for  the  Q-implicit  VSVO  time

integration code fully described in [Garcia et  al.  2010] ( ε a is the absolute and εr the relative error
tolerance). 

To check the time integration of the variational equations we will consider a case in which the Ekman
number is E=10−4 , the Prandtl number is Pr=0 .1 and the radius ratio is χ=0 .35 . More precisely, a
modulated  travelling  wave  with  azimuthal  wave  number md=6 which  is  stable  at  the  weakly

supercritical  Rayleigh  number Rae=2 .59929964×105 ( Rae=( γαΔTd4 )/ (κν ) ) is  considered.  This  is  a

quasiperiodic resonant orbit which has two frequencies f 1=60 .21680 and f 2=26 .75897 . They satisfy

the  relation (4f1−9f2) / f 2 =O (tol ) , where tol is  the  tolerance  of  the  time integration  method used to

obtain the initial condition u0 .

The initial conditions of Eqs. (8-9) are v0 =u0 where u0 is the initial condition of the quasiperiodic orbit

and the final time of the time integration is t≈1/ f 2 . We compute ṽ (t,v0) for several values of the finite

difference step h and we integrate Eqs. (8-9) with several time integration tolerances tol . The results
are shown in Fig. 2(c), where the relative error ε of Eq. (11) is plotted versus the finite difference
tolerance h for three different tolerances tol=10−3 ,10−6 ,10−9 of the VSVO time integration code. In
this figure the error due to the time integration and that due to the truncation can be identified. The
latter is exibited for h>10−2 where the curve has an slope 2. The error due to time integration appears
for h<10−2 .

Discussion

Two different approaches for solving hydrodynamical problems in rotating spherical shells are studied
in this paper. In the first approach a finite differences radial discretization is used to allow the
parallelization with MPI directives by partitioning the shell in the radial direction into different
processors. This is suitable because several types of architectures can be used to run the code. The
implementation of the improved version of the BiCGStab Krylov solver could improve the efficiency
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of the code in certain physical regimes, which need very small time steps for their integration in time.
With this iterative solver a larger number of processors can be used to minimize the computing time for
obtaining time-averaged physical properties of chaotic and turbulent dynamo models.

In the second approach the parallelization is performed by partitioning the triangular mesh of spherical
harmonics and by using OpenMP directives. The code can only be executed on shared memory
architectures. The implementation of the code is performed in such a way to rely on the use of matrix-
matrix products with the DGEMM subroutine of the BLAS library. In this case the code is fully
spectral, integrates the variational equations, and the time integration schemes are of high order to
obtain high accurate solutions which are needed when using dynamical systems tools for a
deep study of the physical system.

In certain architectures, such as that of MesoPSL (a cluster of nodes with several cores each one) it is
better not to use all the cores to avoid competition for a memory access. Notice that the approach
followed in SPHO can be also performed in PARODY by assigning one MPI task at each node and
using the cores of it to parallelize the computations on the spherical harmonics mesh using OpenMP
directives. The systematic use of the DGEMM subroutine can also improve the code.

Possible slight improvements of the SPHO code with MPI directives will consist on separating
independent computations on different nodes. For instance one node could compute the velocity field
and another node the vorticity field, which are both needed for the evaluation of the nonlinear terms.
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Abstract 

Tensegrity modules are spatial structures composed of tensile and compression components. Tensile 
and compression components are assembled together in a self-equilibrated state that provides 
stability and stiffness to the structure. Modules can be combined to create lightweight structures 
with good structural efficiency. Furthermore, tensegrity structures are good candidates for adaptive 
and deployable systems having thus applications in various scientific and engineering fields. 
Research into tensegrity structures has resulted in reliable techniques for their form-finding and 
analysis. Although bending is not considered in these techniques, tensegrity structures often sustain 
bending in their elements due to dead load and imperfections. Therefore, this paper investigates the 
effect of bending in a tensegrity “simplex” module. Dynamic relaxation is used to analyze the 
module with strut and strut-beam elements. The study reveals that bending increases stresses in 
elements and therefore should not be neglected.   

Keywords:  Tensegrity, Structural Behavior, Bending Elements, Dynamic Relaxation 

Introduction 

Tensegrity structures are spatial reticulated structures composed of cables and struts in a self-
equilibrated pre-stressed state that provides stability and stiffness to the structure. The concept 
exists for almost 60 years now and has received significant interest in disciplines such as structural 
engineering [Motro (2005)], aerospace engineering [Skelton and de Oliveira (2009)] and biology 
[Ingber et al. (2014)]. In biology, tensegrity is used to explain cell mechanics [Ingber (2003)] while 
in aerospace engineering and structural engineering it is used to design strong yet lightweight 
modular structures [Skelton and de Oliveira (2009); Adriaenssens and Barnes (2001); Rhode-
Barbarigos et al. (2010)]. Tensegrity is also attractive for adaptive applications as actuators and 
structural elements can be combined [Skelton and de Oliveira (2009); Rhode-Barbarigos et al. 
(2012a)]. Therefore, tensegrity systems have also been proposed for deployable structures [Sultan 
and Skelton (2003); Rhode-Barbarigos et al. (2012b)] and robots [Paul et al. (2006); SunSpiral et al. 
(2013)].  
Research into tensegrity systems has resulted in reliable techniques for their form-finding and 
analysis [Tibert and Pellegrino (2003); Masic et al. (2005)]. In these techniques, compressive 
elements are modeled as struts with no bending as a pure compression state is desired. However, in 
reality elements in tensegrity structures are strut-beam elements sustaining bending due to dead load 
and imperfections such as initial curvature or eccentricity in their joints. Therefore, this paper 
focuses on the effect of bending in a tensegrity “simplex” module. Dynamic relaxation is used to 
analyze the module numerically and study the effect of considering strut-beam elements with initial 
curvature in its structural behavior.  
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 “Simplex” module topology and geometry 

The tensegrity structure studied in this paper is the “simplex” module. The “simplex” module is the 
basic spatial tensegrity system [Motro (2006)]. It is composed of 3 struts and 9 cables (Figure 1). 
The module topology is given in the appendix. The module has a single state of self-stress and a 
single infinitesimal mechanism which involves the translation and rotation of the upper triangle 
[Motro (2005)].  

 
Figure 1. The tensegrity “simplex” module 

 
In this study, strut elements and strut-beam elements are steel hollow tubes with a modulus of 
elasticity of 210GPa, while tensile elements are stainless steel with a modulus of elasticity of 
120GPa. Strut and strut-beam elements have a length of approximately 1.4m, a diameter of 76.1mm 
and a thickness of 4mm. Cables have a cross-sectional area of 0.2826mm2 and a tensile strength of 
31.8kN. Cable lengths depend on their topology with horizontal cables having a length of 0.866m 
and vertical cables having a length of 1.032m. Finally, vertical displacements on all nodes on the 
basis of the module are restrained. 

Dynamic Relaxation 

In this study, dynamic relaxation is employed for the static analysis of the “simplex” module. 
Dynamic relaxation is an explicit numerical form-finding and analysis method of tensile structures 
[Barnes (1999); Adriaenssens and Barnes (2001); Bel Hadh Ali et al. (2011)] that avoids stiffness-
matrix calculations [Brew and Brotton (1971)]. Therefore, it is suitable for the analysis of nonlinear 
structures such as tensegrity modules.  
In dynamic relaxation, a structure is modeled as a mesh of elements connected with nodes. A mass 
is assigned to every node. Loading is also applied to the nodes, while pre-stress is applied through 
the definition of an initial element length. The method explores the fact that the static solution for a 
structure subject to loading can be seen as the equilibrium state of a series of damped vibrations. 
Consequently, the governing equation is: 
 

      (1) 
 
where Fext and Fint are the external and internal forces at each node respectively, M corresponds to 
the nodal mass and D corresponds to damping. However, mass M and damping D are fictitious 
parameters optimized for the stability and convergence of the method [Belytschko and Hugues 
(1983)].    and v are the acceleration and the velocity at each node respectively. In this study, kinetic 
damping is employed [Cundall (1976)]. Therefore, kinetic energy is monitored and when a peak in 
kinetic energy is detected, the velocity is reset to zero, the geometry is updated and convergence is 
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checked. Expressing the acceleration in a finite difference form gives the velocity and the updated 
geometry for each node: 

 ;
     (2) 

 
      (3) 

 
where vt+Δt/2 and vt-Δt/2 are the nodal velocities at times t+Δt/2 and t-Δt/2 respectively. xt+Δt is the 
nodal position at time t+Δt and Δt is the time step applied. The new geometry obtained allows 
updating the internal forces Fint and thus starting over. Convergence is obtained when the term Fext - 
Fint  is sufficiently small (equilibrium). 
To encounter the effect of bending in the “simplex” module, the bending-element formulation by 
Adriaenssens and Barnes (2001) is employed for strut-beam elements. Strut-beam elements are thus 
decomposed on a series of links and bending moments are estimated based on a finite difference 
modeling of a continuous beam. Bending moments are decomposed into shear forces that are added 
to the existing nodal forces and convergence is checked according to the general calculation scheme 
(Eq. 1). The formulation allows thus the method to maintain its computational advantages. 

Structural analysis  

Dynamic relaxation is used to analyze the structural response of the “simplex” module (stresses in 
the elements) under self-stress as well as under the combination of self-stress with vertical loading. 
In order to investigate the effect of bending in the “simplex” module, compressive elements are first 
modeled using struts (purely axially loaded elements) and then with strut-beam elements. Moreover, 
since tensegrity structures have pinned connections an initial curvature is also given to the strut-
beam elements (1/(10*lstrut)) to initiate bending action in them. 
Figures 2 shows the stresses in the cables and struts of the “simplex” module for different self-stress 
levels (5%, 10% and 15% of the tensile strength of the cables) with strut elements (left) and strut-
beam elements (right). The analysis shows that in both configurations cables are the most load 
bearing elements of the system. Furthermore, when strut-beam elements are employed stresses in 
cables reduce (up to 40%) while stresses in strut-beam elements increase (up to 44%). 
 

 
 

Figure 2. Stresses in the elements of the “simplex” module for different self-stress levels (5%, 

10% and 15% of the tensile strength of the cables) with strut elements (left) and strut-beam 

elements (right). 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

382



 
 

Figures 3 shows the stresses in the elements of the “simplex” module for different vertical loads 
applied on the top nodes (10kN, 20kN and 30kN per top node) with strut elements (left) and strut-
beam elements (right). A self-stress level of 5% is also applied in the cables to guarantee the 
stability and stiffness of the module. Similar to the self-stress study, the analysis reveals that cables 
are the load bearing elements and that when strut-beams are employed, stresses in these elements 
increase significantly (close to 100%) while stresses in cables remain in approximately the same 
level (decrease of 5%). 
 

 
 

Figure 3. Stresses in the elements of the “simplex” module for different loads applied on the 

top nodes (0kN, 10kN and 20kN per top node) with struts modelled as axial elements (left) and 

bending elements (right). 

 
Bending increases stresses in strut-beam elements. Consequently, it can lead to failure at lower 
loading levels than originally predicted with form-finding and analysis techniques that model 
compressive elements with struts. Therefore, bending should be taken into account when designing 
tensegrity systems especially for load-bearing applications. 

Discussion 

Current design theory holds that bending is undesirable in tensegrity elements. However, by 
integrating bending in the form-finding process, novel tensegrity structures constructed from 
flexible yet strong engineering materials that have low Young’s modulus and high strength such as 
Fibre Reinforced Plastics (FRP) could be explored. Applying such materials reduces significantly 
bending stresses in the strut-beam elements avoiding failure and thus opening the door to the 
development of a whole new realm of novel tensegrity systems that can sustain large elastic 
deformations without failure similar to natural systems [Ingber et al. (2014)]. 

Conclusions 

This paper investigates the effect of bending in a tensegrity “simplex” module. Dynamic relaxation 
is used to analyze a “simplex” module with strut and strut-beam elements. It is found that 
considering bending increases stresses in the elements which can lead to failure at lower loading 
levels than predicted with traditional form-finding and analysis techniques. Therefore, it is 
important to consider bending when designing tensegrity structures. Moreover, integrating bending 
in the form-finding process could lead to bending-active tensegrity systems and thus novel 
applications of tensegrity systems. 
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Appendix 

 
Table 1. Nodal coordinates for the “simplex” module 

 

Node X [mm] Y [mm] Z [mm] 

1 500 0 0 
2 -250 433 0 
3 -250 -433 0 
4 -433 250 1000 
5 0 -500 1000 
6 433 250 1000 

 
 

Table 2. Nodal connectivity for the “simplex” module 
 

Element Node Node 

Strut 1 4 
Strut 3 6 
Strut 2 5 

Cable 1 2 
Cable 2 3 
Cable 3 1 
Cable 4 5 
Cable 5 6 
Cable 6 4 
Cable 1 6 
Cable 3 5 
Cable 2 4 
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Abstract 
A new meshfree numerical analysis, termed the seamless domain method (SDM), is applied in a 
multiscale technology. The SDM requires only coarse-grained points and does not need a stiffness 
equation, mesh, grid, cell, or element. The SDM is composed of two analyses. The first is a 
microscopic analysis of local simulation domain to obtain shape functions for interpolation of 
dependent-variable distributions and influence coefficients for calculation of interaction between 
the points. These allow an SDM solution to represent a heterogeneous material without 
homogenization. The second step is a macroscopic analysis of a seamless global domain without 
mesh or grid. Various numerical examples illustrated that the method worked out both steady 
temperature fields and linear elastic fields. Every SDM solution using only a few hundreds of points 
was as accurate as that from conventional finite element analysis using more than 300 thousands of 
node points.  

Keywords:  Multiscale, Meshfree, Non-homogeneous media, Linear elasticity, Steady heat 
conduction 

Introduction 

Most analytical errors of numerical methods involve spatial (and temporal) discretization of a 
governing equation. Although the discretization in itself is a source of calculation error, 
conventional numerical techniques cannot produce an approximate solution without spatial division 
for simulation fields. Although modeling and analyzing the fields with fine node layout (a small 
mesh) can greatly reduce the error, a large calculation cost is required. In the conventional 
discretization, so-called shape functions interpolate dependent-variable distributions from the 
variable values at neighboring points such as nodes and grid points. The error is strongly associated 
with the precision of interpolating functions. Polynomial functions are generally used for 
interpolation but the simple functions cannot express a sufficiently smooth variable distribution. 
Especially in structural analyses, a coarse analytical model often causes problems of shear locking 
[Wang D et al. (2006); Li S et al. (2000)] and hourglass deformation [Joldes GR et al. (2008)] in 
conventional finite element methods (FEMs). In general, a variable profile in each finite-element 
mesh does not obey governing equations because types of shape functions are determined almost 
regardless of the type of the equations. Additionally, the dependent-variable gradients are 
discontinuous on grid lines, interfaces between meshes, and interfaces between control volumes. 
This is because the variable distribution is interpolated from only variable values at nodes in the 
mesh. Even multiscale FEMs [Chua J et al. (2008); Ilic S et al. (2009)] and multiscale finite volume 
methods [Jenny P et al. (2004); Lunati I and Jenny P (2006)] cannot generate a continuous variable 
gradient throughout the field. The above problems can occur when analyzing either a homogeneous 
field or a heterogeneous field.  
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There is another demand for multiscale analysis that can model and analyze heterogeneous 
materials quickly at low computational cost. Heterogeneous materials, such as alloyed metals, 
plywood, reinforced concrete, and advanced composite structures have been used in many different 
fields. Composites are composed of multiple constituents and have different physical or chemical 
properties from the individual components. Although the composite materials can be optimally 
designed for different purposes in accordance to the use and application, the mechanical, thermal, 
and electromagnetic tendencies are quite difficult to estimate without a lot of experiments. High-
precision numerical analysis that can precisely predict the properties of the composites without 
performing any experiments would shorten a product development period. Therefore, multiscale 
schemes, such as homogenization method [Kaczmarczyk Ł et al. (2010)], multiscale FEM [Chua J 
et al. (2008); Ilic S et al. (2009)], and multiscale finite volume method [Jenny P et al. (2004); Lunati 
I and Jenny P (2006)], coupling macroscopic and microscopic models are necessary to achieve both 
high analytical accuracy and low computational cost. However, as mentioned above, these 
conventional techniques cannot give an exact solution satisfying a governing equation everywhere.  
 
A new meshfree multiscale analysis is developed here to overcome all the above problems [Suzuki 
Y et al. (2014)]. The scheme is termed the seamless domain method (SDM) because a global field 
(the entire structure) is modeled as a “seamless” simulation domain that has no element, mesh, or 
grid. Although the SDM model has only a small number of coarse-grained points (CPs), the solution 
can represent a heterogeneous material with microscopic constituents without homogenization. 
Instead of spatial discretization, a local domain (i.e., a part of the global domain) is analyzed before 
conducting the global analysis. This enables dependent-variable profile in the SDM model to satisfy 
the governing equations almost perfectly throughout the global domain. Additionally, both the 
variable and its gradient are continuous everywhere.  
 
To investigate the practical efficacy of the proposed scheme, two kinds of fundamental numerical 
examples were solved by the SDM: a steady temperature field (scalar field); static linear-elastic 
fields (vector field). Heterogeneous fiber composite materials were analyzed and both the analytical 
precision and computational time were compared with those of ordinal FEM analysis. In addition, 
occurrence of shear locking is also investigated in a bending-dominated problem. As a result, every 
SDM solution using only a few hundreds of points was shear-locking-free and as accurate as that 
from conventional finite element analysis using more than 300 thousands of node points. 

Formulation of the seamless domain method (SDM) 

This section illustrates theoretical framework of the SDM. Cartesian vectors and matrices are used 
throughout the paper. The proposed SDM couples microscopic local domain and microscopic global 
domain.  
 Local analysis that generates interpolating functions and influence coefficient matrix 
 Global analysis that provides a macroscopic solution (i.e., dependent-variable values of all 

coarse-grained points (CPs)) using the influence coefficient matrix, and the microscopic 
solution from the macroscopic solution using the interpolating functions 
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In the local analysis, a small domain composed of a few units to several tens of units is analyzed to 
obtain high-precision interpolating functions and influence coefficients for the second steps. This 
objective can be achieved with conventional numerical analysis by finely discretizing governing 
equation(s) of the local domain spatially (and temporally). The second analysis is of the entire 
global domain that is represented by CPs. Dependent variable at every CP in the global domain can 
be obtained using the influence coefficients. After that, the detailed information on the local-
variable distributions in the global domain is calculated from the CPs’ variable values using the 
interpolation function obtained in the first step.  
 
The following subsections will explain the details of each analysis by taking steady temperature 
problem as an example. Therefore, dependent variable, its gradient, flux, and flow rate are the 
temperature, temperature gradient, heat flux, and heat flow, respectively. 

Global analysis 

This subsection illustrates how to conduct global analysis with a composite material as an example 
global domain. As presented in Fig. 1, the composite is assumed to have a perfectly periodic 
microstructure, called the unit, which has single carbon fiber in the center of the unit. GΩ  ( dR⊂ ) is 
a d -dimensional ( 2=d  in this example) global domain whose boundary is GΓ . The global 
analysis of the entire composite structure is represented by CPs that are shown as black circles in 
Fig. 1. The CPs endowed with temperature as a dependent variable are placed at four corners of 
each unit in this example, which can significantly reduce the number of degrees of freedom (DOF) 
in comparison with an exact FEM domain that models fiber and polymer separately. 
 
Figure 2 presents a partial magnified image of Fig. 1. A red dashed frame encircling CPs 1–8 is 
defined as a “region of influence”, R1Ω , where neighboring CPs interact with each other. At first, 
temperature distribution in the red area is calculated. Let us consider a case where temperature at 
CP 0 is unknown and temperatures at all the CPs remaining in the red frame (i.e., CPs 1–8) are 
known. The m  CPs ( m =8 in this case) denoted ( )

R
mu  on the region’s boundary R1Γ  and the 

temperature vector on these CPs is denoted 

    ( ) ( )TRR
1

R
mm uu =u  on R1Γ ,     (1) 

  

 

 

 
Figure. 1 Heterogeneous global domain (fiber 

composite) that is assumed to have a 
perfectly periodic microstructure 

Figure. 2 Regions of influence in partial 
magnified image of the heterogeneous 
global domain as shown in Fig. 1 
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where R
iu  is temperature at CP i . The superscript “T” refers to the transposition of a matrix or 

vector. Unless heat enters from outside the system, the correct temperature contour in the blueframe 
can be calculated from the temperature profile on the frame. However, there are infinitely many 
points and temperature DOFs on the frame, and this estimation approach is thus unrealistic. 
Therefore, the temperature distribution in the blue frame is estimated referring to temperatures at 
CPs 1–8.  

    ( )( ) ( )( ) ( )
R
mmmu uxNx =  in R1Ω ,     (2) 

where ( )( )xmu  is temperature at position R1
T),( Ω∈= yxx  and ( )mN  is a special interpolating 

function matrix derived in local analysis. Details of the local analysis will be illustrated in the next 
subsection. The number of CPs, m  need not necessarily be 8. A sufficient number of reference CPs 
gives a true temperature distribution. Even if the global domain is not homogeneous, there is no 
necessity to separately model the microscopic constituents but the structural heterogeneity is exactly 
taken into account. After obtaining the temperature distribution in the blue frame, ( ) ( )xmu , 
temperature at CP 0 is thus determined by substituting 0x =  into Eq. 2.  

    ( ) ( ) ( ) ( ) ( ) ( ) ( )
RRR

0 mmmmmuu uau0N0 ===      (3) 

where 

    ( ) ( ) ( ) ( )mmm aa 1== 0Na      (4) 

is a influence coefficient matrix. As it is, however, the global domain is spatially discretized by the 
blue frame and becomes a patchy domain having many seams. There is no guarantee that 
temperature and its gradient on the seam (i.e., frame) are continuous. To eliminate the seam, we 
should follow the procedure explained below. Temperature at CP 1 is estimated referring to the 
remaining CPs in the green dashed frame (i.e., CPs 0, 2, 8–13 in Fig. 2) using ( )ma  in Eq. 4. It is of 

importance that both the blue frame ( R1Ω ) and green frame ( R2Ω ) contain CPs 0, 1, 2, 8. These 
shared CPs works for making the temperature contour in the shared region ( R2R1 Ω∩Ω ) interpolated 
referring to temperature at CPs 1–8 in the blue frame correspond with that interpolated from CPs 0, 
2, 8–13 in the green frame. When the shared region has a sufficient number of shared CPs, the two 
temperature distributions match exactly. As this improves continuity of the temperature and its 
gradient on the shared frame greatly, the shared frame is no longer a seam. By describing frames 
centered at each of the CPs, the global domain is filled with shared regions. There is no region or 
seam belonging to an unshared and isolated frame, and the global domain finally becomes 
“seamless” and has continuous distributions of temperature and its gradient satisfying the governing 
equation(s) almost exactly.  
 
Note that the SDM calculates temperature at a CP referring to temperature at surrounding CPs. 
There is no necessity to formularize and solve a stiffness equation (i.e., nodal equation of 
equilibrium) that determines the relation between nodal heat flow and the nodal temperature. When 
n  CPs represent a two-dimensional global domain, GΩ , there is n  DOFs in GΩ . The vector 
including all the CPs’ temperature in GΩ , ( )

G
nu , has n  components 

    ( ) ( )TGG
1

G
nn uu =u  in GΩ .     (5) 
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We can formularize the same number of relational expressions between the temperature of the 
center CP and those of surrounding CPs like Eq. 3 as that of the components of ( )

G
nu . Consequently, 

the temperatures of all the CPs in GΩ , ( )
G
nu , can be determined uniquely. The ( )

G
nu  satisfies the 

following algebraic equations. 

  ( ) ( ) ( )
GGG
nnn uua = ,         (6) 

where matrix ( )
G
na   is established by assembling all the influence coefficient matrices, ( )ma . ( )

G
na  is a 

band matrix whose rows and columns are the same as the number of the CPs, n : 

  ( )























=

G
,

G
1,

G
,

G
1,2

G
,1

G
2,1

G
1,1

G

nnn

ji

n

n

aa

a
a

aaa











a ,        (7) 

where G
, jia  is the component in the i -th row and j -th column of ( )

G
na . By imposing boundary 

conditions into Eq. 6, the solution of ( )
G
nu  is calculated uniquely. For example, let us consider a 

Dirichlet boundary problem where a CP’s temperature G
iu  is given and the other temperatures are 

unknown. At first, all the unknown temperatures on the right side of Eq. 6 are transposed to the left 
side:  
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Subsequently, 1 and 0 are substituted into G
,iia  and the remaining components in the i -th row, 

respectively:  
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By multiplying both sides of Eq. 9 by the inverse of the matrix on the left side of Eq. 9, we can 
determine all the components of ( )

G
nu . After solving the above equation, local-temperature 
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distributions can be easily obtained by interpolating from ( )
G
nu  using ( )( )xN m  in Eq. 2. Although the 

above illustration shows how to solve a Dirichlet boundary problem, the SDM can also solve 
Neumann boundary problems and mixed boundary problems. Note that the number of reference 
CPs in the region of influence, m , is arbitrary in Eqs. 1–4.  

Local analysis 

Before conducting global analysis, local analysis is done to calculate the interpolating function 
matrix ( )mN  in Eq. 2 and influence coefficient matrix ( )ma  in Eq. 4. This objective can be achieved 

by analyzing a local domain LΩ  ( dR⊂ ) with boundary LΓ  that is extracted from the global 
domain, GΩ , as shown in Fig. 3. In this case, LΩ  is composed of 16 units. Although the local 
analysis is done employing the traditional FEM, other conventional numerical techniques can be 
also used. By dividing LΩ  into fine meshes having a sufficient number of nodes, ( )mN  and ( )ma  for 

each region of influence RΩ  can be obtained. 
 

Let us illustrate how to construct ( )mN  and ( )ma  for the internal region of influence. As depicted in 

Fig. 3(a), LΩ  includes the internal region, RΩ , composed of four units ( RΩ LΩ⊂ ). The RΩ  has m  
CPs on the edge , RΓ , and another CP (CP 0) in the center. Figure 3(a) illustrates a case where m  is 
equal to 8. In the global analysis, temperature profile in the RΩ  is determined referring to the 
temperature values at the m  CPs using ( )mN . Encircling RΩ  with the outer 12 units is termed the 
oversampling method [Henning P et al. (2013); Efendiev Y et al. (2013)]. It is known that 
oversampling reduces boundary effect on RΩ . The dimension of the domain, d , is equal to 2 in this 
case. The m  CPs denoted ( )

R
mu  in Eq. 1 and the m  nodes denoted ( )

L
mu  are put on the region’s 

boundary RΓ  and the local domain’s boundary LΓ , respectively. The temperature vector ( )
L
mu  on 

those points are denoted 

    ( ) ( )TLL
1

L
mm uu =u  on LΓ .     (10) 

As shown in Fig. 3, a Dirichlet boundary is put on LΓ  so that the LΓ  has given linear temperature 
profile. The temperature of the center CP 0 and that at an arbitrary point x  ( RΩ∈ ) are denoted R

0u , 

 
Figure 3. Layout of coarse-grained points (CPs) in local domains for the SDM analysis: (a) 

shows local domain including the internal region of influence; (b) shows local domain 
including the middle-left region; (c) shows local domain including the bottom-left region 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

391



( )( )xmu , respectively. The objective of the local analysis is to calculate the relations between ( )
L
mu  

and the other temperatures R
0u  and ( )( )xmu :  

 ( ) ( )

( )( ) ( )( ) ( )
L

LRR
0

mmm

mm

u

u

uxAx

uA

=

=
.        (11) 

All the entries of ( )
R
mA  and ( )( )xA m  can be derived from only a single analysis of local domain. The 

( )
L
mu  and ( )( )xu m  are expressed in the form 

  ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
RR1R

R1RL

mmmmmm

mmm

u uxNuAxAx

uAu

==

=
−

−

,       (12) 

where 

 ( ) ( ) ( ) ( ) ( )( ) 1R −
= mmm AxAxN ,        (13) 

is the interpolating function matrix that was stated in the previous subsection. When the LΩ  has a 
sufficient number of nodes, ( )( )xN m  provides accurate temperature profile. By substituting 0x =  

into ( )( )xN m  in Eq. 12, the ( )ma  can be calculated like Eqs. 3 and 4. Equation 3 shows that R
0u  can 

be written as a linear combination of ( )ma  and ( )
R
mu . Each component of ( )ma  is the influence of a 

surrounding CP on CP 0 as shown by the arrows in Fig. 2. An increase in the number of CPs m  
improves the calculation accuracy of R

0u .  
 
The above illustration shows how to make the internal region of influence. Respectively different 

( )mN  and ( )ma  need to be prepared for the other outer regions depicted in Figs. 3(b) and (c) because 
the outer regions are adjacent to a free edge and receive a boundary effect through one or more 
aspects of the region. For instance, 2-by-3 units located at the left side of the local domain are 
defined as the middle-left region of influence. In this region, unknown temperatures at CPs 01 and 
02, R

02
R
01,uu , are calculated referring to temperatures at 9 CPs (CPs 1–9). Another region located at 

the corner of the local domain has 3-by-3 units as shown in Fig. 3(c). In the region, temperatures at 
CPs 01–04, R

04
R
03

R
02

R
01 ,,, uuuu , are estimated referring to temperatures at 7 CPs (CPs 1–7). ( )mN  and 

( )ma  of these outer regions can be obtained in a similar way to those of the internal region. 
Constructing respective ( )mN  and ( )ma  for each region enables the SDM solution to take the 
boundary effect into account. In preparing the outer regions, we only have to move the CPs so that 
the region has contact with the local domain’s boundary as shown in Figs. 3(b) and (c). In addition, 
both the number and arrangement of CPs in the local domain are arbitrary in Eqs. 10–13 and Figs. 
1–3. Consequently, all the regions can be constructed from a result of single local analysis. In other 
words, there is no necessity to conduct FEM analysis of the local domain twice or more [Suzuki Y 
et al. (2014)]. 
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Numerical examples 

Outline 

Numerical example problems for testing the practical efficacy of the SDM technique are outlined. 
To investigate the simulation accuracy and calculation cost, several heterogeneous fields such as 
steady temperature field and linear elastic fields are analyzed employing the following two 
numerical techniques:  
 the SDM scheme with quadrangular regions of influence, and 
 the conventional FEM analysis with four-node linear isoparametric meshes. 
It is mathematically guaranteed that an FEM solution converges to exactly correct one when the 
finite-element mesh is infinitesimally fine. The two methods are compared in terms of analytical 
accuracy and computational cost. In all the examples, local analyses of the SDM are conducted 
employing a traditional FEM. The target heterogeneous fields are fiber composite materials that 
have carbon fibers in polymer matrix as depicted in Figs. 4 and 5. The composites, which have a 
huge number of fibers about 5–15 μm in diameter in the polymer matrix, have been used as a 
structural material in aircraft and aerospace components because they exhibit superior mechanical 
properties, higher fatigue strength characteristics, lower mass density, and higher corrosion 
resistance than conventional metallic materials. A heterogeneous material is assumed to have a 
perfectly periodic microstructure, termed the unit, which has a carbon fiber as shown in Figs. 4 and 
5. 
 
In local analysis of the SDM, a small local domain composed of 4-by-4 units extracted from the 
entire global field is analyzed to calculate an interpolation function matrix ( )mN  in Eq. 2 and 
influence coefficient matrix ( )ma  in Eq. 3 for each region of influence. For the numerical examples, 
we need prepare one kind of internal region of influence and 8 types of outer regions for the 
subsequent global analysis. The internal region represents part of the global domain that is located 
inside the global domain and not adjacent to the global domain’s boundary. Figure 3(a) illustrates 
how to construct ( )ma  and ( )mN  for the internal region. The 2-by-2 units that are located at the 
center of the local domain and enclosed in the dashed frame are targeted as the internal region; the 
area encircled by the bold frame forms a surrounding region to remove the boundary effect on the 
target. On the other hand, the other 8 types of regions represent outer parts of the global domain. 
One or two surfaces of the outer regions are adjoined to the global boundary. In calculating ( )mN  

  

  
Figure 4. Fiber composite global domain for 

the steady temperature example problem 
Figure 5. Heterogeneous global domain for 

the linear-elastic numerical example 
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and ( )ma  for the outer regions, CPs are arranged and the regions of influence are extracted as shown 
Figs. 3(b) and (c). Once the two regions (i.e., middle-left and bottom-left regions) are constructed, 
the other six kinds of regions (i.e., middle-right, top-middle, bottom-middle, bottom-right, top-left, 
and top-right regions) can be easily generated by geometric symmetries. Again, note that all the 
regions can be prepared from the result of the single local analysis.  
 
After the FEM analysis of the local domain is finished, we move on to the SDM analysis of the 
global domain. The SDM global field does not require individual fiber and polymer models. 
Because the heterogeneous material has a periodic unit, the global domain has evenly spaced CPs. 
After assembling and solving algebraic equations like Eq. 9 to determine dependent-variable values 
of all CPs, ( )

G
nu  in Eq. 5, the variable distribution in the global domain is interpolated from ( )

G
nu  

using ( )( )xN m  in Eq. 2.  

Problem statement for steady-state heat conduction  

A steady temperature heterogeneous field as shown in Fig. 4 is analyzed by the SDM and ordinal 
FEM. The conditions are: two-dimensional; steady-state. The vector of heat flux, matrix of thermal 
conductivity, and temperature of an arbitrary point x  are denoted ( ) 2Rxq ∈ , ( ) 22×∈RxC , and 
( ) Rx ∈u , respectively. 

 ( ) ( ) ( )xxCxq u∇−= ,        (14) 

where 

 ( ) 







=

2221

1211

CC
CC

xD ,        (15) 

( )xu  then satisfies the governing equation  

 ( ) ( ) ( ) ( ) ( ) ( ) 02
2

2

222
1

2

11
2 =

∂
∂

+
∂
∂

=∇=∆
x
uC

x
uCuu xxxxCxxC  for ( )T, yx=∀x Ω∈ ,        (16) 

throughout the simulation field. If the domain is isotropic and has the same thermal 
conductivities in the x  and y  axes, 

02211 ≠= CC , 
then 

 02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u .        (17) 

As depicted in Fig. 4, Dirichlet boundary conditions are imposed on the target carbon fiber/epoxy 
resin composite material. The temperatures at top-left, top-right, bottom-left, and bottom-right 
corners are fixed at 75, 0, 100, and 50 °C, respectively. The outer edge of the global domain except 
for the four corners is a heat insulation 
wall. Thermal conductivity coefficients 
used for the analysis are listed in Table 
1. 
 

  
Table 1. Thermal conductivity values used in 

analyses of the examples 
 Material Thermal conductivity [W·m−1·K−1] 

 C11 C22 C12 = C21 
 Carbon fiber 500 500 0 
 Epoxy resin 0.26 0.26 0 
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In the SDM analysis, we test two cases where 4=m  (Fig. 6(a)) and 8=m  (b). m  is the number of 
reference CPs for temperature. The local domain, LΩ , is divided into fine finite-element meshes 
and analyzed with Dirichlet boundary conditions of LL

2
L
1 ,, muuu   on the m  CPs on the 

boundary of LΩ  and LΓ , to obtain the interpolating function matrix, ( )( )xN m  in Eq. 2, and influence 

coefficient vector, ( )ma  in Eq. 3. LΩ  has 3,649 nodes. The global domain is represented by 59 CPs 
in the case that 4=m  and 117 CPs in the cases that 8=m . After constructing and solving algebraic 
equations like Eq. 9 to determine temperature values of all CPs, ( )

G
nu  in Eq. 5, the temperature 

contours in the global domain is interpolated from ( )
G
nu  using ( )( )xN m . Conversely, in the traditional 

FEM, fiber and polymer are modeled separately and divided into sufficiently fine meshes (more 
than 20 thousands of node points). 

Problem statement for linear elasticity 

The static elasticity fields as described in Fig. 7 are analyzed. The conditions are: two-dimensional; 
static; linear elastic; plane stress. The vectors of stress, engineering strain, and displacement of an 
arbitrary point x  ( Ω∈ ) are denoted ( ) 3Rxσ ∈ , ( ) 3Rxε ∈ , and ( ) 2Rxu ∈ , respectively. The 
constitutive law for the domain can be written in the form  

 ( ) ( ) ( )xεxDxσ = ,        (18) 

where 

 ( )


















∂
∂+∂

∂
∂

∂
∂

∂

=
















=

x
v

y
u

y
v

x
u

xy

y

x

γ
ε
ε

xε ,        (19) 

and vu,  are displacements in the x  and y  axes at x , respectively.  

 

 
Figure 6. Layout of coarse-grained points (CPs) in local domains for the SDM analysis: (a) 

shows the case that m = 4; (b) shows the case that m = 8 
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Figure 7 describes three 
carbon fiber (T650-35)/ 
Polyimide resin (PMR-
15) composites 
consisting of 16-by-24 
units which have single 
fiber in the center under: 
(a) a uniaxial tensile 
load; (b) a bending load; (c) a shearing load. Perfect bonding between the fibers and resin matrix is 
assumed. The elastic properties are listed in Table 2 [Rupnowski P et al. (2005)].  
 
In the example, we test single case where 8=m .  The local domain, LΩ , has 14,864 nodes. Global 
analysis of the SDM is conducted using ( )mN  and ( )ma  obtained in the local analysis. The three 
global domains shown in Figs. 7(a)–(c) have the same structure but different boundary conditions 
are imposed. Each global domain of the SDM is represented by 425 CPs, while more than 300 
thousands of nodes are in the FEM model. This is because the SDM global domains do not require 
individual fiber and polymer models. After constructing and solving algebraic equations like Eq. 9 
to determine displacement values of all the CPs, ( )

G
nu  in Eq. 5, the displacement distribution in the 

global domain is interpolated from ( )
G
nu  using ( )( )xN m  in Eq. 12. 

Results for steady-state heat conduction  

Figures 8 present the temperature distribution, u , and temperature gradients, ∂u/∂x and ∂u/∂y, in 
the heterogeneous domain. In the traditional FEM, fiber and polymer are modeled separately and 
divided into sufficiently fine meshes. Therefore, the FEM solutions as depicted in Fig. 8(a) are 
believed to be exactly correct. Therefore, when the SDM solution (Figs. 8(b) and (c)) accords with 
the FEM result, calculation error of the SDM is regarded as zero.  
 
A sharp change in temperature from 0 to 100 °C is generated over the global domain. The 
temperature distribution calculated with the SDM having 59 CPs (Fig. 8(b)) is partially 
discontinuous. This means that the number of reference CPs, 4=m  is insufficient to give the exact 
solution. The temperature distributions of the SDM consisting of 117 CPs (Fig. 8(c)) almost 
completely matches that obtained with the conventional FEM with more than 20 thousands of 
nodes. Therefore, it is believed that 8=m  is enough for solving the example problem. The contours 
of the temperature gradient in Fig. 8(c) show that high resolution of localized steep gradients can be 

 Table 2. Linear elastic properties of the carbon fiber and 
polyimide resin models [Rupnowski P et al. (2005)] 

 Material Young’s 
modulus in the x 

Young’s 
modulus in the y 

Poisson 
ratio, xyν  

 Carbon fiber  
(T650-35) 

13.8 GPa 13.8 GPa 0.37 

 Polyimide resin 
(PMR-15) 

4.0 GPa 4.0 GPa 0.29 

 

 
Figure 7. Three carbon fiber composite structures: (a)–(c) show the analysis model under a 

uniaxial tensile load, a bending load, and a shearing load, respectively 
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achieved by the SDM.  

 
Figure 8. Calculated steady-state temperature and temperature gradient distributions in the 

composite material: (a)–(c) describe the results of FEM with >20,000 nodes, those of the 
SDM with 59 points (m=4), and those of the SDM with 117 points (m=8), respectively 

 
Table 3. Comparison of analytical accuracies and calculation times 

Item DOF Average 
difference in temp. 

Average difference in 
temp. gradient 

Total calculation 
time 

Symbol  u ∂u/∂x1 ∂u/∂x2  
Unit  Degree ×104 °C/m s 
FEM >20,000 0 0 0 8.10 

SDM (m = 4) 59 1.35 12.1 6.34 1.12 
SDM (m = 8) 117 0.00308 4.42 0.781 1.14 

 
Table 3 gives the average values of the absolute difference in temperature, u, and that in 
temperature gradients, ∂u/∂x and ∂u/∂y, when comparing with the result of the conventional FEM. 
The average difference in u over all CPs in the case of 59 CPs ( 4=m ) and in the case of 117 CPs 
( 8=m ) are 1.35, 0.00308 °C, respectively. Although the temperature result for 4=m  is not exactly 
correct in comparison with the temperature difference of 100 °C arising in the global domain, there 
is no temperature difference at all for 8=m . The average differences in ∂u/∂x and ∂u/∂y for 8=m  
are 4.42 × 104 and 0.781 × 104 °C/m, respectively. These errors are sufficiently small because the 
maximum temperature gradients of ∂u/∂x and ∂u/∂y at all CPs are both 1.40 × 107 °C/m. As shown 
in Figs. 15 and 16, employing 117 CPs in the SDM ( 8=m ) gives highly continuous distributions of 
∂u/∂x and ∂u/∂y that are almost the same as those of the exact result obtained with the FEM and 
>20,000 of nodes.  
 
The total computational times are compared in Table 3. The results include the time expended in 
meshing domains and solving the inverse matrix of matrix in Eq. 9. For the SDM, total 
computational time of the local and global analyses is presented. In the SDM, increase of the 
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number of CPs enhances greatly the simulation precision but requires little additional calculation 
time. The conventional FEM with more than 20 thousands of nodes has 7.1 times the calculation 
cost of the SDM with 117 CPs in producing a solution as accurate as that of the SDM.  

Results for linear elasticity 

Figure 9 presents calculated displacement and strain contours in the composite models under: (a) a 
uniaxial tensile load; (b) a bending load; (c) a shearing load. As stated above, all the FEM results in 
Figure 9 are supposed to give the almost exact solution. Each SDM model is represented by 425 
CPs. Therefore, if the SDM result accords with the FEM result, analytical error of the SDM is 
regarded as zero. As shown in Figs. 9(a)–(c), all the contours of displacement and strain obtained 
with the SDM are sufficiently continuous and appear to exactly match those obtained with the 
conventional FEM. Table 4 presents the average values of the absolute difference in displacement 
over all CPs between the SDM solutions and the FEM solutions. All of the average difference in 
displacement in the x  axis, u , and that in the y  axis, v , are less than 0.007 µm. The three 
composite materials in Figs. 7(a)–(c) receive respectively different types of loads but the same 
maximum displacement of 1 µm occurs in them. Therefore, these differences are sufficiently small 
compared with the maximum displacement in the domain and practically negligible.  

 
As a traditional FEM generally interpolates displacement contour in each mesh from displacement 
at nodes in the mesh using a simple polynomial function, coarse-mesh layout cannot reproduce a 
complicated displacement profile. Especially, FEM models with fully integrated first-order 
quadrangular solid meshes (or hexahedral solid meshes in a case of three-dimensional analysis) tend 
to overestimate the stiffness in bending-dominated problems. This problem is called shear locking 
and occurs because a first-order mesh cannot represent a curved surface. However, as shown in Fig. 
9(b), employing only 425 CPs in the SDM reproduce smooth bending deformation and does not 
cause shear locking because the displacement is interpolated by exact functions obtained by the 
prior analysis of fine-mesh local domain. For the similar reason, the SDM model is free of 
hourglass deformation. Hourglassing is another major problem of the FEM caused in certain coarse-
grained domains. This is zero-energy deformation mode where a mesh deforms without consuming 
strain energy because all kinds of stresses at each integration point in the mesh are zero.  
 
Table 5 presents comparison of the total computational times required to solve the problems. In 
giving a solution as accurate as that of the SDM, the conventional FEM requires more than one 
hundred times the calculation cost of the SDM. As the size of the global domain becomes large, the 
FEM has huge cost and becomes inefficient. In contrast, the SDM can analyze a large global 
domain without considerable cost and its competitiveness and effectiveness become higher as the 
global domain increases in size.  
 

Table 4. Differences in displacement between the 
SDM and the FEM when analyzing three FRP 
models 

Item Ave. of absolute 
difference in 
displacement 

Max. of absolute 
difference in 
displacement 

Symbol u in the x 
axis 

v in the y 
axis 

u in the x 
axis 

v in the y 
axis 

Unit µm 
Tensile 0.00179 0.00691 0.00490 0.00909 
Bend 0.00090 0.00127 0.00357 0.00308 

 
Table 5. Comparison of total 

calculation time 
Load Method Calculation 

time 
Tensile FEM 425 sec 

SDM 3.46 sec 
Bend FEM 425 sec 

SDM 3.46 sec 
Shear FEM 425 sec 

SDM 3.46 sec 
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Shear 0.00019 0.00038 0.00180 0.00085 
 

 
 Figure 9. Calculated results of the FRP consisting of simple RVEs when applying: (a) a 
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uniaxial tensile load; (b) a bending tensile load; (c) a shearing load. 

Conclusions 

This manuscript proposes a new high-cost-effectiveness multiscale technique, termed the SDM, 
which is applicable to numerical analyses by modeling a macroscopic field as a “seamless” global 
domain that has no mesh, grid, cell, or control volume and requires only coarse-grained points. The 
SDM involves two numerical analyses. The first is an analysis of the local domain to construct 
accurate interpolating functions and influence coefficients for the second analysis. The second 
analysis is of the seamless global domain using the special interpolating functions and influence 
coefficients. There are two novelties of the SDM.  
 Dependent-variable distributions interpolated by the special functions satisfy governing 

equations of the domain almost exactly.  
 The seamless domain can enhance continuity of the dependent variable and its gradient. 
Therefore, an accurate global solution of the entire field can be obtained by the SDM. This paper 
explains theoretical aspects of the SDM that are useful in the analysis of domains with a strong 
boundary effect, anisotropic fields, and heterogeneous materials, as well as isotropic homogenous 
fields. The analytical precision and computational cost of the SDM technique were investigated for 
two numerical example problems of two-dimensional periodic heterogeneous materials: stationary 
temperature field; linear elastic fields. The SDM models with eight reference points (i.e., 8=m ) 
gave much more exact solutions in both example problems than the ordinal FEM.  
 
As a result of the steady-state heat conduction analysis, the average differences in temperature, u , 
and temperature gradients, ∂u/∂x and ∂u/∂y, between the solution of the SDM model represented by 
only 117 points and that of the conventional FEM model with 20 thousand nodes were 4.17×10–5 
°C, 0.0305 °C/m, and 0.00649 °C/m, respectively. The temperature and its gradient were highly 
continuous over the entire material. This verified the feasibility of the SDM for a scalar temperature 
field. The ordinal FEM required 7.1 times the calculation cost of the SDM in producing a solution 
as accurate as that of the SDM. 
 
Additionally, we also applied the SDM for linear elastic analysis of vector displacement fields. As a 
result, the SDM with 117 points provided as accurate solutions as those from conventional FEM 
using more than 300 thousands of nodes. For all the elastic examples, the average difference of 
displacement between the SDM solution and the FEM solution with respect to the maximum 
displacement was less than 0.7 %. The displacement and strain were sufficiently continuous 
throughout the entire global domains. The SDM solutions were shear-locking-free and hourglass-
free because the global domains maintain high analytical resolution and the displacement 
distributions were flexible enough to fit the true ones. The FEM required more than 100 times the 
computational cost of the SDM in generating a solution at the same level of accuracy as that of the 
SDM.  

References 

Wang D, Chen JS. (2006) A locking-free meshfree curved beam formulation with the stabilized conforming nodal 
integration conforming nodal integration. Comput Mech 39, 83–90. 

Li S, Hao W, Liu WK. (2000) Numerical simulations of large deformation of thin shell structures using meshfree 
methods. Comput Mech; 25, 102–116. 

Joldes GR, Wittek A, Miller K. (2008) An efficient hourglass control implementation for the uniform strain hexahedron 
using the Total Lagrangian formulation. Commun Numer Meth Engng 24, 1315–1323. 

Chua J, Efendievb Y, Gintingc V, Hou TY. (2008) Flow based oversampling technique for multiscale finite element 
methods. Advances in Water Resources 31(4), 599–608. 

Ilic S, Hackl K. (2009) Application of the multiscale FEM to the modeling of nonlinear multiphase materials. J Theor 
Appl Mech 47(3), 537–551. 

ICCM2014, 28th-30th July 2014, Cambridge, England

400



Jenny P, Lee SH, Tchelepi HA. (2004) Adaptive multiscale finite-volume method for multiphase flow and transport in 
porous media. Multiscale Mode. Simul 3(1), 50–64. 

Lunati I, Jenny P. (2006) Multiscale finite-volume method for compressible multiphase flow in porous media. Journal 
of Computational Physics 216(2), 616–636. 

Kaczmarczyk Ł, Pearce CJ, Bićanić N. (2010) Studies of microstructural size effect and higher-order deformation in 
second-order computational homogenization. Comput Struct 88(23–24), 1383–1390. 

Henning P, Peterseim D. (2013) Oversampling for the multiscale finite element method. arXiv(mathe NA) 
arXiv:1211.5954.  

Efendiev Y, Galvis J, Li G, Presho M. (2013) Generalized multiscale finite element methods. Oversampling strategies. 
arXiv(mathe NA) arXiv:1304.4888. 

Suzuki Y, Soga K, Nakamura Y. (2014) Seamless domain method: a meshfree multiscale numerical analysis. Int J 
Numer Meth Eng (under review). 

Rupnowski P, Gentz M, Sutter JK, Kumosa M. (2005) An evaluation of the elastic properties and thermal expansion 
coefficients of medium and high modulus graphite fibers. Composites Part A 36(3): 327–338. 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

401



 

Calculation of underwater acoustic scattering problems in 

unbounded domain using the alpha finite element method 

W. Li
1,2

, 
*
Y.F. Li

1 
and Y.B. Chai

1
 

1
Department of Naval Architecture and Ocean Engineering, Huazhong University of Science 

and Technology, Wuhan City, P. R. China 430074 
2
Hubei Key Laboratory of Naval Architecture & Ocean Engineering Hydrodynamics (HUST) 

*
Corresponding Author: lyf198961@gmail.com 

Abstract It is well-known that the classical finite element method fails to provide 

accurate results to the Helmholtz equation due to the dispersion error, which is rooted 

at the “overly-stiff” feature of the FEM model. By combining the “smaller wave 

number” model of FEM and the “larger wave number” model of NS-FEM, an alpha 

finite element method(α-FEM) can obtain accurate solutions. In this paper, the 

α-FEM has been applied to analyze 2D underwater exterior scattering problems in the 

unbounded domain. The non-reflecting boundary condition is imposed as an artificial 

boundary to model exterior acoustic problems. Several two-dimensional underwater 

exterior scattering problems with known exact solutions have been chosen as 

numerical examples. Results demonstrate the excellent properties of α-FEM.  

Keywords:  Alpha finite element method(α-FEM), Acoustic Scattering, Unbounded 

Domain, Non-reflecting boundary 

 

Introduction 

For several decades, many numerical methods have been introduced to compute the 

approximate solutions of acoustic problems [Suleau et al.(2000); Harari and 

Magoules(2004); Babuska et al(1999)]. The standard finite element method (FEM) is 

one of the most widely-used numerical methods in solving these acoustic problems 

governed by the Helmholtz equation. However it is known that the FEM fails to 

provides reliable predictions in high frequency range. Many studies have been done 

to improve resolve this defect. But such efforts have difficulties because of the 

well-known “pollution error”.  

Various numerical methods have been proposed, They are the stabilized FEM 

[Harari and Huhes(1992; Thompson and Pinsky(1995)], higher order methods 

[Petersen et al.(2006)]，meshless method [Bouillard and Suleau(1998)] and so on. 

They all get better solutions. However, “softened” stiffness for the discrete model is 

more effective [Liu et al.(2009)]. The wave number in the FEM model is smaller than 

the actual one, leading to the so-called numerical dispersive error. The FEM model 

based on the standard Galerkin weak form behaviors stiffer than the continuous 

system. In order to “soften” the numerical system, Liu [Liu(2008; 2009)] has 

proposed generalized gradient smoothing technique and applied if in the meshfree 

setting to formulate the node-based smoothing point interpolation method (NS-PIM) 
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and node-based finite element method (NS-FEM). But NS-PIM and NS-FEM model 

both behave “overly-soft”. An alpha finite element method (α-FEM) was then 

proposed [Liu et al.(2008)] by combining the “overly-stiffness” of the FEM and the 

“overly-soft” of the NS-FEM through a parameter α, resulting in a numerical model 

with very close-to-exact stiffness. 

In this work, by introducing the DtN artificial boundary condition 

[Givoli(1988); Givoli and Keller(1989)], the accuracy and convergence of the α-FEM 

is studied. Initially the scattering problem is described. Next, the weak form of 

α-FEM and DtN boundary condition for the two dimensions case is derived. Finally, a 

comparison between the α-FEM solution, the FEM solution and the numerical 

solution shows the performance of the α-FEM for a rigid sphere as an example. 

 

Mathematical model of acoustic problem 

Consider an acoustic problem domain   with boundary  . The acoustic wave 

equation can be written as following form: 

 

 

2
2

2 2

1
0


  



p
p

c t
  (1) 

 

where p denotes the acoustic field pressure and c be the speed of sound traveling in 

fluid,    and t denote the Laplace operator and time. In the frequency domain, the 

acoustic can be expressed as: 

 

  j t

0p p e   (2) 

 

where    and   denote the amplitude of the acoustic wave and the angular 

frequency,   √  . Then p satisfies the well-known Helmholtz equation: 

 

 2 2 0  p k p   (3) 

 

where k is the wave number expressed as: 

 

 


k =
c

  (4) 

 

besides, the particle velocity   in an ideal fluid is proportional to the gradient of the 

pressure: 

 

 0  p j   (5) 
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   For unbounded domain problems, an artificial boundary condition is introduced. 

In this paper we introduce a so-called “Dirichlet-to-Neumann” boundary condition 

[Keller and Givili(1989)] on the outer boundary of the domain discretized with finite 

elements: 

 

 p n M p     (6) 

 

where M is the DtN operator. In two dimensional problems, the DtN operator is 

expressed as; 

  

 

   
   

 
2 '

2
0

 






  
n

n

n n

H kRk
cosn

H R
M

k
  (7) 

 

where R is the radius of the outer boundary,   
   

is the Hankel function of the second 

kind,         are azimuth angle. 

 

Formulation of the       

In the standard FEM, the discretized system equation can be written in the following 

matrix form: 

 

    FEM 2       k j jK M C P F   (8) 

 

where 

The acoustic stiffness matrix: 
FEM T( ) ( )d


   K N N  (9) 

 

The acoustic mass matrix: 
T= d


M N N   (10) 

 

The acoustic damping matrix: 
T d


  nAC N N   (11) 

 

The vector of nodal acoustic forces: = d



T

nF N   (12) 

 

The nodal acoustic pressure:  T

1 2, , ,  np p pP   (13) 

 

In the NS-FEM, the problem is first divided into Ne elements with of Nn nodes as 

same as those used in the FEM. Then the problem is further divided in Nn node-based 
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smoothing domains on top of the generated cells. For 2D problems, the smoothing 

domain    is created by connecting sequentially the mid-edge-point to the centroids 

of the surrounding triangles of node k. The boundary of the smoothing domain    is 

labeled as    and the union of all    forms exactly the global domain  . 

   In the NS-FEM, the field variable is constructed using the linear FEM shape 

functions in the same way as those in the FEM. The difference is that the gradient 

component    is replaced by the smoothing item   ̅̅ ̅̅  obtained using the 

node-based gradient smoothing operation [Liu et al.(2005); Zhang et al(2007)].The 

acoustic stiffness matrix in the NS-FEM is expressed as: 

 

 
NS-FEM ( ) ( )d


   

T
K N N   (14) 

 

The above integration is evaluated base on the summation of all the node-based 

smoothing domains as: 

 

 
NS-FEM ( )

1


nN

k

k

K K   (15) 

 

where the K
(k)

 is the local smoothed stiffness matrix associated with node k, and can 

be calculated: 

 

 
T T( )


  

k

k

kd AK B B B B   (16) 

 

where Ak is the area of the smoothing domain for node k in 2D problems, and 

 

 1 2( )    i i ik b bB x   (17) 

 
1

( ) ( )


 
k

ip i p

k

b N n d
A

x x   (18) 

 

where is the FEM shape function for node i. 

In the      , each triangular element is divided into four parts with a scaled 

factor α: three quadrilaterals associated with three vertexes with equal area of 
 

 
    

and the remaining Y-shaped part in the middle of the element with a area of (1-α)Ae, 

where the Ae is the area of the triangular element. The NS-FEM and the FEM 

formulations are constructed respectively in the three quadrilaterals and the Y-shaped 

area for each element. Then the       will be the assembly from the entries of 

both the NS-FEM and FEM with the following form: 
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     

FEM 2 FEM 2 NS-FEM

1 1

1  

 

   
e nN N

IJ IJ m IJ n

m n

K K K   (19) 

 

In unbounded domain, according to Givoli and Kaller [Givoli(1988); Givoli and 

Keller(1989)], the stiffness matrix K consists of two matrices: 

 

 FEM  b
K K K   (20) 

 

where K
b
 is the DtN artificial boundary matrix, it contains the operator M and the 

shape functions used in the FEM: 

 

 


 
b

ij i jM dK N N   (21) 

 

Finally, the discretized system equations can be obtained and written in the 

following form: 

 

    FEM 2        
bk j jK M C K P F   (22) 

 

Numerical example 

In this paper, to illustrate the performance and ability of       for acoustic 

problems, the scattering problem on the exterior domain of a rigid sphere is dealt with. 

The radius of the sphere is 0.2, the radius of the artificial boundary is 1. 

   Consider a wave propagates in the exterior domain with two boundary condition 

described as follow: 

 

on the artificial boundary:  n M  p p   (23) 

 

on the boundary of the rigid sphere: -nv   (24) 

 

   The problem has an analytical solution as follow: 

 

  

 

   
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0 2
0
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cos
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n

nj t
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n n

dJ ka
ndkap p e j H kr n
ndH ka

dka

，   (25) 

 

   Three different   values                   have been employed to 

compare the influence of   with element size of 0.02. The numerical results of 
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acoustic pressure using       and exact solution are plotted in Fig1. It can be 

seen from plot that when      , the numerical solution is in agreement with exact 

solution. So       is used in the following computation.  

 

 

Figure 1. Analytical solution and α-FEM solution with different   values 

  𝟎 𝟕   𝟎 𝟖   𝟎 𝟗 

 

 

 

Figure. 2 Analytical solution, FEM solution and α-FEM solution   

on the artificial boudary for k=5, k=15, k=25, k=30 
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Four different wave number values k=5, k=10, k=15, k=20are employed to study 

the accuracy of       on the artificial boundary in Fig2. These plots show that 

for lower wave number,       and FEM all can provide close-to-exact solution. 

But       is more close to exact solution than FEM solution when comparing 

them in the forward scattering. For higher wave number, the advantage of       

is more obvious,       solution is still close to the exact solution on the artificial 

boundary, but FEM solution depart more from the exact solution. 

 

Figure 3. Calculation of       solution, FEM solution and  

analytical solutionas the wave number increasing at  

four nodes   𝟎   𝟎   𝟖    𝟎 𝟕  𝟎     𝟎    

 

In Fig3, we compare       and FEM solution with exact solution as the 

wave number increasing at four nodes                         

        From these plots we can find that as wave number increasing,       

and FEM both lose their accuracy, but the error of       is much smaller than 

the erroe of FEM. 

  

Conclusions and discussions 

In this work, the alpha finite element method (α-FEM) for solving scattering 

problems of the Helmholtz equation in two dimensions has been presented. By 

combining the “overly-stiff” FEM model with the “overly-soft” NS-FEM model, the 

α-FEM is obtained by a scaled factor        . Calculations of the scattering of a 

rigid sphere show the following conclusions: 

 

1. The scaled factor α has a giant effect on the accuracy of the α-FEM. 

2. The results indicate that the DtN boundary condition is a good alternative to other 

methods in solving scattering problems in infinite domains. 
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3. The α –FEM and Fem use the same mesh, which means the α-FEM model can be 

get from the FEM model with little change. 

4. By using the gradient smoothing technology and the optimal alpha, the α-FEM 

appropriately softened the stiffness matrix and reduces the dispersion error. 

Numerical example demonstrate that the accuracy and convergence of the α-FEM 

is better than the FEM. 

 

References 

Suleau. S, Deraemaeker. A, Bouillard. Ph.(2000) Dispersion an pollution of meshless solution for the 

Helmholtz equation, Comput. Meth. Appl. Mech. Engrg. 190, 639-657. 

Harari. I, Magoules. F.(2004)Numerical investigations of stabilized finite element computation for 

acoustics, Wave Motion 39, 339-329. 

Deraemaeker. A, Babuska. I, Bouillard. Ph.(1999) Dispersion an pollution of the FEM solution for the 

Helmholtz equation in one, two and three dimension, Int. J. Numer. Meth. Engrg. 46, 471-499. 

Harari. I, Hughes. TJR(1992)Galerkin/last squares finite element methods for the reduced wave 

equation with non-reflecting boundary conditions in unbounded domains. Comp Methods Appl 

Mech Eng 98, 411-454. 

Thompson. LL, Pinksy. PM(1995)A Galerkin least squares finite element method for the 

two-dimensional Helmholtz equation. Int. J. Numer. Meth. Engrg. 38, 371-397. 

Petersen. S, Dreyer. D, Estorff. Ov(2006)Assessment of finite and spectral element shape function or 

efficient iterative simulations of interior acoustics. Comp Methods Appl Mech Eng 195, 

1171-1188. 

Bouillard. Ph, Suleau. S(1998)Element-free Galerkin solutions for Helmholtz problems: formulation 

and numerical assessment of the pollution effect. Comp Methods Appl Mech Eng 162, 317-335. 

He. Z. C, Liu G. R, Zhong. Z. H, Wu. S. C, Zhang. G. Y, Cheng. A. G(2009)An edge-based smoothed 

finite element method for analyzing three-dimensional acoustic problems. Comp Methods Appl 

Mech Eng 199, 20-33. 

Liu. G. R.(2008)A generalized gradient smoothing technique and the smoothed bilinear form for 

Galerkin formulation of wide class of computational methods, Inyrtnational Journal of 

Computational Methods 5, 199-236. 

Liu. G. R. (2008)Meshfree Methods:Moving Beyond the Finite Element Method, second ed, CRC 

Press, Boca Raton, USA. 

Liu. G. R. Nguyen. T. T, Lan. K. Y(2009)A novel alpha finite element method for exact solution to 

mechanic problems using triangular and trtrahedral element. Comp Methods Appl Mech Eng 197, 

3883-3897. 

Givoli. D.(1988)A finite element method for large domain problems, Thesis, Stanford University. 

Keller. J, Givoli. D.(1989)Exact non-reflecting boundary conditions, Journal of Computational Physics 

82, 172-192. 

Liu. G. R, Zhang. G. Y, Dai. K. Y, Wang. Y. Y, Zhong. Z. H, Li. G. Y, Han. X,(2005)A linear 

conforming point interpolation method for two-dimensional solid mechanics problems, Int J 

Comput Methods 2(4),645-665. 

Liu. G. R, Zhang. G. Y, Dai. K. Y, Wang. Y. Y, Zhong. Z. H, Li. G. Y, Han. X.(2007) A linear 

conforming point interpolation method for three-dimensional elasticity problem, Int J Numer 

Methods Eng 72(13), 1524-1543. 

   

ICCM2014, 28th-30th July 2014, Cambridge, England

409



Engineering the mechanical properties of graphene nanotube hybrid structures 

through structural modulation 

K. Xia1, H.F. Zhan1, Y. Wei1, 2, S.B. Sang2, and *Y.T. Gu1 
1School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia 
2MicroNano System Research Center, Key lab of advanced Transducers and Intelligent Control System of the Ministry 

of Education & College of information Engineering, Taiyuan University of Technology, Taiyuan, China 

*Corresponding author: yuantong.gu@qut.edu.au 

Abstract 
The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled 
them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. 
The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of 
such nanostructures. This work investigated the relationships between the mechanical properties of 
the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that 
increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and 
yield strength. Whereas, no strong correlation is found between the number of graphene layers and 
Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield 
strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the 
hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates 
from the connecting regions between CNT and graphene. More interestingly, affluent formations of 
monoatomic chains and rings are found at the fracture region. This study provides an in-depth 
understanding of the mechanical performance of the GNHSs while varying their structures, which 
will shed lights on the design and also the applications of the carbon-based nanostructures.  

Keywords: Graphene, Carbon nanotube, Tension, Molecular dynamics simulations 

Introduction 

In the past decade, low dimensional carbon-based nanomaterials, carbon nanotube (CNT) and 
graphene, have fascinated the scientific community with their excellent mechanical, electrical and 
thermal properties [Wang (2005); Zhu et al. (2010)]. Their appealing properties, e.g., Young’s 
modulus up to 1 TPa, high fracture strength and low mass density, have enabled them with a wide 
promising applications in electronics, photonics, composite materials, energy storage, sensors, and 
bio-applications [Novoselov et al. (2012); De Volder et al. (2013); Dellinger et al. (2013)]. For 
example, a CNT-based mechanical mass sensor has been reported with a resolution of 1.7 yg (1 
yg=10-24 g, corresponds to the mass of one proton) [Chaste et al. (2012)]. The enticing properties of 
carbon materials have driven the exploration of three-dimensional nanomateirals or nanostructures, 
such as the so-called “super” nanotubes or graphene that are made from CNTs [Coluci et al. 
(2006)], CNT bundles [Kis et al. (2004)], graphene/nanowire sandwich structures [Liu and Kuo 
(2013)], and the graphene nanotube hybrid structure (GNHS) [Zhu et al. (2012)].  
 
The GNHS, as one of the representatives of the three-dimensional nanomaterials, has been 
envisioned with various potential applications in adsorption, biosensors, batteries, nanocomposite, 
drug delivery, and so on [Zhao et al. (2012); Odedairo et al. (2014)]. For instance, it is found that 
the GNHS can store up to 41 g H2/L under ambient conditions with lithium cations doping 
[Dimitrakakis et al. (2008)]. Experiments show that the GNHS has a high specific capacitance and 
remarkable rate capability, which significantly outperform many electrode materials currently used 
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in the state-of-the-art supercapacitors [Du et al. (2011)]. Hernandez-Ferrer et al. [Hernández-Ferrer 
et al. (2014)] shows that the multi-walled CNT/graphene hybrid materials possess higher 
heterogeneous charge transfer constant and sensitivity towards H2O2 reduction, which is promising 
for the applications in electrochemical sensing. 
 
Series of studies have been carried out on GNHSs to facilitate their diverse applications. For 
example, using first principle calculations, the conductance of the GNHS is found to nearly 
independent of the CNT length, but changes strongly with the link structure [Novaes et al. (2010)]. 
Molecular dynamics simulations have shown that the thermal transport of the GNHS is governed by 
the minimum CNT’s distance and length, due to the scattering of phonons occurred at the CNT-
graphene junctions [Varshney et al. (2010)], and the long-wavelength out-of-plane modes 
contribute significantly to thermal conduction [Loh et al. (2011)]. Using the phonon wave packet 
method, Lee et al. [Lee et al. (2012)] found that the graphene interface distributes the incoming 
phonon energy to both sides of the interface almost equally, and provides a strong diffusive 
scattering site. It is noticed that majority of current studies have focused on the electrical and 
thermal properties of the GNHS, and their mechanical properties are still lacking of investigation. 
One recent work reported the mechanical properties of four different GNHS basing on the structural 
molecular mechanics approach [Sihn et al. (2012)]. Though our pervious works have probed the 
mechanical properties of GNHS with different CNT allocations [Zhan et al. (2013)] and dopants 
[Xia et al. (2014)], a more comprehensive understanding of the structural impacts on the associated 
mechanical properties are still required.  
 
Therefore, in this work, we will investigate how the tensile properties of the GNHS can be tailored 
through the structure variation by the large-scale molecular dynamics (MD) simulations. 
Experiments have already reported the controllable fabrication of the graphene nanotube hybrid 
structures via one-step chemical vapor deposition process [Paul et al. (2010)]. Emphasis will be laid 
on the mechanical properties (Young’s modulus, yield strength and yield strain) of the GNHS under 
tensile loading. Different hybrid structures will be constructed by either varying the length of the 
single-wall CNTs (SWNTs) or the number of graphene layers.  

Computational details 

A series of large-scale MD simulations were performed using the open-source LAMMPS code 
[Plimpton (1995)]. All tested hybrid structures have a similar width around 5.6 nm. The hybrid 
structures are constructed by connecting an armchair (4,4)-CNT with graphene through heptagons 
(see Figure 1) [Matsumoto and Saito (2002); Dimitrakakis, Tylianakis et al. (2008); Varshney, 
Patnaik et al. (2010)]. To acquire the tensile properties of different hybrid structures, two groups of 
models have been established, including the GNHSs either with different CNT lengths or with 
different number of graphene layers. For discussion convenience, the GNHSs with different CNT 
lengths are denoted as GNHS-L#, where # ranges from 1 to 6 representing the CNT length ranging 
from 24.9 Å to 51.9 Å (these models possess two graphene layers). The GNHSs with different 
number of graphene layers are denoted as GNHS-N#, where # runs from 1 to 3 representing three, 
four and five graphene layers (see Figure 1b). All models will be constructed by single-wall CNTs 
(SWNTs), as shown in Figure 1. 

 
Figure 1. Simulation models of the graphene nanotube hybrid structures with: (a) two 

graphene layers; (b) three graphene layers. 
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To describe the interactions between carbon atoms, the popularly applied reactive empirical bond 
order (REBO) potential [Brenner et al. (2002)] was adopted, which has been shown to well 
represent the binding energy and elastic properties of graphene and CNT [Zhang et al. (2011)]. The 
whole simulation is carried out in three steps, including initial energy minimization using the 
conjugate gradient algorithm, relaxation under the NVT ensemble using Nose-Hoover thermostat 
[Nosé (1984); Hoover (1985)], and then tension of the sample. To minimize the thermal influence, a 
relatively low temperature, 1 K is used during the simulation. A time step of 1 fs is chosen, and the 
hybrid structure is relaxed for 500 ps. During the tensile deformation, one end of the GNHS was 
fixed, and a constant velocity of 0.001 Å/ps was applied to the other end along the length direction. 
The equations of motion are integrated with time using a Velocity Verlet algorithm [Verlet (1967)], 
with no periodic boundary conditions being applied.  
 
During the simulation, the virial stress is applied to calculate the atomic stress αβΠ  during tension, 
which is expressed as [Diao et al. (2004)] 

 1
i i

i

αβ αβϖ πΠ =
Ω∑ , 1 1

2i i i i ij ij
j ii

m v v F rαβ α β α βπ
ϖ ≠

 
= − + 

 
∑          (1) 

Here i
αβπ  is the atomic stress associated with atom i. iϖ  is the effective volume of the ith atom and 

Ω  is the volume of the whole system. im  and iv  are the mass and velocity of the ith atom, 
respectively. ijF  and ijr  are the force and distance between atoms i and j, respectively, and the 
indices α  and β  denote the Cartesian components. The engineering strain is used to estimate the 
strain as 0 0( ) /l l lε = − , where l and 0l  are the instantaneous and initial length of the sample.  

Results and discussions 
Impacts from the nanotube’s length 
In the beginning, we assess the tensile properties of GNHSs containing two layers that are pillared 
by SWNTs with different lengths. Six cases are considered, with the SWNT’s length ranging from 
24.9 to 58.2 Å (see Figure 1). Figure 2a shows the stress-strain curves obtained from MD 
simulations. Generally, all stress-strain curves share an identical changing trend, i.e., the stress 
increases linearly at the beginning, and decreases suddenly after passing a specific stress value. 
According to the continuum mechanics [Gere and Timoshenko (1999)], such stress-strain profile 
signifies that the GNHS exhibits a brittle behavior. Following previous researchers [Zhan and Gu 
(2011)], Young’s modulus is derived directly from the stress-strain curve with the strain <3% using 
linear regression. The yield strength is referred to the peak stress after which the failure of the 
structure is observed. The corresponding strain is denoted as yield strain. For the GNHS with the 
CNT length of 24.9 Å, a Young’s modulus of 187.9 GPa is estimated, with the yield strength and 
yield strain calculated as 19.2 GPa, and 10.7%, respectively.  
 
It is observed from Figure 2a that the longer length of the SWNT, the lower Young’s modulus and 
yield strength of the GNHS. For example, the GNHS constructed by the shortest SWNT (length of 
24.9 Å) shows the highest Young’s modulus which is almost two times of its counterpart with 51.9 
Å SWNTs. According to Figure 2b, the effective Young’s modulus of the GNHSs exhibits a linear 
relationship with the length of the SWNT. This phenomenon is understandable, as the effective 
atom volume is a linear function of the SWNT’s length, which will thus lead to a linear reduction to 
the atomic stress, see Eq. (1). Therefore, it is reasonable to observe a linearly decreased Young’s 
modulus and yield strength with the increasing SWNT’s length. Additionally, we find that the yield 
strain for all considered samples appears almost the same (around 10.6%, consistent with the results 
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reported by other researchers [Xu et al. (2012)]), implying that the SWNT’s length exerts ignorable 
influence on the yield strain. Such observations can be explained by considering that the elastic 
tensile deformation of different GNHS is dominated by the two (upper and lower, see Figure 1) 
graphene layers. In other words, regardless how the length of the SWNT changes, the graphene 
layers will absorb majority of the tensile strain energy while the GNHS is elongated along the 
length direction, and thus induce a similar yield strain. 

 
Figure 2. (a) Stress-strain curves of GNHS containing two graphene layers pillared by SWNT 
with different lengths; (b) The effective Young’s modulus as a function of the SWNT’s length.  
To further investigate the impacts on the tensile properties of GNHS from the SWNT’s length, we 
acquire the atomic configurations of the GNHS at different strains. In agreement with the stress-
strain curves presented in Figure 2a, the atomic structure for all GNHSs show marginal changes 
during the elastic deformation period (before reaching the peak stress). After yielding, bond 
breakings are found. Generally, GNHS-L1, L2 and L3 share the same deformation behaviors. As 
illustrated in Figure 3a, during the elastic deformation period, the C-C bonds are stretched along the 
loading direction. With the increasing strain, fracture of the structure is observed, which is initiated 
from two CNT-graphene junctions (one on the top layer, the other on the bottom layer) between 
graphene layer and CNT near the two ends (Figure 3b). From Figure 3c, the structure is found to 
failure around two connecting regions with further extension. Particularly, after failure, local 
buckling of the graphene sheet due to the release of the strain as well as the inclined CNTs is 
observed. It is interesting to mention that at the front of the failure region, the formations of 
monoatomic chains (inset of Figure 3b) and monoatomic rings (inset of Figure 3c) are observed.  

 
Figure 3. GNHS-L3 at the strain of: (a) 10.59%, inset shows the stretched C-C bonds around 
the CNT-graphene junction; (b) 10.65%, inset shows the formation of monoatomic chain; (c) 

10.76%, inset shows the existence of monoatomic ring.  
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Similar deformation procure is also observed for the hybrid structure with longer CNTs (i.e., 
GNHS-L4 and GNHS-L5). As illustrated in Figure 4a, the CNT pillars appear a larger inclined 
angles due to the extension of the top and bottom graphene layers. The fracture is nucleated from 
the connecting regions and the graphene sheet is bulked after failure. The existence of monoatomic 
chains and rings are also observed (Figure 4b). Particularly, unlike the atomic configurations in 
Figure 3c, the top and bottom graphene layers are still connected by the inclined CNTs after failure 
for the GNHS-L4. Such phenomenon is consistent with the stress-strain curves in Figure 2a, from 
which the stress does not reduce directly to zero after failure. For the hybrid structure with the 
longest CNTs considered in this paper (GNHS-L6), a different deformation scheme is observed 
besides the monoatomic chains and rings emerged around the fracture region. As shown in Figure 
4c, the fracture initiates from one end of the structure, which results in an early separation at the 
fracture region. In particular, the CNTs are still vertically aligned after yielding and a more evident 
local buckling of the graphene sheet is observed.  

 
Figure 4. GNHS-L4 at the stain of: (a) 10.66%, (b) 10.74%, inset shows the formation of 

monoatomic chain; GNHS-L6 at the strain of: (a) 10.54%, (b) 10.64%. 

Influence of the graphene layer number 

Above discussions suggest that the increase of SWNT’s length will result a direct reduction to the 
effective Young’s modulus and yield strength of the hybrid structure. In this section, we investigate 
the influence on the tensile properties of GNHS from the number of graphene layers, i.e., the GNHS 
contains three, four and five graphene layers pillared by SWNTs (see Figure 1).  
 
From Figure 5, the tensile properties of the GNHS vary with different number of graphene layers, 
and no explicit correlation is found between them. For example, comparing with the hybrid 
structure with two graphene layers, the GNHS-N1 (three-layers) shows a much smaller Young’s 
modulus and yield strength, around 116.3 and 12.8 GPa, respectively. Whereas, increasing the 
number of graphene layers from three to four (GNHS-N2) yields a larger Young’s modulus (139.6 
GPa) and yield strength (16.2 GPa), and the hybrid structure with more graphene layers (GNHYS-
N3) exhibit a similar tensile properties as estimated from GNHS-N2. In general, the yield strain is 
found to increase with the increasing number of graphene layers.  
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Figure 5. Stress-strain curves of GNHSs with different number of graphene layers. 

The atomic configurations of different GNHSs have been tracked to identify the in-depth influence 
from the number of graphene layers. Similar as the above results, during the elastic deformation 
period, only stretched C-C bonds around the connecting regions are found (Figure 6a). When the 
stress passes the peak value, some of those stretched bonds are found to break, which leads to the 
failure of the structure (Figure 6b). The formation of monoatomic chains and rings and also inclined 
CNTs are found upon failure. In particular, the dangling graphene layers are found to adhere to each 
other forming a bi-layer or triple-layer graphene structure. As highlighted in Figure 6c, the distance 
between different dangling graphene layers is around 3.4 Å, which equals to the layer distance 
observed in multi-layer graphene. The emergence of the multi-layer graphene is originated from the 
shorter CNTs being utilized while establishing the model. After yielding, the dangling graphene 
layers will vibrate freely and the short distance between the two layers makes them easier to be 
adhered to each other through van der Waals force.  

 
Figure 6. GNHS-N1 at the strain of: (a) 10.60%, inset shows the stretched carbon bonds; (b) 

11.13%; (c) 11.30%, inset shows the adhered dangling graphene layers. 
The incorporation of more graphene layers induces more complex deformation after yielding. In all 
three cases with three, four and five graphene layers, we found the fracture starts from the top layer 
and then propagates to the underneath layer. The existences of graphene layers have led to an easy 
formation of multi-layered graphene after failure (Figure 7b and 7d). For example, the residual 
atomic chain between graphene and CNT is found to be bended by the strong van der Waals 
interactions between the graphene layers (inset of Figure 7b). 
 
To further investigate the structure influence on the mechanical properties of the hybrid structure, 
we also examine the tensile properties of GNHS with multi-walled CNTs (see inset of Figure 8a). 
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For the sample with a similar size as GNHS-L3 (length of 25.5 nm, width × height = 5.8 × 3.5 nm2), 
a much higher Young’s modulus (256.9 GPa) and yield strength (25.4 GPa) are estimated. As 
shown in Figure 8b, the failure of the structure is observed around the two outer CNTs in one end of 
the GNHS. After yielding, many monoatomic chains are formed at the fracture region. Particularly, 
it is found that only the outer CNTs have been split due to the tensile strain and the inner CNTs 
appears almost unchanged. Unlike the hybrid structures with SWNTs, no local bucking of the 
graphene layers is observed for the sample with multi-walled CNTs after yielding.  

 
Figure 7. GNHS-N2 at the strain of: (a) 11.65%, (b) 12.63%, inset shows the bended atomic 

chains due to the van der Waals interactions between the adhered graphene layers; GNHS-N3 
at the strain of: (c) 11.59%, (d) 11.87%. 

 
Figure 8. GNHS with multi-walled CNTs at the strain of: (a) 9.4%, inset shows a multi-walled 

CNT-graphene junction; (b) 10.1%, inset shows the deformation around the multi-walled 
CNT-graphene junctions; (c) 10.15%, inset shows the fracture of the outer CNTs.  

Before concluding, we summarize the estimated tensile properties from all tested hybrid structures 
as listed in Table 1. Basically, Young’s modulus and yield strength decrease with the increasing 
CNT length but have no strong relation with the number of graphene layers. In the other hand, the 
CNT length exerts marginal influence to the yield strain, and the increase of graphene layer number 
intends to increase the yield strain. In addition, comparing with its counterpart with SWNTs, the 
GNHS with multi-walled CNTs exhibits a much higher Young’s modulus and yield strength, and a 
lower yield strain.  
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Table 1. Summary of Young’s modulus, yield strength and yield strain for all considered 
graphene nanotube hybrid structures. 

Different GNHSs Young’s 
modulus (GPa) 

Yield strength 
(GPa) 

Yield strain 
(%) 

Bi-layer; 
SWNT’s lengths 

L1-L6 (Å) 

L1: 24.9 187.9 19.2 10.7 
L2: 30.3 159.9 16.3 10.6 
L3: 35.6 138.8 14.1 10.6 
L4: 40.9 121.7 12.4 10.6 
L5: 46.3 107.6 10.9 10.5 
L6: 51.9 96.2 9.7 10.5 

Graphene layer 
number N1-N3 

N1: 3 116.3 12.8 11.0 
N2: 4 139.6 16.2 11.6 
N3: 5 138.6 15.9 11.5 

Multi-wall CNTs 256.9 25.4 9.9 

Conclusions 

Basing on large-scale MD simulations, we have examined the mechanical properties of graphene 
nanotube hybrid structures. It is found that the increase of CNT’s length will induce a higher 
Young’s modulus and yield strength, together with ignorable impacts to the yield strain of the 
hybrid structure. Whereas, no strong correlation is found between the number of graphene layers 
and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher 
yield strain. The presence of multi-wall CNTs are found to greatly strengthen the hybrid structure, 
which results in a much higher Young’s modulus and yield strength. All studied hybrid structures 
exhibit a brittle behavior and the stretched carbon bonds are observed around the connecting regions 
between graphene and CNT during the elastic deformation period. Specifically, affluent formations 
of monoatomic chains and rings are found at the fracture region. For the hybrids structures with 
short CNT pillars, the dangling graphene layers will adhere to each other to form a multi-layered 
graphene after failure driven by van der Waals force. This study provides an in-depth understanding 
of relationship between the mechanical performance of the hybrid structures and their structures, 
which will shed lights on the design and also the applications of carbon-based nanostructures.  
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Abstract 

Based on undamped modes, a novel method is presented to efficiently calculate complex 
eigenpairs by combining the Neumann series and the reduced basis technique. To avoid 
the modal truncation problem, the reduced basis is calculated by using a Neumann series 
expansion and only requires the undamped eigenpair of interest. The sufficient condition 
for the convergent Neumann series is derived and the computational complexity of the 
proposed method is discussed. Useful characteristics on the accuracy and the advantages 
of the proposed method over the exact state-space method, as well as over the common 
approximate procedure of ignoring the modal coupling, are shown and discussed in terms 
of some case studies. It is shown that the complex eigenpairs can be calculated by simply 
postprocessing of undamped eigenpairs. 

Keywords: Complex modal analysis; Eigensolution; Undamped modes; Non-classically 
damped systems; Modal coupling; Frequency response function 

Introduction 
The equation of motion of an N DOF linear viscously damped system can be given by 

 ( ) ( ) ( ) ( )t t t t+ + =Mq Cq Kq f   (1) 

where M, C and K are real mass, damping and stiffness matrices, respectively; q(t) and 
f(t) are displacement vector and force vector, respectively. In this paper, assume that M is 
a positive definite symmetric matrix, K and C are non-negative definite symmetric 
matrices. The inclusion of the influence of damping in structural and mechanical systems 
is extremely important if a model is to be applied in predicting vibration levels, transient 
responses, transmissibility and design problems dominated by energy dissipation. The 
eigenvalue problem of the viscously damped system can be written in matrix form as 

 ( )2    1,  2,  , 2j j j j Nλ λ+ + = ∀ = …M C K φ 0  (2) 

Here λj and φj denote the jth eigenvalue and eigenvector. Although several efficient 
approximation techniques were suggested, the most common is so-called the proportional 
approximation method (PAM), which is simply to ignore the mode coupling by using 
undamped modal shapes. The undamped mode shapes (normal modes) can be obtained 
by solving the undamped eigenproblem Kuj=ωj

2Muj where ωj is the jth undamped 
frequency and in order of ascent; uj denotes the mode shape corresponding to the jth 
frequency ωj The PAM may be the most efficient approximate method, but the results of 
the PAM are not always with acceptable accuracy. It was shown by many studies 
(Hasselman, 1976; Warburton and Soni, 1977; Gawronski and Sawicki, 1997; Udwadia, 
2009) that the light damping, the diagonal dominance of the transformed damping matrix 
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and the good separation property of normal modes are not any more the sufficient 
conditions for the accuracy of the proportional approximation method (these conditions 
were once believed to produce small errors for the PAM). When the non-proportional 
part of the damping is local, some method developed by (Özgüven, 1987; Denoël and 
Degée, 2009) can be used to efficiently calculate the frequency responses of a non-
classically damped system in terms of the undamped modes. The complex modal analysis 
may be also a good choice to accurately calculate the frequency response (Adhikari, 
2013). If only the lower modes are available, the frequency responses can be efficiently 
calculated by the method developed by (Li et al., 2014b)(Li et al., 2014a). In addition, 
complex modes can be used to transform any viscously damped system with N DOF into 
N independent second-order equations [see, e.g., (Kawano et al., 2013; Morzfeld et al., 
2011; Ma et al., 2010) for details]. Note that in the dynamic response analysis, the 
primary computational effort is spent on the solution of the complex modes of the 
eigenproblem (2). 
 
Real eigensolution techniques can be easily extended to handle the damped eigenproblem 
in terms of 2N-space (state-space) formulation, where N is the system dimension [see e.g., 
(Veletsos and Ventura, 1986) for details]. Although these state-space methods are exact 
in nature, they usually need heavy computational cost in practice due to the double size of 
system matrices. The state-space methods are not only computationally expensive, but 
also lack the physical insight provided by the superposition of the complex modes in the 
original physical space. To avoid the disadvantages mentioned previously, some 
efficiently computational methods in the original space were developed to compute the 
complex modes [see, e.g., (Kwak, 1993; Adhikari, 2011; Fischer, 2000; Holz et al., 2004; 
Rajakumar, 1993; Lee et al., 1998)]. 
 
In this paper, based on undamped modes, an efficient method is presented to calculate the 
complex eigenpairs by combining the Neumann series and the reduced basis technique. 
To avoid the modal truncation problem, the reduced basis is calculated by using a 
Neumann series expansion and only requires the undamped eigenpair of interest (i.e., it is 
not necessary to calculate all the undamped eigenpairs to hold the accuracy of 
engineering required). The sufficient condition for the Neumann series is derived and the 
computational complexity of the proposed method is discussed. 

Solution of complex eigenvalue problem using classical normal modes 
Premultiplying the damped eigenproblem by using 2 1( )jλ

−M  yields 

 ( )1 2 1
N j j jκ κ− −+ + =I M C M K φ 0  with 1j jκ λ=  (3) 

Here IN denotes the identity matrix of size N. The previous equation can be rewritten as 

 ( )1 2 1
N j j j jκ κ− −+ = −I M C φ M Kφ  (4) 

By using the Neumann series expansion, one obtains 
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 ( )2 1 1

0

k

j j j j
k

κ κ
∞

− −

=

= − −∑φ M C M Kφ  (5) 

On the condition that the mode shapes are not changed significantly, it may be 
convenient to approximate the eigenvectors using undamped mode shapes 

 ( ) 2 ( )

0

k j
j j k

k
κ

∞ +

=

≈ − −∑φ r  (6) 

where 

 ( ) 1
0

j
j

−=r M Ku  and ( ) 1 ( )
1        1j j

k k k−
−= ∀ ≥r M Cr  (7) 

In view of 1 2
j j jω− =M Ku u , Eq. (7) can be further simplified as 

 ( ) 2
0

j
j jω=r u  and ( ) 1 ( )

1        1j j
k k k−

−= ∀ ≥r M Cr  (8) 

The basis vectors can be efficiently calculated using the matrix decomposition of the 
mass matrix M, which only needs to be obtained once for different eigenpairs. Once the 
matrix decomposition is available, the calculation of the series vectors by Eq. (8) 
involves only forward and backward substitutions, which are trivial. However, the 
coefficient of each basis vector is unknown. 
 
In the reduced basis technique, the approximate result is searched within a subspace 
spanned by using reduced basis vectors. We define a reduced subspace Rj for each 
complex eigenpair in terms of the first r terms of the Neumann series expansion. That is 

 { }( ) ( ) ( )
0 1 1span , , ,j j j N r

j r
×

−= ∈R r r r   (9) 

One obtains the approximate complex eigenvectors as 

 
1

( ) ( )

0

r
j j

j k k j j
k
α

−

=

≈ =∑φ r R α  where { }( ) ( ) ( ) 1
1 2 1, , ,

Tj j j r
j rα α α ×

−= ∈α    (10) 

Since the approximate eigenvectors should satisfy the eigenproblem (2), we determine 
these unknown coefficients αj by substituting the approximate eigenvectors back into Eq. 
(2) and pre-multiplying it using Rj

T, that is, 

 ( )2
j R j R R jλ λ+ + =M C K α 0  (11) 

with 

 T r r
R j j

×= ∈M R MR  , T r r
R j j

×= ∈C R CR   and T r r
R j j

×= ∈K R KR   (12) 

The robustness of the rectangular basis matrix Rj can be improved by using a Gram–
Schmidt orthonormalization procedure. The (r×r) reduced system matrices are dense 
matrices, but they are symmetric and much smaller in size than the (N×N) original system 
matrices. On the condition that the mode shapes of the systems do not have significantly 
changed, the approximate modified eigenvalue λj can be chosen by finding the eigenvalue 
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of the reduced eigenproblem (11) such that the absolute largest value of ωj−λj is 
minimized. Next, based on the frequency shifting technique, we give a method to obtain 
the eigenvalue λj. The reduced eigenproblem by Eq. (11) can be reformed as 

 ( )2 + =j R j R R jλ λ +M C K α 0   with j j jλ λ ω= −  (13) 

where the equivalent damping and stiffness matrices are 

 ( )2R R jω= +C C M  and ( )2
R R j R j Rω ω= + +K K C M  (14) 

Once the first-order mode of the reduced eigenproblem (13) is solved. The approximate 
modified eigenvalue λj can be calculated. Once the vector αj is calculated, the modified 
eigenvectors can be obtained using Eq. (10). It is interesting to note that the first reduced 
basis vector is the undamped mode shape in nature. If the complex eigenpair can be 
calculated to satisfy suitable accuracy requirements by using one reduced basis vector, it 
means the system is close to the classically damped system and the PAM may produce 
small errors. If the complex eigenpairs need more than one reduced basis vector, under 
such circumstance, the PAM will produce unexpected errors and the proposed method 
can be used for suitable accuracy requirements. 
 
In view of Eq. (2), the number r in Eq. (10) can be then determined if 

 ( )2

2
(i ) j j je ω λ λ ε= + + <M C K φ  (15) 

where the parameter ε is a given accuracy for the absolute error. Alternatively, the 
number r in Eq. (10) may be determined by 

 θθ ε<   (here 
( )( )

1

1 1

cos
H
r r

H H
r r r r

θ −

− −

=
r r

r r r r
) (16) 

Here the parameter εθ is a given accuracy. It means that increasing the reduced basis 
vectors can be stoped if the reduced basis vectors become linearly-dependent. 

Computational considerations 
For the convergent Neumann series expansion, one obtains the necessary and sufficient 
condition ρ(κjM−1C)<1. Here ρ(•) denotes the spectral radius of matrix (•). It means that 
all the eigenvalues of matrix κjM−1C have absolute values less than one. The maximal 
eigenvalues of matrix M−1C can be found by solving the minimal eigenvalues of 
Myj=sjCyj. Once the minimal eigenvalue smin is solved, the convergence condition can be 
given by 

 min 1js κ <     or    min js λ<  (17) 

which can be approximated determined using the known undamped frequencies 

 min js ω<  (18) 
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When the size N is large, the operation count to solve the undamped eigenproblem is 
O(N3) (Adhikari, 2013). The operation count for the LDLT decomposition of the mass 
matrix M is 0.5Nb2 (Bathe, 1996), where b is the semi-bandwidth of the mass matrix. The 
process of forward and backward substitutions for these basis vectors given by Eq. (7) is 
2LrNb. Since the number of the basis vectors rN and the number of the calculated 
complex modes LN, the other operation count is trivial. Therefore, the operation count 
of the proposed method is O(N3+0.5Nb2+2LrNb). Since the half-bandwidth b is roughly 
proportional to N0. 5 (Bathe, 1996), the flop can be simplified as O(N3+0.5N2+2LrN1.5) for 
the consistent mass matrix and O(N3+2LrN1.5) for the lumped mass matrix. For non-
classically damped systems, the state-space method (the size of the state-space matrix is 
2N) to calculate the complex eigenproblem is O(8N3) (Adhikari, 2013). Therefore, the 
proposed method shows a clear advantage over the state-space method in engineering 
applications as O(8N3)> O(N3+0.5N2+2LrN1.5) in the case the consistent mass matrix and 
O(8N3)>O(N3+2LrN1.5) in the case of the lumped mass matrix. 

Examples and discussions 
Example 1: Three-DOF viscously damped system. A three DOF viscously damped 
system is considered here. The mass, damping and stiffness matrices are 

 
3 0 0
0 3 0
0 0 3

 
 =  
 
 

M , 
0 0 0
0 0.175 0.175
0 0.175 0.175

 
 = − 
 − 

C , 
4 2 0
2 4 2

0 2 4

− 
 = − − 
 − 

K  (19) 

To illustrate the accuracy of the proposed method, two cases for distinct damping 
matrices are considered. 
 
Case 1: consider the damping matrix given by Adhikari (Adhikari, 2011). In this case, 
the system does not satisfy the convergence condition for the Neumann series expansion 
and the assumption condition that the mode shapes are not changed significantly. Table 1 
lists the undamped frequencies and the complex eigenvalues using the exact state-space 
method and the proposed method for case 1. The damping coefficient of non-classically 
damped systems can be defined as (McLean, 2010) 

= 2j j djg α ω−   (here = ij j djλ α ω+ ) 

which is popular in the aeroelastic filed. The damping coefficient gj is approximately 
twice times the value of the conventional modal damping ratio. The MAC between the 
undamped mode shapes and exact complex mode shapes is 0.9953 for the first mode, 
0.7734 for the second mode and 0.6587 for the third mode (the MAC value close to unity 
denotes the similarity whereas it close to zero denotes no similarity). As can be seen, the 
MAC of the last two modes is not much similarity in comparison with that of the first 
mode and the last two undamped frequencies are close. Therefore the system shows a 
significant modal coupling. The high modal coupling means that the system does not 
satisfy the assumption condition that the mode shapes are not changed significantly. The 
minimal eigenvalue of Myj=sjCyj is 0.8571 (smin=0.8571). It means that the convergence 
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condition for the Neumann series expansion is not satisfied. Although the convergence 
problem and high modal coupling exist in the special case, the proposed method with two 
basis vectors shows a good accuracy (the maximal error is 0.7469% and the minimum 
MAC is 0.9822). Therefore, although the convergence condition given by (17) is the 
necessary and sufficient condition for the Neumann series expansion, it may be only a 
sufficient condition for the proposed method. In addition, the condition, which assumes 
the mode shapes are not changed significantly, maybe not a necessary condition for the 
proposed method. Now, we use these calculated modes to calculate the frequency 
response functions (FRFs). For the sake of comparison, the FRFs are also calculated 
using the direct frequency response method (DFRM) and the PAM. The DFRM, which 
requires a matrix decomposition of the dynamic stiffness matrix at each excitation 
frequency, is considered as an exact result. Two typical FRFs are shown in Figure 1. The 
damping coefficient is 0.0328 for the first mode, 0.0771 for the second mode and 0.7546 
for the third mode. Only two resonance peaks are visible since the damping coefficient of 
the third mode is high. It is shown that an unacceptable error is produced in the FRFs 
obtained by the PAM. However, the proposed method improves the results. 

Table 1. Eigenvalues using state-space method and the proposed method for case 1. 

 
Figure 1. FRFs for case 1. (a) The FRF excited at the first DOF and measured at the 
second DOF. (b) The FRF excited at the three DOF and measured at the three DOF. 
Case 2: the damping matrix is considered as Eq. (19). In this case, the system satisfies the 
assumption condition that the mode shapes are not changed significantly but does not 
satisfy the convergence condition for the Neumann series expansion. Table 2 lists the 
eigenvalues for case 2. The MAC of the undamped mode shapes and exact complex 
mode shapes is 0.9999 for the first mode, 0.9962 for the second mode and 0.9935 for the 
third mode. These MAC values close to unity show the system satisfy the assumption 
condition that the mode shapes are not changed significantly. The minimal eigenvalue of 
Myj=sjCyj is 8.5714 (smin= 8.5714), which means that the system does not satisfy the 

Mod
e  

Complex 
eigenvalue (exact) 

Undamped 
frequency 

One basis vector (r=1) Two basis vectors (r=2) 

Eigenvalues Error (%) MAC Eigenvalues Error (%) MAC 

1 

2 

3 

-0.0103 + 0.6298i 

-0.0478 + 1.2407i 

-0.5252 + 1.2890i 

0.6249 

1.1547 

1.5087 

-0.0125 + 0.6248i 

-0.1458 + 1.1455i 

-0.4250 + 1.4476i 

0.8734 

11.0078 

13.4770 

0.9953 

0.7734 

0.6587 

-0.0107 + 0.6295i 

-0.0406 + 1.2350i 

-0.5250 + 1.2825i 

0.0715 

0.7469 

0.4708 

0.9995 

0.9822 

0.9917 
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convergence condition for the Neumann series expansion. It is shown that, although the 
system does not satisfy the convergence condition in the special case, the proposed 
method with one basis vectors shows a good accuracy (the maximum error is 0.1378 and 
the minimum MAC is 0.9935) and the results of the proposed method with two basis 
vectors almost coincides with the exact results. As can be seen, the assumption condition 
can significantly affect the accuracy of the proposed method. In this case, two typical 
FRFs are shown in Figure 2. The damping coefficient is 0.0040 for the first mode, 
0.0251 for the second mode and 0.0565 for the third mode. It is shown that, although the 
damping coefficient is relatively light, an unacceptable error is also produced in the FRFs 
obtained by the PAM. However, the proposed method improves the results and its result 
shows a good agreement with that of the DFRM. 

Table 2. Eigenvalues using state-space method and the proposed method for case 2. 

 
Figure 2. FRFs for case 2. (a) The FRF excited at the first DOF and measured at the 
first DOF. (b) The FRF excited at the first DOF and measured at the second DOF. 

L LLLL

E=2.0×106 Pa
ρ=1800 kg/m3

c=4.2×103 

E=4.0×105 Pa
ρ=1000 kg/m3

c=1.5×104 

 

Figure 3. A damped truss structure. 

Example 2: Damped truss structure. A simple but representative truss structure, shown 
in Fig. 3, is considered. For an element e, the elementary matrices are defined as follows: 

1 0
0 12

e
e

A lρ  
=  

 
M , 

1 1
1 1e

e

EA
l

− 
=  − 

K  and 
1 1
1 1e

e

cA
l

− 
=  − 

C  

where A is the cross-section area, ρ is the density, E is the elastic modulus, c is the 
damping coefficient and le is the length of the truss element (le=0.5 m). here L=10 m and 

Mode  Complex 
eigenvalue (exact) 

One basis vector (r=1) Two basis vectors (r=2) 

Eigenvalues Error (%) MAC Eigenvalues Error (%) MAC 

1 

2 

3 

-0.0012 + 0.6250i 

-0.0145 + 1.1561i 

-0.0426 + 1.5060i 

-0.0013 + 0.6249i 

-0.0146 + 1.1546i 

-0.0425 + 1.5081i 

0.0095 

0.1281 

0.1378 

0.9999 

0.9962 

0.9935 

-0.0012 + 0.6250i 

-0.0145 + 1.1563i 

-0.0425 + 1.5061i 

0.0008 

0.0161 

0.0049 

1.0000 

0.9995 

0.9999 
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A=0.0001 m2. The DOF of the truss structure is 99. Figure 4 shows the first DOF of the 
FRF excited at the first DOF and measured at the first DOF. The complex modal 
superposition method should be used to accurately calculate the FRF since the results of 
the PAM do not give an acceptable accuracy. Table 3 lists the undamped frequencies and 
the complex eigenvalues using the exact state-space method and the proposed method. 
Two typical mode shapes calculated by using the exact state-space method and the 
proposed method with three basis vectors are shown in Figure 5. It is shown that the 
proposed method shows a good agreement with the exact results. The computational time 
of obtaining the first five complex eigenpairs is 3.2396e-2 seconds for the proposed 
method and 4.8613e-2 seconds for the state-space method. It means that the proposed 
method is faster than the state space method. If the DOF becomes larger, the time of the 
state-space method will increase rapidly and the proposed method will show a clear 
advantage over the state-space method as it discussed previously. 

 
Figure 4. The FRF calculated by the PAM and the complex modal analysis. 

Table 3. Eigenvalues using state-space method and the proposed method. 

 

Mode  Complex eigenvalue 
(exact) 

Undamped 
frequency 

One basis vector (r=3) Two basis vectors (r=4) 

Eigenvalues Error (%) Eigenvalues Error (%) 

1 

2 

3 

4 

5 

-2.4839e-2 +1.1883i 

 -8.6932e-2 +2.2064i 

 -3.5758e-1 +5.3648i 

 -5.7556e-1 +6.1127i 

 -7.9690e-1 +6.7949i 

1.1885 

  2.2078 

  5.3479 

  6.1088 

  6.8224 

-2.4836e-2 +1.1882i 

 -8.6913e-2 +2.2061i 

 -3.5588e-1 +5.3385i 

 -5.7054e-1 +6.0848i 

 -7.9366e-1 +6.7809i 

5.2116e-3 

  1.2450e-2 

  4.8983e-1 

  4.6164e-1 

  2.1052e-1 

-2.4836e-2 +1.1882i 

 -8.6913e-2 +2.2061i 

 -3.5592e-1 +5.3388i 

 -5.7060e-1 +6.0851i 

 -7.9375e-1 +6.7812i 

5.1716e-3 

  1.2273e-2 

  4.8479e-1 

  4.5686e-1 

  2.0528e-1 
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Figure 5. Complex mode shape. (a) First-order mode. (b) Fifth-order mode. 

Conclusions 
Based on undamped modes, an efficient method is presented to calculate complex 
eigenpairs by combining the Neumann series and the reduced basis technique. The 
method only requires the undamped eigenpair of interest. Some interest characteristic is 
shown and discussed in terms of numerical examples. It is shown that the complex 
eigenpairs can be calculated by simply postprocessing of undamped eigenpairs. Note that 
the first reduced basis vector is the undamped mode shape in nature. If complex eigenpair 
can be calculated by using one reduced basis vector to satisfy suitable accuracy, it means 
the system is close to the classically damped system and the proportional approximation 
method (PAM) may produce small errors. Therefore, it can be concluded that the 
proposed method can be reduced to the PAM when only the first reduced basis vector is 
used. If complex eigenpairs need more than one reduced basis vector to satisfy suitable 
accuracy requirements, under such circumstance, the PAM will produce unexpected 
errors and the proposed method can be used for suitable accuracy. Therefore, the 
proposed method is also developed as a criterion for choosing the PAM. 
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Abstract 

Numerical homogenization is an efficient way to determine effective material properties 

of composite materials. Conventionally, the finite element technique has been widely used in 

implementing the homogenization. However, the standard finite element method (FEM) leads 

to an overly-stiff model which gives poor accuracy especially using triangular elements in 2D 

or tetrahedral elements in 3D with coarse mesh. In this paper, the smoothed finite element 

methods (S-FEMs) are developed to analyse the effective mechanical properties of composite 

materials. Various examples, including modulus with multiphase composites and 

permeability of tissue scaffold, have demonstrated that smoothed finite element method is 

able to provide more accurate results using the same set of mesh compared with the standard 

finite element method. In addition, the computation efficiency of smoothed finite element 

method is also much better than the FEM counterpart.  
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1. Introduction 

 Attributable to its more versatile and tuneable material properties, a range of composites 

has been widely used in aerospace, marine, vehicle and biomedical industry as shown in Fig. 

1. Their different microstructures with two or more constituents allow achieving desirable 

properties such as multi-functionality and lightweight. To control the material properties, the 

spatial layout of the microstructure and/or the compositions of the constituent phases are 

extremely important [1]. However, it is always cumbersome to tweak a most appropriate 

microstructure and characterize its effective properties effectively [2].  

Substantial research has been done in the evaluation of effective (or namely bulk) elastic 

properties of composite materials. An early attempt for the design of composite material is 

perhaps the bounds of material property. Using variational principles, Hashin and Shtrikman 

developed theoretical bounds for the bulk (K) and shear (G) moduli of two-phases, well-

ordered materials [3]. Following this, some improvements of material bounds have been 

extended to multi-phase, multi-dimensional composites for various physical properties [4-5]. 

Although property bounds give the constraint of effective properties and provide some clue in 

choosing different phases for composite design, these all require additional information 

regarding the geometric layout of the microstructure [6].  

Numerical homogenization is an effective way to quantify the material properties based 

on an asymptotic expansion of the governing equations [7-11]. In the numerical 

homogenization, it is assumed that the representative volume element (RVE) or unit cell is 

locally repeated with very small microstructure compared with the overall ‘macroscopic’ 

dimensions of the structure of interest, in which the different materials are bonded in the RVE. 

The homogenization method is based on a rigorous mathematical theory [12], and it can 

provide us with a reasonable solution for some material design problems, where experimental 
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techniques may be very costly or unavailable, apart from the determination of theoretical 

bounds for an estimation purpose [13].    

 Currently, FEM is the most popular method in numerical homogenization for composite 

material properties [14-18]. However, FEM has some inherent drawbacks which limit the 

development of numerical homogenization. The first issue is its “overly stiff” phenomenon of 

a fully compatible FEM model [19, 20]; the second concerns with the mesh distortion related 

problems such as the significant accuracy loss when the element mesh is heavily distorted; 

the third is the poor accuracy in the stress solution using triangular in 2D or tetrahedral 

elements in 3D. 

 Due to this reason, Liu and his co-authors have established a weakened weak (W2) 

formulation using the generalized gradient smoothing technique to unify all the developed 

numerical methods [21]. The W2 formulation seeks solutions in the so-called G space, which 

includes both continuous and discontinuous functions. Hence, it works for both compatible 

and incompatible displacements in the framework of the finite element and meshfree methods. 

Using the generalized strain smoothing technique, the Smoothed Point Interpolation Methods 

(S-PIMs) [22] have been developed, which offers a number of outstanding features.  With the 

strain smoothing technique [23], the smoothed finite element methods (S-FEMs) have been 

proposed to overcome the shortcoming of FEM model [24-25]. The S-FEMs can be viewed 

as the simplest linear version of S-PIMs and has the advantages of simplicity and yet 

outstanding performance and important features. 

Compared with overly-stiff FEM, S-FEMs provides a softened system model for high 

convergence and accuracy. According to smoothing algorithm, several different formulations, 

namely cell-based smoothed FEM (CS-FEM) [26-27], node-based smoothed FEM (NS-FEM) 

[28], and edged-based smoothed FEM (ES-FEM) [29-30], have been proposed respectively. 

These methods introduce the strain smoothing operations to the standard FEM procedures, 
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and worked fairly effectively for a range of engineering problems such as solid mechanics 

[31], heat transfer [32-35] and acoustics [36-37]. The implementation of such smoothed finite 

element methods is quite straightforward without additional parameters involved. The study 

of S-FEMs has also clearly shown that the smoothing operation on strains allows to 

manipulate the assumed strain field in a proper fashion to ensure the stability (boundness), 

thus ensuring the (monotonic) convergence, and giving the S-FEMs some very good features. 

Lured by the special properties of smoothed finite element methods, this study for the 

first time attempted to formulate homogenization problem for different composite materials. 

The objective to develop S-FEMs for homogenization is to improve the numerical accuracy, 

computational efficiency, as well as to study the applicability of S-FEMs. The above 

mentioned various smoothed finite element techniques are formulated here to characterize the 

effective properties for two or more materials. This paper is organized as follows: Section 2 

briefs numerical homogenization using finite element methods. Section 3 presents the 

formulation of smoothed finite element methods in numerical homogenization. The 2D and 

3D demonstrative examples are shown in Section 4 to verify the applicability of smoothed 

finite element method in numerical homogenization. The conclusions are drawn in Section 5. 

2. Brief of numerical homogenization using FEM 

2.1 Concept of Periodic Representative Volume Element (RVE) 

 In this study, we consider periodic composites which comprise repetitive identical unit 

cells in the microscopic level of material structure. For the sake of simplicity, only two-

dimensional problem is illustrated here as shown Fig. 2. To characterize one piece of material 

sample, the computational cost for a full finite element (FE) model can be extremely high as 

discretization of the whole sample solid becomes enormous in order to represent detailed 

structure of the microscopic material constitutions. Such issue will be more serious and could 
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become prohibitive in three-dimensional problems. Fortunately, the homogenization method 

provides an efficient way to predict the mechanical behaviour of macrostructure without 

modeling the entire macroscopic structure of multiphase composites [12].  

In general, the selection of representative volume element (RVE) is crucial in the 

homogenization process in order to accurately predict the effective mechanical properties.  

The selective RVE must make sure repetitive unit identifiable in the domain carry all the 

geometric features necessary to fully define the medium [38]. Note that while the RVE is not 

uniquely defined in the homogenization; the effective mechanical properties from different 

unit cells should be ideally the same on the given scale. Additionally, when deciding the size 

of the RVE, the geometrical and material symmetries of the structure can be considered in 

order to simplify the implementation of numerical code [17]. 

2.2 Effective Elastic Moduli 

  For more effective discussion, we first brief on the standard formulation of FEM in 

numerical homogenization [14, 15], as some of these formulae will be used repetitively in 

later sections. In the homogenization, two levels of coordinate systems are used: one is the 

global coordinate system of macrostructure yi and another is the local coordinate system of 

microstructure xi. In the following analysis, linear elastic constitutive law is assumed. The 

relationship between the local coordinate system xi for the RVE and global coordinate system 

of sample macrostructure yi can be written as follows [14, 15]: 

i
i

y
x


  (1) 

where  is the small scaling parameter between these two length scales.  

Based on asymptotic expansion, it is reasonable to approximate 


u   in the following 

form with respect to parameter   
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       0 1 2 2, , , ...y x y x y x y     u u u u  (2) 

where the function 0 1 2, , ...i i iu u u are X-periodic with respect to the local coordinate x. 

The strain-displacement and stress-strain relationships can be accordingly expressed as 

follows 

 
1

2

k l

l ky y

   
  

  

u u
ε y  (3) 

    σ u Dε u  (4) 

where D, ε ,  


u  σ  are the elasticity matrix for base material, strain, displacement and stress. 

As u1 is the first order variation from the average displacement, this variation can be 

considered to be proportional to the average strain ε0 [14]: 

   1 0 u ξ x ε y  (5) 

where ξ  is the characteristic displacement function of the microstructure. In other words, the 

characteristic displacement is scaled directly by the average train because it is the 

displacement for the unit strain of the macrostructure. 

From Eqs. (3)-(5), the total potential energy is formulated as follows [14]: 

          
T T

0 0 0

0

1

                                                                                                                     
T

dy dx dx dy dy
D X

t

dX dD
X

d





   

 

 



u L u I L ξ D I L ξ L u L u

u t

 (6) 

where X  is the area (volume in 3D) of RVE, I is the identity, and dL is a matrix of 

differential operator defined as: 

1 1

2 2

2 1 2 1

/ 0 / 0

0 / , 0 /

/ / / /

dx dy

      
   

     
   
             

x y

L x L y

x x y y

 (7) 

Define 
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   
T1H

dx dy
X

dX
X

  D I L ξ D I L ξ  (8) 

and substitute Eq. (8) into (6) leads to 

     
T

0 0 0
T

H t

dy dy
D

dD d


    u L u D L u u t  (9) 

The homogenized elasticity matrix D
H
 in Eq. (8) is obtained [14] through discretization of 

unit cell using finite element technique. In the numerical implementations, the FEM divides 

the domain Ω into a number of elements, and the following trial functions are used: 

   , i iξ x d N x d  (10) 

dx i iL ξ B d  (11) 

where id  is the vector of nodal displacements, and  iN x  is a matrix of shape function in the 

microstructure. The strain matrix iB  is defined as follows:  

1

2

1 2

/ 0

0 /

/ /

i

i i

i i

  
 

  
 
     

N x

B N x

N x N x

 2D (12) 

1

2

3

1 2

2 3

1 3

/ 0 0

0 / 0

0 0 /

/ / 0

0 / /

/ 0 /

i

i

i

i

i i

i i

i i

  
 

 
 
  

  
    
    
 
     

N x

N x

N x
B

N x N x

N x N x

N x N x

 3D (13) 

Substitute Eq. (10) into Eq. (8), the effective mechanical properties can be written as follows: 

   
T1H

i i i i
X

dX
X

  D I B d D I B d  (14) 

In order to obtain an equilibrium state, one can set variational to zero,  

  0T

i i i i i
X X

dX dX   d B D B DB d  (15) 
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By substituting the approximations di into Equation (14) and invoking the arbitrariness of 

virtual nodal displacements, we have the standard discretized algebraic system equation: 

n nKd F  (16) 

where K is an analogized element stiffness matrix, and F
n
 is the nodal force vector which is 

equivalent to the initially applied strain field. 

T

i i e
X

dX K B DB  (17) 

n

i e
X

dX F B D  (18) 

For a 2D elastic problem, n=1, 2, 3, for 3D elastic problem, n=1… 6. For a 2D heat 

conduction or fluidic permeability problem, n=1, 2, for 3D heat conduction or fluidic 

permeability problem, n=1, 2, 3. The boundary conditions for each case are listed in Tables 1 

and 2. The detailed formulation of numerical homogenization method is available in many 

resources [14, 15, 17, 18]. Although the above process is derived from elasticity problem, the 

effective fluidic permeability can be calculated in the same way.  

3. Implementation of S-FEMs in numerical homogenization 

In the formulation of S-FEMs homogenization, the critical step is that the smoothed 

strain, instead of compatible strain, is used. The pre-process of mesh and implementation of 

boundary conditions are exactly the same as the standard FEM based homogenization. Hence, 

the computation of a smoothed strain is crucial to formulate S-FEMs based homogenization. 

In this section, several different strain smoothness algorithms are presented for 

homogenization. 

3.1 Edge-based smoothed finite element method (ES-FEM) 

In the formulation of ES-FEM based homogenization, the first step is to construct the 

smoothing domain. The local smoothing domains are constructed with respect to the edge of 
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triangular elements such that 
1

sN s

k k   and s s

i j   , i j  , in which sN  is the 

number of smoothing domains and equals to the number of elemental edges in the scheme of 

ES-FEM. For the triangular elements in 2D or tetrahedral elements in 3D, the smoothing 

domain associated with edge k is created by connecting two endpoints of the edge to two 

centroids of the two adjacent elements as shown in Fig. 3(a). Extending the smoothing 

domain s

k  in 3D problems, the sub-domain of the smoothing domain s

k  for edge k located 

in the particular cell j can be obtained by connecting two end nodes of the edge to the 

centroids of the surface triangles and the centroid of cell j. The sub-smoothing-domain for 

edge k is one sixth region of this tetrahedral element.  

With the edge-based smoothing technique, the smoothed strains can be computed using 

the compatible strains ε Lu  from the following smoothing operation [39]: 

1 1

s s
k k

k ks s

k k

d d
A A

 

    ε ε Lu  (19) 

where s

k is the boundary surface of the smoothing domain s

k , d
s
k

kA


  is the area of the 

smoothing domain for edge k, and u is the displacement vector expressed in the following 

approximate form:  

 
1

N

i i s

i

 u N x d N d

 
(20) 

where N is the number of field nodes per element and equals to 3 for the three-node triangular 

elements used in this work,  
T

i xi yid dd is the nodal displacement vector, d is the vector 

with all the N nodal displacements in the element, and iN  is a matrix of shape functions. 
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Substituting Eq. (20) into (19) and applying the divergence theorem, the smoothed 

strains for the smoothing domain s

k can then be obtained as follows 

   ES-2D

1

kM

k i k i

i

ε x B x d  (21) 

where kM  is the total number of nodes containing the same edge i. For the inner edge, kM  is 

equal to 4, and kM  becomes 3 for boundary edge.  

The smoothed strain matrix can be calculated numerically in the following way: 

( )

ES-2D
( ) 2D

( )
1

1 1

3

k
eN

j

e jk
j

A
A 

 B B  (22) 

where ( )k

eN  is the number of elements around the edge k. For the boundary edge, no 

smoothing effect exists in the edge, hence ( )k

eN =1 for boundary edges. For all inner edges, 

there are only two elements sharing one edge, so ( )k

eN =2. 

The smoothed strain in 2D ES-FEM can be very straightforward to extend to 3D 

tetrahedral elements: 

( )

ES-3D
( ) 3D

( )
1

1 1

6

k
eN

j

e jk
j

V
V 

 B B  (23) 

where Ve and Bj are the volume and the compatible strain gradient matrix of the jth 

tetrahedral element around node k, respectively. V
(k)

 is calculated by the following equation: 

( )

( ) ( )

1

1

6

k
eN

k j

e

j

V V


  (24) 

Based on the formulations of smoothed strain expressed in Eqs. (22) and (23), the smoothed 

stiffness and force matrix can be written in the following forms, respectively: 
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 
( )

T
ES ES ESk

ek N

d




  k B DB  (25) 

 
( )

T
ES ESk

ek N

d




  F B D  (26) 

For the multi-material formulation in ES-FEM, the process is similar to single material 

except the interface of different materials. As the material property is discontinuous along the 

interface, the associated smoothing domain will be separated into two regions as shown in 

Fig. 3(b), which is the same as it does along domain boundaries.  

3.2 Node-based smoothed finite element method 

 Similar to ES-FEM, the smoothing domain is first constructed in the scheme of NS-FEM. 

For 2D problems with single material as shown in Fig. 3(a), the smoothing domain s

k  for 

node k is constructed by connecting sequentially the mid-edge-points to the centroids of the 

surrounding triangles of node k. The smoothing domain can be easily extended to 3D 

problems, where the sub-domain of the smoothing domain for node k  located in the 

particular cell  j  can be obtained by connecting the mid-edge-points, the centroids of the 

surface triangles and the centroid of cell j . Finding out other sub-domains located in cells 

which contain node  k  and the smoothing domain for node  k  can be constructed by uniting 

all the sub-domains.  Hence, the smoothed strain in 2D using the node-based smoothing 

technique with triangular element is expressed as 

 

( )

NS-2D
( )

I

1

1 1

3

k
eN

j

e jk
j

A
A 

 B B  (27) 

where Bj
 is the compatible strain computed by standard FEM, Ne is the number of elements 

surrounding the node k; Ae is the area the jth element around the node k. 

The area A
(k)

 is computed by: 
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 

 

( ) ( )

1

1
d

3

k
e

k

N
k j

e

j

A A




     (28) 

Note that with this formulation, only the area and usual “compatible” strain matrices Bj by 

Eq. (27) of triangular elements are needed to calculate the system stiffness matrix for the NS-

FEM.  

In 3D NS-FEM, the smoothed strain can be calculated in a similar way:  

 

( )

NS-3D
( )

I

1

1 1

4

k
eN

j

e jk
j

V
V 

 B B  (29) 

where Bj is the compatible strain computed by standard FEM, the Ve is the volume of the jth 

tetrahedral element around the node k. The V(k) is computed by: 

 

 

( ) ( )

1

1
d

4

k
e

k

N
k j

e

j

V V




     (30) 

Hence, in the NS-FEM formulation of numerical homogenization, the stiffness matrix 

and force matrix can be formulated respectively as: 

 
( )

T
NS NS NSk

ek N

d




  k B DB  
(31) 

 
( )

T
NS NSk

ek N

d




  F B D  
(32) 

In the formulation of multi-material NS-FEM, the smoothing domain is also separated 

two parts along the interface of different material as shown in Fig. 3(b) as material properties 

are not continuous. That means the associated smoothing domain is not allowed to cross the 

boundary of each material. It is noted that there are still some smoothing effect at both sides 

of interface, but smoothing effect is weak compared with internal nodes. 
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3.3 Cell-based smoothed finite element method 

In the cell-based smoothed finite element method (CS-FEM) for the homogenization, the 

quadrilateral elements are considered. The formulation of stiffness is computed based on the 

smoothing cells (SC) located inside the quadrilateral elements as shown in Fig. 5. In CS-FEM, 

the elements are subdivided into several smoothing cells, such as 
1 1 ...e e e e

nc     . If 

the number of SC of the elements equals 1, the CS-FEM solution has the same properties 

with those of standard FEM using the reduced integration [24]. When the number of 

smoothing cells is approaching infinity, the CS-FEM solution approaches to the solution of 

standard FEM. Based on our research experience, the numerical solution is always stable and 

accurate if the number of smoothing cells is equal to 4 [24].  

Based on the smoothing theory, the smoothed strain in CS-FEM can be expressed in the 

following equation: 

 CSCS

n

C I

I

ε B x u  
(33) 

where CSB  is the smoothed strain matrix. For 2D case 

CS

CS CS

CS CS

0

0

b

b

b b

 
 

  
 
  

B  
(34) 

where 

   
1

c

CS I k

C

b N n d
A 

  x x  
(35) 

If one Gaussian point is used for line integration along each segment of boundary C

i of C , 

the above integration equation can be transformed to its algebraic form 
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 GP

1

M
C C

CS I i ik ik

i

b N n l


 x  
(36) 

where GP

ix  is the midpoint (Gaussian point) of boundary segment of C

i , whose length and 

outward unit normal are denoted as C

il and C

in  , respectively. 

The smoothed element stiffness matrix can be obtained by assembly of those all of the 

smoothing cells of the element, i.e. 

T

CS CS CS CS

C

AK B DB  (37) 

CS F
T

CS CS

C

AB D  (38) 

The smoothed CSB  matrices are constructed with integration over the boundary of the 

cell of the element. 

3.4. Algorithm for S-FEMs based homogenization  

Numerical procedures for computing the effective mechanical properties of composite 

materials using smoothed finite element method are summarized as follows:  

1. Design Composite material 

2. Determine the unit cell 

3. Divide the domain into a set of elements and obtain information on nodes coordinates and 

element connectivity 

4. Create the smoothing domain for each smoothed finite element method. 

5. Loop over all the elements 

  (a) Compute the compatible strain B of the element by Equation using standard finite 

element formulation and save it to process the smoothed strain. 
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  (b) Evaluate the smoothed strain. In ES-FEM, apply Eq. (22) and (23) to compute the edge-

based smoothed strain. In NS-FEM, use Eq. (27) and (29) to calculate the node-based 

smoothed strain. In CS-FEM, Eq. (34) is adopted to determine the cell-based smoothed strain.  

6. Calculation of smoothed stiffness and smoothed force matrix 

 For ES-FEM, smoothed stiffness and force in numerical homogenization use Eq. (25) 

and (26) 

 For NS-FEM, smoothed stiffness and force in numerical homogenization use Eq. (31) 

and (32) 

 For CS-FEM, smoothed stiffness and force in numerical homogenization use Eq. (37) 

and (38) 

7. Implement symmetrical boundary conditions by referring to Table 1 and 2. 

8. Solve homogenization equation 
nn Kd F   

9. Evaluate the homogenized (effective) mechanical properties based on Eq. (13).  

10. For 2D elasticity problem, loop step 7 and 8 three times for different boundary conditions. 

For 3D elasticity problem, repeat the step 7 and 8 six times for different characterized cases. 

4. Numerical examples 

4.1 Benchmark example 

In order to verify the S-FEMs formulation for homogenization, one benchmark example 

[9] is first studied. As shown in Fig. 6, unit square cell containing a 0.4 0.6 void and the 

solid phase material properties are D11=D22=30 and D12=D33=10 (all units are assumed to be 

consistent) [9]. This problem was solved by Bendsoe and Kikuchi [16]. 
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The numerical solutions obtained from S-FEMs and FEM using the triangular (T3) and 

quadrilateral (Q4) elements (Fig. 7) are tabulated in Tables 3 and 4, respectively. For the 

purpose of comparison, the published results are presented in Table 5. Compared these three 

tables, it is seen the homogenization results obtained from S-FEMs agree very well with the 

published data. 

4.2 Void material 

Another example is material 1 with void as shown in Fig. 8. The Young modulus and 

Poisson’s ratio of solid are E=5MPa, v=0.3. A plane stress problem is considered here. The 

discretized models using triangular (T3) and quadrilateral (Q4) elements are shown in Fig. 9.  

Figure 10 shows the convergence of effective (homogenized) bulk modulus using 

different FEM methods. The effective bulk modulus is defined by [40]: 

   11 12 222

1
2 2 2

2(1 ) 4(1 ) 4

eff eff eff eff eff

eff

eff eff

E E
Bu v D D D

v v
     

 
 

(39) 

The effective elasticity tensor D
eff

 can be defined as follows: 

2D plan stress problem 

 

1111 1122

1122 22222

1212

01 0

1 0 0
1

0 00 0 1 / 2

eff eff

eff

effeff eff eff

eff

eff eff

eff

D Dv
E

v D D
v

Dv

   
   

    
    

    

D   (40) 

2D plan stain problem 

   
 

1111 1122

1122 2222

1212

1 0 0

1 0 0
1 1 2

0 00 0 1 2 / 2

eff eff

eff eff

effeff eff eff

eff eff

effeff eff

eff

v v D D
E

v v D D
v v

Dv

   
   

     
          

D   (41) 
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where Eeff is effective Young Modulus and veff is effective Poisson’s ratio. The short notation 

eff

ijklD  (11 1,22 2, 33 3, 32 4, 13 or 31 5, 12 or 21 6      ) is used for all the entries 

of the homogenized effective elasticity tensor [40]. 

In order to make a comparison, the reference solution is computed using standard FEM 

with very fine mesh (35621 nodes). As shown in Fig. 10, it is seen that all numerical results 

approach the reference solution with increased number of degree of freedom (DOF). The 

FEM, ES-FEM and CS-FEM approach the reference solution from the upper bound, whereas 

NS-FEM with T3 and Q4 elements approaches the reference solution from the lower side. 

Among all numerical methods, ES-FEM gives the most accurate solution even much better 

than quadrilateral (Q4) elements using FEM, which is due to stronger softening effect 

provided by the ES-FEM.  

4.2 Multiple material composites 

In this section, two different materials with void are bonded together as shown in Fig. 11. 

The Young moduli for materials 1 and 2 re 
1=0.1GPaE  and

2 =2GPaE , Poisson’s ratios for 

materials 1 and 2 are 
1=0.4v and

2 =0.3v , respectively. Plane strain problem is considered here. 

By using the same set of T3 meshes as shown in Fig. 12, Fig. 13 plots the convergence in 

the effective (homogenized) elasticity components using the different finite element methods. 

The solutions of all these methods converge to the reference solution (36260 nodes using 

FEM) with reducing nodal spacing. In terms of the accuracy, the NS-FEM gives similar 

results to FEM. However, NS-FEM converges the reference solution from the lower bound, 

whilst FEM converges the reference solution from the upper bound. Among all numerical 

methods, again ES-FEM provides the best solution in all elasticity components. 
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Figure 14 outlines the converegcne of effective (homogenized) bulk modulus. It is 

observed that numerical solution obtained from ES-FEM is again the closest to the reference 

solution when the same set of mesh is used.  

As computational efficiency is an important criterion to assess the performance of 

numerical methods, the comparison of different analysis methods is shown in Fig. 15. It is 

clear that the computational time for the ES-FEM and NS-FEM is longer than FEM when the 

same set of mesh is used. This is because more nodes are used to form the shape function in 

ES-FEM and NS-FEM. Nevertheless, in terms of computational efficiency, the ES-FEM 

performs much better than FEM and NS-FEM.  This is due to right softened effect in the ES-

FEM model. 

Another example of numerical homogenization for multi-phase material is shown in Fig. 

16. The Young modulus for material 1 and 2 are 1 200MPaE   and 2 30MPaE  , Poisson’s 

ratio for material 1 and 2 are 
1 0.3v  and 

2 0.35v  respectively. The discretization model is 

shown in Fig. 17. 

  The convergence rates of effective mechanical properties are presented with different 

numerical methods shown in Fig. 18. From Fig. 18, again we found that the ES-FEM gives 

much better solution than FEM and NS-FEM.   Fig. 19 plots the result of effective bulk 

modulus converging to the reference solution using different methods. As we expected, FEM 

and ES-FEM give upper bound solution and NS-FEM provides lower bound solution. The 

ES-FEM is able to achieve a close to exact stiffness, and it gives the best solution in the 

prediction of effective bulk modulus.  

4.3 Tissue Scaffold Example 

As the rapid development of additive fabrication technology, scaffold tissue engineering 

is growing fast. Materials with periodic cellular micro-architectures are becoming particularly 

advantageous due to high manufacturability and tailored effective properties. Tissue scaffold 
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involves two important criteria concerned in the design stage: one is overall stiffness, which 

is able to provide similar load-bearing capacities to surrounding tissues; the other one is 

permeability, which offers sufficient porosity for mass transfer and vascularization. In this 

example, it is assumed that the Young modulus =100Mpa,  0.3E v   of scaffold materials the 

permeability coefficient 0.5   in the 3D tissue scaffold as shown in Fig. 20. 

The discretization of 3D base cell is presented in Fig. 21. Fig. 22 shows the convergence 

of effective bulk modulus using 3D ES-FEM, NS-FEM and FEM. In order to make a 

comparison, the reference solution with very fine mesh (216,000 nodes) is also plotted 

together. It is clearly shown that 3D ES-FEM still gives the best solution of these different 

numerical methods when the same set of mesh is used. The 3D NS-FEM still approaches the 

reference solution from the lower bound.  

The convergence of effective permeability is presented in Fig. 23 with reference solution 

using 216,000 nodes. Again, it is found the NS-FEM provides the lower bound solution of 

effective permeability. The ES-FEM and FEM provides the upper bound solution of effective 

permeability. In terms of accuracy, the ES-FEM using tetrahedral (T4) elements performs the 

best.  

5. Conclusion 

In this paper, smoothed finite element methods (S-FEMs) were formulated to solve the 

numerical homogenization problems. Various 2D and 3D examples were presented to 

demonstrate the accuracy and convergence of S-FEMs in the evaluation of effective 

(homogenized) mechanical properties of periodic microstructural composites. In summary, 

some conclusions are drawn as follows: 
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1. The implementation of smoothed finite element method in numerical homogenization 

of composite material is fairly straightforward. No additional parameters are involved 

in the formulation. 

2. For the first time, the NS-FEM was found to be able to give the lower bound solution 

in the computation of effective (homogenized) material properties of composites. 

3. The ES-FEM was found to stand out from all different forms of finite element method 

in 2D and 3D, which provided the best solution to characterization of the effective 

mechanical properties of composites. 
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Figure 

 
(a) Tissue Scaffold 

 
(b) Cuttlebone 

Figure 1: 3D printing of composite material 

 

 

 

 

 
Figure 2: Composite materials with periodic microstructure 
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Figure 3: Illustration of ES-FEM 
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Figure 4: Illustration of NS-FEM 
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Figure 5: Illustration of CS-FEM 
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Figure 6: Unit cell of a periodic composite 
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a) 400 nodes with T3 

 
b) 1387 nodes with T3 
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Figure 7: Discretization of base cell using triangular (T3) and quadrilateral (Q4) elements 
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Figure 8: Base cell of a composite 
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Figure 9:Domain discretization using triangular and quadrilateral element 
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Figure 10: Convergence of bulk modulus 
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Figure 11: Base cell of a composite 

 

0 500 1000 1500 2000 2500 3000 3500
2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
x 10

6

DOF

E
ff
e

c
ti
v
e

 b
u

lk
 m

o
d

u
lu

s

 

 

ES-FEM-T3

FEM-T3

NS-FEM-T3

CS-FEM

FEM-Q4

NS-FEM-Q4

Reference result

ICCM2014, 28th-30th July 2014, Cambridge, England

458



 
 

    
(a)122 nodes (b) 417 nodes (b) 1445 nodes (d) 36260 nodes 

Figure 12: Domain discretization using triangular (T3) element 
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Figure 13:Convergence of elasticity components 
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Figure 14: Convergence of effective bulk modulus 

 

 

 

 
Figure 15: Convergence of effective bulk modulus 
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a) Periodic structure 

 
b) RVE 

Figure 16: Base cell of a composite 

 

 

    
(a)145 nodes (b) 501 nodes (b) 1756 nodes (d) 38685 nodes 

Figure 17: Domain discretization using triangular element 
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Figure 18:Convergence of bulk modulus 
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Figure 19: Convergence of bulk modulus 
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a) 3D tissue Scaffold b) RVE for stiffness 
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Figure 20: 3D tissue scaffold structure 
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b) Permeability model 

Figure 21: Domain discretization using tetrahedral element 
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Figure 22: Convergence of effective bulk modulus 

 

 

 

 
Figure 23: Convergence of effective permeability 
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Table  

 

Table 1:Symmetry conditionsforthedifferentteststrains in 2D elasticity 

Test strains 0,1x   0,1y   

12  0e

yu   0e

xu   

,ij i j   0e

xu   0e

yu   

 

 

Table 2:Symmetry conditionsforthedifferentteststrains in 3D elasticity [1] 

Test strains 0,1x   0,1y   0,1z   

12  0e e

y zu u   0e e

x zu u   0e

zu   

23  0e

xu   0e e

x zu u   0e e

x yu u   

13  0e e

y zu u   0e

yu   0e e

x yu u   

,ij i j   0e

xu   0e

yu   0e

zu   
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Table 3: Numerical results using different methods (Triangular element) 

mesh 
11

HD  
12

HD  
22

HD  
33

HD  Methods 

400 nodes T3 12.9527 3.2141 17.5111 2.7214 ES-FEM 

400 nodes T3 13.1122 3.2948 17.6227 2.8669 FEM 

400 nodes T3 12.4404 2.9412 17.1006 2.3718 NS-FEM 

1387 nodes T3 12.8557 3.1472 17.4342 2.6556 ES-FEM 

1387 nodes T3 12.9305 3.1926 17.4895 2.7142 FEM 

1387 nodes T3 12.6398 3.0153 17.2643 2.5082 NS-FEM 

8321 nodes T3 12.8181 3.1209 17.4057 2.6318 ES-FEM 

8321 nodes T3 12.8447 3.1402 17.4269 2.6523 FEM 

8321 nodes T3 12.7399 3.0640 17.3446 2.5765 NS-FEM 

 

 

Table 4: Numerical results using different methods (Quadrilateral element) 

mesh 
11

HD  
12

HD  
22

HD  
33

HD  Remarks 

406 nodes T4 13.0335 3.2257 17.5535 2.7713 CS-FEM 

406 nodes T4 13.1122 3.2948 17.6227 2.8032 FEM 

406 nodes T4 12.5140 2.9605 17.1780 2.3793 NS-FEM 

2341 nodes T4 12.8833 3.1375 17.4446 2.6901 CS-FEM 

2341 nodes T4 12.9109 3.1388 17.4621 2.7129 FEM 

2341 nodes T4 12.6777 3.0256 17.2966 2.5293 NS-FEM 

9517 nodes T4 12.8599 3.1123 17.4168 2.6715 CS-FEM 

9517 nodes T4 12.8876 3.1095 17.4310 2.6934 FEM 

9517 nodes T4 12.7400 3.0631 17.3470 2.5768 NS-FEM 

 

Table 5: Published results reported by other researches [9] 

mesh 
11

HD  
12

HD  
22

HD  
33

HD  Remarks 

20x20 4-node 13.015 3.241 17.552 2.785 Ref. [17] 

1
st
 adapt 12.910 3.178 17.473 2.714 Ref. [17] 

2
nd

 adapt 12.865 3.146 17.437 2.683 Ref. [17] 

3
rd

 adapt 12.844 3.131 17.421 2.668 Ref. [17] 

436 8-node 12.839 3.139 17.422 2.648 HOMOG case (a) 

305 8-node 12.820 3.124 17.407 2.634 HOMOG case (a) 
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Abstract 
In this study, crack initiation and propagation along the Cu/Si interface in multilayered films 
(Si/Cu/SiN) with different thicknesses of the Cu layer (20 and 200 nm) are experimentally 
investigated using a nano-cantilever and millimeter-sized four-point bending specimens. To 
examine the cohesive zone model (CZM) criterion for interfacial delamination along the Cu/Si 
interface in nanoscale stress concentration, an exponential type of CZM is utilized to simulate the 
observed delamination processes using the finite element method. After the CZM parameters for the 
Cu/Si interface are calibrated by an experiment, interface cracking in other experiments is predicted. 
This indicates that the CZM criterion is universally applicable for describing cracking along the 
interface regardless of specimen dimensions and film thickness which include the differences in 
plastic behavior and residual stress. The CZM criterion can also predict interfacial cracking along 
Cu/Si interfaces with different stress singularities.  

Keywords: Interface, Cohesive zone model, Delamination, Nanoscale, Thin films 

Introduction 
Many micro-electronic and mechanical devices include bi-material interfaces, which, however, are 
liable to crack due to stress concentration originated from deformation mismatch [Rice (1998); 
Kitamura et al. (2002)]. So, for the assurance of reliability, it is important to evaluate the interface 
strength under nanoscale stress concentration. 
 
Cohesive zone model (CZM) for cracking in bulk components has been successfully used for 
interfacial delamination in many material systems [Elices et al. (2002)]. However, the application 
for delamination induced by nanoscale stress concentration in small components has not been fully 
investigated. So, it is necessary to examine the applicability of CZM for fracture in nano-
components. In this study, an exponential type of CZM is used to simulate the crack initiation at 
interface edge and propagation along the Cu/Si interface with nanoscale stress concentration in 
different experiments. The reliability of CZM concept for nano- components is examined on the 
basis of experiments and analyses. 

1. Experiments on crack initiation and propagation 

1.1 Tested materials 

The tested materials are multilayer Si/Cu/SiN (silicon /copper/silicon nitride) with different Cu 
thicknesses. After a Si (100) wafer surface is cleaned by inverse sputtering, a Cu layer with a 
thickness of 20 or 200 nm is deposited by radio-frequency (RF) magnetron sputtering. A SiN thin 
layer of about 500 nm thickness is then formed on the Cu layer. 
 
Since the Cu layer shows elasto-plastic behavior during experiments, the corresponding plastic 
properties of 20 nm [Sumigawa et al. (2010a)] and 200 nm [Takahashi et al. (2007)] thick Cu layers 
determined in previous experiments are used in following numerical calculations. 
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1.2 Specimens and experiment set-ups 

1.2.1 Nano-cantilever experiment 

Fig. 1 shows the specimen used for the nano-cantilever experiments of the Cu thin films of 20 and 
200 nm thick (denoted as nano-cantilever (20 nm Cu) [Sumigawa et al. (2010b)] and nano-
cantilever (200 nm Cu) [Hirakata et al. (2007)]). Crack initiation at interface edge is investigated 
here. A minute mechanical loading apparatus is used to apply a force and the behavior of interface 
fracture is observed in situ by transmission electron microscopy (TEM). The load is applied to the 
SiN layer with a diamond loading tip to apply stress to Cu/Si interface by a bending moment as 
shown in Fig. 1. No damage or defect is observed near the Cu/Si interface edge before the 
experiments. 
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A2 840 308 233 
A3 

20 
871 415 642 

I1 1270 340 300 
I2 1295 260 320 
I3 1260 390 290 
I4 

200 

762 320 980 

Fig. 1 Schematic illustration of nano-cantilever (20 nm Cu) and nano-cantilever (200 nm Cu) 
specimens (length unit: nm) 

1.2.2 Modified four-point bend experiment [Hirakata et al. (2007)] 

A rectangular coupon with millimeter-scale width cut from the material with the 200 nm-thick Cu 
thin film is glued to a plate of stainless steel, as shown in Fig. 2. After a pre-crack is introduced, the 
load P is applied at a constant displacement rate. The whole specimen size is millimeter-scale, 
which is almost a thousand times larger than those of the nano-cantilever specimens. The study 
focus is the crack propagation along the Cu/Si interface from the pre-crack.  
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Specimen No. W, mm 
P1 5.58 
P2 4.79 
P3 4.54 

Fig. 2 Schematic illustration of the modified four-point bend specimen (200 nm Cu) and the 
loading system 

1.3 Experimental results 

1.3.1 Nano-cantilever experimental results 

Fig. 3 shows the relationships between the applied load and deflection at the end of the cantilever 
arm under monotonic loading. With increasing the applied load, the experimental curves become 
nonlinear by plastic deformation of Cu layer. At the critical load, the crack initiates at interface edge 
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and immediately leads to the complete delamination of the entire interface. Similar fracture 
behavior is observed in the nano-cantilever (20 nm Cu) experiments. The critical loads, PC, for 
crack initiation are listed in the table of Fig. 3, which shows great dependency on specimen 
geometry. 
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Fig. 3 Relationship between applied load and cantilever deflection for specimens I1, I3, and I4, 
and the critical loads of all tested nano-cantilever specimens 

1.3.2 Modified four-point bend experimental results 

Table 1 shows critical loads, PC, for crack propagation in all the tested specimens. The obtained 
critical loads are nearly a million times larger than those in the nano-cantilever tests due to the huge 
difference in specimen dimensions.  

Table 1 Critical loads of four-point bend (200 nm Cu) specimens 

Specimen No. Critical load PC, N 
P1 5.40×106 
P2 4.86×106 
P3 4.65×106 

2. Cohesive zone model 
In the exponential CZM [Xu and Needleman (1993)], with increasing interfacial separation, the 
tractions across the interface increase to reach a maximum, and then decrease, eventually vanishing 
with complete decohesion.  
 
The interfacial potential is defined as 

 
2
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where 2 2
t t1 t 2    , t nq   , and *

n nr   . n and t are the work of the normal and shear 
separations；n and t are the normal and shear displacement jumps, respectively; n and t are the 
normal and shear interface characteristic length parameters, respectively.  is the critical 
magnitude of 

*
n

n at complete shear separation, where normal traction is zero. 
 
The relations between the interfacial tractions and the potential are given by 
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Substituting Eq. (1) into Eq. (2), we obtain the interfacial tractions as follows 
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The normal and shear cohesive energy (works of normal and shear separations) are related to max 
and max by 
 n max n t maxexp(1), exp(1) 2 t        (5) 
 
Fig. 4 shows the traction-separation relationships for (a) normal and (b) shear separation.  
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Fig. 4 (a) Normal and (b) shear traction-separation curves for the exponential CZM 

3. Determination of CZM parameters 

The CZM parameters are determined by calibrating the experimental results for specimen I1, which 
is one of the nano-cantilever (200 nm Cu) tests. Since the normal stress dominates the crack 
initiation and propagation in the nano-cantilever and four-point bend specimens, only the CZM 
parameters for normal separation need to be calibrated, i.e. max and n.  

 
 

ICCM2014, 28th-30th July 2014, Cambridge, England

472



 

Experiment
        = 0.5 nm
        = 1 nm
        = 2 nm
        = 3 nm






Cantilever deflection, nm

Lo
ad

,  
 N

Nano-cantilever (200 nm Cu)
Specimen I1
 = 1000 MPamax

max

max

max

max

Calculated crack
initiation points

Experimental crack initiation point

0 20 40 60 80 100 120 14

5

10

15

0

 
Fig. 5 Effect of interface characteristic length parameter, n, on the calculated load-deflection 

curves 

With max = 1000 MPa, the effect of the interface characteristic length parameter, n, is investigated 
using the experimental data of specimen I1. As shown in Fig. 5, the slope of the calculated load-
deflection curve is sensitive to the value of n. With decreasing n, the slope of the calculated curve 
becomes steep. The simulation for n = 1 nm results in the best correspondence with the 
experimental data. Then, n = 1 nm is used in subsequent calculations. 
 
Fig. 6 shows the calculated load-deflection curves with different cohesive strengths under n =1 nm. 
The right figure gives an enlarged view of the square region in the left near the critical load. When 
the cohesive strength increases, the critical lateral forces become larger. The simulation with max = 
1060 MPa gives good prediction for the critical lateral force with the experimental results. 
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Fig. 6 Effect of the cohesive strength, max, on the calculated critical loads for crack initiation 

From the calibration, the CZM parameters of the Cu/Si interface are determined to be max = 1060 
MPa, and n = 1 nm, which give normal cohesive energy n = 2.85 J/m2. 
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4. Prediction of delamination with CZM parameters 

All the experimental and predicted critical loads are compared in Fig. 7. Although the critical load 
magnitude has a difference of nearly 6 orders, the CZM parameters solely determined by specimen 
I1 can still universally predict interface cracking along Cu/Si interface cracking regardless of 
specimen dimensions and film thickness which include the differences in plastic behavior and 
residual stress. The good prediction both on the crack initiation at interface edge and propagation 
from a pre-crack tip indicates that the CZM criterion can describe cracking along Cu/Si interfaces 
with different stress singularities. These prove the versatility of the CZM criterion for the design of 
micro/nano devices. 
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Fig. 7 Comparison of experimental and predicted critical loads of all tested specimens 

5. Conclusions 

We have investigated the universal applicability of CZM to the initiation and the propagation of 
interface cracking in nano-cantilever (20 nm and 200 nm Cu) tests and modified four-point bending 
(200 nm Cu) tests. The results obtained can be summarized as follows: 
 
(1) By calibrating with the experimental results of the nano-cantilever (200 nm Cu) test, the CZM 
parameters of the Cu/Si interface were determined as follows: cohesive strength max = 1060 MPa 
and interface characteristic length parameter n = 1 nm. 
 
(2) The obtained CZM parameters give excellent prediction of crack initiation at the Cu/Si interface 
edge in nano-cantilever (20 nm Cu) and (200 nm Cu) experiments regardless of the specimen 
geometry, plastic behavior and residual stress. 
 
(3) The CZM predicts the crack propagation along the Cu/Si interface in the mm-sized modified 
four-point bending (200 nm Cu) specimen very well, though the specimen size has a difference of 
thousands of times. Moreover, this also shows the validity of the CZM parameters for prescribing 
the interface toughness under different stress singularities. 
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Abstract  

This paper presents a three dimensional nonlinear finite element analysis for Concrete 
Filled Steel Tube (CFST) columns subjected to lateral impact load. The finite element 
models were developed using commercial code ABAQUS/Explicit, which were 
validated against the experimental results. The study has been carried out to examine 
the influence of several parameters such as the length of the tube and projectile 
configurations. The Laser Doppler Velocimeter (LDV) and High Speed Camera 
(HSC) were used to capture the impact velocity and the deflection of the specimens, 
respectively, which were then implemented in the numerical modelling. It was found 
that the finite element simulations are in a good agreement with the experimental 
results, in terms of load-displacement traces and deformation modes. It was also 
demonstrated that with the increasing the length of the tube the lateral displacement 
was increased and the impact force was decreased.     

Keywords: Concrete filled steel tube, Impact, Failure, Finite element analysis. 

 
Introduction  

Concrete Filled Steel Tube (CFST) is increasingly used in many structural 
applications such as seismic-resistance constructions, high buildings, bridges’ piers, 
decks of railways, and offshore structures [Shanmugam and Lakshmi (2001); He et al. 
(2011); Sundarraja and Prabhu (2011)]. CFST have more advantages than the 
conventional reinforced concrete and steel structures, namely high speed of 
construction work resulted from the omission of framework and the reinforcing bars, 
low structural costs and conservation the environment  [Morino et al. (2001); Morino 
and Tsuda (2002); Starossek et al. (2008)]. CFST offered a good damping merits and 
excellent seismically resistant [Kang et al. (2007)]. 

In recent years, a number of researches had been conducted to study the impact behavior 
of the CFST members through experimental and theoretical works and finite element 
analysis. [Bambach et al. (2008); Deng et al. (2012); and Al-Thairy and Wang (2013)]. 
[Wang et al. (2013)] investigated the impact performance of the concrete filled steel 
tube members. It has been demonstrated that the lateral deflection and the impact 
force have been affected by the axial load.  

At present with the development of digital computers and numerical techniques, the 
finite element method (FEM) has emerged as a powerful analytical tool for structures 
analysis. This is opened spacious world for engineers to model rationally many 
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aspects of the phenomenological behaviour encountered in CFST [Starossek et al. 
(2008)]. These aspects include the confinement effect, modelling of cracking and 
crushing, the behaviour of the materials properties after cracking and crushing and 
many other properties. 

Due to the ability of finite element technique to simulate the behaviour and the failure 
mode of CFST, many numerical studies were conducted to study the behaviour of CFST 
with various parameters and different type of loadings. 
 
[Schneider (1998)] presented experimental and a numerical study to investigate the 
behaviour of CFT under axial compression load. ABAQUS software programme was 
used in this study. The concrete core was modelled with 20-node brick element while 
the steel tube modelled with 8-node shell element, a gap element was used to simulate 
the contact behaviour between steel and concrete core. Uniaxial stress-strain curve with 
the available model in ABAQUS was used to simulate the behaviour of concrete with 
confinement effect. A comparison between the numerical and experimental results was 
made and it showed a good agreement for the columns strength and the failure mode.  
 
[Yu et al. (2010a)] presented a nonlinear finite element analysis study on concrete 
filled steel tubular frame structures undergo dynamic load in fire conditions. Steel I-
section beams and circular CFST columns composed the frame structures. The 
numerical results were in good agreement with the test results. It was concluded that 
the bending moment of the CFST subjected to fire was highly affected and reduced 
due to the internal forces redistribution in the frame. 
 
[Deng et al. (2012)] carried out a theoretical and numerical research to study the 
CFSTs and post-tensioned CFSTs under flexural load.  The concrete properties were 
modelled using Drucker-Prager plasticity model, while the behaviour of steel tube 
was modelled as elastic-perfectly plastic. The results predicted from the theoretical 
sectional analysis and finite element model were compared with the test results. It 
was found that both of the theoretical sectional and finite element analyses were 
efficient to predict the ultimate moment capacity. 
 
A study of three test series had been conducted by [Yousuf et al (2012); (2013); and 
(2014)]. They investigated the transverse impact resistance of the hollow and concrete 
filled mild and stainless steel square tube columns. This study included both static 
and dynamic tests. The performance of the hollow and concrete filled mild and 
stainless steel tube columns was studied through finite element analysis using the 
software ABAQUS. The numerical results showed a good agreement with the 
experimental findings. They found that the impact energy was improved by using the 
stainless steel columns and the axial compressive load affects the static and impact 
strength especially for the stainless steel tubes.  

The main aim of this study is to perform a numerical simulation of CFST columns 
subjected to lateral impact loading using the nonlinear finite element programme 
ABAQUS. 

Experimental work 

Twenty two specimens of CFST column with outer diameter 114.3 mm and 3.6 mm 
wall thickness have been tested under lateral impact loading with height 2.6 m and 
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maximum mass 107.5 kg as shown in Fig. 1. The specimens were in three different 
lengths (686, 1029, and 1543) mm short, medium and long tubes respectively. To 
examine the indenter shape effect on the behavior of the CFST, two types of indenter 
were used in this test; the first one is spherical indenter with three different diameters 
60 mm (BI), 40 mm (MI) and 20 mm (SI). The second type is Flat Indenter (FI) with 
40 mm square section. A high strength steel clamp was used to provide a fixed ends 
for the specimens to simulate the real case of the fixed ends column. A Laser Doppler 
Velocimeter (LDV) with the Dantec Flowlite LDV system was used to obtain the 
impact force and local indentation in this study. A High Speed Camera (HSC) was 
used to capture the local and overall displacement and the mode of failure of the 
specimen. It has been concluded that with increasing the specimen’s length, the peak 
force decreased and the local displacement increased and the increasing of the 
spherical diameter leads to increase the peak force and reducing the local indentation. 

  

Figure1. The experimental work setup with data recording system 

Finite element modeling  

General  

The commercial finite element program ABAQUS was used to simulate the 
behaviour of the CFST columns under lateral impact loading. There are two main 
constituent materials considered to model the impact behaviour of CFST column. The 
materials are the concrete core and the steel tube. In addition, the type and the 
properties of the contact between the steel tube and the concrete core are very 
important to simulate the CFST. 

Finite element type and boundary conditions 

Due to the symmetry, three dimensional models are used to model a quarter of CFST 
columns as shown in Fig. 2. The three dimensional eight nodes solid element with 
reduced integration C3D8R is used to model the concrete core and the steel tube 
while the R3D4 is used to model the indenter and the steel clamp. To provide 
accurate results, many models with different mesh sizes have been tried to find out 
the moderate element size with reasonable computational time. To simulate the 
experimental test conditions, the clamp was restrained in all direction to provide a 
fixed case while the tube end was free in the axial direction of the columns and fixed 
with the other directions. The indenter was restrained against all degree of freedom 

Specimen 

Indenter  

Steel clamp  

HSC  

Lights   

LDV  
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except for the vertical displacement. Symmetric boundary conditions were applied on 
the symmetric plans.   

  

Figure2. Finite element mesh of CFST 

Materials modelling 

The stress-strain curve of the steel tube is assumed to be elastic perfectly plastic, the 
elastic modulus and Poisson’s ratio were 200 GPa and 0.3 respectively. The (*Plastic 
option) in ABAQUS is used in steel material model 

The Concrete Damage Plasticity available model in ABAQUS 6.13 is used in this 
study to describe the behaviour of the confined concrete in CFST columns under 
impact loading with both tension stiffening and compression hardening definition. 
Both of the elastic and plastic parts are included for the concrete model. 

The confined concrete stress-strain models described by [Hu et al. (2003)] is used in 
this study. [Ellobody et al. (2006) and Dai and Lam (2010)] were adopted this model 
in their numerical analysis and the finite element results showed a good agreement 
with the experimental work data. The difference between the stress strain relationship 
for confined and unconfined concrete is showed in Fig. 3 
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Figure 3. Stress-Strain relationship for confined and unconfined concrete (Dai 
and Lam, 2010) 

Where fck is the cylinder compressive strength of unconfined concrete which is equal 
to eighty percent of the unconfined cube strength 0.8fck, cube. While fcc is the cylinder 
compressive strength of confined concreter. ɛck and ɛcc are the corresponding strain for  
fck and fcc respectively. The axial compressive strength for confined concrete 
structural hollow section can be predicted by the proposed relationship between fcc 
and  fck [Mander and Priestley (1988)]. 

��� = ��� + ����                                                                                                               (1) 

	�� = 	�� 
1 + �� 
�

���                                                                                                       (2) 

[Richart et al. (1928)] suggested the value of the constant k1 and k2 to be 4.1 and 20.5 
respectively and the strain of unconfined concrete ɛck can be taken 0.003 [ACI 
(1999)]. Based on the formulas proposed by [Hu et al. (2003)], the lateral force fl 
value can be predicted: 

�� ��� = 0.043646 − 0.000832�� ��  												�"#	21.7 ≤ � �� ≤ 47                                            (3) 

�� ��� = 0.006241 − 0.0000357�� ��  										�"#	47 ≤ � �� ≤ 150                                            (4) 

Where D is the outer tube diameter, t is wall thickness of the tube and fy is the yield 
strength of the tube. [Hu et al. (2003) and Ellobody et al. (2006)] suggested the 
proportional limit stress for the linear part in the confined concrete stress-strain curve 
(elastic) to be 0.5fcc. The modulus of elasticity for the confined concrete Ecc can be 
predicted by the [ACI (1999)] empirical formula which expressed as '�� = 4700(��� 
MPa [Dai and Lam (2010)]. The nonlinear portion of the curve represents the 
compressive strength f between the elastic limit 0.5fcc and the maximum compressive 
strength fcc. [Saenz (1964)] suggested formula to predict f: 
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Where  

4) = )��*��

��  ,4 = -.,-5/�0

,-1/�02 − �
-1 , 47 = 4*=4        

The start of the third portion of the strain-stress curve is fcc while its end is fu. ɛu 
=11ɛcc is the correspondence strain at fu = rk3fcc [Hu et al. (2003); Ellobody and 
Young (2006b); Ellobody et al. (2006); Dai and Lam (2010)]. For the circular steel 
tube section with 21.7 ≤ �� ��  ≤ 150 , the value of the parameter k3 can be obtained 
from the proposed by [Hu et al. (2003)]. 

�8 = 1														�"#	21.7 ≤ �� ��  ≤ 40                                                                                (6) 

�8 = 0.0000339�� ��  � − 0.0100085�� ��  + 1.3491					�"#	40 ≤ �� ��  ≤ 150                       (7)  

According to [Giakoumelis and Lam (2004); Ellobody and Young (2006b); Ellobody 
et al. (2006); Dai and Lam (2010)] the value of r with compressive cube strength of 
30 MPa can be taken as 1.0 while with compressive strength of 100 MPa as 0.5, a 
linear interpolation used with compressive strength between 30 MPa and 100 MPa.  

The tension stiffening for the concrete is defined as a displacement using the model 
proposed by [Li et al. (2002)] as shown in Fig. 4 

: = �; <1 − =>? @− A B.BCD� D��E� F�.8GH                                                                                      (8)                                                            

Where ft is the concrete tensile stress and it is obtained from the equation: 

�; = 0.34(�I′                                                                                                                 (9)  

Where and fc’ is the compressive strength of concrete. 

The wc and wccr are the crack width and the critical crack width respectively. 1.5 mm 
is taken for the critical crack width in this study. The adopted concrete Poisson’s ratio 
is 0.2. 

 

Figure 4. Concrete material behavior model in tension  

The surface to surface contact was defined between the indenter and the steel tube 
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between the clamp and steel tube respectively. To model to interaction between the 
concrete core and the steel tube a pressure contact was defined. The coefficient of 
friction adopted in this study was 0.2.       

Results and discussion  

The results of the numerical analysis for CFST columns with different indenter are 
compared with those obtained from the experimental tests and the curves of the 
impact force versus local indentation for these specimens are plotted against the 
experimental results in Fig. 5, 6 and 7. The deformed shapes for these columns are 
also examined. In General it can be seen that the numerical results show good 
agreement with the experimental data. For the short columns tested with (BI) in Fig 5 
(a) the difference between the results was only 2.2 % and 8.4% for the peak force and 
local displacement respectively while the difference for the columns tested with 
medium indenter  was 0.81%  for the peak load and 5.58% for the local displacement  
as shown in Fig. 5 (b). The impact force for short CFST column tested with SI using 
the finite element analysis was 232.31 kN at a local displacement 16.67 mm 
compared with the experimental values of 220.13 kN and 16.36mm as shown in Fig 6 
(a). In terms of the local displacement, stiffer results were obtained from the 
numerical analysis compared with the experimental data for the short columns tested 
with FI which were 9.89 mm and 11.1 mm for the numerical and experimental results 
respectively. However the maximum difference between the peak forces obtained 
from the finite element analysis and the one evaluated from the experimental test was 
7.37% as shown in Fig. 6 (b). 

 

(a)                                                   (b)   

Figure (5) Load-deflection curve for the short CFST column with (a) BI (b) MI 

 

(a)                                                     (b) 

Figure (6) Load-deflection curve for the short CFST column with (a) SI (b) FI 
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Fig. 7 (a) and (b) show the good agreement between the experimental and numerical 
results for the medium and long CFST columns respectively. The experimental and 
numerical peak force and the local displacement for medium CFST columns were 
193.68 kN, 18.78mm and 187.87 kN and 18.54 respectively. The numerical 
simulation for the long CFST columns was able to capture the beak force reduction 
which resulted from the vibration of the tested columns during the test with same 
natural frequency of the whole system tested as shown in Fig. 7 (b). 

 

(a)                                                          (b) 

Figure (7) Load-deflection curve for the short CFST column with (a) medium 
tube (b) long tube 

From the comparison between the failure mode of the experimental test and 
numerical model for the short, medium and long CFST columns, the numerical 
failure modes were in good agreement with those obtained from the experimental 
tests as can be seen from Figs. 8 (a), (b) and (c). 

   

    

(a)                                         (b)                                          (c) 

Figure (8) Experimental and numerical failure mode (a) Short tube (b) Medium 
tube (c) Long tube 

5 Conclusions 

The paper presents the numerical analysis of CFST columns under lateral impact 
loading. The concrete was molded using an equivalent stress-strain curve for the 
confined concrete while the steel tube was molded as elastic-perfectly plastic 
material. The predicted impact force, local displacement and the failure mode using 
the finite element analysis were compared with those evaluated from the experimental 
tests of the CFST columns. The comparison between the numerical experimental and 
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finite element results showed a very good agreement for both the force-displacement 
curves and the deformed shape. 

Acknowledgment  

This research study is sponsored by the Higher Committee for Education 
Development (HCED) in Iraq. 

References 

ACI 1999. Building Code Requirements for Structural Concrete and Commentary. ACI 318-95. Detroit 
(USA): American Concrete Institute. 

BAMBACH, M. R., JAMA, H., ZHAO, X. L. & GRZEBIETA, R. H. 2008. Hollow and concrete filled 
steel hollow sections under transverse impact loads. Engineering Structures, 30, 2859-2870. 

DAI, X. & LAM, D. 2010. Numerical modelling of the axial compressive behaviour of short concrete-
filled elliptical steel columns. Journal of Constructional Steel Research, 66, 931-942. 

DENG, Y., TUAN, C. Y. & XIAO, Y. 2012. Flexural Behavior of Concrete-Filled Circular Steel 
Tubes under High-Strain Rate Impact Loading. Journal of Structural Engineering, 138, 449-
456. 

ELLOBODY, E. & YOUNG, B. 2006b. Nonlinear analysis of concrete-filled steel SHS and RHS 
columns. Thin-Walled Structures, 44, 919-930. 

ELLOBODY, E., YOUNG, B. & LAM, D. 2006. Behaviour of normal and high strength concrete-
filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62, 
706-715. 

GIAKOUMELIS, G. & LAM, D. 2004. Axial capacity of circular concrete-filled tube columns. 
Journal of Constructional Steel Research, 60, 1049-1068. 

HE, D., DONG, J., WANG, Q. & CHEN, X. Mechanical behaviour of recycled concrete filled steel 
tube conlumns strengthened by CFRP.  Multimedia Technology (ICMT), 2011 International 
Conference on, 26-28 July 2011 2011. 1110-1113. 

HU, H. T., HUANG, C. S., WU, M. H. & WU, Y. M. 2003. Nonlinear analysis of axially loaded 
concrete-filled tube columns with confinement effect. Journal of Structural Engineering, 129, 
1322-1329. 

KANG, J. Y., CHOI, E. S., CHIN, W. J. & LEE, J. W. 2007. Flexural Behavior of Concrete-Filled 
Steel Tube Members and Its Application. International Journal of Steel Structures, 7, 319-
324. 

LI, Q., DUAN, Y. & WANG, G. 2002. Behaviour of large concrete specimens in uniaxial tension. 
Magazine of Concrete Research, 54, 385-391. 

MANDER, J. B. & PRIESTLEY, M. J. N. 1988. Theoretical stress‐strain model for confined concrete. 
Journal of Structural Engineering, 114, 1804-1826. 

MORINO, S. & TSUDA, K. 2002. Design and construction of concrete-filled steel tube column 
system in Japan. Earthquake Engineering and Engineering Seismology, 4, 51-73. 

MORINO, S., UCHIKOSHI, M. & YAMAGUCHI, I. 2001. Concrete-filled steel tube column system-
its advantages. International Journal of Steel Structures, 1, 33-44. 

RICHART, F. E., BRANDTZAEG, A. & BROWN, R. L. 1928. A study of the failure of concrete 
under combined compressive stresses. Bulletin ; no. 185 University of Illinois. Engineering 
Experiment Station. 

SAENZ, L. P. 1964. Discussion of “Equation for the stress-strain curve of concrete,” by Desayi and 
Krishnan. ACI journal, 61, 1229-1235. 

SCHNEIDER, S. P. 1998. Axially loaded concrete-filled steel tubes. Journal of Structural 
Engineering, 124, 1125-1138. 

SHANMUGAM, N. E. & LAKSHMI, B. 2001. State of the art report on steel–concrete composite 
columns. Journal of Constructional Steel Research, 57, 1041-1080. 

STAROSSEK, U., FALAH, N. & LOHNING, T. 2008. Numerical Analyses of the Force Transfer in 
Concrete-Filled Steel Tube Columns. The 4th International Conference on Advances in 
Structural Engineering and Mechanics(ASEM08), 2651-2666. 

SUNDARRAJA, M. C. & PRABHU, G. G. 2011. Investigation on strengthening of CFST members 
under compression using CFRP composites. Journal of Reinforced Plastics and Composites, 
30, 1251-1264. 

ICCM2014, 28th-30th July 2014, Cambridge, England

484



  

WANG, R., HAN, L. & HOU, C. 2013. Behavior of concrete filled steel tubular (CFST) members 
under lateral impact: Experimental and FEA model. Journal of Constructional Steel 
Research, 80, 188-201. 

Yousuf, M., Uy, B., Tao, Z., Remennikov, A., Liew, R. 2012. Behavior and resistance of hollow and 
concrete filled mild steel columns due to transvers impact loading. Australian journal of 
stractural engineering, 13, 65-80. 

Yousuf, M., Uy, B., Tao, Z., Remennikov, A., Liew, R. 2013. Transverse impact resistance of hollow 
and concrete filled stainless steel columns. Journal of construction steel research, 82, 177-
189. 

Yousuf, M., Uy, B., Tao, Z., Remennikov, A., Liew, R. 2014. Impact behavior of precompressed 
hollow and concrete filled mild and stainless steel columns. Journal of construction steel 
research, 96, 54-68. 

YU, M., ZHA, X., YE, J. & LI, Y. I. 2010a. Fire responses and resistance of concrete-filled steel 
tubular frame structures. International Journal of Structural Stability and Dynamics, 10, 253-
271. 

 

 
 

ICCM2014, 28th-30th July 2014, Cambridge, England

485



Modelling of Energy-absorbing Behaviour of Metallic Tubes 
Reinforced Polymer Foams  

 
*R.A Alia1,2, Z. Guan1, W.J. Cantwell1,3, A.K. Haldar1 

1School of Engineering, University of Liverpool, Liverpool, L69 3GH.U.K. 
2Universiti Kuala Lumpur Institute of Product Design & Manufacturing, 56100. Malaysia. 

3Aerospace Research and Innovation Center (ARIC), Khalifa University of Science, Technology and 
Research (KUSTAR), Abu Dhabi, UAE. 

*Corresponding author: hsaalia@liv.ac.uk 

 

Abstract 

This paper presents the findings of a research study investigating the energy-
absorbing characteristics of polymer foams reinforced with steel and aluminium 
tubes. Initial attention focused on establishing the influence of tube diameter on the 
specific energy absorption (SEA) and the failure characteristics of the tubes. In the 
next stage of the investigation, the tubes were embedded in a range of polymer foams 
in order to establish the influence of foam density on the crush behaviour of these 
lightweight structures. The specimens were tested under quasi-static tests at a loading 
rate of 1mm/minute and the numerical analysis has been performed by using Abaqus 
software that was validated against the experimental results. The numerical metal 
tubes and foams were subjected to axial quasi-static loading similar to the 
experimental condition. The simulation results indicated that failure response of 
polymer foams reinforced by metallic tubes under quasi-static axial compression were 
in good agreement with the experimental results.   
 

Keywords:  Energy absorption, Numerical analysis, Quasi-static, Aluminium, Steel, 
Foams, Failure mechanisms. 

 

Introduction 

In recent years there has been an increased occurrence to develop high speed, energy-
efficient transport systems. One of the important aspects to be improved in 
crashworthiness is the ability to absorb the impact energy during a crash. A 
considerable amount of research has thus been undertaken to develop effective impact 
energy absorption systems for use in high speed vehicles. The key approach of 
strengthening a structure is to dissipate the crush energy in order to prevent injuries 
and reduce damages. The metallic tube structures subject to buckling under axial 
loading are excellent for this purpose due to their low cost, easy fabrication, and high 
efficiency in absorbing energy. Extensive investigations previously carried out have 
revealed that various parameters, such as material properties, cross-sectional 
geometries, diameter to thickness ratio and the loading condition can affect the 
energy absorption capability of metallic tubes  [Alexander (1960); Jones (2010) and 
McGregor et al. (1993)]. During the crush of metallic tubes, this energy is mainly 
absorbed due to the irreversible plastic deformation mechanisms that dominate the 
buckling process.  
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Several experiments on the impact of thin-walled tubes of circular and square cross 
section with different sizes have been performed by Jones [Jones (2010)]. Jones has 
observed that a circular shaped tube is the most efficient geometry in absorbing 
energy. Alexander developed theoretical study on the calculation of mean collapse 
load for circular tubes in concertina collapse mode [Alexander (1960)]. In another 
study on the effect of strain rate, McGregor et al. [McGregor et al. (1993)] found that 
strain rate effect on the mechanical properties is insignificant in the range of velocity 
7–9 m/s. A number of recent researchers have investigated the axial crushing of 
circular aluminum tubes by conducting experimental and numerical modelling [Pled 
et al. (2012); Al Galib and Limam (2004) and Karagiozova et al. (2005)]. Pled et. al 
[Pled et al. (2012)] has reported that the boundary conditions will influence the 
crushing mode of circular aluminium tubes. Although a considerable amount of 
studies has been dedicated to study the crushing of thin walled tubes with different 
materials or geometries, little attention has been focused on the research of the using 
metallic tubes as reinforcement for foams in sandwich structures. This paper studies 
the numerical simulation of the axial crushing of metal circular tubes for use in 
lightweight energy-absorbing structures. The final section of this paper verifies the 
results between experimental data and numerical analysis. 
 
Experimental Procedures 

The primary aim of this research study was to investigate the energy-absorbing 
characteristics of tube-reinforced foams, similar to that shown in Fig. 1b. However, 
prior to testing the reinforced foams, attention focused on establishing the influence 
of the geometry of the individual metal tubes on their resulting energy-absorbing 
characteristics. The effect of varying the ratio of the inner diameter of the tube to its 
thickness, D/t, on energy absorption was then investigated by conducting 
compression tests on a range of aluminium and steel tubes, details of which are 
given in Table 2. Here, three different sizes of tubing were considered, with outer 
diameters ranging from approximately 12.6 mm to 25.4 mm. The values of D/t for 
the tubes ranged from 5.2 to 13.1 for the aluminium alloy tubes and 5.5 to 13.1 for 
the steel tubes. Prior to testing, the tubes were cut to a length of 20 mm and ground 
at both ends to ensure that they were parallel.  
 
Crushing tests were conducted on individual tubes using an Instron 4505 universal 
test machine. Each test was undertaken at a crosshead displacement rate of 1 
mm/minute and interrupted when the tube was fully crushed, i.e. to a point beyond 
which the force started to increase rapidly. The specific energy absorption (SEA) of 
the tubes was then determined by dividing the energy under the load-displacement 
trace up to densification (bottoming-out displacement) by the mass of the sample. 
 
Individual tubes were then embedded into crosslinked PVC foams with densities 
ranging from 38.3 to 224 kg/m3. Details of the tubes embedded into foams samples 
are given in Table 3. In preparation for these tests, a 12.6 mm diameter hole was 
drilled into a 50 mm square block of thickness 20 mm and either a steel or 
aluminium tube with an outer diameter of 12.6 mm and a length of 20 mm, was 
inserted into the hole. The tube/foam combinations were subsequently loaded in 
compression at a crosshead displacement rate of 1 mm/minute. 
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Finite Element Modelling 
 
Finite Element models were developed using the commercial finite element Abaqus 
software package to simulate the crushing of metal tubes individually and embedded 
in foams. Here, quarter model of the structures were constructed as the structures are 
symmetrical in x-axis and z-axis as shown in Fig. 1a. A series of three aluminium 
and three steel circular tubes with diameters ranging from 12.62 mm to 25.40 mm 
and 20 mm height were simulated. The details of tubes are shown in Table 2. The 
tubes were modelled by using 8-node 3-D deformable solid and were extruded to a 
length of 20 mm in y-direction. Two square plates of 30 mm x 30 mm x 1mm were 
created to represent the upper and lower platen. The square plates were initially 
defined as 3-D discrete rigid and converted to shell elements. A reasonable mesh 
size of 1 mm and three elements through the thickness were defined for the tube 
models. In the latter stage of this research program, one metal tube of 12.62 mm was 
inserted into three foam materials with densities of 38.3, 90.4 and 224 kg/m3. The 
foam materials were modelled as 8-node 3-D deformable solid and the mesh size 
used was the same as tubes which is 1 mm.  
 
 

      
        

(a)                                                                   (b) 
 

Figure 1. A quarter model of a tube and the cross-section view of a 12.62 mm 
metal tube in a foam block. 

 
The isotropic elastic-plastic material model has been assumed as the mechanical 
properties of the metallic tubes. The mechanical properties of these metals are 
presented in Table 1 and their plastic stress-plastic strain diagrams are illustrated Fig. 
2. The plastic yield stress and strain values were obtained from the true stress-true 
plastic strain curves of the metals. The foams were modelled by using crushable foam 
plasticity definition that was developed by Deshpande and Fleck (Deshpande and 
Fleck 2000). The mechanical material properties of foams were obtained from stress-
strain curve of the foams. To yield accurate numerical results, it is important to define 
the required interactions of the structure to prevent interpenetration during the 
crushing process. Firstly, the top and bottom surfaces of the structure were selected to 
interact by Surface-to-surface definition. Next, the self-interaction between tube 
surfaces to itself was defined. This was done by selecting the General Contact option 
and allowing the outer tube surface to interact with itself.  
 

x 

y 

z 
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For the next stage of simulation, a metal tube was embedded in foam, the interaction 
between tube and foam has to be considered. In the same General Contact option, the 
contact interaction of tube and foam surfaces was defined. The friction coefficient 
was set to 0.1 for all contact surfaces between tube and foam [Pled et al. (2012)]. In 
all simulations of axial crushing, the bottom plate was fixed to be stationary. The 
axial crushing of the structure was done by moving the top rigid platen in downward 
direction but constrained in all other degrees of freedom. The top and bottom end of 
the sample were set to be free to deform in all directions. 
 

Table 1. Mechanical properties of metals. 

Property  Aluminium Alloy 6063-T6 Mild Steel 

Density, ρ [kg/m3] 2543 7966 

Young’s modulus, E [GPa] 70.4 200 

Yield stress, σ [MPa] 218 277 

Tensile strength [MPa] 237 399 

Poisson’s Ratio, υ 0.33 0.33 

 

   
                                   (a)                   (b) 

Figure 2. Engineering stress-strain curve following a tensile test on (a) 12.62 mm 
diameter (D/t = 5.21) aluminium tube and (b) 12.62 mm diameter (D/t = 5.51) 

steel tube. 
 

Results and Discussion 

The initial part of this investigation focused on understanding the influence of tube 
diameter on the energy-absorbing characteristics of the individual metal tubes. The 
experimental axial crush of tubes results was compared to verify the presented finite 
element Abaqus modelling. Fig. 3 shows the typical experimental and Abaqus 
simulation load-displacement traces following compression tests on 20 mm long 
aluminium tubes having different D/t ratios. From the two graphs, it is clear that the 
simulation exhibits very close results of load-displacement to the experimental 
curves. It is evident from the compressed tubes in both experimental and simulation 
that the tubes deformed by forming two rings which is known as concertina failure 
mode. This asymmetric failure mode was also observed by Al Galib and Limam [Al 
Galib and Limam (2004)] for crushing of A6060 Aluminum tubes. 
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Table 2 shows the variation of SEA with the tube D/t ratio for both the aluminium 
and steel tubes. The energy-absorbing characteristics of the aluminium tubes have 
been shown to be superior to those of their steel counterparts. Here, it is also clear 
that the energy-absorbing capability of the tubes decreases rapidly with increasing 
D/t. The specific energy absorption obtained from Abaqus simulation results are very 
close to the experimental results with percentage of difference ranging between 1.2 to 
9.7%. 
 

            

          

                      (a)                   (b) 
Figure 3. Load-displacement traces and the deformed aluminium tubes from 
experimental and Abaqus simulation results of (a) 12.62 mm diameter (D/t = 

5.21)  and (b) 25.40 mm diameter (D/t = 13.12). 
 
 

Table 2. Summary of the geometrical and specific energy absorbing 
characteristics of the 20 mm long aluminium and steel tubes. 

 
Specimen 

ID 

Outer 
diameter, 
Do (mm) 

Inside 
diameter, 
D (mm) 

Thickness, 
t (mm) D/t 

Experiment 
SEA 

(kJ/kg) 

Abaqus 
SEA 

(kJ/kg) 

Experiment 
to Abaqus 

(%) 
Alu12 12.62 9.12 1.75 5.21 70.07 70.89 1.2 

Alu16 16.00 12.36 1.82 6.79 63.47 57.96 8.7 

Alu25 25.40 22.04 1.68 13.12 52.96 48.08 9.2 

Ste12 12.62 9.26 1.68 5.51 41.46 40.75 1.7 

Ste16 15.78 12.42 1.68 7.39 36.94 33.50 9.3 

Ste25 25.40 22.04 1.68 13.12 24.12 21.78 9.7 

 
The next stage of this study discusses the energy-absorbing characteristics of foams 
reinforced with relatively thick metal tubes tested at quasi-static loading. Tubes with 
low values of D/t (and therefore higher values of SEA) were embedded in a range of 
polymer foams with a view to developing lightweight energy-absorbing structures.  
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Fig. 4 shows the load-displacement traces and the compressed tubes embedded in 
PVC C70.200 foam for aluminium and steel tubes. As before, the aluminium-based 
systems offered superior properties to the steel-based materials. It has been shown 
that the foam does not modify the energy-absorbing capability of the embedded 
tubes. The traces from the Abaqus simulation agreed well with the experimental 
results. It shows that the load-displacement of tubes embedded in foams is resulted 
from a direct combination of forces from tubes and foams compressed individually. 
  
 

 

   
(a)                            (b) 

Figure 4. Load-displacement traces and the deformed 12.62 mm diameter tubes 
embedded in C70.200 foams from experimental and Abaqus simulation results 

for (a) aluminium and (b) steel. 
 

 
 

Table 3. Summary of the SEA following tests on the 20 mm long (diameter = 
12.62 mm) of aluminium and steel tubes with foam densities. 

 
Specimen 

ID 
PVC 
Foam 

Foam Density 
(kg/m3) 

Experiment 
SEA (kJ/kg) 

Abaqus SEA 
(kJ/kg) 

Experiment to 
Abaqus (%) 

Aluf40 C70.40 38.3 68.43 71.49 4.5 

Aluf55 C70.55 56.0 68.56 70.74 3.2 

Aluf200 C70.200 224.0 69.50 70.40 1.3 

Stef40 C70.40 38.3 41.2 40.3 2.1 

Stef55 C70.55 56.0 43.1 42.5 1.4 

Stef200 C70.200 224.0 40.2 43.1 7.3 
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Conclusions 

Finite element simulations of the crushing of individual metal tubes and metal tubes 
embedded into foam materials have been carried out. Initially, the influence of tube 
diameter (D/t) parameter on the specific energy absorption of empty tubes has been 
numerically investigated. Similar post-buckling deformation shapes to experimental 
observations have been successfully predicted by using Abaqus software. Abaqus 
simulation predictions were observed to be consistent with the experimental results. 
Given that the metal tubes absorb much greater levels of energy than the foams in 
which they are embedded, the density of the latter should be set as low as possible, 
ensuring that the metal reinforcements are held in place during the loading process. 
The experimental and numerical evidence suggests that it should be possible to 
predict the energy-absorbing capacity of multi-tube systems using a simple rule of 
mixtures approach based on the mass fractions of the tubes and the foam. The finite 
element simulations, once they are validated against experimental results, provide 
excellent tools to further study crushing characteristics of foams embedded with 
metal tubes. 
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Abstract 
Solid-extracellular fluid interaction is believed to play an important role in the strain-rate 
dependent mechanical behaviors of shoulder articular cartilages. It is believed that the 
kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint 
and it is easy to get in Australia.  Therefore, the kangaroo humeral head cartilage was used as 
the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to 
moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were 
conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was 
then developed, in which cartilage was conceptualized as a porous solid matrix filled with 
incompressible fluids. In this model, the solid matrix was modeled as an isotropic 
hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE 
procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix 
and permeability were obtained from the experimental results. The effect of solid-
extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate 
dependent behavior was investigated by comparing the influence of constant, strain 
dependent and strain-rate dependent permeability on FE model prediction. The newly 
developed porohyperelastic cartilage model with the inclusion of strain-rate dependent 
permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.  

Keywords:  Solid-extracellular fluid interaction, Drag force, Strain-rate dependent behavior, 
Porohyperelasticity, Finite element method   

Introduction 

In mundane activities such as lifting, throwing etc., shoulder cartilages are subjected to 
physiologically different strain-rates. It is essential that the shoulder cartilage have the ability 
to undergo controlled deformation in response to these different external loading conditions. 
Solid-extracellular fluid interaction is considered to play a significant role in facilitating this 
behavior of shoulder cartilage tissues by rendering its ability to perform as a mechanically 
efficient tissue. It is crucial to understand the extent to which solid-extracellular fluid 
interaction facilitates the strain-rate dependent behavior of shoulder cartilage tissues, in order 
to identify its implications for initiation of shoulder osteoarthritis and development of 
artificial shoulder cartilage tissues etc. Therefore, the main objective of the current study is to 
understand how solid-extracellular fluid interaction facilitates strain-rate dependent behavior 
of shoulder cartilage tissues.  
 
Evidences from literatures indicated that the mechanical behavior of articular cartilages is 
strain-rate dependent (Finlay and Repo 1979; Lai et al. 1981; Oloyede and Broom 1992; 
Oloyede et al. 1992; Radin et al. 1970; Woo et al. 1980). According to experimental findings, 
with increasing strain-rate, the stiffness quickly increases at the beginning and then obtains an 
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asymptotic value (Oloyede et al. 1992). The interplay between solid and fluid contributes 
significantly to this behavior with 70%-80% of the load being supported by the matrix at low 
strain-rates (Oloyede and Broom 1992), while fluid contributes to a similar percentage at 
large strain-rates (Li and Herzog 2004; Oloyede and Broom 1992). Researchers have 
different opinions regarding the mechanisms underlying the strain-rate dependent behavior of 
cartilage tissues. Back in 1980’s, McCutchen (1982) argued that this apparent time-dependent 
behavior is solely related to the volume loss due to water exudation from the cartilage matrix, 
rather than the intrinsic viscoelasticity of the matrix. Oloyede et al. (1992) substantiated the 
argument of McCutchen (1982) by loading the cartilage from quasi-static to impact strain-
rates and observed a poroelastic behavior at low strain-rates and elastic behavior at impact 
strain-rate. Therefore, they claimed that the apparent viscoelastic behavior is due to the drag 
forces introduced by reduction of permeability with strain and solid-extracellular fluid  
frictional interactions (Oloyede and Broom 1996). DiSilvestro et al.(2001) proposed that the 
flow-independent viscoelastic mechanism is the main contributor to the strain-rate dependent 
behaviors of cartilage. Based on the close confirmation of Biphasic-poroviscoelastic FE 
model to experimental results, they concluded that the mechanism underlying the strain-rate 
dependency is dominated by the viscoelasticity of matrix material. Considering the cartilage 
as a fiber reinforced composite material, Li et al. (2003) claimed that the fluid flow can 
induce fibril stiffening, which is the main mechanism governing the strain-rate dependent 
behaviors.  
 
The main argument of Li et al.’s (2003) study is that, the models that do not distinguish 
between fibrils and proteoglycans are not able to capture the nonlinear transient response of 
cartilage tissue. They have further argued that the ratio of maximum transient stiffness to 
equilibrium stiffness has a limitation (<1.5) in models that do not distinguish between fibrils 
and proteoglycans, hence are not adequate to study the tissue response at high strain-rates. 
Although biphasic theory (Mow et al. 1980) comprises of those limitations, the 
porohyperelastic model -based on Biot’s (1941) theory which is used in this paper does not 
have these limitations. Further, hyperelastic material model used in this study to represent 
solid skeleton is capable of improving the model deviations such as decrease in stiffness 
observed in fibril reinforced model (Li et al. 2003) at large strains. Compared to  the 
poroviscoelastic  model (DiSilvestro et al. 2001), the current model is able to explain the 
experimental observation without adopting viscoelastic theories.  
  

In this study, we follow the same arguments as of McCutchen (1982) and Oloyede and 
Broom (1996). Hence we believe that the drag forces and solid-extracellular fluid interaction 
is the main reason of apparent strain-rate dependent behavior of shoulder cartilage tissues. In 
order to test this hypothesis, a FE model was developed under the poromechanics framework 
of Biot (1941) and the modeling results are compared to the experimental results obtained 
through indentation testing under different strain-rates. 

Experimental animal model for shoulder cartilage  

Choice of animal model for shoulder cartilage tissue requires the shoulder joint of the animal 
model to be anatomically and biomechanically similar to that of human joint.  Also sufficient 
tissue thickness is required for the macro scale testing to be carried out.  Quadruped animal 
use forelimbs for weight bearing activities. However, humans do not use forelimbs (shoulder 
joints) much for weight bearing activities. Therefore, macropods, rat and certain species of 
mice (kangaroo mice, dipodids, springhare and hopping mice) are the animal models that can 
be considered to have anatomically and biomechanically similar shoulders to humans.  Tissue 
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thickness of rat and mice are not sufficient for macroscopic testing. In macropod family, tree 
kangaroo, which is a rare species, is known to have a similar anatomy and biomechanics to 
that of a human shoulder (Sonnabend and Young 2009). Considering these facts kangaroo 
was chosen as the suitable animal model for the current study. 

Experimental methodology 

Tissue harvesting, preparation and thickness measurements 

Visually normal, kangaroo cartilage samples of 8mm diameter with 2-3mm of subchondral 
bone intact were harvested using a specially designed stainless steel puncher. The samples 
were obtained from central load bearing area of the humeral heads (Fig. 1a). The specimens 
were harvested from five adult kangaroos (approximately 5 years old) within 24 hours of 
slaughtered, from an abattoir (Fig. 1b). Until testing, all samples were wrapped around a 
0.15M saline wetted towel and stored at -20°C. The sides of cartilage on bone samples were 
visualized through a microscope (Olympus SZ40, Tokyo, Japan) for magnification purposes 
and uncalcified cartilage thickness was measured using high precision vernier caliper. 
Measurements were taken from eight locations of approximately equal gaps around the 
perimeter and final thickness of cartilage was taken as the mean of measurements.  

Indentation testing 

Subchondral bone underneath the cartilage sample was properly constrained using stainless 
steel holder (Fig. 1c), to ensure that the deformation data obtained is only due to the 
deformation of the cartilage. Prior to testing, all the samples were thawed in 0.15M saline for 
1.5 hours. The indentation testing was carried out at 10-4 s-1, 5x10-4 s-1, 5x10-3s-1 and 10-2s-1 
strain-rates (Fig. 1d). The samples were indented up to 30% engineering strain. A limit of 
3MPa was imposed on the amount of stress that samples were subjected to, in order to 
minimize the damage to the tissues (Morel and Quinn 2004; Quinn et al. 2001). However, 
none of the cartilage samples attained this limit of stress during the strain-rates tested. The 
testing was done on Instron testing machine (Model 5944, Instron, Canton, MA) using a 
plane ended polished indenter of 3mm diameter.. Depending on the thickness of the samples, 
the speed of the Instron machine was adjusted to obtain the required strain-rate. After each 
test, prior to the next one, the cartilage was unloaded and allowed to recover for 2 hours in 
0.15M saline.  
  

Figure 1 (a) 8mm diameter cartilage sample. (b) Specimen harvested region: Central humeral 
head. (c) Bone is constrained using a stainless steel holder arrangement. (d) Indentation testing 
on sample 
 

(a) (b) 

(c) 

(d) 
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Pertinent porohyperelastic theory  

The governing equations of Biot’s (1941) theory for cartilage, considering solid skeleton as a 
hyperelastic material, can be found in Oloyede and Broom (1994) and Oloyede and Broom 
(1996) and is summarized below. The fluid flow is taken to follow Darcy’s law (equation 1).  







−=

dx
duKV ijij       (1) 

Herein,
ijV , ijK and u  are fluid velocity, direction dependent permeability and fluid excess 

pore pressure, respectively.  Based on the equation (1), the continuity equation of fluid flow:  
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ψ , iK  and
ijσ are matrix bulk moduli, permeability in ith direction and applied stress, 

respectively. The constitutive law for solid skeleton is as follows. 

ijsijij uδσσ +=                  
ij

sij λ
Wσ
∂
∂

=     (3) 

sijσ ,
ijδ ,

ijλ and W  are effective solid skeleton stress, Kronecker delta, stretch ratio and 
isotropic strain energy potential, respectively. 

Porohyperelastic FEA model 

Cartilage was modeled as a porous media saturated with fluid based on the generalized 
framework of  Biot’s (1941) theory. The model was developed in commercial software 
(ABAQUS 6.12 version). Axisymmetric element (8-node axisymmetric quadrilateral, bilinear 
displacement and bilinear pore pressure) are adopted to reduce the computational cost based 
on the characteristics of test sample and loadings. The large deformations and geometric 
nonlinearity were considered in the calculation. The ‘pore pressure (p)’ (p=0) boundary 
condition was enforced on the upper surface of  portion where the indenter is not touching the 
surface and the right side of the cartilage  to enable the fluid flow through these boundaries.. 
The lower boundary of the model was fixed in vertical and lateral direction, to represent the 
physiological conditions in cartilage-bone interface. As the stiffness of indenter and bone are 
higher than the cartilage, the indenter and the bone were modeled as rigid bodies for the ease 
of modeling. The preliminary studies indicated that the material model used for the indenter 
and bone does not significantly affect the prediction result.  
 
To account for the non-linear large deformation, the solid skeleton was modeled as an 
isotropic hyperelastic material. The highly nonlinear stress-strain behavior observed during 
the current study is unable to be represented by lower order hyperelastic material model such 
as neo-Hookean or Mooney-Rivlin. Higher order hyperelastic material models such as Yeoh 
model are believed to be more suitable in explaining the nonlinearity of cartilage tissues 
(Oloyede et al. 2009).  However, 2nd order polynomial hyperelastic function gave an accurate 
description of the material behavior observed during this study, for humeral head cartilage 
tissues. Due to lesser number of parameters in 2nd order polynomial hyperelastic function, 
Inverse FE procedure can be implemented to obtain unique set of material parameters. The 
general functional form of hyperelastic materials is: 
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Here, W , 1I and 2I  are isotropic strain energy potential, first and second deviatoric strain 
invariants, respectively. The J  is the volume change during the deformation. 

ijC  and iD  
are material parameters related to stiffness and the volumetric change of the cartilage.  
Setting N=1, the above equation reduces to Mooney-Rivilin model. If for all 

ijC with j≠0 are 

set to zero, then N=1, N=2 and N=3 would represent neo-Hookean, the 2nd order polynomial 
hyperelastic function and Yeoh models, respectively.    
 
The strain dependent permeability function used in this study is shown in equation 5 where 
intrinsic permeability ( 0K ) is related to permeability ( K ) as follows.  
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Here e  is the void ratio (ratio of volume of pores to volume of solid), a quantity representing 
‘dilatation’ in ABAQUS. The 0e  is the initial void ratio, which is  taken to be 4, based on the 
assumption that on average 80% of cartilage is filled with pores (Holmes and Mow 1990). 
The M and m are dimensionless material parameters which were taken to be 4.638 and 0.0848 
respectively (Holmes and Mow 1990).  

Material parameter identification 

Material parameters for the 2nd order polynomial hyperelastic function were obtained using 
an inverse-FE procedure. Following the approach developed by Simon et al.(1998), stiffness 
parameters of the 2nd order hyperelastic function, C10 and C20 were obtained by curve fitting 
the force-indentation experimental data at highest strain-rate, 10-2/sec, to FE model prediction 
considering the material as incompressible. On the other hand, considering the material as 
compressible, parameters related to volumetric change of the 2nd order hyperelastic function 
D1 and D2 were obtained by curve fitting the force-indentation experimental data at lowest 
strain-rate, 10-4/sec to FE model prediction. Assuming the fluid flow is negligible, the 
intrinsic permeability of the cartilage was obtained by curve fitting the porohyperelastic FE 
model prediction to experimental data at lowest strain-rate.  

Results and discussion  

Biomechanical parameters: Comparison with the literature values   

The measured average thickness of kangaroo humeral head cartilage samples was 0.75 ± 
0.123mm. The reported thickness value for human shoulder cartilage is 1.44mm (Soslowsky 
et al. 1992), which is approximately two times higher than that of kangaroo cartilages. Given 
larger size of humans, these values are reasonable compared to average kangaroos. The 2nd 
order polynomial hyperelastic function fitted well to the both low and high strain-rate data 
with R-squared (R2) vales greater than 0.98. The functional form of the R2, an error indicator 
is shown in equation (6). 
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Here, ie  is the experimental data and if  is the FE model prediction. The ie  is the mean value 
of experimental results. The average stiffness parameters, i.e. C10 and C20, identified from the 
inverse finite element analysis were 0.1174 ± 0.0884MPa and 0.1367 ± 0.0767MPa, 
respectively. The average compressibility parameters, i.e. D1 and D2 were 0.0982 ± 
0.0588MPa and 0.0636 ± 0.0407MPa. The permeability value identified from the average 
data of the lowest strain-rate is 7.62x10-8mm/sec. The value of permeability obtained through 
inverse-FE procedure is at the same order with that reported in the literature for the central 
region of the humeral head cartilage, which is 1.82±1.27x10-8 mm/sec (Huang et al. 2005). 
The hyperelastic material parameters for shoulder cartilage tissues have not been reported 
elsewhere. Nevertheless, since μ (shear modulus) = 2C10 and assuming Poisson’s ratio to be 
0.15 (Demarteau et al. 2006; Korhonen et al. 2002), Young’s modulus (E) for the average 
data of this study is obtained to be 0.485MPa.  This value is within the range (0.28-0.8MPa) 
reported for bovine humeral head cartilage (Demarteau et al. 2006; Korhonen et al. 2002). 
The calculated E for human shoulder cartilages from reported compressive modulus (HA) 
(Huang et al. 2005) using equation (7) is 0.142MPa. The Poisson’s ratio ( υ ) was also taken 
to be 0.15 in this calculation. This value is 3 times smaller than the calculated values in our 
study. Considering the possible differences in thickness and compositions of cartilages in 
different species we would consider the value obtained for E in this study is acceptable. 

υ)2υ)(1(1
υ)(1
−+

−
=

EH A
     (7) 

Porohyperelastic FE model: Effect of solid-extracellular fluid interaction and drag force 

The comparison of average experimental stress-strain response to the porohyperelastic FE 
model prediction is shown in Figure 2a and 2b for the cases of constant and strain dependent 
permeability. In general, both models showed the strain-rate dependent nature, indicating the 
ability of the poromechanics framework (Biot 1941) to capture the stain-rate dependency.  
However, compared to the model with constant permeability, the model with strain dependent 
permeability is able to capture the experimental results at the three lowest strain-rates (10-

4/sec, 5x10-4/sec and 5x10-3/sec) well. This is mostly evident at 5x10-4/sec where significant 
improvement in R2value is observed (Fig. 2d). Both constant and strain dependent models 
were not able to adequately capture the stress-strain variation at 10-2/sec strain-rate. However, 
the model with strain dependent permeability (R2 =0.8571) was still able to better capture the 
variation at 10-2/sec in comparison to the model with constant permeability (R2=0.7815) (Fig. 
2d). Therefore, the strain-rate dependent tissue response from 10-4/sec to 5x10-3/sec can be 
attributed to the solid-extracellular fluid interaction and drag forces induce due to shrinkage 
of pores during tissue deformation, which is represented by strain dependent permeability.  
 
In addition to the strain dependent permeability, we believe that the strain-rate dependent 
drag forces should be considered when strain-rates reach an order of 10-2. This could be one 
of the reasons that the strain dependent permeability model cannot adequately predict the 
tissue response at the highest strain-rate tested, 10-2/sec. One way to take into account the 
strain-rate dependent drag forces is to consider permeability as a function of strain-rate. 
According to equation (2) above and has been mentioned by Oloyede and Broom (1996), the 
fluid exudation from the cartilage will decrease with increasing in strain-rate. This can be 
attributed to decrease in permeability with the increase of strain-rate. Inverse FE curve fitting 
to experimental results of current study at 10-2/sec indicated that, a permeability value of 
1.62x10-8mm/sec would fit to the experimental results well. This permeability value is 
approximately 4.7 times smaller than the value (7.62x10-8 mm/sec) at the smallest strain-rate. 
The permeability values obtained using Inverse FE procedure for 5x10-3/sec and 5x10-4/sec 

ICCM2014, 28th-30th July 2014, Cambridge, England

498



were almost the same, which are closer to 3.62x10-8 mm/sec. This indicates that the effect of 
strain-rate on permeability at these relatively low strain-rates is negligible. Therefore, for 
strain-rates larger than 10-2/sec, inclusion of drag forces through the strain-rate dependent 
permeability is reasonable. Similar phenomena has earlier been postulated by Oloyede and 
Broom (1992). According to their experimental observations, they have stated, “a comparison  
 
 

 
 

 

Figure 2. Comparison of FE model prediction to experimental data. (a) Constant 
permeability (b) Strain dependent permeability (c) With the inclusion of strain-rate 
dependent permeability at 10-2/sec (d) R-squared values for strain-rates tested  

of the effective stress and excess pore pressure curves reveals a distinct dissimilarity in their 
relationship as the strain-rate is increased from 10-3sec-1 to 10-2sec-1”. The obtained model 
results after inclusion of strain-rate dependent permeability is shown in Figure 2c. The 
experimental results are well predicted by the model (R-squared ˃ 0.96) (Fig. 2d). 
 
In finding further evidence for the underlying mechanism of the above mentioned 
observations, higher pore pressure value is observed for the case of strain-rate dependent 
permeability with comparison to strain dependent permeability, at 10-2/sec rate (Fig. 3a and 
3b). Moreover, the smaller fluid velocities observed in strain-rate dependent case (Fig. 3c) 
reflects higher drag forces. Therefore, over and above a certain strain-rates (between 5x10-

3/sec - 10-2/sec) will significantly reduce the mobility of the fluid leading to literally lock the 
fluid inside the tissue. We believe that this locking effect will become more prominent at 
larger stain-rates, causing the tissues to act as purely elastic solid, as evident by the 
experimental findings of Oloyede et al. (1992).  
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In summary, the present study has investigated how solid-extracellular fluid interaction 
facilitates the strain-rate dependent behavior of shoulder cartilage tissues. The 
porohyperelastic FE model prediction has been compared with indentation tests on kangaroo  
 
    
 

 
 

 
 

 
humeral head cartilage under quasi-static to high strain-rates. The effect of constant 
permeability, strain dependent permeability and strain-rate dependent permeability on FE 
model prediction has been considered with the objective of investigating the effect of solid-
extracellular fluid friction forces and drag forces on strain-rate dependent behavior. 
According to the current investigation when a tissue is deformed under a given strain-rate, 
shrinking pores will restrict the fluid motion, hence solid-extracellular fluid frictional 
interaction forces and drag forces will be generated. The magnitude of these forces will 
depends on the strain, strain-rate, the structure of the pore network and the size of the pores. 
At higher strain-rates, permeability will reduce significantly due to large drag forces, locking 
the fluid inside the tissue.   

Conclusion  

Strain-rate dependent nature of kangaroo humeral head cartilage tissues from 10-4/sec to 10-

2/sec is well captured by a newly developed porohyperelastic FE cartilage model with strain-
rate dependent permeability. The model with strain dependent permeability was only able to 
predict the strain-rate dependency from 10-4/sec to 5x10-3/sec and was better than the model 
with constant permeability. The drag forces  are believed to be dominating  the tissues 
response from an intermediate strain-rate from 5x10-3/sec to 10-2/sec. This is the main reason 
why the strain-rate dependent model is superior at higher strain-rates. Therefore, it is 
necessary to include the strain-rate dependent permeability in order to predict the tissue 
response at large strain-rates. Therefore, the strain-rate dependent behavior of shoulder 
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cartilages can be attributed to solid-extracellular fluid interaction and drag forces. In 
physiological point of view, reduction of permeability at large strain-rates indicates that the 
fluid will be locked inside the tissue. This is believed to facilitate the ability of the tissues to 
function as a protective layer for bone ends injurious loads. 
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Abstract 

Topology optimization of anisotropic materials is one of the most challenging research topics in the 
field of structural optimization and full of innovation. This paper aims at to find the optimal lay-out 
of anisotropic materials under harmonic response loads within a specified region. The optimization 
model which subject to response amplitude of the harmonic excitation is established and solved by 
using Independent, Continuous, Mapping (ICM) method. The filter function of elemental mass 
matrix, elemental stiffness matrix and elemental weight would be introduced, by which the three 
matrixes are updated in iteration putted into the dynamic topology optimization of differential 
equation to analyses the design sensitivity and optimize the structure. An explicit expression of 
constraint(s) with respect to the topological variables is obtained based on Rayleigh’s quotient and 
sequential approximation method with filter functions. Then, the mathematical formulation of 
optimal problem of anisotropic materials is established and solved by dual sequence quadratic 
programming (DSQP). Finally, Numerical examples are provided to demonstrate the validity and 
effectiveness of the ICM method. 

Keywords:  Topology optimization； anisotropic materials；harmonic response；ICM method；
dynamic topology optimization 

Introduction 

The vibration Control is a major problem in industrial engineering. How to make materials property 
achieve optimization and lightweight as far as possible at the same time, is bottleneck of the high-
end equipment manufacturing and aerospace industry, which urgently need to be solved. The 
traditional parameter optimization for structure optimization design cannot meet the requirement of 
lightweight design in the engineering field. However, through the method of topology optimization, 
the structure of the topology configuration could be redesign, which is of a new train thought of the 
structural dynamic design.  
A large number of examples have proved that topology optimization is a magic tool to improve the 
material mechanics performance. Now, many studies have been carried out on dynamic response 
topology optimization. SIMP method [Allahdadian S, Boroomand B, Barekatein A R(2012).] is 
applied  to study the optimal topology of the support structure with minimum compliance design 
under harmonic force. Kang [Kang Z, Zhang X, Jiang S, et al(2012)] aims at damping structure 
composite board to research minimum amplitude of topology optimization under harmonic 
excitation by SIMP and GCMMA method. Rong [Rong J H, Xie Y M，Yang X Y, et al(2000)] 
applies the ESO method to study the random dynamic response of minimum weight topology 
optimization problems. Zhang [Zhang Qiao, Zhang Weihong, Zhu Jihong. (2010)]  make use of the 
RAMP methods research the dynamic response topology optimization subject to the random 
dynamic response of white noise excitation. Recently there are some literatures such as [Motamarri 
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P, Ramani A, Kaushik A(2012)]take advantage of equivalent statics to solve the problem of dynamic 
response, it avoids to solve the complicated problems such as dynamic equation problems. 
In engineering field, engineers often want to get the optimal structure of minimizing weight with 
satisfying some mechanical constraint at a certain point of interest. As for the minimum weight 
problem subjected to dynamic response displacement, the objective function and constraints include 
higher nonlinear implicit function equations. It is more difficult to have it explicit, and difficult to 
analysis the design sensitivity. However, sensitivity analysis of dynamics is a major problem for 
topology optimization.  
In this paper, ICM method [Sui Yunkang(1996), Sui Yunkang& Ye Hongling(2013)]is extended to 
construct the optimal model of anisotropic materials under harmonic response loads within a 
specified region. And the optimal model is solved by dual sequence quadratic programming. 
Numerical examples show that this method is effective and valid for the problem of topology 
optimization subjected to dynamic response displacement.  

The ICM (Independent Continuous Mapping) method for anisotropic materials 

ICM method, namely Independent, Continuous and Mapping method, designs a special type of 
topological variable independent of specific physical quantity to indicates the ‘exist-null’ of 
elements, which is proposed by Sui (1996) for skeleton and continuum structures. 
The “polish function” and “filter function” are the key points in the ICM method, which are used to 
map discrete variables and inverse continuous variables. By introduce material’s retention ratio v, 
the discrete variables “0-1” could indicate the optimal lay-out of or topological structure, namely 

0

0

1 (0,1]
( )

0 0
i i

i

i i

v v
t H v

v v

 
  



                                           (1) 

Where it  is topological variable, 0
iv  is material’s initial value, ( )H v  is mapping relation, which can 

be regard as a step function like Fig.1. The “polish function” means using a smoothed curve to 
approximate the step function like Fig.2. And the “filter function” is inverse function to the “polish 
function” like Fig.4. The filter function can also be considered as the inverse function of the step 
function like Fig.3. 

0 1

1
H(v)

t

v   
0 1

1 P(v)

t

v   0 1

1
S(t)

t

v

  
0 1

1

f(t)

v

t   
Fig.1 Step function Fig.2 Polish function Fig.3 The Hurdle function Fig.4 Filter function 

 
The important role of filter function is use to identify the physical parameters, the element weight, 
element quality matrix and element stiffness matrix cloud be recognized. 

     , ,w i m i k iw wf t f t f t  M M K K                                   (2) 
Where w , M , K are respectively initial element weight, initial element mass matrix, and initial 
element stiffness matrix. w, M, K are weight, mass matrix and stiffness matrix of ith element. 

( )w if t , ( )k if t , ( )m if t are respectively filter functions of weight, mass matrix, stiffness matrix of ith 
element. Thus, the model of continuum topology optimization with dynamic response constraints 
can be written as follows 
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Where ju  is allowable amplitude constraint, J is the total number of effective displacement 
constraints. As the equations of continuum problem, the filter function could recognize the elastic 
tensor and density of structure 








0

0

 m

ijklkijkl

f

CfC

                                                                 (4) 

Where kf  and mf  are filter function equations of different physical parameters. As we know, there 
is a relationship between ijklC  and Young's modulus. Assume that there is a matrix A 

0 0
ijkl k ijkl kE f f E  C A C A                                             (5) 

For 2d orthotropic material, assuming 33 32 31 0     ，and ignoring the z axis direction of the 
two modulus, elastic tensor can be expressed as: 
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C C                                         (6) 

So, for the anisotropic material, Eq(3) could be expressed  
0 0 0

1 1 2 2 12 1, ,k k kE f E E f E G f G                                         (7) 
Usually, the composite material’s each independent modulus displays a marked difference. The 
high ratio in low topology variable (null zone) may impact on structure mechanics of exist zone 
performance, as the local mode in dynamic topology optimization. So ICM identification equations 
for 2d orthotropic material could be 

 

0 0 0
1 2 12

1 2 12 0 0 0
1 2 12 min

, , 0.1 1.0
, ,

max , , 0.1
k k k

k

E f E f G f t
E E G

E E G f t t

  
 

 

                 (8) 

In ICM method, the polish function is applied to eliminate intermediate variables 
          )(•)(•= 0 tPtfEE β                                     (9) 

Where    0
0 0 0

1 2 12 1 2 12, , , , ,E E G E E G E E . In order to prevent the numerical instability, define 
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                                                          (10) 

Eq.9 could be 
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The   of Eq.9 is a variable parameter. The topology variable ti is approaching to 0-1 with the   
increasing. Throughout the iterative process,   is changed in stages.  

Dynamic response equations 

 
Dynamic response equation has been extensively researched.  

  Mu Cu Ku P                                                      (12) 
Define the structural damping coefficient is R, the dynamic equation can be turned into 

        2 1i R    M K u P                                    (13) 
In the process of optimization, the reciprocal transformation to design variables as follows 

1
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k i

x
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                                                           (12) 

Derivation with design variables for both sides of equation, then  
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P is constant, so 
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                                    (16) 

Through the filter functions, the derivative of stiffness matrix and mass matrix is as followed, 
   

 
   

 0 0,k i M if t f t

x x x x

  


   
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K M
K M

                              (17) 

So solving the sensitivity is transformed into the problem of solving differential equations 

        2 1i R    M K Z
                                    (18) 

Solve Eq(12) could get the dynamic response u  and Eq(17) could get the sensitivity  . 

Numerical solution of topology optimization 

In order to solve the optimal model of Eq(3), the objective function needs to be modified by second 
order Tailor expansion. The power function is adopted to recognize structure weight as filter 
function. The objective function of 

 
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For completely eliminating the intermediate variable, the optimization model is also need to be 
modified, so polish function is introduced to objective function  

  
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P x
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Solve the first and second order partial derivative 
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Omit the constant terms, the objective function is approximated as 



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iiii xbxaW
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                                                          (22) 

Constraint function ( ( ), ( ))j k i m i ju f t f t u  of Eq(3) can also be explicited by Taylor's approximation. 
However, as the local approximation, it will take more truncation errors. So we have to find another 
effective way to make it explicit. 
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Fig.1 The process card of sequential approximate 
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Fig.2 The process card of double mapping 

 

Fig.1 shows the process of sequential approximate. Where v denotes the number of iterations of 
topology optimization process. PO is the original mathematical programming, PA is mapping 
mathematical programming. M denotes mapping relationship, M-1 denotes inverse relationship 

 1k
x

  is the solution of PA. The solution of the original mathematical programming *x is 
approximated to  1k

x
 , namely  1* k

x x


 E , E is defined as the unit matrix. Sequential 
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approximation can be understood as the PO to PA when the iterative process start every times. It is 
turn into a parallel mapping and inversion, as      0 1 *k

x x x x     , equal 
to  0* 1x x M . According to RMI(Relation Mapping Inverse)( Sui, 1996), there is slight error in 
the sequence of approximate approach. The inverse relationship 1M  is simply putted as E, The 
process of sequential approximate of Fig.1 could be improved as following card. 
Fig.2 shows the process of double mapping. PO can be mapped to PD by precise mapping Me, 
which is the process sequential approximate. This is a series-parallel connection mapping and 
inversion method. PO and PA are in series by PD, which is formed a double mapping. The 
sequential approximate PD to PA(k) formed a multiple parallel, then 
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1 2

j k

k

RMI RMI RMI
 

  
 
                                               (23) 

Where the j is the outer circulation variable, k is the inner circulation variable. The mapping relation 
Ma is defined linear Taylor expansion.  
Now, the response amplitude constraints ( ( ), ( ))j k i m i ju f t f t u  could be 
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Eq(24) can be transformed 
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From above calculation, the optimization mode is  
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Considering that the number of design variables is frequently quite bigger than that of 
constraints in topology optimization of continuum structure, the programming discussed-above 
could be converted into dual programming according to dual programming theory in order to solve 
the optimal model simply. 

Now, we employ the Dual Quadratic Programs to solve the optimal model (27).  
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From Kuhn-Tucker condition, we can get the standard quadratic programming. Then solve it and 
update  design variables until the convergence condition of structural weight is satisfied. In this 
paper, a precision of convergence is prescribed to be 0.001. 
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Numerical example  

Take T300/4211 as base structure of topology optimization, the 
modules of which is as fellow: E1=126GPa, E2=8GPa, G12=3.7GPa, 
 = 15600kg/m3. The damping coefficient of the structure is 0.02 and 
structure size is 80×50×10mm. The exciting force is 1000N located 
bottom right corner, the frequency of which is 1000Hz, Divide 80 × 50 
meshes. The angle of material coordinate system and geometric 
coordinate system are respectively 0 °, 30 °, 45 °, 60 ° and 90 °.  
 

     

0° 30° 45° 60° 90° 
Fig.4 Optimal topology 

 

 
 
 

Fig.5 Iteration history of structural weight 
 

 
 

 
Fig.6 Iteration history of response amplitude 
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The optimized topology configurations for different ply angles are shown in Fig.4. Iteration 
history of structural weight and response amplitude with different ply angles are given in Fig.5-
Fig.6. As a result, we find that the optimized topology configurations for different ply angles are 
different. With increasing the ply angle, the structural weight is increasing. But the optimal results 
are all satisfied with the response amplitude.  

Conclusions 

Based on ICM topology optimization method, the minimum weight subject to dynamic amplitude 
response with anisotropic material is established. The logarithmic type filter functions are 
introduced to build up the anisotropic structure topology optimization model. By using the dual 
quadratic programming and sequential approximation method, the mathematical model is solved. 
Numerical example shows that the method of this paper can effectively solve the problem of 
dynamic response topology optimization of anisotropic material. 
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Abstract 
In this paper, we propose an efficient numerical method for Volterra-type nonlinear integral 
equations, based on Legendre-Gauss-Radau interpolation, which is easy to be implemented and 
possesses the spectral accuracy. We also develop a multi-step version of this approach. Numerical 
results demonstrate the effectiveness of these approaches. 

Keywords:  Legendre collocation method, Volterra integral equation, Nonlinear 

Introduction 
We are interested in numerically solving Volterra integral equation of the second kind in the 
following form: 
                               0,))((),()()(

0
>+= ∫ tduFtKtgtu

t
τττ                                                       (1) 

with )0()0( gu = , where the source function )(tg  and the kernel function ),( τtK are given, and 
)(tu is the unknown function to be determined. ()F is a nonlinear function with certain smoothness. 

Let }0|),{( TttD ≤≤≤= ττ . If )(),( DCtK ∞∈τ and uuF =)( , then the solution to (1) exists, is 
unique,and belongs to ),0( TC ∞ (Theorems 2.1.2 and 2.1.3 in [Brunner(2004)]). For the existence 
and uniqueness of nonlinear integral equation as (1), one can consult with [Guo and Sun(1987); 
Wazwaz(2011)]. We will consider the case where the solutions of (1)  are sufficiently smooth -- in 
this case it is necessary to consider very high-order numerical methods such as spectral methods for 
approximating the solutions. 
As we know, the spectral method employs global orthogonal polynomials as trial functions. It often 
provides exceedingly accurate numerical results with relatively less degree of freedoms, and thus 
has been widely used for scientific computation[Bernardi and Maday(1997); Boyd(2000); 
Guo(1998); Shen and Tang(2006); Shen et al.(2011)]. For spectral methods of (1), the first try may 
be Chebyshev spectral methods in [Elnagar and Kazemi(1996)]. In [Fujiwara(2006)], Chebyshev 
spectral methods are investigated for Fredholm integral equations of the first kind under multiple-
precision arithmetic. However, no theoretical analysis is provided to justify the high accuracy 
obtained. In [Tang et al.(2008)], authors developed successfully spectral method and conducted the 
convergence analysis. Later in [Chen and Tang(2009): Wan et al.(2009); Tao et al.(2011); Xie et 
al.(2012)], various spectral methods proposed for integral equation with spectral accuracy. Recently, 
a Legendre-Gauss-Radau collocation method was proposed for initial value problems of ordinary 
differential equations [Wang and Guo(2012)]. Motivated by the idea in [Wang and Guo(2012)], we 
propose a Legendre-Gauss-Radau collocation method for a Volterra integral equation (1). 

Legendre-Gauss-Radau collocation method and its implementation 

Legendre-Gauss-Radau collocation method 

Let )(xLl  be the standard Legendre polynomial of degree l . The shifted Legendre polynomials 
)(, xL lT  are defined by ( ) ,....2,1,0,1/2)(, =−= lTtLtL llT  The nodes of the standard Legendre-

Gauss-Radau interpolation on the interval )1,1[−  are )0( Njj ≤≤ξ  and the corresponding 
Christoffel numbers are )0( Njj ≤≤ρ . The nodes of the shifted Legendre-Gauss-Radau 
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interpolation on the interval ),0[ T  are )0(, Njt N
jT ≤≤  and the corresponding Christoffel numbers 

are )0(, NjN
jT ≤≤ω . Clearly, we have links ( )1

2, += j
N

jT
Tt ξ  and j

N
jT

T
ρω

2, =  for Nj ≤≤0 . Let 

),0( TPN  be the set of polynomials of degree at most N . For any ),0[ TCv∈ , the shifted Legendre-
Gauss-Radau interpolation ),0( TPv NN ∈Π  is determined uniquely by )()( ,,

N
jT

N
jTN tvtv =Π  

( Nj ≤≤0 ). For any 2),0[),( TCstK ∈ , notation k
NΠ~  means the shifted Legendre-Gauss-Radau 

interpolation on ),0[ ,
N

kTt  with respect to s . The corresponding nodes and Christoffel numbers are 
N

jtk
t ,  and N

jtk ,ω , respectively. 

The Legendre-Gauss-Radau collocation method for (1) is to seek ),0()( TPtu N
N ∈  such that 
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Implementation of the scheme (2) 

We first express the approximate solution as 
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Inserting (5) into (2), we have 
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Then we can rewrite (6) as the following compact matrix form 
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The expression above can be in matrix –vector form as 
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Multi-step version of the  collocation method  

Let M be a positive integer number, and )1( MmN m ≤≤  be positive integer numbers. We divide 
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Then the matrix form of the multi-step version is, first we solve the system  
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Noting that 10, −= k
N tt k

kτ
, the process above can be done without any gap. 

Numerical experiments  

The first issue in performing the proposed method is how to solve the nonlinear system (7). We can 
use a simple iterate scheme as follow: 
                        ))0((gFCh)CBF(ugu k1k ++=+ ,  ,....2,1,0=k                                                     (11) 
If the sequence ku  converges, we can obtain a good approximation solution to (7). 
In the following examples, because the exact solutions are known, we can compute the error 
between numerical solution and the corresponding exact ones. The errors in ∞L  and 2L  are defined 
by  
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where )(tu N  and )(tu  are numerical and exact solution, respectively. Another absolute error at 
Tt =  is defined by .|)()(|)(Err TuTuT N−=   

Example 1 The first example is concerned with a linear problem. Consider Volterra integral 

equation (1) with 
2

1)(
)2(

2

+
−

−=
+

t
eetg

tt
t , ττ tetK =),(  and .)( uuF =  The exact solution is tetu 2)( = . 

With the same exact solution and kernel  as above, authors test a Legendre collocation(LCM) in 
[Tang et al.(2008)] and also spectral Jacobi-Galerkin method (spectral Legendre-Galerkin method 
(SLGM) and spectral Chebyshev-Galerkin method(SCGM)) and pseudo-spectral Jacobi-Galerkin 
method (pseudo-spectral Legendre-Galerkin method (PSLGM) and pseudo-spectral Chebyshev-
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Galerkin method(PSCGM)) in [Xie et al.(2012)] for a slightly different problem. We compare the 
results in table 1 for ∞L -errors.  Our results are slightly better than the ones in [Tang et al.(2008)] 
and  [Xie et al.(2012)].  

Table 1.   Comparison of ∞L -errors for example 1.      

   N                          4                     6                   8                   10                 12                   14 
   

 LCM                -                     3.66e-01        1.88e-02        6.57e-04       1.65e-05        3.11e-07 

 SLGM             5.243e-02      1.262e-03       1.753e-05      1.572e-07     9.779e-10      4.618e-12 

 SCGM            2.915e-02       5.696e-04       7.276e-06      5.751e-08     3.950e-10      1.737e-12 

PSLGM           6.007e-03       9.386e-05       8.710e-07      6.378e-09     3.322e-11      1.323e-13 

PSCGM           7.113e-03       1.003e-04       9.958e-07      6.995e-09     3.638e-11      1.492e-13 

Our method     3.137e-04       1.411e-06       3.833e-09      7.665e-12     1.245e-12       1.373e-12 

 In table 2, we present the 2L  error and the absolute errors at 1=T with different N . The results 
show "spectral accuracy". 

Table 2.   Errors  with different N  for example 1.      

   N                          4                     6                   8                   10                 12                   
   

 Err2                 2.192e-04      9.098e-07       2.433e-09      4.534e-12     4.406e-13      

Err(1)               5.508e-03      3.897e-05       1.539e-07      3.809e-10     8.383e-12       

 Example 2 The second example is concerned with a nonlinear problem. Consider Volterra integral 

equation (1) with 
16

2cos2sin2
10
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8
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2
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2
1),(

)(2 τ

τ
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tetK  and 2)( uuuF −=  . The exact solution is ttu sin)( = .  For solving the 

nonlinear system (7), the simple iterate method (11) is employed with tolerate 1610−=ε .   

In table 3, we present the errors with different N . The results also show "spectral accuracy". 

Table 3.   Errors  with different N  for example 2.      

   N                          4                     6                   8                   10                 12                   
   
Errinf               1.042e-06      2.254e-09       3.566e-12      4.385e-15     2.220e-16 

 Err2                7.466e-07      1.572e-09       2.521e-12      3.079e-15     1.118e-16      

Err(1)               5.584e-05      9.846e-08      9.688e-11      3.948e-13     1.929e-13       

 Example 3 Consider Volterra equation (1) with  

            
)361(2

13636)6cos()6sin(6)( 2

22

π
πππππ

+
+−+−

=
tetttg , ττ 3),( −= tetK , 2)( uuF = . 
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The exact solution is )3sin()( tetu t π= .  In table 4, we present the errors with different N . The 
results also show "spectral accuracy". 

Table 4.   Errors  with different N  for example 3.      

   N                          8                    12                  16                  20                 24                  28 
   
Errinf               2.498e-02      8.997e-04       7.892e-06      2.202e-08     2.180e-11       4.219e-14 

 Err2                1.667e-02      6.681e-04       6.065e-06      1.712e-08     1.639e-11        1.581e-14 

Err(1)               7.825e-02      3.265e-03      3.677e-05      1.240e-07     1.404e-10        2.412e-13 

 

Conclusions 

In this paper, we proposed a Legendre-Gauss-Radau collocation method for solving Volterra-type 
integral equations of second kind. This method is easy to be implemented for nonlinear problems. 
In particular, benefiting from the rapid convergence of the Legendre-Gauss-Radau interpolation, 
this method possesses spectral accuracy.  
We also provided a multi-step version of Legendre-Gauss-Radau collocation method. We could use 
this process with moderate mode N to evaluate the numerical solution, step by step. This simplifies 
actual computation and saves work essentially. In the derivation of the existing collocation method, 
one could use the Lagrange interpolation which is unstable for large N . Whereas we used the 
Gauss-type interpolation as in [Guo and Wang(2007;2009;2010)], which makes our methods much 
more stable for large N . This is also confirmed by the numerical results. 
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Abstract 

In this paper, the free vibration behaviors of the functionally graded (FG) coated and undercoated 
plates are studied by a meshfree boundary-domain integral equation method. Based on the two-
dimensional elasticity theory, the boundary-domain integral equations for each single layer of these 
coating-substrate plates are derived initially by using elastostatic fundamental solutions. Employ the 
radial integration method to transform the domain integrals into boundary integrals and achieve a 
meshfree scheme. By applying the multi-region boundary element method, obtain the generalized 
eigenvalue system of the whole plate, which involves system matrices with boundary integrals only 
and the complete solutions for natural frequency and vibration modes are rigidly resolved. A 
comparative study of FG versus homogeneous coating is conducted. The influences of material 
composition, material gradient, coating thickness ratio, plate aspect ratio and the boundary 
conditions on the natural frequencies of the FG coated and undercoated plates are evaluated and 
discussed. 

Key words: free vibration, FG coated and undercoated plates, boundary-domain integral equations, 
meshfree method, multi-region boundary element method 

Introduction 

In many applications, especially in the space industry, energy industry and electronic industry, 
structures or part of structures are exposed to high temperature or high temperature gradients. 
Conventional metallic materials, such as carbon steels or stainless steels cannot resist such high 
temperature. In order to improve the resistance of metallic structures against extreme temperature 
conditions, without suppressing their strength and toughness, a thin layer of appropriate ceramic is 
generally used to cover the surface of the structures. For those structures which are subjected to 
constantly rolling, sliding contacts or abrasive wear, additional hardening process should be carried 
out within the outer surface of the materials. These two techniques are all forming the coating-
substrate system, where a functional material is coated on the substrate material to increase the 
durability and reliability of the structures. However, due to the discontinuous of the material 
properties of these two or more materials, severe residual and working stresses discontinuity at the 
material interfaces usually cause damage to the coating, or failure due to delamination. As a remedy 
to the aforementioned disadvantages in coating-substrate system, a concept of functionally graded 
(FG) coating are proposed, where a smooth spatial gradation of the material properties are 
introduced from coating to substrate in order to eliminated the effect of the suddenly change of the 
material properties, such that stress and strain discontinuous can be mitigated in the coating-
substrate system. 
 
Due to the superiorly properties, a world-wide requirements of the application of the FG coating-
substrate system triggered a series of research activities. The incorporation of functionally graded 
materials (FGMs) into coating design can help eliminate the mismatch of mechanical and thermo-
mechanical properties between the metal plates and coating layers. Thus a number of studies existed 
in the literature for analyzing of the mechanical and thermo-mechanical behavior of homogeneous 
plates coated by an FG layer. An FG coated elastic solid under thermomechanical loading was 
carried out by Shodja and Ghahremaninejad [2006]. Three-dimensional elastic deformation of a 
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functionally graded coating/substrate system was investigated by Kashtalyan et al [2007]. Chung 
and Chen [2007] analyzed the bending behavior of the thin plates coated by FG layer. Several 
researches have addressed contact response of FG coatings. Saizonou et al. [2002] studied the 
subsurface stress distribution of an FG-coated elastic solid under normal and sliding contact loading 
by the boundary element method (BEM). Contact mechanics of the FG coated solids was analyzed 
by Guler and Erdogan [2004]. It should be noted that in all above studies the properties the FGM 
were all assumed to vary exponentially through the thickness. 
 
Theoretical modeling of FG coatings has been focused predominantly on prediction of their fracture 
behaviours. Chen and Erdogan [2003] studied the interface cracks for a FG coating medium. A 
crack in the FG coating surface and its expansion into the substrate along the direction 
perpendicular to the interface between the coating and the substrate was presented by Chi and 
Chuang [1996]. Pindera et al. [2002, 2005] examined fracture mechanisms in thermal barrier 
coatings with FG bond coats under uniform cyclic thermal loading. However, the dynamic analyses 
of the FG coatings are very rare in the literature. Liew et al. [2006] investigated linear and non-
linear vibrations of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient, 
which were based on the first order shear deformation theory and von-Karman geometric 
nonlinearity. Hosseini-Hashemi et al. [2012] presented the exact closed-form solutions for both in-
plane and out-of-plane free vibration of the simply supported rectangular plates coated by a FG 
layer, based on three-dimensional elasticity theory. 
 
In this paper, attention is focused on investigating the free vibration behaviors of two FG coating-
substrate structures. The first one involves a two-layer plate, namely an FG layer coated on a 
homogeneous substrate which is simply called the FG coated plate, the other involves a three-layer 
plate in which an FGM is employed for the inter-medium layer and different homogeneous 
materials are in the top and bottom layers, this is called an FG undercoated plate [Chung (2007)]. 
For each single layer of these plates, the boundary-domain integral equation formulations are 
derived initially by using the elastostatic fundamental solutions which is based on the two-
dimensional elasticity theory. A meshfree scheme is achieved to apply the radial integration method 
to transform the domain integrals arising from the material inhomogeneous and the inertial effects 
to the boundary integrals. Finally, an eigenvalue system involving system matrices with boundary 
integrals only is obtained through assembling all the sub-layer integral equations together by 
employing the multi-region BEM. By the harmonious combination of this meshfree boundary-
domain integral equation method and the multi-region BEM, a comparative study of FG coating 
versus homogeneous coating is conducted. Extensive numerical results are presented to demonstrate 
the influences of FG coating thickness ratio, plate aspect ratio, as well as boundary condition on the 
vibration characteristics of the FG coated and the FG uncoated plates. 

Material properties of the coating-substrate structures 

Three considered coating-substrate plates, namely, the homogeneous coated, FG coated, as well as 
the FG undercoated plates are schematic depicted in Fig. 1. Assume the layers of these coating-
substrate plates are perfected bonded to each other. The total length and height of these coating-
substrate structures are denoted by L and ht. hi represents the thickness of each layer. The coating 
and the substrate of the homogeneous coated plate as well as the top and the bottom layers of the 
FG undercoated plate are composed by pure ceramic and pure steel, respectively, there material 
parameters are described in Table 1. For the FG layer existing in FG coated and FG undercoated 
plates, assuming the top is ceramic rich and the bottom is steel rich, the Young’s modulus and the 
mass density are varying continuously in the transverse direction according to an exponential 
function described in Eqs. (1) and (2), while the Poisson ratio is constant. 
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where Et, ρt are the Young’s modulus and mass density for the top face constituent of the FG layer, 
and Eb, ρb are for the bottom face constituent. FGM gradation parameters are represented by β and γ 
for Young’s modulus and mass density respectively. x2 denotes the Cartesian coordinates variable in 
the transvers direction and hf is the thickness of the FG layer. The through thickness variation of the 
Young’s modulus for the three considered coating-substrate plates is shown in Fig. 2. 
 

Table 1． Material properties of the homogeneous ceramic and steel 

Material E(GPa) ρ(Kg/m3) ν 
Aluminum(Al) 70 2707 0.3 

Steel(S) 210 7806 0.3 
 

 
Figure 1． Coordinates and geometry of the coating-substrate plates (a) homogeneous coated 

plate; (b) FG coated plate; (c) FG undercoated plate 

 
Figure 2． Variation of Young’s modulus of (a) homogeneous coated plate; (b) FG coated plate; 

(c) FG undercoated plate 

Problem formulation 

The fulfillment of the free vibration analyses of the FG coated and FG undercoated plates as well as 
the homogeneous coated plates are by the harmonious combination of the developed meshfree 
boundary-domain integral equation method and the multi-region BEM. 

The meshfree boundary-domain integral equation method 

For each single layer of the coating-substrate plates, the governing differential equations of the 
steady-state elastodynamics without damping is expressed in terms of the frequency ω as  

2
, ( ) ( ) 0   ij j iux x .                                                                (3) 
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Which is based on the two-dimensional elasticity theory and the stress tensor σij, mass density ρ, 

displacement ui are quantities for each layer. A comma after a quantity represents spatial derivatives 
and repeated indexes denote summation. 
 
The elasticity tensor cijkl is described in the form of 

0( ) ( )ijkl ijklc cx x    where    0 2
1 2

       


ijkl ij kl ik jl il jk

v
c

v
,                (4a, b) 

where 0
ijklc  represents the elastic tensor of the reference homogenous material, which is a “fictitious” 

homogeneous material with μ=1. )1(2/)()(   xx E  is the shear modulus. For the FG layer, μ(x) 
varies gradationally according to the coordinates, while it keeps a constant for the homogeneous 
layer. δij is the Kronecker delta. By taking the elastostatic displacement fundamental solutions Uij(x, 

y) as the weight function, the weak-form of the equilibrium Eq. (3) can be obtained as 

2
,[ ] 0 


    jk k j iju U d .                                                        (5) 

Application of the generalized Hooke’s law lkijkllkijklij ucuc ,
0

, )(x   and the Gauss’s divergence 

theorem yields the following boundary-domain integral equations  

2

( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

( ) ( , ) ( )
( )


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

  
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u U t d T u d V u d
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x
x y x

x

.                   (6) 

In Eq. (6), the traction vector ,jiji nt   nj is the components of the outward unit normal to the 
boundary Γ of the considered domain Ω. iu~  is recognized as the normalized displacement vector 
correlating with the normalized shear modulus ~ , which are defined by [Gao (2008)] 

( ) ( ) ( )i iu ux x x ,                ( ) ln[ ( )] x x .                                   (7a, b) 
The fundamental solutions arising in equation (6) can be expressed as following, where Uij(x, y) and 
Tij(x, y) are chosen as the elastostatic displacement fundamental solutions for homogeneous, 
isotropic and linear elastic solids with μ=1 [Gao and Davies (2002)]. 
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        (11) 

where r=|x-y| is the distance from the field point x to the source point y. Boundary-domain integral 
equations for boundary points can be obtained by letting y to the boundary Γ in Eq. (6). There are 
two domain integrals emerged in the Eq. (6), the first one is due to the material inhomogeneous and 
the other arises from the inertial effect.  

Homogeneous layer 

Respect to the homogeneous layer, in the virtue of the shear modulus is a constant through the 
medium, therefore, l,

~  appears a zero value in Eq. (11), which leads to the integral kernel Vij inside 
the first domain integral of Eq. (6) vanish. Only the domain integral arises from the inertial effect 

ICCM2014, 28th-30th July 2014, Cambridge, England

521



 
 

left with a constant ρh/μh ( ρh, μh are mass density and shear modulus for the homogenous layer), 
which can be extracted out of the domain integration. 

FG layer 

For the FG layer, the emerged two domain integrals are all remained. In the first domain integral, 
l,

~  is no longer a zero value. However, in the case of an exponential law for the Young’s modulus 
or shear modulus such as those used in this analysis, it can be seen from Eq. (7b) that l,

~  is constant 
and Vij(x,y) thus becomes very simple for integration. While the material properties ratio ρ(x)/μ(x) 
in the second domain integral still need to be consideration inside the domain integration due to the 
material properties are varying according with the coordinates. 
 
In order to treat the domain integrals in the Eq. (6), the radial integration method (RIM) proposed 
by Gao [2002] is employed to transform the domain integrals into the boundary integrals over the 
global boundary. In the RIM, iu~  in the domain integrals of Eq. (6) are approximated by a 
combination of the radial basis function and the polynomials of the global coordinates as 

0( ) ( )    A A k

i i i k i

A

u R a x ax ,    0  A

i

A

,    0  A A

i j

A

x .                (12a, b, c) 

In this analysis, the 4th order spline-type radial basis function A (R) is applied. By taking all the 
boundary nodes (Nb) and some internal nodes (Ni) to constitute the application points A (Nt=Nb+Ni), 
and substituting the coordinates of the field points x (xk) and the application point A ( A

jx ) into Eqs. 
(12), if with no two coincide noes, the unknown coefficient vectors can be calculated by a set of 
linear algebraic equations as 

  u ,            and        1   u .                                      (13a, b) 
Subsequently determining the coefficients A

i , k

ia  and 0
ia , substitute Eq. (12a) into the domain 

integrals of Eq. (6) and apply the RIM, the two domain integrals are transformed into the boundary 
integrals in the form of [Yang et al. (2014)] 
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where the relation xi=yi+r,ir is used to relate x with r. By rewriting Eq. (11) with rVV ijij  , the 
integral functions in Eqs. (14) and (15) can be expressed as [Yang et al. (2014)] 

2 2 2

0 0
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r r
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ij ij ijF rV dr rV ,  (16a,b,c) 
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0

 
 

r r r

ij ijP rU e dr .       (17a,b,c) 

Since r,i in the above radial integrals is constant, then Eqs. (16b, c) can be evaluated analytically 
and other integrals are calculated by standard Gaussian quadrature formula [Yang et al. (2014)]. 
Therefore the displacement boundary integral equations with only boundary integrals are obtained. 
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After the spatial discretization of the each layer boundary into quadratic boundary elements with Nb 
boundary nodes, collocating the resulting boundary integral equations at the Nt boundary and 
internal nodes, two sets of discretized boundary integral equations are obtained, which can be 
expressed in the matrix from as 

         2
2 2 2 1 2 12 2 2 2

2 1

([ ] )    



 
   

 
b t t bb t b b

t
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N

b

b b b b b

i

u
H 0 V P u G t

u
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u
H I V P u G t
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where I is the identity matrix with the size of 2Ni x 2Ni. { bu }, { iu } and { u~ } are the displacement 
vectors of the boundary nodes, internal nodes and applications points respectively. By considering 
the boundary conditions, the sub-columns of the coefficient matrices respect to the known 
displacements nodes should be interchanged with that respected to the tractions, so do the 
displacements and the tractions vectors. Meanwhile, it is noticed that the sub-columns of the 
matrices [Vb], [Pb] and [Vi], [Pi] corresponding to the known boundary displacement nodes should 
be taken as zero. Then Eqs. (19) lead to the following system of linear algebraic equations 

       2
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 
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x
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u
     for boundary nodes,                  (20a) 
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x
A P u B y

u
      for internal nodes.                     (20b) 

It is convenient to find that the traction vector { by } in Eq. (20b) which is for the internal nodes is 
the same with that for the boundary nodes, such that the boundary nodes traction vector can be 
expressed in the terms of the coefficient matrices of Eq. (20a) by multiply the [Bb]-1, and a new 
relationship can be set up by the equations 
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where 
   

1
   b b b
A B A                            

1
   b b b
P B P ,                             (22a) 

      
1

    i i i b b
A A B B A               

1
    i i i b b
P P B B P .            (22b) 

In each single region, all the nodes could be divided into three sets as shown in Fig 3. The first set 
includes the boundary nodes solely associated with a single region. This set nodes are denoted by 
‘s’. The remaining boundary nodes reside on region-to-region interfaces belong to the second set 
which are denoted by ‘c’. The third set is formed by the internal nodes which are denoted by ‘i’. 
Then Eqs. (21) can be rewritten in the form of these three sets nodes as 
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is ic ii i is ic ii i

A A A x P P P x y

A A A u P P P u t
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.                    (23) 

In Eq. (23), bsx  contains the unknown normalized displacements and the unknown traction vectors 
for the first set boundary nodes, while bsy  contains all the known vectors. In the free vibration 
analysis, only the homogeneous system of the linear algebraic equations is needed, which can be 
obtained by taking the vectors bsy  containing the known normalized boundary displacements as 
well as the known boundary tractions to be zero. However, the normalized displacements bcu~  and 
traction bct  for the set two nodes are all unknown. 

 
Figure 3． Node sets of the coting-substrate plates 

Assemble the system of equations by the multi-region BEM 

After obtaining the system linear algebraic equations for the each single layer separately, the multi-
region BEM is then employed to assemble the stiffness matrix and mass matrix for the whole 
coating-substrate plates. Taking a two-layer FG coated plate as an example. The divided boundaries 
are described in Fig. 4. The boundary of the each layer is discretized into two sub-boundaries Γ1, Γ2 
and Γ3, Γ4, where Γ2 and Γ3 are the common interface. Let ui and ti denote the nodal displacement 
and the traction vectors on boundary Γi respectively. The boundary integral equations can be written 
together in the matrix form 

2

        
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b11 b12 b1i1 b1 b11 b12 b1i1 b1
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i11 i12 i1i i1 i11 i12 i1i i1

A A A x P P P x 0

A A A u P P P u t

A A A u P P P u 0

   for Ω1,  m=1,2,      (24a) 

2
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    for Ω2, m=3,4      (24b) 

Then takes into account the interface equilibrium and compatibility conditions for the tractions and 
displacements shared by Ω1 and Ω2 

b2 b3 t t ,        b2 b3u u       between Ω1 and Ω2                                 (25) 
Finally yields a 2N x 2N (N contains all the boundary nodes and the internal nodes for the whole 
coating-substrate plate) generalized eigenvalue system. 

     XMXK 2 ,                                                       (26) 
where 

ICCM2014, 28th-30th July 2014, Cambridge, England

524



 
 

 

 
 
 
 
 
 
 
 

b11 b12 b1i1

b21 b22 b33 b34 b2i1 b3i2

b43 b44 b4i2

i11 i12 i1i

i33 i34 i2i

A A 0 A 0

A A + A A A A

K 0 A A 0 A

A A 0 A 0

0 A A 0 A

[ ]

 
 
 
 
 
 
 
  

=

b11 b12 b1i1

b21 b22 b33 b34 b2i1 b3i2

b43 b44 b4i2

i11 i12 i1i

i33 i34 i2i

P P 0 P 0

P P + P P P P

M 0 P P 0 P

P P 0 P 0

0 P P 0 P

(27ab) 

   T

i2i1b4b2b1 uuxuxX ~~~ .                                                        (27c) 

 
Figure 4． Boundary discretization of a two-layered FG coated plates 

By resolving this general eigenvalue equation, the eigenvalue ω and the eigenvector {X} for the 
coating-substrate plates can be obtained numerically. 

Numerical analysis and discussion 

Two numerical analysis examples make up this section. The first one is conducted by the 
comparative study of the 2D homogeneous coated and the FG coated plates. The other investigates 
the free vibration behaviors of the FG undercoated plates. The boundary conditions for these three 
plates are notated by the combination of four edges boundary situations moving counter clockwise 
starting from the edges x2=0. The simply supported (S), fixed (C) and free (F) boundary conditions 
are imposed as below and shown in Fig. 5. 
 
S: tx1=0, v=0, on x1=0;         C: u=v=0, on x1=0;           F: tx1= tx2=0, on x1=0. 
 
A developed FORTRAN program [Yang et al. (2014)] is using to fulfill this numerical evaluation 
and plane-strain condition is considered throughout this study. The natural frequencies are all 
normalized by  

AlAlt Eh   ,                                                               (28) 
where ht is the total thickness of the analyzed plate. 

 
Figure 5． Different supports for coating-substrate plates (a) simply supported; (b) fixed; (c) 

free 
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Verify the accuracy of the results  

In order to verify the accuracy of the present method, the results evaluated by the developed 
meshfree boundary-domain integral equation method are used to compare with that calculated by 
the traditional finite element method (FEM). The first ten normalized natural frequencies of the 
SSSS supported homogeneous coated plate (HCP), FG coated plate (FCP) and the FG undercoated 
plate (FUCP) with L/ht=1 are shown in Table 2. In this study, the coating thickness ratio considered 
for HCP is h3/ht=0.5, for FCP is h2/ht=0.5, and for FUCP is hc/ht=0.5, h2/ht=0.6. From the Table 2, 
it can be seen that the results of the present methods have a great agree with that of the FEM, even 
for the high frequencies. 

Table 2． Comparison the normalized frequencies of the homogeneous coated plate, FG 

coated plate and the FG undercoated plate 

HCP FEM Error(%) FCP FEM Error(%) FUCP FEM Error(%) 
1.8456 1.8408 0.26 1.8057 1.7999 0.32 1.8070 1.8021 0.28 
1.9856 1.9772 0.42 1.9378 1.9270 0.56 1.9042 1.8946 0.50 
2.9478 2.9427 0.17 3.0070 2.9999 0.23 3.1112 3.0580 1.74 
3.8201 3.8151 0.13 3.9569 3.9179 1.00 3.9257 3.8885 0.96 
3.9252 3.9161 0.23 4.0271 3.9850 1.06 4.1889 4.1533 0.86 
4.2923 4.2861 0.14 4.4794 4.4641 0.34 4.5159 4.5055 0.23 
4.4885 4.4773 0.25 4.6930 4.6709 0.47 4.7561 4.7356 0.43 
5.2895 5.2786 0.21 5.4499 5.4207 0.54 5.4261 5.4075 0.34 
5.5976 5.5928 0.09 5.6657 5.6671 0.02 5.5483 5.5491 0.01 
5.8012 5.7909 0.18 5.9679 5.8794 1.51 5.8907 5.8831 0.13 

Comparative study for the homogeneous coated plates and the FG coated plates 

For the sake of understanding the free vibration behaviors of the FG coated plates in a more 
comprehensive view, the free vibration of the homogeneous coated plates is also analyzed to do the 
comparative study. The square and the rectangular homogeneous coated and the FG coated plates 
with five coating thickness ratios (hi/ht=0.1, 0.2, 0.3, 0.4 and 0.5) as well as six boundary conditions 
are investigated in details. The square coating-substrate plates with six different boundary 
conditions are described in Fig. 6. 
 

 
Figure 6． Boundary conditions for the FG coated plates (a) CFSF; (B)CCSS; (C)CFFF; 

(D)SSSS; (E)FSCS; (F)SFCS 

ICCM2014, 28th-30th July 2014, Cambridge, England

526



 
 

The normalized fundamental frequency versus the coating thickness ratio of the homogeneous 
coated and the FG coated plates with L/ht=1 and 2 are drawing in Fig. 7 and 8, respectively. From 
figures 7(a) and 8(a), It can be seen that, with increasing the coating thickness ratio, the normalized 
fundamental frequencies of the CCSS and CFFF coated plates are increased, but it is decreased for 
the FSCS and SFCS coated plates, while, for the other two coated plates it varies in a parabolic 
tendency, which is for the square coated plates. Nevertheless, for the rectangular coated plates, the 
variation trend of the normalized frequency according with the coating thickness ratio is the similar 
with that of the square one, except for the SSSS coated plates, which decrease with increasing of 
hi/ht. The plate aspect ratio effects the normalized frequencies of the coated plates in a way like that, 
for the CFSF and CFFF coated plates, increase the normalized frequencies with increasing the 
plates aspect ratios, however, it effects the CCSS and SSSS coated plates in an opposite tendency. 
What is more, the normalized fundamental frequencies for the FSCS coated plates makes no 
difference with that of the SFCS coated plates, then it can be concluded that the plate aspect ratio 
effects less for the SFCS and FSCS coated plates. 
 

 
Figure 7． The normalize fundamental frequency versus coating thickness ratio of the 

homogeneous coated plates with different boundary conditions (a) L/ht=1; (b) L/ht=2 

 
Figure 8． The normalized fundament frequency versus coating thickness ratio of the FG 

coated plates with different boundary conditions (a) L/ht=1; (b) L/ht=2 

From Fig 7 and 8, it can be seen that the variation trend of the homogeneous coated plates and the 
FG coated plates with different aspect ratios, coating thickness ratios and boundary conditions 
almost in an identical way, which shed lights on that the free vibration behaviors of the coating-
substrate plates will be determined based on the associated effects of the different kinds of the 
variables, and contrast to the others, the material properties play a weaker role. But compare the 
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free vibration behaviors of these two coating-substrate plates in a more detail, it will be found that, 
with the variation of the important parameters, the changing of the normalized natural frequencies 
for the FG coated plates are more temperately, that can be seen from Fig. 9. Then it can be 
concluded that, the coating thickness ratio, plate aspect ratio and the boundary conditions have a 
less effectiveness on the FG coated plates than the homogeneous one. 
 

 
Figure 9． Normalized fundamental frequencies versus coating thickness ratio (a) CFSF 

coated plates; (b) CCSS coated plates 

Free vibration behaviors of the FG undercoated plates 

In this section, the three-layered FG undercoated plates are investigated. For the FG undercoated 
plates, the thickness of the whole coating is denoted by hc, in which the top homogeneous coating 
has the thickness h3, and the bottom FG layer has the thickness h2. In this study, fixes the coating 
thickness ratio, hc/ht=0.5, meanwhile, six variational h2/hc=0, 0.2, 0.4, 0.6, 0.8 and 1 are considered 
in the parametric study. Respect to the h2/hc=0, that is the FG layer thickness is changing to zero 
which refers to the homogenous coated plate and when the h2/hc=1, it refers to the FG coated plates. 
Two plate aspect ratios and six different boundary conditions are still used to simulate the free 
vibration behaviors of this FG undercoated plates. The normalized fundamental frequency versus 
h2/hc of the considered FG undercoated plates are plotted in Fig. 10. 
 

 
Figure 10． The normalized fundamental frequency versus h2/hc of the FG undercoated plates 

It is important to be noted that, the parameter h2/hc changing from 0 to 1, represents the thickness of 
the FG layer changing from 0 to hc. In the meantime, the rising of this parameter makes the covered 
proportion of the steel constituent enlarged, which directly leads to the grown up of the young’s 
modulus and mass density for the entire FG undercoated plates. It illustrates that the larger the 
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parameter h2/hc, the stiffer of the FG undercoated plates. Then it can be obtained from the Fig 10 
that, with the increasing of the h2/ht, decrease the normalized fundamental frequencies of the CFSF, 
CCSS and CFFF FG undercoated plates, while increase that of the FSCS and SFCS FG undercoated 
plates, these characters are fitting for both of the square and the rectangular FG undercoated plates. 
However, the SSSS FG undercoated plates is a special case, that is for the L/ht=1 the normalized 
fundamental frequency is in an upward trend and for the L/ht=2, it plays an opposite trend.  

Conclusions 

In this paper, the free vibration of the FG coated and the FG undercoated plates are analyzed by the 
developed meshfree boundary-domain integral equation method. The homogeneous coated plates 
are also considered to do the comparative study. These numerical analyses demonstrate that the 
present method is accuracy and efficiency. Based on the parametric studies, it obtained that, the free 
vibration behaviors of the FG coated plates and the FG undercoated plates are influenced by the 
associated effects of the different kinds of the important parameters, and these parameters affect the 
homogeneous coated plates a lot.  
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Abstract 
To clarify the effect of density of entanglement points of molecular chains on mechanical behavior 
of Nafion membrane, we at first employ molecular dynamic (MD) method to constitute the 
computational models for Nafion membranes with different density of entanglement points of 
molecular chains. And then, MD simulation for Nafion membrane under simple tension is 
performed. The results show that relatively high deformation resistance together with a distinct 
yield point appears in the Nafion membrane, which has a high density of entanglement points of 
molecular chains.  

Keywords:  Nafion membrane, Mechanical behavior, Entanglement point, Molecular chain, MD 

Introduction 

Because of the high power density, high efficiency, fast start-up, and zero emission at the point of 
use, proton exchange membrane fuel cells (PEMFCs) are the most promising candidates for 
replacing internal combustion engines in automobiles, and are also being developed for portable and 
distributed stationary power generation applications. However, the life of PEMFCs is currently 
limited by the mechanical endurance of polymer electrolyte membranes (PEMs) [1]. 
 
The failure of PEM is believed to be the result of a combined chemical and mechanical effect acting 
together [2]. While chemical degradation of the membrane has been investigated and reported 
extensively in literature, there is little work published on mechanical degradation of the membrane. 
Recently, it is found that cyclic hydration of the membrane during the operation cycles (start/shut 
down) of the fuel cell may cause mechanical degradation of the membrane [3]. To investigating 
such mechanical degradation of the membrane subjected to fuel cell cycles, some microstructure 
analyses have been done for the membrane made from the sulfonated tetrafluoroethylene copolymer 
with the trade name Nafion® [4]. Nafion® consists of a hydrophobic polytetrafluoroethylene 
(PTFE)-like backbone and pendent chains with sulfonated (SO3−) end groups. Under humidified 
conditions, the hydrophilic end groups segregate into nano-sized clusters, which imbibe water and 
cause the swelling of the ionomer [5]. To account for the effect of such change of the microstructure 
of the membrane on the mechanical response, Benziger et al. [6] proposed that membrane swelling 
and relaxation processes work as an interfacial contact switch between the membrane and the 
catalyst layer. Moreover, a viscoelastic model has been developed by Lai et al. and the mechanical 
response predictions upon implementing the model using the data for Nafion® NR111 have been 
validated with stress measurements from a relaxation test performed at small initial strain (3%) in 
the linear elastic region [3]. However, in these studies, the computational models are just 
phenomenological ones and the change in the entanglement situation for the physical linkages of the 
molecular chain has not been accounted for explicitly. 
 
Therefore, in this paper, to clarify the effect of density of entanglement points of molecular chains 
on mechanical behavior of Nafion membrane, we at first employ molecular dynamic (MD) method 
to constitute the computational models for Nafion membranes with different density of 
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entanglement points of molecular chains. And then, MD simulation for Nafion membrane under 
simple tension is performed and the relationship between the macroscopic yield behaviour and the 
movement of molecular chains is discussed. 

MD Simulation Model 

Figure 1 shows the structure formula of Nafion®. In this paper, polymer chains of Nafion 
membrane are represented by coarse-grained model, in which each bead corresponds to a group of 
atoms such as CF, CF2, CF3. The total potential function of the molecular chain of Nafion 
membrane are given by 

( ) ( ) ( ) ( ) ( )rUrUUUrUU coulombnonbondtorsionanglebondtotal ++++= φθ  

where ( )rUbond , ( )θangleU , ( )φtorsionU , ( )rUnonbond  and ( )rUcoulomb  represents bond stretching energy, 
bending energy of successive bonds, torsion energy, van der Waals potential and Coulomb potential, 
respectively. These potential functions are defined as below: 
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where  bk , θk , nV , 0D  are constants, 0r  is equilibrium bond length, 0σ  is Lennard-Jones diameter, 

0θ  is equilibrium angle, iq , jq  are the electric charge held by i th and j th bead, and 0ε  is the 
vacuum conductivity. 
 
The number of the group of monomers shown in Figure 1 is prescribed as 4=m , 10=x . The 
number of the beads of Nafion membrane is 21,000 and the number of molecular chains is 100. To 
clarify the effect of the density of entanglement points of molecular chains, two different models of 
membrane are constituted. One is a point-poor model, in which the number of entanglement point is 
poor, and the other is a point-rich model, in which 50 entanglement points have been added to the 
point-poor model equally. Figure 2 shows the configuration of molecular chains of the point-rich 
model. The equation of motion is solved using the velocity Verlet algorithm with time step 2fs. The 
simulation is performed using a periodic boundary condition for the x  and y  axial directed walls 
of the simulation model. All the simulations are done using the coarse-grained molecular dynamics 
program OCTA/COGNAC [7]. Relaxation of the simulation model is carried out for 50,000 time 
steps under constant-temperature of 300K and density conditions (NVT-Nose Hoover ensemble). 

Simulation Result 

Figure 3 shows the macroscopic stress-strain relation of Nafion membrane. The point-poor model 
shows an elastic-like response whereas the point-rich model shows an elastoplastic-like response. 
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To clarify the effect of the density of entanglement points on such macroscopic response, the 
microscopic movement of certain molecular chains has been investigated. Figure 4 shows the 
difference between the position of several beads of one molecular chain of point-rich model and its 
corresponding position when the molecular chain moves as a rigid solid. It can be understood that 
there are two different patterns of the movement of the molecular chain. One pattern is shown in 
Figure 4(a) that the difference of the position of all the investigated beads increases gradually. The 
other pattern is shown in Figure 4(b) that the difference of the position of several beads once 
increases dramatically at the deformation stage, marked as “A”, and decreases quickly at the 
subsequent deformation stage whereas the difference of the position of the other beads is negligible. 
As a result, the molecular chains that behave in the pattern shown in Figure 4(a) attribute to the 
elongation of Nafion membrane whereas the molecular chains behave in the pattern shown in 
Figure 4(b) have no attribution to the deformation of Nafion membrane but have considerable 
relation with the macroscopic yield behavior of Nafion membrane. Table 1 shows the number of the 
corresponding molecular chains of each pattern for the point-poor and the point-rich model. The 
fraction of the molecular chains that behaves in the pattern shown in Figure 4(b) increases from 
27% to 47% when the number of entanglement points of the molecular chain increases. Based on 
the results shown above, we imply that the increase of the number of entanglement points of 
molecular chain leads to the tendency of the network of molecular chains to deform more locally at 
the microscopic region and consequently much more deformation of molecular chains behaving in 
pattern shown in Figure 4(a) and much more possibility of movement of molecular chains behaving 
in pattern shown in Figure 4(b), i.e. macroscopic yield behavior of Nafion membrane. 
 

           
Figure 1. Structure formula of Nafion® 

 

 
Figure 2. Configuration of molecular chains of the point-rich model of Nafion membrane 
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Figure 3. Macroscopic stress-strain relation of Nafion membrane 

 

 
(a) 

 
(b) 

Figure 4. Movement of the beads inside the molecular chain of point-rich model of Nafion 
membrane 

 
Table 1. Number of molecular chains 

 Pattern shown in Figure 4(a) Pattern shown in Figure 4(b) 
Point-poor model 73 27 
Point-rich model 53 47 
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Conclusions 

In this paper, we constituted the MD computational models for Nafion membranes with different 
density of entanglement points of molecular chains and employed such models to clarify the 
relationship between the macroscopic yield behaviour and the movement of molecular chains. We 
found that the increase of the density of entanglement points of molecular chain leads to the 
tendency of the network of molecular chains to deform more locally at the microscopic region and 
consequently high deformation resistance together with a distinct macroscopic yield point of Nafion 
membrane. 
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Abstract

The aim of this paper is to analyse the onset of convective instability in a plane porous channel inclined
to the horizontal. A net upslope or downslope flow is considered, so that mixed convection takes place
as caused by the uniform and symmetric heat fluxes prescribed on the impermeable bounding walls.
The thermoconvective instability of the basic flow is studied versus small-amplitude wavelike per-
turbations. The hybrid analytical-numerical technique adopted in this paper, in order to track and
illustrate the parametric changes of neutral stability curves, is Galerkin’s method of weighted resid-
uals. Numerical values at significant points on the neutral stability curves are obtained by employing
an accurate Runge-Kutta solver combined with the shooting method.

Keywords: Porous Medium, Convective Instability, Mixed Convection, Normal Modes

Introduction

Convective instability induced by thermal gradients is a subject widely explored in the literature.
The typical setup giving rise to unstable behaviour is one where the vertical temperature gradient is
directed downward. Such a configuration may pertain to a motionless basic state, as in the classical
Rayleigh-Bénard problem and its many variants [Drazin and Reid (2004)], as well as to basic forced
or mixed convection flow states.

A wide research work has been done over the last sixty years to investigate thermal instability
in fluid saturated porous media. Surveys of the present knowledge in this field have been written by
[Nield and Bejan (2013)], as well as by [Rees (2000)], by [Tyvand (2002)] and more recently by [Bar-
letta (2011)]. Thermoconvective instability of a basic motionless state, much like as a porous medium
version of the Rayleigh-Bénard problem, has been first studied by [Horton and Rogers (1945)] and
[Lapwood (1948)]. These studies were relative to a horizontal layer with impermeable and isothermal
walls kept at different temperatures, and they defined what is now well-known as the Darcy-Bénard
problem.

A direct extension of the Darcy-Bénard problem arises when the plane porous layer is inclined
to the horizontal. The pioneering papers on this subject are [Bories and Combarnous (1973)] and
[Weber (1975)]. Important developments were obtained more recently by [Rees and Bassom (2000)].
The main effect of the layer inclination is that the basic state cannot be motionless, but it is given by
a stationary and parallel buoyant flow with a zero mass flow rate.
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The aim of this paper is to go beyond the analysis of the Darcy-Bénard problem in an inclined
porous channel by devising a setup where both walls are impermeable and symmetrically heated or
cooled. The analysis to be carried out is an extension of what has been done by [Barletta (2012);
(2013)], with reference to the special cases of a horizontal or vertical layer.

Mathematical model

Let us consider an inclined porous channel with infinite width and thickness H. The channel bound-
aries are the planes z = 0,H, tilted an angle φ ∈ [0,90◦] to the horizontal (see Fig. 1). We will assume
that these boundaries are impermeable and subject to symmetric wall heat fluxes, q0. As the value of
q0 can be either positive or negative, this may result in either a net fluid heating or cooling, respect-
ively.

Let us define the dimensionless quantities through the scaling

coordinates: (x,y,z)
1
H
→ (x,y,z),

time: t
κ

σH2 → t,

velocity: uuu = (u,v,w)
H
κ
→ (u,v,w) = uuu,

temperature:
T −T0

∆T
→ T,

(1)

where T0 is a reference constant temperature, and ∆T is a reference constant temperature difference
defined as

∆T =
q0H

λ
, (2)

while λ is the effective thermal conductivity, κ is the effective thermal diffusivity, and σ is the
dimensionless ratio between the average heat capacity per unit volume of the porous medium and
that of the fluid. Thus, according to the Oberbeck-Boussinesq approximation, and to Darcy’s law
for the momentum transfer in a porous medium, we may write the local balance equations of mass,
momentum and energy in the dimensionless form

∇∇∇ ···uuu = 0, (3a)
∇∇∇×××uuu = R ∇∇∇××× [T (sinφ êeex + cosφ êeez)] , (3b)

∂T
∂ t

+uuu ···∇∇∇T = ∇
2T. (3c)

Equation (3b) is obtained by evaluating the curl of both sides of the local momentum balance equation
in order to encompass the dependence on the pressure field. The symbols (êeex, êeey, êeez) denote the unit
vectors along the (x,y,z)−axes, while the Darcy-Rayleigh number, R, is defined as

R =
gβ ∆T K H

ν κ
, (4)

where g is the modulus of the gravitational acceleration ggg, ν is the kinematic viscosity, and β is the
thermal expansion coefficient of the fluid.

The boundary conditions are given by

z = 0 : w = 0,
∂T
∂ z

=−1,

z = 1 : w = 0,
∂T
∂ z

= 1.
(5)
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Figure 1. A sketch of the inclined porous layer

Basic solution

Equations (3) and (5) admit a time-independent basic solution expressed as

uuub = F(z) êeex,

∇∇∇Tb =
2
P

êeex +
1
P

G(z) êeez,
(6)

where “b” stands for “basic solution”, and

F(z) =
Ω

2

[
Pcoth

(
Ω

2

)
+2tanh

(
Ω

2

)
cotφ

]
cosh(Ωz)− Ω

2
(P+2 cotφ)sinh(Ωz), (7a)

G(z) = 2 cotφ +

[
Pcoth

(
Ω

2

)
+2tanh

(
Ω

2

)
cotφ

]
sinh(Ωz)− (P+2cotφ)cosh(Ωz), (7b)

while the parameter Ω is given by

Ω =

√
2Rsinφ

P
, (8)

and P is the Péclet number defining the average velocity in the porous channel,

P =
∫ 1

0
F(z) dz. (9)

Equations (6) and (7) define a horizontal through flow in the x−direction, with a dimensionless flow
rate given by P. Equation (6) reveals that this time-independent basic solution is possible only with a
nonvanishing P. This feature reflects the obvious fact that, due to the heat flux either supplied (R > 0)
or subtracted (R < 0) at both boundary walls, a stationary state is possible if and only if the net heat
supplied/subtracted is convected along the channel.
From Eqs. (6)–(8), a symmetry of the basic solution is revealed, namely

z→ 1− z
R→−R
P→−P

=⇒

{
uuub→−uuub

∇∇∇Tb→−∇∇∇Tb
. (10)

As a consequence of this symmetry, it is not restrictive to consider fluid heating conditions (R > 0)
with either upslope mean flow (P > 0) or downslope mean flow (P < 0).
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Figure 2. Plots of F(z) for P =±10, and R = 0 to 50 in steps of 5, with φ = 30◦ and 60◦

Eqs. (6)–(8) tend to the basic solution found by [Barletta (2012)] in the case of a horizontal channel
(φ = 0◦) with the same boundary conditions.

Fig. 2 illustrates, for φ = 30◦ and 60◦, how the uniform velocity profiles with R = 0 and P =±10
are continuously deformed as R increases up to 50, in steps of 5. A phenomenon of flow reversal is
evidenced in Fig. 2 when P =−10 and R becomes sufficiently high.

Linear stability analysis

Let us consider small-amplitude perturbations of the basic state,

uuu = uuub + εUUU , T = Tb + εΘ, (11)

where ε is a perturbation parameter, ε � 1, and UUU = (U,V,W ).
Substitution of Eq. (11) in Eqs. (3) and (5), by taking into account Eqs. (6)–(8), neglecting terms

O(ε2), and introducing an auxiliary scalar field Ψ such that

UUU = R [Θ(sinφ êeex + cosφ êeez)]−∇∇∇Ψ, (12)

yields

∇
2
Ψ = R

(
sinφ

∂Θ

∂x
+ cosφ

∂Θ

∂ z

)
, (13a)

∇
2
Θ =

∂Θ

∂ t
+F(z)

∂Θ

∂x
+

2
P

(
RΘ sinφ − ∂Ψ

∂x

)
+

1
P

G(z)
(

RΘ cosφ − ∂Ψ

∂ z

)
, (13b)

z = 0,1 :
∂Ψ

∂ z
= RΘ cosφ ,

∂Θ

∂ z
= 0. (13c)

Normal mode analysis

We rely on the conclusion, drawn for the case φ = 0◦ (horizontal channel) and for the case φ = 90◦

(vertical channel) in [Barletta (2012); (2013)], to reckon that non-oscillatory longitudinal modes are
the most unstable at onset. Thus, we will focus our stability analysis to these special normal modes,{

Ψ

Θ

}
=

{
ψ(z)

θ(z)

}
exp
[
i(ky−ωt)

]
, (14)
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where k is the real-valued wave number, and ω is the complex-valued frequency. The real part of ω

vanishes for non-oscillatory modes. The imaginary part of ω is the exponential growth parameter.
If Im(ω) < 0, the normal mode describes a stability condition. On the other hand, if Im(ω) > 0,
the normal mode yields instability. In the following, we will be interested in the marginal stability
condition, so that we will assume Im(ω) = 0.
By defining the new functions,

f (z) = ψ
′(z)−Rθ(z) cosφ , h(z) = k θ(z), (15)

and substituting Eq. (14) into Eqs. (13), we obtain the linear stability eigenvalue problem, namely

f ′′− k2 f −Rk h cosφ = 0, (16a)

h′′−
(

k2 +
2R
P

sinφ

)
h+

k
P

G(z) f = 0, (16b)

z = 0,1 : f = 0, h′ = 0. (16c)

In Eqs. (15) and (16), the primes denote derivatives with respect to z.

Limiting case |P| � 1

When the Péclet number is very large we obtain a dramatic simplification of Eqs. (16). In fact, on
account of Eq. (7b), we may approximate

G(z)
P
≈−(1−2z)+O(P−1). (17)

Thus, when P� 1, Eqs. (16) assume the asymptotic form

f ′′− k2 f −Rk h cosφ = 0, (18a)

h′′− k2 h− k (1−2z) f = 0, (18b)
z = 0,1 : f = 0, h′ = 0. (18c)

Eqs. (18) allow us to infer that the neutral stability condition, expressed as Rcosφ versus k, is in-
dependent of the channel inclination angle φ . In other words, the inclination angle influences the
neutral stability condition merely by rescaling R(k), as obtained for a horizontal channel, with a
factor 1/cosφ . The immediate consequence of this behaviour is that a gradually increasing inclina-
tion has a stabilising effect. In fact, this conclusion applies in the asymptotic regime |P| � 1, while
things are more complicated for finite values of |P| as we will discuss in the next sections.

Method of weighted residuals

Equations (16) can be solved by expressing f and h as,

f (z) =
N

∑
n=1

fnϕn(z), h(z) =
N

∑
n=1

hnχn(z), (19)

where N is the truncation order, { fn,hn} are complex coefficients, and the test functions {ϕn(z),χn(z)}
have to be chosen so that the boundary conditions Eq. (16c) are satisfied,

z = 0,1 : ϕn = 0, χ
′
n = 0, (20)
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for every positive integer n. Normalised test functions are chosen, defined by

ϕn(z) =
√

2sin[(n−1)πz], χn(z) =

{
1, n = 1√

2cos[(n−1)πz], n > 1
. (21)

Substitution of Eq. (19) into Eqs. (16a) and (16b) yields the residuals

N

∑
n=1

[
fn ϕ

′′
n (z)− k2 fn ϕn(z)−Rk hn χn(z) cosφ

]
= E(z), (22a)

N

∑
n=1

[
hn χ

′′
n (z)−

(
k2 +

2R
P

sinφ

)
hn χn(z)+

k
P

G(z) fn ϕn(z)
]
= Ẽ(z). (22b)

A set of 2N algebraic equations is obtained by imposing that the weighted residuals are zero. Here,
we adopt Galerkin’s method, i.e. we assume that the weight functions coincide with the test functions.
Thus, we can write∫ 1

0
E(z)ϕn(z)dz = 0,

∫ 1

0
Ẽ(z)χn(z)dz = 0, n = 1, 2, . . . , N. (23)

Φ = 10 º, 30 º, 40 º

P = 50

Φ = 10 º, 30 º, 40 º

P = 100

Φ = 10 º, 30 º, 40 º

P = 500 P ® ¥

Figure 3. Neutral stability curves for P = 50, 100, 500, ∞, and φ = 10◦, 30◦ and 40◦

Φ = 5 º, 15 º, 30 º, 45 º

P = - 50

Φ = 5 º, 15 º, 30 º, 45 º

P = - 100

Φ = 5 º, 15 º, 30 º, 45 º

P = - 500 P ® - ¥

Figure 4. Neutral stability curves for P =−50, −100, −500, −∞, and φ = 5◦, 15◦ 30◦ and 45◦

Eq. (23) can be rewritten in a matrix form as

M · c= 0, (24)

where M is a 2N×2N matrix and c = ( f1, f2, . . . , fN ,h1,h2, . . . ,hN) is the vector of the expansion
coefficients. Solving the eigenvalue problem (16) means determining non-vanishing vectors c satis-
fying Eq. (24), and this is accomplished when M has a vanishing determinant. Setting det(M) = 0
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provides us with the neutral stability condition. This condition can be displayed graphically through
plots of Rcosφ versus k, with prescribed values of (φ ,P).

In Figs. 3 and 4, neutral stability curves in the (k,Rcosφ) plane are displayed, for either positive or
negative Péclet numbers. Here, the computation has been carried out with a truncation order N = 7,
which is sufficient for graphical purposes. Assessment of the solution method precision and of its
convergence can be achieved by comparison with a highly accurate numerical solution based on a 4th

order Runge-Kutta solver and on shooting method.

Numerical solution: combined Runge-Kutta method and shooting method

Another strategy for the solution of the eigenvalue problem (16) is achieved by combining use of an
initial value ODE solver, viz. the 4th order Runge-Kutta method, with a technique employed to solve
two-point problems, viz. the shooting method. This procedure is a standard approach in stability
analyses. A survey can be found, for instance, in Chapter 9 of [Straughan (2010)].

The basic idea is to employ the 4th order Runge-Kutta method to solve Eqs. (16a) and (16b) with
initial conditions based on an expanded form of the boundary conditions at z= 0 defined by Eq. (16c),

f (0) = 0, f ′(0) = η , h(0) = 1, h′(0) = 0. (25)

Only the first and the last of these four initial conditions stem from Eq. (16c); the second one is
just the definition of an unknown parameter η , while the third is a scale-fixing constraint for the
eigenfunctions ( f ,h). In fact, the eigenfunctions are scale invariant due to the homogeneous nature of
Eqs. (16), so that the setting h(0) = 1 can be invoked without any loss of generality. The parameter η ,
together with the eigenvalue Rcosφ , is determined for every 3–tuple of input data (k,φ ,P). Shooting
method is employed for this task, with target constraints given by the boundary conditions at z = 1
and expressed by Eq. (16c), namely

f (1) = 0, h′(1) = 0. (26)

This procedure can be developed entirely within the Mathematica 9 software environment ( c©Wolfram
Research). Built-in functions NDSolve and FindRoot are the basic tools for implementing the 4th or-
der Runge-Kutta solver, and the shooting method, respectively. This solution strategy is far more
accurate than the method of weighted residuals described in the preceding section, but it requires
longer computational times. Then, the method of weighted residuals is quicker and more effective for
drawing plots of the neutral stability curves, while the present numerical method allows one to check
its convergence and to determine accurate numerical data with given special parametric data (k,φ ,P).

Table 1 reports the results of a convergence test for the eigenvalue Rcosφ , with φ = 30◦ and k = 6.
The acronym MWR denotes method of weighted residuals, while RK4 stands for combined 4th order
Runge-Kutta method and shooting method. While the latter method turns out to be accurate to more
than six significant figures, the former is far less precise when N ≤ 8. On the other hand, as N > 8,
the computational time increases significantly. Overall, the agreement between the two methods is
fairly satisfactory.

Discussion of the results and concluding remarks

The main features of the linear stability analysis can be inferred from inspection of Figs. 3 and 4. The
effect of a gradually increasing inclination angle φ is dissimilar when P is either positive or negative.
When P > 0, the effect of inclination is stabilising, as the neutral stability values of Rcosφ increase
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Table 1. Convergence test for the eigenvalue Rcosφ , with φ = 30◦ and k = 6

Method P =−100 P =−50 P = 50 P = 100
MWR (N = 5) 158.5 153.3 231.3 193.1
MWR (N = 6) 156.7 151.4 226.1 190.0
MWR (N = 7) 155.8 150.5 223.7 188.6
MWR (N = 8) 155.4 150.1 222.5 187.9

RK4 154.5902 149.3223 220.3801 186.5640

with the inclination angle φ . This feature reflects what we already noted in the discussion of the
asymptotic case |P| � 1. When P < 0, even a small inclination to the horizontal may trigger the onset
of instability, with a vanishingly small critical value of R. The instability is rather activated with small
wave numbers, or large spatial wavelengths, as it is clearly evidenced in Fig. 4.

This behaviour implies a substantial reconsideration of the results obtained in the special case of
a horizontal channel, as drawn by [Barletta (2012)]. In fact, when designing an experimental setup
to test the flow stability in the horizontal case, a minimal misalignment in the channel inclination
may have dramatic effects. Even a very small accidental inclination, with resulting downslope flow
(P < 0), would imply instability. This is the case whatever small the wall heat flux and, hence, the
value of R may be.

Finally, we note that the scaling law R ∼ 1/cosφ , proved for the asymptotic case |P| � 1, does
not hold when P is finite. Departure from this scaling law becomes more and more evident when |P|
is finite and decreases.
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Transfer in Multi–Phase Materials, pages 381–414. Springer, New York.

Barletta, A. (2012), Thermal instability in a horizontal porous channel with horizontal through flow and symmetric wall
heat fluxes. Transport in Porous Media, 92, 419–437.

Barletta, A. (2013), Instability of mixed convection in a vertical porous channel with uniform wall heat flux. Physics of
Fluids, 25, 084108.

Bories, S. A., Combarnous, M. A. (1973), Natural convection in a sloping porous layer. Journal of Fluid Mechanics,
57, 63–79.

Drazin, P. G., Reid, W. H. (2004), Hydrodynamic Stability, 2nd edition. Cambridge University Press, New York, NY.
Horton, C. W., Rogers, F. T. (1945), Convection currents in a porous medium. Journal of Applied Physics, 16, 367–370.
Lapwood, E. R. (1948), Convection of a fluid in a porous medium. Proceedings of the Cambridge Philosophical Society,

44, 508–521.
Nield, D. A., Bejan, A. (2013), Convection in Porous Media, 4th edition. Springer, New York.
Rees, D. A. S. (2000), The stability of Darcy–Bénard convection. In Vafai, K., Hadim, H. A., editors, Handbook of

Porous Media, chapter 12, pages 521–558. CRC Press, New York.
Rees, D. A. S., Bassom, A. P. (2000), Onset of Darcy–Bénard convection in an inclined layer heated from below. Acta

Mechanica, 144, 103–118.
Straughan, B. (2010), Stability and Wave Motion in Porous Media. Springer.
Tyvand, P. A. (2002), Onset of Rayleigh–Bénard convection in porous bodies. In Ingham, D. B., Pop, I., editors,

Transport Phenomena in Porous Media II, chapter 4, pages 82–112. Pergamon, New York.
Weber, J. E. (1975), Thermal convection in a tilted porous layer. International Journal of Heat and Mass Transfer,

18, 474–475.

ICCM2014, 28th-30th July 2014, Cambridge, England

542



 
 

Effect of GPU Communication-Hiding for SpMV Using OpenACC 

*Olav Aanes Fagerlund¹, Takeshi Kitayama2,3, Gaku Hashimoto2 and Hiroshi Okuda2 
1 Department of Systems Innovation, School of Engineering, The University of Tokyo,  

7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan. 
2 Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 

Chiba 277-8563, Japan. 
3 Japan Science and Technology Agency, CREST, 7, Gobancho, Chiyoda-ku,  

Tokyo 102-0076, Japan. 
 

*Corresponding author: olav@multi.k.u-tokyo.ac.jp 

Abstract 
In the finite element method simulation we often deal with large sparse matrices. Sparse matrix-
vector multiplication (SpMV) is of high importance for iterative solvers. During the solver stage, 
most of the time is in fact spent in the SpMV routine. The SpMV routine is highly memory-bound; 
the processor spends much time waiting for the needed data. 
In this study, we discuss overlapping possibilities of SpMV in cases where the sparse matrix data 
does not fit into the memory of the discrete GPU, by using OpenACC. With GPUs one can take 
advantage of their relatively high memory bandwidth capabilities. However, data needs to be 
transferred over the relatively slow PCI express (PCIe) bus. This transfer time can to a certain 
degree be hidden. We concurrently perform computation on one set of data while another set of data 
is being transferred. Parameters such as the size of each subdivision being transferred - the number 
of matrix subdivisions, and the whole matrix size, are adjustable. We generate matrices modeling 
one, three and six degrees of freedom. It is observed how these parameters affect performance. We 
analyze the improved performance as a result of communication-hiding with OpenACC, and a 
profiler is used to provide us with additional insight. This is of direct relevance for a block Krylov 
solver, for instance a block Cg solver. Here, one can benefit from streaming of data with SpMV and 
overlap while doing so. Each streamed subdivision is used several times with different vectors. 
When using a discrete GPU with an ordinary (non-block) Krylov solver, one has to run SpMV once 
over the whole matrix (or subdivision) for each solver iteration, so there will be no benefit if the 
matrix does not fit the GPU memory. This is due to the fact that streaming the matrix over the PCIe 
bus for each of the solver iterations incurs a too big overhead. 
For instance, in the case of three degrees of freedom and modeling 2,097,152 nodes, we observe a 
just above 40% performance increase by applying communication-hiding in our benchmarking 
routine. This gives us close to 33 GFLOP/s on the AMD Tahiti GPU architecture, in double 
precision. When modeling the same amount of nodes with a ‘synthetic’ six degrees of freedom, up 
to ~65.7% is observed in increased performance when hiding parts of the data transfer time. This 
underlines the importance of applying such techniques in simulations, when it is suitable with the 
algorithmic structure of the problem in relation to the underlying computer architecture. 

Keywords: SpMV, OpenACC, GPGPU, communication-hiding, overlapping, FEM, block Krylov 

Introduction 
Sparse Matrix-Vector multiplication (SpMV) is of high importance in many engineering 
applications. In iterative solvers it plays an important part, as this is the routine where most of the 
solver-time is spent. In the Finite Element Method (FEM) very large problems are frequently 
handled. Direct solvers will consume unmanageable amounts of memory when the problems are 
large, so a iterative solver is the choice here. The time to solution partly depends on a fast SpMV 
routine. It is an operation that can be parallelized. However, the main challenge is the memory 
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bottleneck found in the current day systems. For each computation in need of being performed, a 
significant amount of data must be read from memory. So, we cannot achieve a performance any 
close to the peak performance of the processor itself. The memory subsystem, and how well it is 
utilized, gives the limitation as to what speed can be achieved. 
To partly get around the problem several sparse matrix storage formats have been developed over 
the years. These typically only store the non-zero elements and their locations in the matrix, thus 
saving storage space and bandwidth usage. The storage format of a sparse matrix can greatly 
influence the performance achieved, as it will dictate the memory access pattern under execution, 
which again affects performance according to how well that particular memory access pattern suits 
the underlying architecture executing the code. Today, GPUs deliver unrivaled memory bandwidth 
paired with massively parallel processors, so running these operations on GPUs can give a 
substantial advantage. Due to its importance in engineering simulation there has been extensive 
research in optimizing the SpMV routine [Bell and Garland (2008)]. In order to parallelize our code 
and also get a more performance-portable code-base we have parallelized our routines by taking 
advantage of a modern OpenACC compiler and its associated runtime.  
One of the main obstacles that remain when using discrete GPUs is the need to transfer data over 
the relatively slow PCI express (PCIe) data-bus. The latency and bandwidth of this bus is at least an 
order of magnitude slower than the internal communication on the GPU card between the GPU chip 
and GPU memory (‘global memory’ in OpenCL terms, or ‘VRAM’ in more traditional terms).  
For a 16-lane PCI express connection (one 16x slot) the speeds are as follows: 

• PCIe 1.x : 4 GB/s 
• PCIe 2.x : 8 GB/s 
• PCIe 3.0 : 15.75 GB/s 
• PCIe 4.0 : 31.51 GB/s (Not released yet) 

Even ‘on-GPU-card’, where the bandwidth between the global memory and the GPU chip can be 
about 300 GB/s, we are severely memory bandwidth limited. We can only attain a small percentage 
of the peak GPU performance as we wait for the data needed for the computation. This illustrates 
well the problem the PCIe bus adds. 
To minimize this effect we implement communication-hiding by performing needed memory 
transfers over the PCIe bus while a previous set of data is computed upon. The aim is to drastically 
reduce the overall execution time, effectively raising the performance of the SpMV operation as a 
whole. This can significantly benefit block Krylov solvers, described in [Saad (2003)], where one 
do multiplications with the same matrix and different vectors several times versus only one time 
with one vector per iteration as in standard Cg. The many SpMV operations can be performed while 
a ‘new’ subdivision is transferred over the PCIe bus, as they combined are time-consuming enough 
so that the solver as a whole benefits from the overlapping – in cases where the data simply cannot 
fit the available GPU memory. For instance, ‘Stochastic FEM using the Seed Method’, described in 
[Sato and Okuda (2008)], is one such block solver that could benefit from this - in its GPU-based 
incarnation. 

Implementation of communication-hiding 
A cube, consisting of smaller cubes, is modeled. The problem is a classical cantilever problem with 
a force applied. The cube has a certain amount of nodes, set by the number of nodes per side. The 
number of nodes and one, three or six degrees of freedom for all nodes are parameters set prior to 
matrix generation. The matrices generated will mimic stiffness matrices commonly encountered in 
FEM problems, and are highly sparse. Hexahedra elements are used, i.e. the nodes are in the corners 
of each cube, and each element has six faces. Note that for this problem, six degrees of freedom is a 
“synthetic” scenario. However, its results are of interest nevertheless. 
 
We keep our data in the CSR-format, a format that is more deeply explained in [Vuduc (2003)], and 
from where Fig. 1 is inspired. The amount of GPU memory can serve as a limitation, as the stiffness 
matrix can be many times larger than the total GPU memory. Therefore, we divide the stiffness 
matrix up into several equal-sized subdivisions, upon transfer to the GPU over the PCI express bus. 
This serves two purposes: 

1. Each subdivision will fit in GPU memory. 
2. Communication-hiding can be performed on subdivisions subsequent to the first 

subdivision transfer. To enable this efficiently two blocks must fit into memory at any 
given time, in addition to other vectors of the CSR format needed. 
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Figure 1. The CSR format layout. 
 
The more nodes we model, the bigger the stiffness matrix becomes. The degrees of freedom decide 
the amount of blocked non-zero elements per ‘node-to-node-connection’. One degree of freedom 
gives 1 x 1 elements, three degrees of freedom gives 3 x 3 elements, and six degrees of freedom 
gives 6 x 6 blocked non-zero elements per ‘node-to-node-connection’. As we persistently use 
double precision, each element of the matrix consumes 8 Bytes. The basic structure of the 
communication-hiding is as follows. Here, for example, we explain the details of how four 
subdivisions are read on the fly from system main memory: 

1. The stiffness matrix is divided into subdivisions. It must be, at a minimum, be divided 
into enough subdivisions so that two subdivisions can reside in GPU memory 
concurrently. In our implementation all other vectors of the CSR format are kept in GPU 
memory without being broken up, as the sizes are of a significantly lesser magnitude 
than the stiffness matrix. 

2. First subdivision is transferred to GPU memory, synchronously. 
3. Computation over the first subdivision (2.) is commencing once the transmission of the 

first subdivision is completed. However, immediately before this takes place the transfer 
of the second subdivision is initiated asynchronously. 

4. Once computation over the first subdivision is completed, the memory space consumed 
by the first subdivision is de-allocated. 

5. It is ensured that the transfer of the second subdivision has completed. Transfer of the 
third subdivision of data is initiated asynchronously. 

6. Computation over the second subdivision of data is commenced and completed. 
7. Once the previous step (6.) is completed, the associated second subdivision of data is de-

allocated. It is ensured that the transfer of the third subdivision has completed. 
8. Transfer of the fourth subdivision of data is initiated asynchronously. 
9. Computation over the third subdivision of data is commenced and completed. 
10. Once the previous step (9.) is completed, the associated third subdivision of data is de-

allocated. It is ensured that the transfer of the forth subdivision has completed. 
11. Computation over the forth subdivision of data is commenced and completed. Forth 

subdivision of data is de-allocated once done. All processing is completed; the complete 
result vector residing in GPU memory is copied into system main memory. 

 
 
 
 

 
 
 
 
 
 
 
Figure 2. Illustration of the sequence with 4 subdivisions used in communication-hiding. 
 
Fig. 2 shows the sequence explained in detail above, point 1-11. Blue boxes illustrates data transfers, 
while the green boxes illustrates the computation over the data of the same ID number. 

ASYNC (2) 

SYNC (1) Comp. (1) 

ASYNC (3) ASYNC (4) 

Comp. (2) Comp. (3) Comp. (4) 

Delete (1) Delete (2) 
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Throughout these stages appropriate ‘book keeping’ is done to ensure correctness, required when 
the stiffness matrix is broken up and computed upon piece by piece. The sequences perform in a 
similar pattern when the stiffness matrix is divided into more subdivisions. 
It is important to note that our routine will do computations over the data 50 times, for each 
subdivision transferred over the PCI Express bus. For each of these 50 iterations, all of the values in 
the vector being multiplied with the matrix are modified, so each iteration yield different result. 
Thus, the transfer time over the PCI Express bus is partly amortized. With the overlapping applied it 
is further partly hidden. The behavior mimics that of a block Krylov solver performing SpMV. Of 
course, if we reduce the amount of iterations, and then consequently the amount of GPU 
computational work for each block transfer, the communication time over the PCI Express bus will 
dominate more and influence the performance. This underlines the general importance of reducing 
the communication, and to perform as much communication-hiding as possible, in heterogeneous 
computing. With GPU computing we cannot get around the fact that we have to be able to amortize 
the communication costs over the ‘slow’ PCI Express bus, if the GPU cannot directly access the 
system main memory with higher bandwidths and lower latencies than the PCI Express bus can 
supply. 

Methodology of benchmarking 

Parameters such as the size of each subdivision of data being transferred - the number of matrix 
subdivisions, and the whole matrix size, are adjustable. We generate matrices modeling one, three 
and six degrees of freedom. 

In our performance measurements we will look at the performance both with and without 
communication-hiding enabled. Further, we will vary our parameters: 

• Degrees of freedom: one, three or six degrees 
• How many subdivisions of the stiffness matrix (directly affecting the size of each 

subdivision of data being transferred) 
• The whole matrix size: number of non-zeroes, as a result of 128^3 (~2 mill.), 256^3 (~16.8 

mill.), 160^3 (~4.1 mill.) or 96^3 (~0.9 mill.) nodes and the degrees of freedom (as 
mentioned in the first point). We have to stay within the bounds of the system memory for 
the largest cases. 

The latter property will affected the minimum amount of subdivisions needed, in order for two 
subdivisions to concurrently fit into the GPU memory available. Table 1 shows the properties of the 
stiffness matrices generated, and the space consumed by the non-zero elements alone. 

 Table 1. Stiffness matrix properties      

 Degrees of Number of  Number of   Size of non-zeroes in   
 freedom nodes   non-zeroes   the stiffness matrix, in GB 
  1  128^3   55,742,968 x 1  0.42 

  1  256^3   449,455,096 x 1  3.39 
  3  128^3   55,742,968 x 9  3.74       

  3              160^3   109,215,352 x 9  7.32 
  6              96^3   23,393,656 x 36  6.27   

  6  128^3   55,742,968 x 36  14.95 

 
Since SpMV is a highly memory bound type of application we can estimate the highest 
performance theoretically possible to achieve on a certain piece of hardware if we know its memory 
bandwidth. Of course, we also have to take the algorithm’s bytes-per-flop property into 
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consideration, for this estimation. By counting the number of double precision operations in our 
routine, and how many reads we have of doubles, we can find the absolute upper limit for the 
performance that can be achieved with this routine, for a particular hardware device. The 
calculation is done as follows: 

 FLOP / FLIO x Bandwidth = Performance theoretically achievable     (1) 

Here, ‘FLOP’ is number of floating point operations and ‘FLIO’ is read operations in bytes. For the 
AMD card we get 

 2 FLOP / 16 byte x 288 GB/s = 36 GFLOP/s     (2) 

 18 FLOP / 96 byte x 288 GB/s = 54 GFLOP/s     (3) 

 72 FLOP / 336 byte x 288 GB/s = 61.71 GFLOP/s     (4) 

where (2) is for the one DOF SpMV kernel, (3) is for the three DOF SpMV kernel, and (4) is for the 
6 DOF SpMV kernel. These serves as the maximum limits possible to achieve, intra-GPU. 

For all benchmarking the GPU in use is ‘AMD RADEON HD7970 GHz Edition’, of the ‘Tahiti’ 
architecture. This is connected on a PCI Express 2.0 bus. All parallel work is configured to use all 
physical compute units available intra-GPU, and the largest possible number of threads per compute 
unit (or work-group). In this case, we have 32 ‘gangs’, each of 256 ‘workers’. The processor is an 
Intel Nehalem i7-920. For OpenACC the PGI Accelerator C/C++ Workstation compiler release 
14.3 was used, with latest AMD GPU drivers (as of April 25th 2014; Catalyst v.14.4). We used 
AMD CodeXL v.1.3 for GPU profiling. 

Results 

As a comparison we have measured the serial version, for each of the three degrees of freedom. 
Number of nodes is set to 128^3 for all cases, and we use ‘g++’ with the ‘–O2’ optimization flag: 

• 1 DOF: 1.08 GFLOP/s 
• 3 DOF: 2.67 GFLOP/s 
• 6 DOF: 3.20 GFLOP/s   

 
When running on the GPU, all cases inform us that we clearly benefit from the communication-
hiding. Note that the x-axis in all figures below is the amount of subdivisions applied. In Fig. 3, the 
size of data is fairly small. We notice a bit varying performance. The small amount of data cannot 
keep the GPU busy in a sustained manner, so performance is limited. 
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Figure 3. Results for 1 DOF, 128^3 nodes. 
 
In Fig. 4 we have drastically increased the number of nodes, and as a consequence the number of 
non-zero elements. The GPU is kept busy to a higher degree. The sparse data does not reside 
blocked (limiting coalesced reads to GPU memory), and the usual high byte-to-flop ratio limits the 
performance. The in-GPU bandwidth cannot be exploited to a high degree. 
 

17# 19# 21# 40# 45# 60# 80#
Comm./hiding# 15.17# 14.53# 15.6# 15.26# 15.28# 14.68# 13.83#

No#comm./hiding# 12.17# 12.23# 10.84# 12.12# 10.39# 9.65# 11.61#
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Figure 4. Results for 1 DOF, 256^3 nodes. 
 
In Fig. 5 we move on to a higher degree of freedom. The data in the sparse matrix is here in 3 x 3 
blocks. This gives the possibility of coalesced reads on-GPU-card, and thus a better utilization of 
the bandwidth the card offers. We see much improved performance. Up to about 13 subdivisions 
the performance is quite stable, then up to 41 subdivisions it gradually drops with several GFLOP/s.  
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Figure 5. Results for 3 DOF, 128^3 nodes. 
 
In Fig. 6., with more nodes, each subdivision number will give larger subdivisions. The 
performance is stable from 12 up to 41 subdivisions. Performance with communication-hiding is 
significantly higher than that of Fig. 5. Total data-size is about twice, and the data amount will 
possibly keep the GPU better utilized than in Fig. 5. 
 

12# 13# 16# 21# 27# 32# 35# 41#
Comm.-hiding# 40.5# 40.99# 40.91# 39.59# 39.79# 37.19# 36.57# 37.32#

No#comm.-hiding# 27.5# 28.06# 26.82# 27.07# 25.58# 25# 24.92# 24.13#
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Figure 6. Results for 3 DOF, 160^3 nodes. 
 
In Fig. 7 we have six degrees of freedom. That means even better conditions for coalesced reads of 
data on-GPU, and this is reflected in a performance jump compared to Fig. 6 and 5. We also 
observe a performance decrease as number of subdivisions increases.  
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Figure 7. Results for 6 DOF, 96^3 nodes. 
 
In Fig. 8 the combined non-zero size is at the largest, close to 15 GB. Combined with the large 
amount of coalesced reads, we here observe the highest performance. This applies to both with and 
without communication-hiding, when “competing” with the other alternatives of parameters and 
their associated performance. Here, we also observe the most significant gain of performance, when 
enabeling communication-hiding; up to ~65.7% increased performance for 61 subdivisions. 
 

21# 27# 31# 36# 41# 47# 51# 57# 61# 71#
Comm.-hiding# 52.88# 53.07# 52.04# 49.87# 50.75# 50.25# 49.51# 49.86# 49.44# 48.99#

No#comm.-hiding# 35.37# 34.35# 34.62# 33.63# 32.79# 32.49# 32.26# 31.77# 29.87# 31.49#
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Figure 8. Results for 6 DOF, 128^3 nodes. 
 
When using the profiler, we can get better insight into what is actually happening on the GPU. 
Particularly, how the asynchronous and synchronous data transfers behave, and differ. It gives us a 
“window” to see how the communicatin-hiding actually works. In the profiler, the timeline stretches 
horizontally. In both Fig. 9 and 10 the blue blocks illustrates the transfers of the subdivisions, while 
green blocks illustrates GPU computation, i.e. the SpMV being executed, in our case. 
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Figure 9. Profiling when communication-hiding is disabled, all memory transfers are 
synchronous. 
 
One can easily see how the data-transfer command is blocking, or synchronous, in Fig. 9. No other 
GPU related work can happen while the synchronous call is being executed. In Fig. 10 we clearly 
see the effect of using asynchronous, non-blocking, calls. While data is in-flight to the GPU 
memory, the SpMV routine is executed on a set of data already in-memory. This contributes to the 
improved performance, for the whole parameter-space we set up. 

 
Figure 10. Profiling when communication-hiding is enabled. All memory transfers except the 
initial one is asynchronous. 
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Conclusions 

When we consider the peak performance possible intra-GPU for these data-intensive algorithms and 
with the hardware used, we come impressively close when applying our communication-hiding. 
The closest is achieved with 6 degrees of freedom and 128^3 number of nodes; 53.07 GFLOP/s is 
achieved - whereas the peak possible intra-GPU is 61.71 GFLOP/s. On the opposite side, we are the 
farthest away from the peak possible when having one degree of freedom and 128^3 nodes. 
We have seen how SpMV can achieve improved performance by communication-hiding – or, 
overlapping of computation and data-transfers. This is of direct relevance for, for instance, block 
Krylov solvers, and makes streaming over the PCI express bus more efficient. This is useful 
especially when the amount of non-zeroes is so large that all data cannot fit the GPU memory. 
The communication-hiding scheme becomes more efficient when the amount of subdivisions is 
high enough so that the first synchronous data-transfer performed in order to buffer does not 
dominate the total time used for computation and communication. Also, there is a “sweet-spot” 
where the computation done over each subdivision takes as similar amount of time as possible as 
the current subdivision being transferred takes to transfer. This controls the rate of efficiency. 
It was observed a performance improvement over the whole parameter-space tested. The 
performance improvement increased as the total amount of non-zero data increased and the 
possibility of intra-GPU coalesced reads increased. This means that the more efficiently the GPU 
memory sub-system is utilized, the better effect is observed from the communication-hiding. At the 
very best, we found an increase in performance of ~65.7%. This underlines the importance of 
applying such techniques in simulations, when it is suitable with the algorithmic structure of the 
problem in relation to the underlying computer architecture – as examples here in relation to our 
SpMV; block Krylov and attached discrete GPUs with a separate memory hierarchy. 
 
Future work 
A thorough study of the performance portability is of importance. From the start, the tools selected 
and the use of them were done so to maintain a high possibility of performance portability. One 
could, of course, want to run the routines on a future GPU architecture, from the same or a different 
vendor. Doing such should have as little burden on the developer as possible. 
Automatically finding the optimal parameters, for a given problem, is of interest. That is to say, the 
number of subdivisions that gives the best communication-hiding (matrix size and degrees of 
freedom already determined by the problem). 
As part of a MPI multi-node solver, communication-hiding can be applied at several levels, or 
layers. Multi-layer communication-hiding is of interest for our research. 
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Abstract 

Nonlinear ultrasonic nondestructive testing using contact acoustic nonlinearity has been developed 
over the last decade. However, although nonlinear waves such as higher- and sub-harmonics are 
considered to be generated by the interaction of the crack faces such as clapping motion or friction, 
the mechanism of generation has not been understood clearly from theoretical view point yet. 1-D 
and 2-D numerical simulations have been conducted, and 3-D axisymmetric problems have been 
numerically solved so far. However, no full 3-D analysis has been done. Therefore, in this research, 
the boundary integral equation for an interface crack with nonlinear boundary conditions in 3-D 
medium is formulated, and solved numerically using a time-domain boundary element method. The 
Fourier spectra of received waves are evaluated in the form of far-field scattered waves because the 
received points are usually located far from the defects in NDT. 

Keywords:  Time-domain BEM, 3-D nonlinear ultrasonic simulation, Nondestructive testing (NDT), 
Higher-harmonics, Sub-harmonics, Contact acoustic nonlinearity 

Introduction 

The nonlinear nondestructive testing (NNDT) using contact acoustic nonlinearity (CAN) is 
considered as one of the effective methods for the evaluation of closed cracks in metal or on interface 
of bi-material. Thus, some NNDT methods using CAN have been developed in order to detect cracks 
and measure the length of closed part of a crack [Ohara at el. (2011)]. The generation of nonlinear 
ultrasonic waves by the CAN was advocated over thirty years ago [Buck at el. (1978)]. At this stage, 
higher-harmonics were considered to be generated by the interaction of the crack faces such as 
clapping motions or friction due to large amplitudes of incident waves [Solodov at el. (2011)]. 
However, the generation mechanism of sub-harmonics has not been understood clearly yet. Therefore, 
it is needed to investigate the mechanism more from the theoretical or numerical point of view. 
 
In previous researches, 2-D numerical simulations were carried out [Hirose (1994); Saitoh at el. 
(2011)]. 3-D axisymmetric problem of a penny-shaped crack subjected to normal incidence of a 
longitudinal wave was solved numerically [Hirose at el. (1993)]. However, no full 3-D analysis has 
been done. Therefore, in this research, the 3-D boundary integral equation (BIE) is formulated for an 
interface crack of bi-material with nonlinear boundary conditions and numerically solved using the 
time-domain boundary element method (BEM) in order to investigate the relation between the 
analysis conditions, such as frequencies of an incident wave and size of a crack, and the generation 
of higher- and sub-harmonics.  
 
In the proposed numerical method, the implicit Runge-Kutta (IRK) based convolution quadrature 
method (CQM) [Maruyama at el. (2013)] is applied to discretization of convolution integrals in BIE. 
Application of CQM to the discretization improves numerical accuracy and stability behavior of the 
time-marching process of time-domain BEM. In addition, far-field scattered waves are evaluated as 
received waves and used for the Fourier spectrum analysis because the received points are usually 
located far from the defects compared with the defect size and wave length in NDT. 
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Formulation of boundary integral equations 

A 3-D boundary element analysis model for nonlinear ultrasonic simulation is considered for two-
layer problems including the debonding area as shown in Fig. 1. This model consists of two semi-
infinite domains, 𝐷𝐼  and 𝐷𝐼𝐼  , and the interfaces between them, 𝑆ℎ  and 𝑆𝑑 , denote bonding and 
debonding areas, respectively. In addition, 𝒏𝐼 and 𝒏𝐼𝐼 are defined as unit vectors pointing into outer 
normal directions from respective domains where the upper subscripts, 𝐼  and 𝐼𝐼 , indicate the 
respective domains. In this analysis, a plane wave is used as the incident wave to investigate 
fundamental motions of the nonlinear crack. 
 
For the layered problems subjected to an incident plane wave, the free field formulation is usually 
used in BEM. Assuming that the interface 𝑆ℎ is flat, the free field 𝒖free which consists of incident 
wave 𝒖in , reflected wave 𝒖ref , and transmitted wave 𝒖trans  can be calculated analytically. The 
scattered wave 𝒖sc is defined as the disturbance of 𝒖free by the debonding area 𝑆𝑑, and following 
equations are obtained: 

 𝒖free; 𝐼 = 𝒖in; 𝐼 + 𝒖ref; 𝐼 , 𝒖free; 𝐼𝐼 = 𝒖trans; 𝐼𝐼 , 𝒖 = 𝒖free + 𝒖sc, (1) 

where 𝒖 is the total wave. Since 𝒖sc satisfies the radiation condition, the BIE is formulated for 𝒖sc 
as follows: 

 

1

2
𝒖sc;𝐼(𝐼𝐼)(𝒙, 𝑡) = ∫ ∫ 𝑼𝐼(𝐼𝐼)(𝒙, 𝒚, 𝑡 − 𝜏)𝒕sc;𝐼(𝐼𝐼)(𝒚, 𝜏)𝑑𝑆𝑦

𝑆ℎ+𝑆𝑑

𝑑𝜏
𝑡

0

− ∫ p. v. ∫ 𝑻𝐼(𝐼𝐼)(𝒙, 𝒚, 𝑡 − 𝜏)𝒖sc;𝐼(𝐼𝐼)(𝒚, 𝜏)𝑑𝑆𝑦
𝑆ℎ+𝑆𝑑

𝑑𝜏
𝑡

0

, 
(2) 

where 𝒕 is the traction force, and 𝑼 and 𝑻 are the fundamental solutions for displacement and traction, 
respectively in 3-D elastodynamics. The symbol p. v.  indicates the Cauchy’s principle integral. 
Substituting Eq. (1c) into Eq. (2), the BIE is expressed by 𝒖 and 𝒖free and can be numerically solved 
using discretization methods for time and space and appropriate interface conditions on 𝑆ℎ and 𝑆𝑑. In 
addition, 𝑆ℎ is truncated by finite area in numerical analysis. 

Discretization of BIE using IRK based CQM 

In solving the BIE (2) numerically, the convolution integrals are evaluated by means of the IRK based 
CQM [Lubich et al. 1993] and the surface integrals over 𝑆ℎ and 𝑆𝑑 are discretized by the piecewise 
constant boundary elements. If the 𝑚-stage Radau IIA method, which is one of the IRK methods, is 
used in the IRK based CQM, and the interface including the debonding area is divided into 𝑀 
boundary elements, the discretized BIE at the 𝑛-step and the 𝑖-sub-step in time are shown as follows: 

 
 

Figure 1.  Debonding area of bi-material interface subjected to an incident plane wave. 
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1

2
𝒖𝛾

𝐼(𝐼𝐼) 
((𝑛 + 𝑐𝑖)Δ𝑡) =

1

2
𝒖𝛾

free;𝐼(𝐼𝐼)((𝑛 + 𝑐𝑖)Δ𝑡) 

+ ∑  ∑ ∑ [𝑨𝛾𝛼
𝑖𝑗;𝑛−𝑘

{𝒕α
𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡) − 𝒕α
free; 𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡)}

𝑚

𝑗=1

𝑀

𝛼=1

𝑛

𝑘=0

− 𝑩𝛾𝛼
𝑖𝑗;𝑛−𝑘

{𝒖α
𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡) − 𝒖α
free; 𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡)}] , 

(3) 

where subscripts, 𝛼 and 𝛾, are the indexes of boundary elements and 𝑐𝑖  is the parameter in IRK 
method corresponding to the sub-step. In addition, 𝑨𝛾𝛼

𝑖𝑗;𝜅 and 𝑩𝛾𝛼
𝑖𝑗;𝜅 are influence functions expressed 

as follows: 

 𝑨𝛾𝛼
𝑖𝑗;𝜅

=
ℛ−𝜅

𝐿
∑ [∑{𝑬𝛽(𝑧𝑙)}

𝑖𝑗

𝑚

𝛽=1

∫ 𝑼̂𝐼(𝐼𝐼)(𝒙𝛾, 𝒚, 𝜆𝛽
𝑙 )𝑑𝑆𝑦

𝑆𝛼

] e−
2𝜋i𝜅𝑙

𝐿

𝐿−1

𝑙=0

, (4) 

 
𝑩𝛾𝛼

𝑖𝑗;𝜅
=

ℛ−𝜅

𝐿
∑ [∑{𝑬𝛽(𝑧𝑙)}

𝑖𝑗

𝑚

𝛽=1

p. v. ∫ 𝑻̂𝐼(𝐼𝐼)(𝒙𝛾, 𝒚, 𝜆𝛽
𝑙 )𝑑𝑆𝑦

𝑆𝛼

] e−
2𝜋i𝜅𝑙

𝐿

𝐿−1

𝑙=0

, (5) 

where (  ̂) indicates the function in the Laplace-domain, i is the imaginary unit, and the last arguments 
𝜆𝛽

𝑙  of 𝑼̂ and 𝑻̂ correspond to Laplace parameters. In Eqs. (4) and (5), 𝜆𝛽
𝑙 , ℛ, 𝐿, 𝑧𝑙 , and 𝑬𝛽  are the 

parameters of IRK based CQM [Maruyama et al. (2013)]. The matrix-vector products on the right 
side of Eq. (3) are effectively calculated by means of the fast multipole method (FMM), which is one 
of the acceleration methods for BEM. 

Nonlinear interface conditions 

The interface condition on the bonding area 𝑆ℎ is the continuity of displacement and traction as 
 𝒖𝐼 = 𝒖𝐼𝐼 , 𝒕𝐼 = −𝒕𝐼𝐼 . (6) 

For the debonding area 𝑆𝑑, three types of interface conditions, “separation”, “stick”, and “slip”, are 
considered [Hirose (1994); Saitoh at el. (2011)]. “separation” means that two surfaces of upper and 
lower materials are separated with no traction, while “stick” and “slip” are contact conditions under 
compressive normal stress state. For the “stick” condition, the surfaces of two materials move with 
no relative velocity. On the other hand, the “slip” condition allows a relative tangential movement 
with dynamic friction force. Therefore, these three conditions are described as follows: 

 𝒕𝐼 = 𝒕𝐼𝐼 = 𝟎 :  separation, (7) 

 [𝑢3] = 0, 𝒕𝐼 = −𝒕𝐼𝐼 , [𝒖𝑡]̇ = 𝟎 :  stick, (8) 

 [𝑢3] = 0, 𝑡3
𝐼 = −𝑡3

𝐼𝐼 , 𝒕𝑡
𝐼 = −𝒕𝑡

𝐼𝐼 =
[𝒖𝑡]̇

|[𝒖𝑡]̇ |
𝜇𝑑(−𝑡3

𝐼 ) :  slip, (9) 

where [𝒖] is the crack opening displacement and expressed by [𝒖] = 𝒖𝐼𝐼 − 𝒖𝐼, ( )̇ indicates the time 
differentiation, and the subscript 𝑡 means tangential components in 𝑥1 and 𝑥2 directions. In addition, 
𝜇𝑑 is the dynamic friction coefficient. 

Numerical procedure 

The numerical algorithm is shown in Fig. 2. At the beginning of a time step in the IRK based CQM, 
the discretized BIE (3) is solved assuming that the interface conditions on each element are the same 
as those in the previous time step. If the additional constraint conditions enclosed by the double 
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rhombuses in Fig. 2 are not satisfied, the interface condition on the element, which is one of 
“separation”, “stick”, and “slip”, is changed into one of the other conditions and then the system of 
equations is assembled and solved again. After conducting the iterative calculations, if both the 
interface conditions and the additional constraint conditions on all elements at all sub-steps are 
satisfied, the time step proceeds to the next one. 
 
Some remarks concerning the numerical calculations are given below. At the initial time step, the 
interface condition of “stick” is given on all elements on the debonding area assuming that the 
interface is closed before the wave incidence. There are two possible phase shifts from “separation” 
to one of two contact conditions, i.e., “slip” and “stick”. In the present study, the priority is given to 
the change from “separation” to “stick”, if [𝑢3] > 0 for the “separation” is violated on the element. 
In numerical calculations, it is difficult to achieve the condition [𝒖𝑡]̇ = 𝟎 exactly in the transition 
from “stick” to “slip”. Therefore, we set [𝒖𝑡]̇ = 𝟎 unless the following condition is satisfied: 

 𝜉 < cos(𝜃stop) , ξ = [𝒖𝑡]̇  ∙ [𝒖𝑡]̇ prev (|[𝒖𝑡]̇ ||[𝒖𝑡]̇ prev|)⁄ , (10) 

where [𝒖]prev is the crack opening displacement at the previous time step. Eq. (10) means that the 
transition from “slip” to “stick” occurs when there is a big change in the slip direction. In this study, 
𝜃stop is given by 90 degrees. 

Far-field scattered wave 

In this research, the scattered wave by an interface crack at far-field [Hirose at el. (1989)] is calculated 
to investigate the generation of nonlinear ultrasonic waves. For example, when 𝒙 is the receiver point 
and 𝒚 is the point on a crack, the far-field scattered L wave by an interface crack of bi-material 
𝑢𝐿

sc,far;𝐼(𝐼𝐼) is given by 

 
 

Figure 2.  Numerical algorithm. 
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 𝑢𝐿
sc,far;𝐼(𝐼𝐼)(𝒙, 𝑡) ≃

1

4𝜋𝑥
Ω𝐿 (𝒙̂, 𝑡 −

𝑥

𝑐𝐿
𝐼(𝐼𝐼)

), (11) 

where 𝑥 = |𝒙| and  𝒙̂ = 𝒙 𝑥⁄ . Ω𝐿 is the far-field amplitude of L wave, which is expressed for 𝑦3 = 0 
as follows: 

 
Ω𝐿 (𝒙, 𝑡 −

𝑥

𝑐𝐿
𝐼(𝐼𝐼)

) = ∑
𝐶𝑝𝑗𝑘𝑞

𝐼𝐼(𝐼)

𝜇𝐼𝐼(𝐼)
𝐴𝑘

±𝛼 𝜁𝑞
±

𝑐𝐿
𝐼(𝐼𝐼)

𝑇𝛼,𝐿(𝜻±)
|𝑥̂3|

𝜈
𝛼=𝐿,𝑇𝑉

                   

                                                                × ∫ 𝑛𝑗
𝐼(𝒚) [𝑢𝑝]̇ (𝒚, 𝑡 − [

𝑥

𝑐𝐿
𝐼(𝐼𝐼)

−
𝜻± ⋅ 𝒚

𝑐𝛼
𝐼𝐼(𝐼)

]) 𝑑𝑆𝑦
𝑆𝑑

 , 

(12) 

where 𝐶𝑖𝑗𝑘𝑙 is the elastic constant tensor and 𝜇 is the shear modulus. 𝑇𝛼,𝐿(𝜻±) is the transmission 
coefficient with incident wave propagation vector 𝜻±  into 𝑥3 = 0 plane when the wave mode is 
changed from 𝛼 to L and the wave is propagating from 𝐷𝐼𝐼(𝐼) to 𝐷𝐼(𝐼𝐼) . In addition, 𝜻±, 𝜈, and 𝐴𝑘

±𝛼 
are given by 

 𝜻± = (
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂1,
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂2, ±𝜈) , 𝜈 = √1 − (
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂1)

2

− (
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂2)

2

, (13) 

 𝐴𝑘
±𝐿 = (

𝑐𝑇
𝐼𝐼(𝐼)

𝑐𝐿
𝐼𝐼(𝐼)

)

2

𝜁𝑘
±, 𝑨±𝑇𝑉 = 𝒅̂𝑇𝐻 × 𝜻±. (14) 

In Eq. (14), 𝒅̂𝑇𝐻 is the displacement vector of the TH wave propagating to 𝜻± direction. In Eqs. (12)-
(14), ± is decided by the positional relation between 𝒙 and 𝒚 in derivation of the Green’s function, 
and + and – correspond to 𝑥3 > 𝑦3 and 𝑥3 < 𝑦3, respectively [Achenbach at el. (1982)]. In addition, 
the TV and TH wave components of the far-field scattered waves are described by analogous formulas. 
In this study, Ω𝐿 is used for the Fourier spectrum analysis, because the far-field scattered waves do 
not include the truncated error of 𝑆ℎ if only [𝒖]̇  is calculated accurately. 

 Numerical examples 

Scattering of an incident plane wave by a penny-shaped nonlinear interface crack with radius 𝑎, as 
shown in Fig. 3, is analyzed by the proposed method. The material constants are shown in Table 1 

 
 

Figure 3.  Scattering of an incident plane wave by a penny-shaped interface crack of 
bi-material. 
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and the static and dynamic friction coefficients, 𝜇𝑠 and 𝜇𝑑, are given by 𝜇𝑠 = 0.61 and 𝜇𝑑 = 0.47, 
respectively. The incident plane wave is given by a three cycle sinusoidal wave with amplitude 𝑢0. 
 
Fig. 4 shows the vertical displacements at the center points on top and bottom surfaces of the interface 
crack subjected to the normal incident L wave with the normalized wave number 𝑘𝑇

𝐼 𝑎 = 2𝜋𝑎𝑓 𝑐𝑇
𝐼⁄ =

2.0 where 𝑓 is the center frequency of the incident wave. In Fig. 4, the clapping motion occurs at the 
crack face. The crack opening displacement rapidly decreases and then vanishes when the crack is 
completely closed. Fourier spectra of the backscattered far-field amplitude Ω𝐿 (𝑎𝑢0)⁄  and the 
incident wave are shown in Fig. 5. These spectra are normalized by their maximum values. It is 
observed that large higher-harmonics components are included in the backscattered wave. 

Conclusions 

In this paper, the boundary integral formulation, interface conditions, and numerical algorithm for the 
simulation of an interface crack of bi-material subjected to an incident plane wave are presented. 
Moreover, the calculation method of far-field amplitude for the two-layer problem, and numerical 
results of normal incidence of L wave are shown. From the numerical results, the generation of higher-
harmonics by CAN was confirmed using the proposed method. Additional numerical examples, such 
as oblique incidence, will be shown in near future. 
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Abstract

The nonlinear convective instability of a flow in a fluid saturated impermeable and rectangular porous
channel of arbitrary aspect ratio is here investigated by taking into account the effect of viscous dis-
sipation. Darcy’s law and Oberbeck-Boussinesq approximation are assumed. The vertical boundaries
are assumed to be adiabatic and the horizontal boundaries are taken to be isothermal with the cold
face placed on top. The system is characterised by two sources of thermal instability: the buoyancy
activated by the non trivial temperature distribution due to the internal heat generation by the viscous
dissipation and the buoyancy triggered by the non linear temperature distribution due to the temper-
ature gap between the horizontal boundaries. The novel feature introduced in the present paper is the
fully nonlinear approach to the stability analysis. The results obtained by the linear stability analysis
are here used as a reference. The purpose of this paper is to analyse the system with the aim of finding
possible subcritical instabilities. The technique employed in order to investigate the nonlinear prob-
lem is the generalized integral transform technique. The computational task relative to the integral
transformation procedure and the solution of the ordinary differential equations obtained are carried
out by Mathematica 9 ( c©Wolfram Research).

Keywords: Nonlinear Stability, Generalised Integral Transform Technique, Porous Media, Viscous
Dissipation, Thermal Convection

Introduction

The study of the onset of the thermal instabilities is an important topic with a deep engineering impact.
In particular, the stability analyses of fluid saturated porous media have indeed several applications
in a widespread range of scientific fields: from the oil extraction engineering to geological and geo-
physical studies and biological tissues convection heat and mass transfer. The source of thermal
convection in fluid saturated porous media consists, typically, in the buoyancy force built up by heat-
ing from below boundary condition or an internal heat generation [Nield and Bejan (2013)]. In this
paper, the buoyancy force is identified as the source of thermal instability and an internal generation
effect, viz. the viscous dissipation, is employed in order to yield the buoyancy force. Analyses of this
topic have been published by [Nield (2007)], [Storesletten and Barletta (2009)] and [Barletta, Celli
and Rees (2009)]. The novel feature introduced in the present paper is the fully nonlinear approach
to the stability analysis. The results obtained by the linear stability analysis are here used as a ref-
erence [Nield and Barletta (2010)]. In order to solve the nonlinear problem a specific mathematical
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technique is here employed: the generalized integral transform technique (GITT) [Cotta (1998)] and
[Pontes, Alves and Cotta (2002)]. The GITT is an alternative hybrid numerical analytical technique
based on the eigenfunction expansion in the spatial variables of the problem fields, i.e. velocity and
temperature. The ordinary differential equations obtained by the integral transformation procedure
constitute an initial value problem that is solved numerically. The computational task relative to the
integral transformation procedure and the solution of the initial value problem are carried on by soft-
ware that allow for mixed symbolic and numerical computations such as Mathematica 9 ( c©Wolfram
Research).

Mathematical model

A rectangular porous channel saturated by fluid with arbitrary aspect ratio is here investigated. A
throughflow of give rate is assumed. The channel is considered impermeable while, for what con-
cerns the thermal boundary conditions, the vertical channel walls are assumed to be adiabatic and the
horizontal channel walls are assumed to be isothermal. A temperature gap, ∆T = Th−Tc, is imposed
between the horizontal boundaries. The cold face, Tc, is placed on top and the hot face, Th, is placed on
the lower boundary. The Oberbeck-Boussinesq approximation is assumed, Darcy’s law is employed
in order to define the momentum balance equation and the viscous dissipation contribution inside the
energy balance equation is taken into account as internal heat source. The curl operator is applied
to Darcy’s law so that the governing equations lose the pressure gradient contribution. The dimen-
sionless governing equations that describe the system together with the relative boundary conditions
are

∇∇∇ ·uuu = 0,
∇∇∇×uuu = ∇∇∇× (T eeey),

∂T
∂ t

+uuu ·∇∇∇T = ∇
2T +Geuuu ·uuu,

x = 0,s : u = 0,
∂T
∂x

= 0,

y = 0,1 : v = 0, T = R,0.

(1)

where uuu = (u,v,w) is the velocity vector, T is the temperature, eeey is the unit vector of the y-axis, t is
the time, Ge the Gebhart number, R the Rayleigh number and s is the aspect ratio. A sketch of the
geometry and a description of the boundary conditions is reported in Fig. 1. The scaling employed in
order to obtain the dimensionless formulation is the following

t =
σ H2

α
t, xxx = Hxxx, uuu =

α

H
uuu, T = Tc +∆T

T
R
,

Ge =
gβ H

c
, R =

gβ ∆T H K
ν α

, s =
L
H
,

(2)

where the dimensional quantities are over-lined, σ is the dimensionless ratio between the average heat
capacity per unit volume of the porous medium and the average heat capacity per unit volume of the
fluid, H is the height of the channel, α is the effective thermal diffusivity, ν is the kinematic viscosity,
K is the permeability, c is the specific heat, g is the modulus of gravity acceleration, β is the thermal
expansion coefficient and L is the width of the channel.
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Figure 1. A sketch of the porous channel and its boundary conditions

Basic stationary solution

The first step in this stability analysis consists in redefining the velocity and temperature fields as
composed by two contributions: a stationary basic state and a perturbed field, namely

uuu = uuub +UUU , T = Tb +Θ, (3)

where the subscript b refers to the basic state. In the following we will need also the initial values
of velocity and temperature perturbed fields. These initial values are defined as a combination of an
initial value of the perturbed field plus the basic stationary flow contribution.

t = 0 : uuu = uuub +UUU0, T = Tb +Θ0. (4)

The stability analysis is here performed with respect to a particular stationary solution of the govern-
ing equations (1). A constant throughflow in the z-direction is assumed and the temperature field of
this fully developed flow is assumed to be dependent only on the y-coordinate, namely

uuub = {0,0,Pe}, Tb =
(1− y)(2R+Λy)

2
. (5)

The Péclet number is defined through the average velocity over the channel, Pe = wb L/α , and the
parameter Λ = GePe2. Inside the setup just described we may identify two possible mechanisms cap-
able to generate thermal instabilities: the coupling between the buoyancy force and the heat gener-
ated by viscous dissipation and the coupling between the buoyancy force and the vertical temperature
gradient produced by ∆T . Each mechanism is regulated by means of a nondimensional parameter:
Λ regulates the strength of the buoyancy force due to the viscous dissipation contribution whereas R
regulates the strength of the buoyancy force due to Darcy-Bènard-like mechanism coming from the
temperature gap ∆T .
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Perturbed equations

On applying the Eq. (3) to Eq. (1) and subtracting the basic stationary state contribution one obtains

∇∇∇ ·UUU = 0,
∇∇∇×UUU = ∇∇∇× (Θeeey),

∂Θ

∂ t
+V

∂Tb

∂y
+Pe

∂Θ

∂ z
+UUU ·∇∇∇Θ = ∇

2
Θ+2GePeW +GeUUU ·UUU .

(6)

The investigation may now be reduced in complexity by focusing our attention only on the longitud-
inal rolls and disregarding the other possible inclinations of the disturbances. Since the longitudinal
rolls lie on the (x,y)-plane, the contributions of those term in the equations that refer to the z-direction
are thus neglected. On introducing the streamfunction U = ∂Ψ/∂y and V =−∂Ψ/∂x, the governing
equations (6), the relative boundary conditions and the initial values reduce to

∇
2
Ψ =−∂Θ

∂x
, (7a)

∂Θ

∂ t
− ∂Tb

∂y
∂Ψ

∂x
+

∂Ψ

∂y
∂Θ

∂x
− ∂Ψ

∂x
∂Θ

∂y
=

∂ 2Θ

∂x2 +
∂ 2Θ

∂y2 +Ge
(

∂Ψ

∂y

)2

+Ge
(

∂Ψ

∂x

)2

, (7b)

x = 0,s : Ψ = 0,
∂Θ

∂x
= 0,

y = 0,1 : Ψ = 0, Θ = 0,

t = 0 : Ψ = Ψ0(x,y), Θ = Θ0(x,y).

(7c)

Since Eq. (7a) does not show a time dependency, the initial value for the streamfunction filed is not
necessary. On the other hand, the shape of Θ0 is chosen to be equal to the temperature field configur-
ation of a single longitudinal roll occupying the whole channel, Θ0(x,y) = cos(π x/s)sin(π y). One
may note that the value of the perturbation amplitude for Θ0 is of O(1). The choice of this order of
magnitude comes from the necessity to distinguish this analysis from the linear stability one. The
linear stability analysis requires, indeed, to employ perturbations small enough so that the nonlinear
terms in the perturbations inside the governing equations may be neglected.

The Generalised Integral Transform Technique

In order to perform the nonlinear stability analysis the Generalised Integral Transform Technique
(GITT) is employed. The GITT starts with the eigenfunction expansion of the problem potential on
the spatial variables. For what concerns the streamfunction field, the so-called auxiliary eigenvalue
problems in the x and y-directions are

d2ψ̄i(x)
dx2 +λ

2
i ψ̄i(x) = 0, ψ̄i(0) = ψ̄i(s) = 0, (8a)

d2ψ̃ j(y)
dy2 +ω

2
j ψ̃ j(y) = 0, ψ̃ j(0) = ψ̃ j(1) = 0. (8b)

The relative eigenfunctions and eigenvalues are

ψ̄i(x) =

√
2
s

sin(λi x), λi =
iπ

s
, i = 1,2, ... (9a)
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ψ̃ j(y) =
√

2sin(ω j y), ω j = j π, j = 1,2, .... (9b)

For what concerns the temperature field, the so-called auxiliary eigenvalue problems in the x and
y-directions are

d2θ̄m(x)
dx2 + γ

2
mθ̄m(x) = 0,

dθ̄m(0)
dx

=
dθ̄m(s)

dx
= 0, (10a)

d2θ̃n(y)
dy2 +σ

2
n θ̃n(y) = 0, θ̄n(0) = θ̄n(1) = 0. (10b)

The relative eigenfunctions and eigenvalues are

θ̄0(x) =
1
s
, θ̄m(x) =

√
2
s

cos(γm x), γm =
mπ

s
, m = 1,2, ... (11a)

θ̃n(y) =
√

2sin(σn y), σn = nπ, n = 1,2, ..., . (11b)

The GITT is based on the expansion of Eq. (7) by means of the eigenfuctions and eigenvalues Eqs. (9)
and Eqs. (11). The next step in the solution procedure consists in integral transforming Eq. (7). The
streamfunction transform relations pair, and the relative inverse relations, are defined as follows

Ψ̄i(y, t) =
∫ s

0
ψ̄i(x)Ψ(x,y, t)dx, Ψ(x,y, t) =

∞

∑
i=1

ψ̄i(x)Ψ̄i(y, t),

˜̄
Ψi, j(t) =

∫ 1

0
ψ̃ j(y)Ψ̄i(y, t)dy, Ψ̄i(y, t) =

∞

∑
j=1

ψ̃ j(y) ˜̄
Ψi, j(t).

(12)

The temperature transform relations pair, and the relative inverse relations, are

Θ̄m(y, t) =
∫ s

0
θ̄m(x)Θ(x,y, t)dx, Θ(x,y, t) =

∞

∑
m=0

θ̄m(x)Θ̄m(y, t),

˜̄
Θm,n(t) =

∫ 1

0
θ̃n(y)Θ̄m(y, t)dy, Θ̄m(y, t) =

∞

∑
n=1

θ̃n(y) ˜̄
Θm,n(t).

(13)

Integral transform procedure

In order to perform the integral transformation of Eq. (7), we start working on the streamfunction
equation. We first multiply Eq. (7a) by the eigenfunction of the auxiliary problem for the streamfunc-
tion in the x-direction ψ̄i(x) of Eqs. (9a) and then we integrate over x to obtain∫ s

0
ψ̄i(x)

[
∂ 2Ψ(x,y, t)

∂x2 +
∂ 2Ψ(x,y, t)

∂y2

]
dx =−

∫ s

0
ψ̄i(x)

∂Θ(x,y, t)
∂x

dx. (14)

Equation (14) can be integrated by applying the integration by parts, by applying the boundary con-
ditions in Eqs. (7c) and by applying the inverse definition in Eqs. (12). The integration yield to the
following expression

∂ 2Ψ̄i(y, t)
∂y2 −λ

2
i Ψ̄i(y, t) =−

∞

∑
m=0

Āi,mΘ̄m(y, t), (15)
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With the integral transform coefficient Ai,m defined as

Āi,m =
∫ s

0
ψ̄i(x)

dθ̄m(x)
dx

dx (16)

We thus multiply Eq. (15) by the eigenfunction of the auxiliary problem for the streamfunction in the
y-direction ψ̃ j(y) of Eqs. (9b) and then we integrate over y to obtain∫ 1

0
ψ̃ j(y)

∂ 2Ψ̄i(y, t)
∂y2 dy−λ

2
i

∫ 1

0
ψ̃ j(y)Ψ̄i(y, t)dy =−

∞

∑
m=0

Āi,m

∫ 1

0
ψ̃ j(y)Θ̄m(y, t)dy. (17)

On following the same procedure employed to obtain Eq. (15) one can write

(λ 2
i +ω

2
j )

˜̄
Ψi, j(t) =

∞

∑
m=0

∞

∑
n=0

Ai, j,m,n
˜̄
Θm,n(t), (18)

where the integral transform coefficient Ai, j,m,n

Ai, j,m,n = Āi,m Ã j,n , Ã j,n =
∫ 1

0
ψ̃ j(y)θ̃n(y)dy (19)

We may now start transforming the equation for the perturbed temperature. We thus multiply Eq. (7b)
by the eigenfunction of the auxiliary problem for the temperature in the x-direction θ̄m(x) of Eqs. (10a)
and then we integrate over x to obtain∫ s

0

∂Θ(x,y, t)
∂ t

θ̄m(x)dx− ∂Tb

∂y

∫ s

0

∂Ψ(x,y, t)
∂x

θ̄m(x)dx+
∫ s

0

∂Ψ(x,y, t)
∂y

∂Θ(x,y, t)
∂x

θ̄m(x)dx

−
∫ s

0

∂Ψ(x,y, t)
∂x

∂Θ(x,y, t)
∂y

θ̄m(x)dx =
∫ s

0

∂ 2Θ(x,y, t)
∂x2 θ̄m(x)dx+

∫ s

0

∂ 2Θ(x,y, t)
∂y2 θ̄m(x)dx

+Ge
∫ s

0

(
∂Ψ(x,y, t)

∂y

)2

θ̄m(x)dx+Ge
∫ s

0

(
∂Ψ(x,y, t)

∂x

)2

θ̄m(x)dx.

(20)

The integration of Eq. (20) is based on the same procedure employed for the streamfunction thus using
the relations in Eqs. (11) and (12) and the integration by parts. The following equation is obtained

∂ Θ̄m(y, t)
∂ t

− ∂Tb

∂y

∞

∑
i=1

B̄m,iΨ̄i(y, t)+
∞

∑
i=1

∞

∑
o=0

C̄m,i,o
∂ Ψ̄i(y, t)

∂y
Θ̄o(y, t)

−
∞

∑
i=1

∞

∑
o=0

D̄m,i,o
∂ Θ̄o(y, t)

∂y
Ψ̄i(y, t) =−γ

2
mΘ̄m(y, t)

+Ge

[
∞

∑
i=1

∞

∑
o=1

Ēm,i,o
∂ Ψ̄i(y, t)

∂y
∂ Ψ̄o(y, t)

∂y
+

∞

∑
i=1

∞

∑
o=1

F̄m,i,oΨ̄i(y, t)Ψ̄o(y, t)

]
,

(21)

where the integral transform coefficients are defined as

B̄m,i =
∫ s

0

dψ̄i(x)
dx

θ̄m(x)dx, C̄m,i,o =
∫ s

0
ψ̄i(x)

dθ̄o(x)
dx

θ̄m(x)dx,

D̄m,i,o =
∫ s

0

dψ̄i(x)
dx

θ̄o(x)θ̄m(x)dx, Ēm,i,o =
∫ s

0
ψ̄i(x)ψ̄o(x)θ̄m(x)dx,

F̄m,i,o =
∫ s

0

dψ̄i(x)
dx

dψ̄o(x)
dx

θ̄m(x)dx.

(22)
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We can now proceed multiplying Eq. (21) by the eigenfunction of the auxiliary problem for the
temperature in the y-direction θ̃n(y) of Eqs. (10b) and then integrating over y∫ 1

0
θ̃n(y)

∂ Θ̄m(y, t)
∂ t

dy−
∫ 1

0
θ̃n(y)

∂Tb

∂y

∞

∑
i=1

Bm,iΨ̄i(y, t)dy

+
∫ 1

0
θ̃n(y)

∞

∑
i=1

∞

∑
o=0

Cm,i,o
∂ Ψ̄i(y, t)

∂y
Θ̄o(y, t)dy−

∫ 1

0
θ̃n(y)

∞

∑
i=1

∞

∑
o=0

Dm,i,o
∂ Θ̄o(y, t)

∂y
Ψ̄i(y, t)dy

=−
∫ 1

0
θ̃n(y)γ2

mΘ̄m(y, t)dy+
∫ 1

0
θ̃n(y)

∂ 2Θ̄m(y, t)
∂y2 dy

+Ge
∫ 1

0
θ̃n(y)

[
∞

∑
i=1

∞

∑
o=1

Em,i,o
∂ Ψ̄i(y, t)

∂y
∂ Ψ̄o(y, t)

∂y
+

∞

∑
i=1

∞

∑
o=1

Fm,i,oΨ̄i(y, t)Ψ̄o(y, t)

]
dy.

(23)

What is obtained integrating Eq. (23) with the technique employed for Eq. (21) is

d ˜̄
Θm,n(t)

dt
−

∞

∑
i=1

∞

∑
j=1

Bm,n,i, j
˜̄
Ψi, j(t)+

∞

∑
i=1

∞

∑
j=1

∞

∑
o=0

∞

∑
p=0

(
Cm,n,i, j,o,p−Dm,n,i, j,o,p

) ˜̄
Ψi, j(t) ˜̄

Θo,p(t)

=−(γ2
m +σ

2
n )

˜̄
Θm,n(t)+Ge

∞

∑
i=1

∞

∑
j=1

∞

∑
o=1

∞

∑
p=1

(
Em,n,i, j,o,p +Fm,n,i, j,o,p

) ˜̄
Ψi, j(t) ˜̄

Ψo,p(t),

(24)

where the integral transform coefficients are defined as

Bm,n,i, j = B̄m,iB̃n, j = B̄m,i

∫ 1

0

∂Tb

∂y
ψ̃ j(y) θ̃n(y)dy,

Cm,n,i, j,o,p = C̄m,i,oC̃n, j,p = C̄m,i,o

∫ 1

0

dψ̃ j(y)
dy

θ̃p(y)θ̃n(y)dy,

Dm,n,i, j,o,p = D̄m,i,oD̃n, j,p = D̄m,i,o

∫ 1

0
ψ̃ j(y)

dθ̃p(y)
dy

θ̃n(y)dy,

Em,n,i, j,o,p = Ēm,i,oẼn, j,p = Ēm,i,o

∫ 1

0

dψ̃ j(y)
dy

dψ̃p(y)
dy

θ̃n(y)dy,

Fm,n,i, j,o,p = F̄m,i,oF̃n, j,p = F̄m,i,o

∫ 1

0
ψ̃ j(y) ψ̃p(y)θ̃n(y)dy.

(25)

In order to complete the initial value problem, we now integral transform the perturbed contribution
of the initial values in Eqs. (4), namely

˜̄
Ψi, j(0) = fi, j,

˜̄
Θm,n(0) = gm,n, (26)

where

fi, j =
∫ s

0
ψ̄i(x)dx

∫ 1

0
ψ̃ j(y)Ψ0(x,y)dy,

gm,n =
∫ s

0
θ̄m(x)dx

∫ 1

0
θ̃n(y)Θ0(x,y)dy.

(27)
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Figure 2. Critical values of Λ as a function of the aspect ratio s for Ge→ 0, R = 0 and different
values of the number of equations employed n
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Figure 3. Critical values of Λ as a function of the aspect ratio s for Ge = 1, R = 0 and different
values of the number of equations employed n

Discussion of the results and concluding remarks

The task of this investigation is comparing the results obtained by the nonlinear analysis with the
values obtained by the linear stability analysis. We start switching off the contribution of the Darcy-
Bènard-like instability source: whenever the temperature gap between the horizontal boundaries is
negligible, viz. R= 0, the relative buoyancy force contribution is absent. With R= 0 the linear stability
analysis responds a threshold value for the governing parameter Λcr = 471.38 and a threshold value
for the wavenumber kcr = 4.6752, [Nield and Barletta (2010)]. The subscript cr stands for critical
value. Figures (2) and (3) show the neutral stability curves obtained fixing R = 0 for different values
of Ge as functions of the aspect ratio s. The different curves reported in the frames refer to different
values of the number of equations employed to model the problem. The eigenfunction expansion has,
in fact, to be truncated at some point and n is the number of equations obtained with the different
choices of the truncation point. In Fig. 2 and Fig. 3 the dotted lines refer to those truncation points
that produce a number of equations n = 30, the dashed lines refer to n = 60 and the continuous lines
to n = 90. Figures (2) and (3) prove that the present nonlinear analysis reproduce exactly the same
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Figure 4. Critical values of Λ as a function of the aspect ratio s for a given value of the number
of equations employed, n = 90, and two different values of the pair (Ge,R): (Ge→ 0,R = 0),
continuous line, and (Ge = 1,R = 0), dashed line
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Figure 5. Critical values of R as a function of the aspect ratio s for Ge→ 0, Λ = 10−4 and
different values of the number of equations employed n

minimum (highlighted by the horizontal dashed line Λcr = 471.38) obtained by the linear stability
analysis. The value of the aspect ratio, relative to second minimum of Λ, results to be equal to
the wavelength corresponding to the critical wavenumber value kcr = 4.6752 obtained by the linear
stability analysis. The difference between Fig. 2 and Fig. 3 lies on the values of the Gebhart number
assumed: Fig. 2 refers to Ge→ 0 and Fig. 3 is refers to Ge = 1. The limit Ge→ 0 is compatible
with finite values of Λ if we consider, together with the limit Ge→ 0, a fast basic flow, viz. Pe� 1.
Figure (4) shows a comparison between the neutral stability curves obtained with R = 0, n = 90 and
two different values of the Gebhart number: Ge→ 0, the continuous line, and Ge = 1, the dashed line.
This figure shows how the system results not to be sensitive to the magnitude of the Gebhart number.
We proceed switching off the viscous dissipation and looking for the Darcy-Bénard-like instability. In
order to neglect the viscous dissipation contribution the limits Ge→ 0 and Λ→ 0 are considered. In
this case the linear stability analysis responds a threshold value for the critical parameter Rcr = 4π2

and a wavenumber kcr = π , [Nield and Barletta (2010)]. Figure (5) shows the neutral stability curves
for Ge→ 0 and Λ = 10−4. Once again the dotted line refer to those truncation points that produce a
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number of equations n = 30, the dashed line refer to n = 60 and the continuous line to n = 90. These
curves show that the present nonlinear analysis reproduces exactly the same minimum (highlighted
by the horizontal dashed line Rcr = 4π2) found by the linear stability analysis. Moreover, the critical
aspect ratio value relative to the second minimum in Fig. 5 is equals to the wavelength corresponding
to the critical wavenumber value kcr = π found by the linear stability analysis. The nonlinear stability
analysis here proposed is preliminary investigation of the problem presented. A partial investigation
of the parametric range is indeed presented. Nonetheless it is a fairly good starting point for the
investigation of nonlinear thermal instabilities. We may conclude that, in the parametric range here
studied, the setup investigated does not present subcritical instabilities and the nonlinear stability
analysis does not highlight a change behaviour with respect to the linear analysis.
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Abstract 

In the present study drops impacting on textured surfaces were investigated using 
many-body dissipative particle dynamics (MDPD). A novel linear-jointed solid/fluid 
interaction with short-range repulsive and long-range attractive forces was used to 
generate different wettability and a simple but efficient numerical method was 
introduced to measure the contact angle. A systematic study was carried out to obtain 
the relationship between initial impact velocity and spreading properties on surfaces 
with different wettability induced by chemistry and topology. The simulated results 
showed that the drop is easily rebounded at lower    with high impact velocity and 
only spreading occurs at low impact velocity or larger   . Referring to the triple-
phase contact line, the time-based retraction phase was divided into two periods, and 
it was analyzed from an energy transition and dissipation viewpoint. It is expected to 
provide simulation details for the water-repellency surfaces design. 

Keywords: Drop, Impact, Contact angle, Surface roughness, Many-body dissipative 
particle dynamics 

Introduction 

For years, surface wetability, especially the superhydrophobicity, has been the focus 
of surface science. Superhydrophobicity can cause drop to roll very easily off solid 
surfaces or bounce back upon impacting, just like the lotus leaf which can make rain 
drops roll off in ball easily (Lotus effect) [Barthlott and Neinhuis (1997)]. Generally 
speaking, superhydrophobicity means that the contact angle is larger than 150° while 
the contact angle hysteresis less than 10°, which confers to drops a high mobility on 
these surfaces. Unfortunately, for smooth and flat surfaces the possible highest 
contact angle is less than 120º if without special processing. In nature, there are many 
plants and animals showing superhydrophobicity besides the lotus leaf, such as the 
antifogging mosquito eyes [Gao et al. (2007)] and legs of a water strider [Gao and 
Jiang (2004)] and feathers of many birds. Recently, scientists decoded the mechanism 
of them and found that the microtextured and nanotextured roughness contributes 
significantly to the quality of the water-repellency property. This breakthrough has 
attracted lots of researches to investigate drop wetting states, such as the Cassie 
[Cassie and Baxter (1944)] and Wenzel [Wenzel (1936)] state (Figure 1 Left and 
Right), and dynamic behavior on textured surfaces. The Cassie state is often 
described as “air trapping” or composite surface which means the liquid bridges 
between surface protrusions and no longer penetrates the interspace where it is filled 
with air (Figure 1). Cassie and Baxter considered the contact angle on heterogeneous 
surfaces composed of two different materials (solid surface and air), in which    and 
     (      , Figure 1) are the fractional areas of the wetted solid/liquid and 
liquid/air interfaces, respectively. Based on this viewpoint, they gave the Cassie-
Baxter theoretical formula,                            . This formula 
shows that the trapped air always drives the Cassie angle,   , from Young angle to a 
larger contact angle (Figure 2). Many researches show great interests on this kind of 
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drop state. Singh et al. [Singhet al. (2013)] draped the nanotextured surface with a 
single-layer graphene sheet to avoid the water intruding into the textured surface 
features and keep the drop in an ideal Cassie state. Their experiment showed that the 
seperated drop on the graphene sheet could hardly be pinned to the substrate and the 
contact angle hysteresis was reduced significantly. Also, Kim et al. [Kim et al. (2012)] 
did a systematic research about drop impact characteristics on multiscaled rough 
surfaces and found only on the nanoscaled surface the drop could rebound completely. 
From the static and dynamic contact angle measurement results they found the 
nanostructures showed superhydrophobic properties and were close to the nonwetted 
state (Cassie state). The theoretical analysis and physical experiments show that the 
Cassie state can provide a smaller angle hysteresis as well as a larger contact angle, 
thence, in many industrial applications such as self-cleaning surfaces people show  
more interests in the Cassie state than the Wenzel state. However, in experiments it’s 
not easy to hold Cassie state when there exists higher impacting velocity of drop, 
which can cause a Cassie-to-Wenzel transition. However the ideal Cassie state 
without transition could be investigated by numerical method. In this paper, the drop 
spreading dynamics under different wettability and impact velocities in  ideal Cassie 
state was studied by using a particle-based numerical method (MDPD).  

 

      
Figure 1 Drop states on textured surface 

 

 
Figure 2 Theoretical Cassie angles on different rough surfaces 
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Computational method 

MDPD 

MDPD [Warren (2003); Trofimov et al. (2005)] is a modified numerical method of 
DPD [Hoogerbrugge and Koelman (1992); Groot and Warren (1997)] which includes 
the van der Waals loop in the EOS so as to make the DPD suitable for simulations of 
fluid systems with free surfaces. In the present work, we employ the MDPD scheme 
reported by Warren and in this scheme both the random and dissipative forces are 
kept the same with classical DPD while conservative force is revised as EQ.(1): 

   
     (   )        ̅    ̅   (   )                  (1) 

in which    (   )    is the attractive part by setting A<0 and the weight 
function   (   )  is defined as the classical DPD,   (   )          .     ̅  

  ̅   (   )    is the repulsive part which depends on a weighted average of the local 
density by defining   (   ) as follows: 

  (   )  ∑                                   (2) 

  (   )          
            

                   (3) 

The weight functions    in EQ.(1) are in similar definitions with   (   ),   (   )  

        , but with different cutoff distances:      and        . 

Boundary Condition 

To generate various hydrophobic and hydrophilic wetting behaviors, the solid/fluid 
conservative force is modeled by combining short-range repulsive and long-range 
attractive forces. Here, three linear weight functions are simply joined together and 
this is some different from the bell-shaped weight function of smoothed particle 
hydrodynamics. 

   
  {

  (        )                                                

          (      )                           

           (       )                           

      (4) 

   
  is the conservative force between solid and fluid particles which depends on their 

distance     .The parameters    and   in EQ.(4) determine the strength of the 
attractive and repulsive interactions,     is the wall-fluid interaction range and the two 
sub-ranges    and    are the positions of the maximum attractive force and the 
vanishing of the repulsive force (Figure 3). To simplify the simulation,   ,    ,    and 
   are fixed and only     is changed to generate different wettability. Figure 4a shows 
a gently deposited drop on flat surfaces with different   , a function between    and 
the static contact angle (or the so-called Young angle) can be obtained. In this paper 
only the case that the fluid is hydrophobic on the flat solid surface is considered, so    
is fixed at 70 and the related contact angle is around 118°. 
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Figure 3 Solid/fluid interaction function curve 

 

a 

 

b 

 
c 

 

d 

 
Figure 4 The contrast of simulated contact angles and Cassie theoretical values 

 

Avoiding penetrating is another important problem and also for getting the ideal 
Cassie state the bounce-back reflections boundary condition is employed at the top of 
the pillars and air cushions which separate the drop from the solid substrate. Here the 
particles which penetrate the wall are forced back to the position of the last time step 
without changing their velocities. By these settings, any desired wettability can be 
obtained and also the algorithm is very robust. Furthermore  the MDPD contact angle 
and the theoretically predicted angle (see the Cassie theory formula) are compared 
and a good agreement of them are shown in Figure 4b, 4c and 4d which correspond to 
      ,        and       . 
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Measurement of the contact angle 

Different from the fitting circle method [Koishi et al. (2009)], a simple but efficient 
numerical method by using geometrical computation is engaged to measure the 
contact angle between the solid surface and drop. Gently deposited drop is used to get 
the static contact angle. When the drop is stable on the solid surface, the position of 
the particles which enter the thin layer near the solid surface (upon the top of the 
pillars) are recorded, then, the difference between the maximum and the minimal 
values in the X direction is calculated as the length L of the contact line. Then, for all 
fluid particles, the maximum value in the Y direction is considered as the height H of 
the contact height. At last, a concise geometrical formula as follow is used to obtain 
the contact angle  . 

                                       (6) 

Results and discussion 

Time-Resolved Impact 

Figure 5 shows snapshots of drops impacting on textured surfaces with            
and smooth surface (    ) at different velocities 0.1 and 10. The images in the first 
row show drops just before first contacting the surfaces. Before impacting, the drops 
are almost spherical with diameter   . After impacting, the drops spread until they 
reach a maximal spreading diameter,      (second row). The third row shows the 
minimal spreading diameter after the maximum spreading and in the last row most 
drops are in a stable state excepting the drop in second column which bounces back 
into the air. At high velocity (V=10), the drops are strongly deformed into a flat film 
much thinner than drop diameter    in the middle region and gibbous rim emerging 
at the edge makes the drops look like a pancake, the similar result was observed by 
some other simulation [Eggers et al. (2010)] and physical experiments [Deng et al. 
(2013); Kim et al. (2012)]. In the retraction phase (third row and fourth row), the drop 
shape and state (rebound or pinning) depend on both the roughness of the surfaces 
and the deposited velocities. When deposited at high velocity, the drops elongate on 
the textured surfaces, but rebounding from the surface only happens at low    
(      ) and on the smooth surface the drop almost keeps its shape throughout the 
process. On the contrast, when the drops are deposited gently, the contact lengths are 
almost unchanged after the maximum spreading. We suppose that the kinetic energy 
of the drop is insufficient for the drop to move far and take shape of a pancake. 
 

                   
                                 

      

      

      

      
Figure 5 Time-resolved drop dynamics at different impact velocities 
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Time-Based Spreading Dynamics 

The spreading diameter of the drop on the solid surfaces reflects the spreading and 
retraction dynamics and the energy dissipation of the impacting drop. For all surfaces, 
spreading diameters increase at first, then reach a maximum, and at last decreases. 
The maximal spreading diameter of the drop increases with increasing deposited V 
and spreading is always faster than retraction. Figure 6 shows that the temporal 
evolution of the spreading diameter depends on impact velocity significantly. Our 
simulation shows a good agreement with Deng’s experiment [Deng et al. (2013)] in 
this period. Figure 7 shows two special snapshots in the drop spreading just before 
and after the drop reaching its maximum spreading diameter at V=10  and       , 
the related dynamical contact angles of them can be seen as the advancing contact 
angle    and receding contact angle   [Deng et al. (2013)], the small difference 
between them indicates a small contact angle hysteresis. According to Deng’ 
treatment, we also separate the retraction phase into two periods which can be divided 
at the time of their minimal spreading diameters respectively. In the first retraction 
period, the spreading diameters decrease with time monotonously, but there are some 
different phenomena between different textured surfaces: for low    (      ), the 
drops start to rebound from low impact velocity (V=3) and from relative high velocity 
(V=6) for       , but no rebounding occurs at        and smooth surface. In the 
second retraction period, the pinning drops undergo a slight fluctuation around their 
final spreading diameters respectively, that is because when the drops meet their 
minimal spreading diameter, the drops elongate (Figure 5, third row) and transform 
the retraction kinetic energy into interface energy and makes the drop unstable, after 
that, energy is dissipated through contact line fluctuating. From a DPD viewpoint, the 
dissipative force between solid particles and fluid particles can play an important role 
in this period. As a contrast, drop on the smooth surface (    ) only experiences 
the first retraction period, reflecting strong adhesion of the drop on the smooth 
surface. For the rebounding drops, the contact time (from the first contact with solid 
surfaces to the rebounding time) also depends on roughness and impact velocities: the 
higher the speed, the longer the contact time for the same textured surface and the 
contact time always shorter for the low    under the same impact velocity(Figure 8). 
From all the four cases we also found that the equilibrated spreading diameters are 
independent of the impact velocities and larger at the high    , including     , but 
not too obviously. 
 

a 

 

b 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

575



 

c 

 

d 

 
Figure 6 Time-based evolution of the spreading diameter 

 

 

 
Figure 7 The advancing  and receding 

“pancake” 

 
Figure 8 Contact time 

 
Recently, a new viewpoint has been proposed trying to explain the contact line 
pinning by the so-called effective liquid Hammer pressure [Deng et al. (2009)]. 
Hammer pressure is caused by the hitting of the drop on the surface and the liquid is 
compressed which creates a shock wave that adds a vertical component to the 
velocity of the fluid, then, the shock wave relaxes as soon as it overtakes the moving 
contact line. In the future we will do more research about Hammer pressure. Figure 9 
shows the compression of liquid. 
 

     
Figure 9 Drop at different moment just after impact (      , V=10) 
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Conclusions 

In this paper, a particle-based numerical method, MDPD, was built to simulate drop 
impact on textured surfaces. The simulated values show a good agreement with 
Cassie-Baxter theory. Also, the linear-jointed solid/fluid interaction and the contact 
angle measurement work well in the simulation.  
 
After impacting on hydrophobic surfaces, drops undergo rebounding or pinning. The 
maximum spreading diameters and contact time depend on the different textured 
surfaces and velocities. At low velocities, the drops always pin on the surfaces and 
the maximum spreading diameters are small. When speeding the drops, at low    the 
drop will rebound easily but pin at high   . The retraction phase shows two well-
separated periods, i.e. a monotonous decreasing one and a fluctuant one. In the first 
period, energy stored in the deformation of the surface is transformed back into 
kinetic energy and this phase is inertia-dominated. The existence of a fluctuant period 
shows that the transforming between kinetic energy and the interface energy propel 
the movement of the contact line, which leads a dissipation of the total energy and 
make the drop stable at the end. At last, some evidences about Hammer pressure have 
been found and this may open a door for the farther research about the mechanism of 
drop spreading dynamics. 
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Abstract 

An adaptive polygon scaled boundary finite element method (APSBFEM) is developed for 
elastodynamic problems. Flexible polygon meshes are generated from background Delaunay 
triangular meshes and used to calculate structure’s dynamic responses. In each time step, a 
posteriori-type energy error estimator is employed to locate the polygon subdomains with exceeding 
spatial discretization error, then edge midpoints of the corresponding triangles are inserted into the 
background. A new Delaunay triangular mesh and a polygon mesh are regenerated successively. 
The state variables, including displacement, velocity and acceleration are mapped from the old 
polygon mesh to the new one by a simple algorithm. A benchmark elastodynamic problem is 
modeled to validate the developed method. The results show that the adaptive meshes are capable of 
capturing the steep stress gradient areas, and the dynamic responses agree well with those from the 
adaptive finite element method and the general polygon scaled boundary finite element method 
using fine meshes. 

Keywords:  Adaptive, Scaled Boundary Finite Element Method, Polygon, Elastodynamics, Energy 
error estimator 

Introduction 

Spatial discretization error inevitably exists in numerical methods, especially for dynamic problems. 
In order to limit the discretization error within an acceptable level, adaptive methods can be used to 
refine the steep stress gradient areas with exceeding error automatically by means of error 
estimators and remeshing procedures. Adaptive finite element methods (AFEM) [Zeng and Wiberg 
(1992)] have been developed to seek appropriate spatial discretization with the least computational 
cost, but the remeshing procedures are complicated and time-consuming, especially for large scale 
problems. Furthermore, mesh mapping after remeshing to transfer state variables from the old mesh 
to the new one is approximate in FEM, leading to high accumulative errors in subsequent time steps. 
 
The scaled boundary finite element method (SBFEM) [Song and Wolf (1997)] is a semi-analytical 
method combining the advantages of the finite element method (FEM) and the boundary element 
method (BEM). The domain consists of a small number of large-sized subdomains and only the 
subdomain boundaries need to be discretized. The modeled dimensions are reduced by one as the 
BEM, but no fundamental solutions are needed. Consequently, the FEM’s flexibility and the BEM’s 
simplicity in pre-processing and remeshing are both retained.  
 
Polygon elements are widely used in FEM and have two attractive features. First, polygon elements 
are flexible in meshing domains with complex geometries such as polycrystal. Second, polygon 
elements generally have superior accuracy because of their high order shape functions. Recently, a 
versatile procedure is developed to generate polygon mesh from Delaunay triangulation and applied 
to static and dynamic crack propagation modeling [Ooi et al. (2012; 2013)]. It is demonstrated that 
the polygon scaled boundary finite element method (PSBFEM) is good at dealing with domains 
with complicated geometries and singularities, not only in pre-processing but also in remeshing, 
while the high accuracy of SBFEM is retained. 
 
Combining the polygon subdomains with a simple remeshing procedure, a novel adaptive polygon 
SBFEM (APSBFEM) for elastodynamics is developed. This paper is organized as follows: Section 
2 discusses the SBFEM and its solutions in time domain briefly. Section 3 presents a posteriori 
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energy error estimator. A simple adaptive method is described in Section 4, including the remeshing 
procedure and the mesh mapping algorithm, and a flowchart is given out as well. A benchmark 
elastodynamics problem is modeled and discussed in Section 5. Conclusions are stated in Section 6. 

Methodology  

The scaled boundary finite element method 

A domain consists of 3 polygon subdomains is described 
in Figure 1(a). Figure 1(b) shows the details of 
Subdomain 1. The subdomain is represented by scaling a 
defining curve S relative to a scaling center and the entire 
subdomain boundary has to be visible from the scale 
center. A normalized radial coordinate ξ is defined, 
varying from zero at the scaling center and unit value on 
S. A circumferential coordinate η is defined around the 
defining curve S. A curve similar to S defined by ξ=0.5 is 
shown in Figure 1(b). The coordinates ξ and η form a 
local coordinate system used in all the subdomains and 
simple transformation equations between the local and 
global Cartesian coordinates can be established through: 
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where (x1, y1) and (x2, y2) are nodal coordinates of an 
element on the boundary and (x0, y0) are the coordinates 
of the scaling center. 
 
The displacements of any point (ξ, η) in a subdomain are 
calculated by 

)()(),( ξηηξ uNu                           (3) 

where u(ξ) are the displacements along the radial lines 
and are analytical with respect to ξ. N(η) are the shape functions in the circumferential direction 
which are the same as used in FEM. 
 
The stresses in a subdomain are calculated by 

)()(1),()(),( 21 ξη
ξ

ξηηξ ξ uDBuDBσ 

                                            

 (4) 

where B1(η) and B2(η) are coefficient matrixes, and D is the elasticity matrix. 

Solutions in time domain 

In elastodynamics, the equilibrium condition of a subdomain without body loads can be formulated 
using the virtual work statement [Yang et al. (2011)] 

0 
sss V

T

S

T

V

T dVdsdV uutuσε 
                                      

  (5) 

where δε is the virtual strain vector, δu the virtual displacement vector, σ the stress vector, u the 
displacement vector, ü the acceleration vector, ρ the material density, t the traction on the boundary, 
Vs the volume and Ss the boundary of the subdomain.  
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Figure 1.  Concept of SBFEM 
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The dynamic equilibrium equation of a subdomain is derived as 

sss
puKuM

bb


                                                                    (6) 

where ub is the displacement vector and üb is the acceleration vector on the subdomain boundary, ps 
the subdomain load vector, Ks the subdomain stiffness matrix and Ms the subdomain mass matrix. 
 
The nodal displacement vector on the subdomain boundary is 

Φcub                                                                            (7) 

where Ф = {φ1, φ2, …, φN} is a matrix in which the vectors φi are obtained from solving a standard 
eigen problem and c={c1, c2, …, cN}T

 are constants (modal participation factors) dependent on 
boundary conditions, and N is the number of degrees of freedom (DOFs) of the subdomain. 

Time integration scheme 

Assembling Eq. (6) for all subdomains leads to the global equation system 

PKUUM                                                                     (8) 

where M and K are the assembled global mass and stiffness matrices, P the global load vector, Un 

and Ün the nodal displacement and acceleration vectors respectively. The Newmark integration 
scheme is used to solve Eq. (8) in this study and β = 0.25 and γ = 0.5 are used with unconditional 
stability. 
 
The subdomain displacement field is then obtained as 
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where λi (i=1-N) are eigen values from solving a standard eigen problem.  
 
The stress field in the subdomain is then calculated from Eq. (4) 
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Differentiating Eq. (9) with respect to time, the velocities and accelerations at any point in a 
subdomain are obtained as 
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The constants ic  and ic  are calculated from the nodal velocities and accelerations on the subdomain 

boundary bu  and bu  which are subsets of U  and U , respectively, by differentiating Eq. (7) with 
respect to time  

b
1
uΦc                                                                         (13) 

b
1
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where  T

N
ccc  ,,, 21c  and  T

N
ccc  ,,, 21c .  

Posteriori energy error estimator 

For elastodynamic problems, the energy norm of the total energy can be estimated by 

  2/122

sk
uuu                                                             (15) 

where ||u||k and ||u||s are the energy norm of the kinetic energy and the strain energy respectively. NS 
is the number of subdomains.  
 
Based on SBFEM, the strain energy norm can be estimated by [Zhang el al. (2011)] 
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where σi
* is the recovered stresses of ith mode at the boundary nodes, obtained by nodal average 

method for linear element here.  
 
And the kinetic energy norm can also be evaluated semi-analytically 
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where )(iu  is the velocity vector of ith mode along the subdomain boundary. 
 
Substituting Eqs. (16) and (17) into Eq. (15) yields 

 

2/1

1 1 1

*1* ||)()()()(
2 
































  

  


NS

s

N

i

N

j
S

j

T

i

ji

ji

S
i

T

i

ji

ji

ss

dJ
cc

dJ
cc








σDσuuu 



     (18)
 

The domain energy error can be evaluated as  
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is the energy error of a single subdomain. )(* 
i

e  is the ith modal stress error on the boundary and 
calculated by 

iiii
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The dynamic energy error estimator is defined as 
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Adaptive procedure 

Remeshing 

Assuming the optimized mesh is obtained 
when each subdomain contributes equally 
to the domain energy error. The average 
limit of the subdomain error is defined as 

  

2/12
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where   is the target error estimator of the 
domain.  
 
A parameter θ is used to identify the 
subdomains need to be refined  

lim

s

s

e

e
                        (24) 

The polygon mesh of SBFEM is generated 
from a Delaunay triangular mesh by 
locating the scaling center at the common 
point of a patch of triangles and taking the 
centroids of these elements as the vertices 
of the subdomain. The readers are referred 
to [Ooi et al. (2012)] for details. In each 
time step, the following mesh refinement 
procedure is applied to all subdomains with θ>1, as illustrated in Fig. 2:  
(i) Locate the polygon subdomain(s) with exceeding error, i.e. θ>1, in the old mesh (Fig. 2(a)); 
(ii) Find the corresponding triangles of the polygon that need to be refined in the triangular 

background mesh, and add midpoints on the triangles’ boundaries, so that each triangle is 
split into four quarters (Fig. 2(b)); 

(iii) Regenerate a Delaunay triangular mesh and a new polygon mesh (Fig. 2(c)). Consequently, 
the size of the polygon subdomain is scaled to half after one time refinement. 

 
Considering the number of subdomains is small, the time on seeking the polygon is short. Since the 
remeshing procedure is actually implemented in the triangular background mesh and the topology 
of SBFEM is generated directly, it is more convenient and efficient than the remeshing procedure 
[Zhang el al. (2011)] carried out in the SBFEM mesh. 

Mesh mapping 

Once a new polygon mesh is obtained, nodal state variables, including displacement, velocity and 
acceleration, need to be transferred from the old mesh to the new one as initial conditions of the 
following time step. In SBFEM, these variables at any point within a subdomain or on its 
boundaries are directly calculated by Eqs. (9), (11) and (12). Specifically, for a point located at 
coordinates (xA, yA) in the new mesh after remeshing, the polygon subdomain in the old mesh within 
which the point (xA, yA) is located is first found. The coordinates (xA, yA) are then easily transformed 

Scaling center 

Background mesh 
Polygon mesh 

Subdomain vertex  
(centroid of triangle element) 
Midpoint of triangle element edge 

(a) Triangular background mesh and polygon subdomain 

(c) Regenerating a new polygon mesh 

(b) Refinement of triangular background mesh 

Figure 2.  Remeshing procedure 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

583



 
 

to SBFEM coordinates (ξA, ηA) by Eqs. 
(1) and (2) in this polygon subdomain. 
The displacements, velocities and 
accelerations in the new mesh at Point A 
can be calculated as 
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The flow chart 

Fig. 3 illustrates the flow chart of the 
presented method. A parent mesh 
consisting of relatively large-sized 
polygon subdomains is generated from a 
Delaunay triangular mesh and a target 
error estimator   is input first. At time 
step n, the state variables nnn

UUU  ,,  are 
solved by the Newmark integration 
scheme using the old mesh at the end of time step (n-1) 
and the error estimator δ is calculated. If δ exceeds  , 
the adaptive procedure is triggered and the triangular 
background mesh is refined and a new polygon mesh is 
regenerated. The nodal state variables are then mapped 
from the old polygon mesh to the new one as the initial 
conditions. This iteration is repeated until the target is 
satisfied.  

Numerical example 

An L-shaped domain subjected to a triangular blast 
loading was analyzed by the adaptive method. The 
dimensions and material properties with SI units are 
shown in Fig. 4. The dynamic responses were calculated in a 
time period of (0.0, 8.0s) with a constant time increment Δt=0.1s. 
The element size of the triangular background mesh is 25 and 
totally 23 polygon subdomains are generated, as shown in Fig. 5. 
The target error is set as 10%. 
Fig. 6(a) ~ Fig. 6(f) describe the evolution process of adaptive 
meshes with horizontal stresses. At the beginning of loading, 
steep stress gradient areas appear around the left boundary of 
the domain and the polygon subdomains herein are refined, 
whereas large-sized subdomains are used in the right area with 
no stress (Fig. 6(a)). With the stress wave propagates, more and 
more polygon subdomains are refined (Fig. 6(b) and Fig. 6(c)). 
In Fig. 6(d), the stress wave rebounds from the right boundary 

Pre-processing 

Specify Δt, δ, T; 
Generate a triangular background mesh 

n=n+1; t=Δt×n 
 

Time integration for
nnn UUU  ,,  

 

Compute δ 
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Figure 3.  Flow chart of the presented method 
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and polygon subdomains near the bottom begins to be refined. Afterwards, the stress distribution 
becomes complicated and the steep stress gradient areas are mainly around the re-entrant corner, 
which has strong singularity, and very fine mesh are used, as shown in Fig. 6(e) and Fig. 6(f). 

    
(a). t=0.4s, DOFs=562 (b). t=1.2s, DOFs=572 

    
(c). t=2.0s, DOFs=630 (d). t=2.8s, DOFs=692 

    
(e). t=4.0s, DOFs=1350 (f). t=7.0s, DOFs=1610 

Figure 6.  Adaptive meshes and evolution of horizontal stress contours 

The structural dynamic responses are given out in Fig. (a) ~ Fig. (d). 
The results are calculated by PSBFEM based on an uniform fine mesh 
as shown in Fig. 7 (PSBFEM, mesh 1), an uniform coarse mesh as 
shown in Fig. 5 (PSBFEM, mesh 2), the presented method 
(APSBFEM) and AFEM proposed by [Zeng and Wiberg (1992)], 
respectively. It can be seen that not only displacements but also 
stresses of the presented method agree better with the results of 
AFEM than the results of PSBFEM based on uniform coarse mesh. 
 
Fig. 12 records the energy error of PSBFEM using coarse mesh and 
the presented method. It can be seen that the value of energy error 
fluctuates between 6%-16% based on PSBFEM, while the error is 
limited under the target of 10%. Fig. 13 records the degrees of 
freedom (DOFs) used in the adaptive meshes. 

Conclusions 

An adaptive method based on polygon scaled boundary finite elements for general elastodynamic 
problems is developed in this study. The original and adaptive polygon meshes are generated from a 
triangular background mesh which is created by the Delaunay algorithm, thus the presented method 

Figure 7.  Fine mesh  

(mesh 2, DOFs=1172) 
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is suitable for problems with complex boundaries and cracks. The refinement is actually conducted 
in the background mesh so that the remeshing procedure is very convenient and straightforward. 
The semi-analytical energy error estimator and the simple mesh mapping algorithm endows the 
presented method with a good precision. It is expected to extend this method to more complicated 
problems, such as crack propagation. 
 

 
Figure 8. Horizontal displacement at A 

 
Figure 9. Horizontal displacement at B 

 
Figure 10. Horizontal normal stress at C 

 
Figure 11. Horizontal normal stress at D 

 

Figure 12. History of the energy error 

estimator 

 

Figure 13. History of degrees of freedom 
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Abstract 
In order to determine the severity of the head injuries sustained from ballistic impact orientation and 
to investigate the effectiveness of the cushioned combat helmet in protecting the head from ballistic 
impact, series of ballistic impact simulations (frontal, lateral, rear and top) of FMJ bullet on a 
subject-specific FE head model, which are based on National Institute of Justice (NIJ) test standard. 
Two different designs of helmet interior cushion, namely the strap-netting system and the Oregon 
Aero (OA) foam, are adopted in this study. In general, the head experiences highest G in rear 
impacts among all impact orientations. The FE simulations also show that the use of OA foams 
helps to reduce frontal impact G forces and thus offers better protection from all various impact 
orientations. The OA cellular foams are more effective in limiting the transmission of force by 
being able to absorb more energy, via plateau characteristic prior to foam densification, compared 
to the stiffer linear elastic front cushion of strap-netted helmet. The simulations also showed both 
the helmets passed the NIJ requirement, WSTC and FMVSS criterion. 
 
Keywords:  Ballistic impact, helmet, subject-specific head model, head injury, cushion, head 
acceleration 
 
1. Introduction 
 
Advanced combat helmets (ACH) protects military personnel from sustaining traumatic brain 
injuries (TBI) due to blunt and ballistic impacts in both peace and war times. It is particularly 
important that these helmets are capable and effective in their function. Since 1970s, tremendous 
efforts had been spent on research of head protective helmets using finite element method (FEM) 
which serves as a cost-effective alternative to experiments [Khalil (1973; 1974); Van Hoof et al. 
(1999; 2001); Baumgartner and Willinger (2003); Aare and Kleiven (2007); Tham et al. (2008); Lee 
and Gong (2010); Yang and Dai (2010)] . For example, Khalil et al. (1974) performed low-velocity 
ballistic impacts using a very simplified head-helmet finite element (FE) model and validated 
against corresponding experiments. Van Hoof et al. (1999, 2001) found that the helmet interior 
exhibited large deformation exceeding the gap between inner helmet shell and head in experimental 
and numerical ballistic impact studies. Another study simulating ballistic impact on military helmet 
was by Baumgartner and Willinger (2003) who predicted skull fracture without traumatic brain 
injury (TBI). More recently, Aare and Kleiven (2007) studied the effects of helmet shell stiffness 
and impact orientation on a FE head model during a ballistic impact, while  Yang and Dai (2010) 
focused on evaluation of the rear effect with different impact orientation. Of late, Tan et al. (2012) 
had performed both experimental tests and FE simulations on helmeted Hybrid III headform using 
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spherical projectile and found that foam cushioning system would help to reduce the head 
acceleration.  
In order to determine the severity of the head injuries sustained from ballistic impact and to 
investigate the effectiveness of the cushioned combat helmet in protecting the head from ballistic 
impact, series of ballistic impact simulations (frontal, lateral, rear and top) of FMJ bullet on a 
subject-specific FEHM, which are based on National Institute of Justice (NIJ) test standard, were 
performed for a duration of 4ms using the explicit code in Abaqus v6.10 (SIMULIA, RI, USA). 
Similar to Tan et al. (2012), the interior cushioning systems included in this current study were 
namely strap-netting system (in Helmet 1) and Oregon Aero (OA) interior foam cushioning system 
(in Helmet 2). It should be noted that this subject-specific FEHM used in this study has been 
validated against the ICP and relative displacement data of three cadaveric experiments [Tse et al. ( 
2014)].  

 
2. Methods and Materials 

 
2.1 Model Development and Model Description 
The subject-specific FE model of human head and brain was reconstructed from computed 
tomography (CT) and magnetic resonance imaging (MRI) images. More details on the head model 
could be found in Tse et al. (2014)’s study. As for the advanced combat helmet (ACH) model, it 
was reconstructed from axial CT images while the two interior cushioning systems (OA foam and 
strap-netting) were drawn from scratch. The 9mm full-metal jacketed (FMJ) bullet, which 
geometrical details could be found in Tham et al. (2008)’s study, was used in the NIJ ballistic 
simulations. The entire assembly of the helmet-cushion-head model was shown in Figure 1. It 
should be noted that a preloading step was implemented prior to the actual ballistic impact step so 
that the two interior cushioning systems fit well with both the head and helmet models. 

 
Figure 1: The two configurations of the helmet-interior cuhsion-head assembly. 

2.2 Material Properties 
For the head model, all the skeletal and cartilaginous tissues were modeled as linear elastic, 
isotropic materials, while the brain tissues were modeled with viscoelastic material properties [Tse 
et al. (2014)]. The helmet laminates adopted linear elastic but anisotropic material properties [Tan et 
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al. (2012)]. As for  the two interior cushioning systems, their material properties were obtained from 
the in-house experiments in our previous work [Tan et al. (2012)]. The FMJ bullet, which is made 
of brass and lead, has its mechanical properties shown in Table 1. 
Table 1: Material properties of both the intracranial and extracranial components used in the 

models. 

 Components 
Material Properties 

Young's Modulus, E (MPa) / Shear Modulus, G (MPa) 
𝐺(𝑡) = 𝐺∞ + (𝐺0− 𝐺∞)𝑒−𝛽𝑡   

Poisson's ratio, 
υ 

Density, 
ρ (kg/mm3) 

Head 

Brainstem 𝐺0 = 0.0225 MPa, 𝐺∞ = 0.0045 MPa, β = 80 s−1 0.4996 1.06E-06 
Cerebral 
Peduncle 𝐺0 = 0.0225 MPa, 𝐺∞ = 0.0045 MPa, β = 80 s−1 0.4996 1.06E-06 

Cerebrum 𝐺0 = 0.528 MPa, 𝐺∞ = 0.168 MPa, β = 35 s−1 0.48 1.14E-06 

Cerebellum 𝐺0 = 0.528 MPa, 𝐺∞ = 0.168 MPa, β = 35 s−1 0.48 1.14E-06 

CSF E = 1.314 0.4999 1.04E-06 

Gray Matter 𝐺0 = 0.034 MPa, 𝐺∞ = 0.0064 MPa, β = 700 s−1 0.4996 1.04E-06 
Lateral 

Cartilage E = 30 0.45 1.50E-06 

Septum 
Cartilage E = 9 0.32 1.50E-06 

Bone E = 8000 0.22 1.21E-06 

Soft Tissues E = 16.7 0.46 1.04E-06 

Tooth E = 2070 0.3 2.25E-06 

Ventricles E = 1.314 0.4999 1.04E-06 
White Matter 𝐺0 = 0.041 MPa, 𝐺∞ = 0.0078 MPa, β = 700 s−1 0.4996 1.04E-06 

  
E11 
(MPa) 

E22 
(MPa) 

E33 
(MPa) 

G12 
(MPa) 

G13/G23 
(MPa) υ12 υ13/υ23 ρ (kg/mm3) 

ACH Helmet Shells 18000 18000 4500 770 2600 0.25 0.33 1230 

Interior 
Cushion 
Systems 

Cross Straps 
(Helmet 1) E = 60 0.25 400 

Front Cushion 
(Helmet 1) E = 18 0.25 200 

Main Loop 
(Helmet 1) E = 60 0.25 400 

Netting  
(Helmet 1) E = 60 0.25 400 

Rear Cushion 
(Helmet 1) E = 18 0.25 200 

OA Foams 
(Helmet 2) Direct compression data from experiment 164 

Projectile 
Cartridge 

Brass E = 110000 0.375 8520 

Lead Core G = 200 - 11840 
 
2.3 Failure Modeling of Helmet and FMJ Bullet 
This preliminary study modeled both the helmet property degradation and the inter-laminar failure 
using surface traction criteria [Tan et al. (2012)]. Additionally, the Hashin Fabric Criterion was 
used to model  the fabric-reinforced aramid laminates of the helmet shell which takes the bi-
directional strength of the fibers into account [Tan et al. (2012)]. As for the FMJ bullet, Johnson 
Cook plasticity hardening and damage initiation criterion was used to model the exterior cartridge 
brass material [Johnson and Cook (1983)], whilst the Mie-Grüneisen hydrodynamic equation of 
state material model was used to model the lead core [Abaqus (2013)] (Table 2). 
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Table 2: Material constants in failure modeling of FMJ bullet. 

Parts Material Constants For Failure Modeling 

Cartridge 
Brass 

Constants in Johnson-Cook Strain Rate Hardening 

A B n M Tm 
(K) 

Ttrans 
(K) C ε0 

(s-1) 
112 505 0.42 1.68 1189 373 0.009 1 

Constants in Johnson-Cook Damage Initiation Criterion 

d1 d2 d3 d4 d5 
Tm 
(K) 

Ttrans 
(K) 

ε0 
(s-1) 

0.54 4.89 3.03 0.014 1.12 1189 373 1 

Lead Core 

Constants in Mie-Grüneisen hydrodynamic equation of 
state 

(Linear Us-Up Hugoniot form) 

Specific Heat 
Capacity  

(J·kg-1·K-1) 
c0 (cm/µs) s Γ0 150 

0.2006 1.429 2.60 
 
2.4 Boundary Conditions 
All the contact conditions imposed between the intracranial interfaces were taken from Tse et al. 
(2014). Table 3 shows the required boundary conditions of NIJ-STD-0106.00 that were applied at 
the base of the helmet-cushion-head assembly except for top impact which could be treated as if the 
military personnel proning on the ground while the fragment or bullet hits at the top of the helmet. 
As for initial condition, an initial velocity of 358m·s-1 was prescribed to the entire FMJ bullet [Aare 
and Kleiven (2007)], for each of the impact orientation and helmet cushions configuration.  

 
Table 3: Boundary conditions for the NIJ ballistic impact simulations. 

Impact Orientation Displacement Constraints at the Base of 
the Helmet-Cushion-Head Assembly 

Front U2=0; U3=0; θ1=0; θ3=0 
Side U1=0; U3=0; θ2=0; θ3=0 
Rear U2=0; U3=0; θ1=0; θ3=0 
Top U1=0; U2=0; U3=0; θ3=0 

 
3. Results and Discussion 

 
Table 4 showed the maximum values of the helmet strain, dynamic deflection as well as depth of 
helmet dent. The impact energy was partially absorbed by the helmet through deflection and 
deformation of the helmet shells, whilst majority of it was absorbed by the interior cushions. It 
could be seen in Table 4 that Helmet 1 generally deflected more than Helmet 2, except for lateral 
impacts. However, it should be noted that the projectile stroke on the rim of Helmet 1 with the 
presence of the underlying interior main loop preventing subsequent deflection, unlike the lateral 
impact of Helmet 2.  
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Table 4: Helmet parameters of the head with the two helmet configurations. 

 Helmet 1 (with strap-netting) 

 Front Locations Side Locations Rear Locations Top Locations 
Max. Helmet 
Strain 0.195 Impact 

Site 0.164 Impact 
Site 0.039 Impact 

Site 0.120 Top Left 
of Helmet 

Max. 
Dynamic 
Deflection 
(mm) 

7.121 
Right 

Helmet 
Rim 

13.261 
Right 

Helmet 
Rim 

9.466 
Left 

Helmet 
Rim 

24.955 
Left 

Helmet 
Rim 

Max. Depth 
of Helmet 
Dent (mm) 

10.452 Impact 
Site 12.597 Impact 

Site 12.628 Impact 
Site 13.624 Impact 

Site 

Contact 
Between 
Helmet Shell 
& Head 

No - No - No - No - 

 Helmet 2 (with OA foam padding) 

 Front Locations Side Locations Rear Locations Top Locations 

Max. Helmet 
Strain 0.074 Impact 

Site 0.105 

Impact 
Site  
(2nd 

Outermost 
Layer) 

0.037 Impact 
Site 0.0482 

Posterior 
Top Right 
of Helmet 

Max. 
Dynamic 
Deflection 
(mm) 

5.911 Impact 
Site 28.569 Impact 

Site 6.665 
Left 

Helmet 
Rim 

16.846 
Rear 

Helmet 
Rim 

Max. Depth 
of Helmet 
Dent (mm) 

10.817 Impact 
Site 15.185 Impact 

Site 9.665 Impact 
Site 12.566 Impact 

Site 

Contact 
Between 
Helmet Shell 
& Head 

No - No - No - No - 

 
Figure 2 showed the impact sequences of all the various orientations on the two helmets. Similar 
phenomenon had been observed in both helmets, as shown in Figure 2. It was noted that, in all eight 
impact orientation, there was no penetration of FMJ projectile into the helmets. This indicated that 
both the helmets had successfully deflected all the FMJ projectiles travelling at the speed of 358m·s-

1 and met the NIJ requirement. In general, permanent dents of 9-15mm on the helmet exterior were 
observed at various sites of impact. The “crater” or spatial extent of the impression is around 60mm 
in diameter, and a bulge could be seen at the backplane of the helmet. 
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Figure 2: Impact sequence of various impact orientations for Helmet 1 (Left) and Helmet 2 

(Right). 

In this preliminary study, acceleration at the centre of the head was chosen as the parameter for 
analyses and for gauging the severity of TBI sustained (Figure 3). It was noted that the peak 
acceleration was found to be relatively high for both front and rear impacts for Helmet 1 (strap-
netting) but were significantly reduced when equipped with Helmet 2 (OA foam). As for the 
remaining impact orientations (lateral and top impacts), Helmet 2 did not help much in reducing the 
peak head acceleration. Nevertheless, there was a general reduction in peak skull stresses in Helmet 
2 (with OA foam padding) as compared to Helmet 1 (with strap-netting), with the percentage of 
reduction up to 44.94%, 0.07%, 109.21% and 8.39% for frontal, lateral, rear and top impacts. This 
showed that OA cellular foams were more effective as interior cushions as they limited the 
transmission of force by being able to absorb more energy, via plateau characteristic prior to foam 
densification, compared to the stiffer linear elastic front cushion of Helmet 1.  

 
Figure 3: Peak acceleration at the C.G. of the head for various impact orientation and helmet 

liner configuration. 
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Comparison of the head acceleration obtained for various impact orientation indicated that the rear 
impact resulted in highest acceleration value of up to 110G when equipped with Helmet 1 (with 
strap-netting), followed by frontal and lateral impacts, whilst the lateral impact were most severe for 
Helmet 2 (with OA foam padding), followed by rear and front impacts. Top impacts were the least 
severe among all the impact orientation due to the nature of the boundary condition for the military 
personnel in the prone position. The peak acceleration values obtained from the simulations were 
also compared with the established injury criteria such as Wayne State Tolerance Curve (WSTC) 
and Federal Motor Vehicles Safety Standards (FMVSS) 218 criterion (Figure 4). It could be 
concluded from Figure 4 that all the impacts with both helmets passed the criteria of the WSTC and 
FMVSS. 

 
Figure 4: Acceleration responses for the helmets with two interior cushion designs in various 

impact directions, in relation to other published criteria Modified from [Shewchenko et al. (2005)]. 

4. Conclusion 
 
In this study, ballistic analysis using FEM had been carried out to evaluate the performance of the 
ACH as well as the effectiveness of its interior cushioning systems, in protect both military 
personnel and civilians from traumatic head injury. Rear impacts gave rise to highest head 
acceleration while the top impacts were the least severe among all the impact orientation. The use 
of OA foams helped to reduce impact G forces and thus offered better protection from all various 
impact orientations. The simulations also showed both the helmets passed the NIJ requirement, 
WSTC and FMVSS criterion. However, it is still too early to arrive at any concrete conclusion for 
the severity of impact orientation since the human tolerance for different impact orientation was 
different [Allsop and Kennett (2002)] and the probability curves were based on automotive safety 
standards. More investigations on criterion for ballistic impact would be needed in the future. 
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Abstract 
The present work proposes two methodologies using the Integral Transform Technique to solve the 
Poisson equation arising from the incompressible Navier-Stokes equations. The solution of this 
Poisson equation is very common in the formulations based on pressure-correction and are the main 
bottleneck of these approaches. The new formulation proposed in this work will allow the 
elimination of the pressure-velocity decomposition and also eliminate the sub-iterations of the usual 
pressure-correction methods. The results show a comparison in performance of both proposed 
approaches.  

Keywords:  Incompressible Navier-Stokes, Pressure Correction, Integral Transformation, Poisson 
Equation 
 

x , y , z   Classical cartesian coordinates   
L   Domain dimension in x  direction   
H   Domain dimension in y  direction   
t   Time   
v   Vectorial velocity   
u   Velocity component in x  direction   
v   Velocity component in y  direction   
f   Vectorial body force (in acceleration dimensions)   

xf   Body force component in x  direction   

yf   Body force component in y  direction   
p   Pressure   
p   Transformed pressure for CITT solution   
ρ   Fluid density   
µ   Dynamic viscosity   
ν   Kinematic viscosity   
n   Index for CITT   

maxn   Truncation order for CITT   
i , q , p   Indices for the position in mesh for x  direction  

maxi   Maximum mesh divisions in x  direction  
j , r , s   Indices for the position in mesh for y  direction  

maxj   Maximum mesh divisions in y  direction  
l   Index for the time step  

nX   Eigenfunctions for the CITT solution   

nλ   Eigenvalues for the CITT solution   
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nN   Norms of the eigenvalue problem   
y′ , y′′   Dummy integration variables   

1c , 2c   Integration constants   
V   Domain volume   
Λ   General function   
   Absolute error   

Introduction 
In numerical simulations of incompressible flows, the main difficulty is the velocity and pressure 
coupling by the incompressibility constraint. The projection methods were developed to overcome 
this problem. These methods can be classified into three classes [Germond et al (2006)], namely 
pressure-correction methods, velocity-correction methods, and consistent splitting methods. 
The most attractive feature of projection methods is that, at each time step, one only needs to solve 
a sequence of decoupled elliptic equations for the velocity and the pressure, making it very efficient 
for large scale numerical simulations. Although projection methods are widely used, many authors 
already drew attention to the fact that the decomposition used in this method is intrinsically second 
order accurate [Munz et al. (2003), Guermond et al. (2006)], preventing any approximation order 
higher than this. Pressure-correction schemes are time-marching techniques composed of two sub-
steps for each time step: the pressure is treated explicitly or ignored in the first sub-step and is 
corrected in the second one. The linear momentum equations play the major role in determining the 
velocity components. Thus, it is left to the continuity equation to determine pressure, even if this 
variable does not appear explicitly in this equation. The most common methodology to determine 
an equation for the pressure-correction is to combine both equations by taking the divergence of the 
momentum equations and substituting the continuity equation where necessary, effectively 
generating a Poisson type equation for pressure. This makes it possible to obtain an equation for the 
pressure-correction, using the continuity equation. At this point, it is worth to highlight that the 
pressure-correction method is an iterative strategy which generate more accurate values at each 
iteration. The pressure-correction equation is an extrapolation to improve mass conservation at each 
iteration. 
 
This procedure requires sub-iteration per time step, which is the major computational cost because 
at each sub-iteration, a Poisson equation for pressure must be solved. One could use Multigrid for 
the solution of the poisson equation to speed up the process, however, the sub-iteration are still 
required. 
 
In the realm of analytical methods, the Integral Transform Technique, also known as the Classical 
Integral Transform Technique (CITT) [Mikhailov and Ozisik (1984)], has been playing a big role. It 
deals with expansions of the sought solution in terms of infinite orthogonal basis of eigenfunctions, 
keeping the solution process always within a continuous domain. The resulting system is generally 
composed of a set of uncoupled differential equations which can be solved analytically. However, a 
truncation error is involved since the infinite series must be truncated to obtain numerical results. 
This error decreases as the number of summation terms (truncation order) is increased, and the 
solution converges to a final value. Due to the series representation nature of the Integral Transform 
Technique, the estimated error can be easily obtained, which results in better global error control of 
the solution. The disadvantage associated with this approach is the need of a more elaborate 
analytical manipulation. This effort can be greatly minimized with the use of symbolic computation 
[Wolfram (2003)]. 
 
The present work proposes two methodologies using the Integral Transform Technique to solve the 
Poisson equation arising from the incompressible Navier-Stokes equations. The two proposed 
methodologies are: The single transformation and the double transformation. The new proposed 
formulation will allow the elimination of the pressure-velocity decomposition and also eliminate the 
sub-iterations of the usual pressure-correction methods. 
 
Just a few works were concerned in mixing the Integral Transform Technique with other discrete 
schemes. Among these works, one could mention the work [Chalhub et al (2013)] that a new 
methodology  for solving unsteady convective heat transfer problems via the generalized integral 
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transform technique was developed. The proposed scheme was based on writing the unknown 
potential in term of eigenfunction expansions; however, rather than transforming advection terms, 
an upwind approximation is used prior to the integral transformation. In the works [Guedes et al. 
(1994a; 1994b)], the authors analyzed the unsteady forced convection in laminar flow between 
parallel plates. This problem is solved using a hybrid scheme that combines the Generalized 
Integral Transform Technique with second-order finite differences. At [Cotta and Gerk (1994)], the 
integral transform method is employed in conjunction with second-order-accurate explicit finite-
differences schemes, to handle accurately a class of parabolic-hyperbolic problems. In the work 
[Castelloes and Cotta (2006)], the solution is obtained using partial integral transformation strategy 
to solve the problem and the work of [Naveira et al. (2009)] showed a hybrid numeric-analytical 
solution for unsteady forced laminar convection between parallel plates.  

Problem Formulation 

In order to solve a fluid flow problem, the conservation laws of physics are needed: the mass 
conservation, also known as the continuity equation and the momentum conservation. In addition to 
these equations, a constitutive equation is required, which the Newton’s law of viscosity will be 
used. The flow is also considered to be incompressible, in other words, the fluid has a constant 
density.  
Combining these equations [Kundu (1990)], one can arrive at the incompressible Navier-Stokes 
equations1:   

 21 for and 0v v v p v f x V t
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∇ + ∈ ≥

∂
 (1) 

 0 forv x V∇⋅ = ∈  (2) 
in which equation (1) is the momentum conservation equation and equation (2) is the mass 
conservation equation, also called the incompressibility constraint.  
Based on the projection methods for incompressible flows [Guermond et al. (2006)], to obtain the 
Poisson equation for pressure, one should apply the divergence operator on equation (1) and use the 
continuity equation (2): 

 ( )T21 forp f v v x V
ρ
∇ = ∇⋅ −∇ : ∇ ∈  (3) 

where ρ  is the fluid density, f  is the body force vector, v  is the velocity vector, p  is the pressure 
and V  is a general domain volume.  
Then, the continuity could be replaced at the Navier-Stokes equations (1) by the Poisson equation 
(3), resulting in the following system to be solved:   

 21 for and 0v v v p v f x V t
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∇ + ∈ ≥

∂
 (4) 

 ( )T21 forp f v v x V
ρ
∇ = ∇⋅ −∇ : ∇ ∈  (5) 

In this work, normal zero gradients for pressure at the boundaries will be used.  
 ( ) 0Vp n ∂∇ ⋅ =  (6) 
where V∂  is the boundary of the general domain volume.  
The problem can be simplified for cartesian domain:   

 
2 2

2 2

( ) ( ) [ ( ) ( )]p x y t p x y t h x y t g x y t
x y

ρ∂ , , ∂ , ,
+ = , , − , ,

∂ ∂
 (7) 

 
0

( ) ( )0 0
y y H

p x y t p x y t
y y= =

   ∂ , , ∂ , ,
= =   ∂ ∂   

 (8) 

1Some authors refer to the Navier-Stokes equations as just the momentum equation. 
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0

( ) ( )0 0
x x L

p x y t p x y t
x x= =

∂ , , ∂ , ,   = =   ∂ ∂   
 (9) 

where:  

 
22

( ) 2u u v vg x y t
x y x y

 ∂ ∂ ∂ ∂ , , = + +   ∂ ∂ ∂ ∂   
 (10) 

 ( ) yx ffh x y t
x y

∂∂
, , = +

∂ ∂
 (11) 

 
The main goal of this work is to develop the integral transformation technique to solve the Poisson 
equation (7) showed above.  

Single Transformation (ST) 

In order to establish the transformation pair, the pressure field is written as function of an 
orthogonal eigenfunctions obtained from the following auxiliary eigenvalue problem known as the 
Helmholtz classical problem [Mikhailov and Osizik (1984)], where ( )nX x  are the eigenfunctions 
and nλ  are the eigenvalues.   

 
2

2
2

d ( ) ( ) 0
d

n
n n

X x X x
x

λ+ =  (12) 

 (0) 0 ( ) 0X X L′ ′= =  (13) 
which has the following solution:   
 ( )( ) cosn nX x xλ=  (14) 

 for 1 2 3n
n n …

L
πλ = = , , ,  (15) 

 
It should be noted that for these boundary conditions, one needs also to account for non-trivial 
solutions corresponding to 0 0λ = .   
 0 1X =  (16) 
 0 0λ =  (17) 
 
Now, the transformation pair can be defined:   

 
0

Transformation ( ) ( ) ( ) d
L

nn y t p x y t X x xp⇒ , = , ,∫  (18) 

 0
1

( ) ( )
Inversion ( ) ( ) n n

n n

X x y tpp x y t p y t
N

∞

=

,
⇒ , , = , +∑  (19) 

where the norm nN  is defined by:  

 2

0
d for 0

2
L

n n
LN X x n= = ≠∫  (20) 

The final solution is given by two portions of the pressure: the average pressure in x  direction avgp  
and the modified pressure modp :  
 avg mod( ) ( ) ( )p x y t p y t p x y t, , = , + , ,  (21) 
where avgp  comes from the solution of the eigenproblem when 0λ =  and modp  comes from the 
solution when 0λ ≠ , in other words:  
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 avg 0( ) ( )p y t p y t, = ,  (22) 

 mod
1

( ) ( )
( ) n n

n n

X x y tpp x y t
N

∞

=

,
, , = ∑  (23) 

 

Solution for modp  ( 0λ ≠ ) 

The integral transformation of the governing differential equation is derived by applying the 

operator 
0

( ) d
L

nX x•∫  on equation (7), obtaining the following transformed Poisson equation:   

 
2

2
2

( )
( ) ( ) ( )n

nn n n
y tp y t y t y tp ghy

λ ρ ρ
∂ ,

− , = , − ,
∂

 (24) 

 
0

( )
0n

y

y tp
y =

∂ , 
= ∂ 

 (25) 

 
( )

0n

y H

y tp
y =

∂ , 
= ∂ 

 (26) 

where the transformation of the parameters g  and h  are given by:  

 
0

( ) ( ) d
L

nn y t g x y t X xg , = , ,∫  (27) 

 
0

( ) ( ) d
L

n ny t h x y t X xh , = , ,∫  (28) 

 
The equation (24) has an analytical solution that is shown bellow:  

 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

( )

0

2

0

2

0 0

( )

1 cosh csch ( ) ( ) d
2

1 1 coth 1 ( ) ( ) d
4

1 1( ) ( ) d ( ) ( ) d
2 2

n
n n

n
n

n n
n

n
yHy H y

nn n n
n

yHy
nn n

n

y yy yy
n nn n

n n

y tp

ee y H e y t y t ygh

ee H y t y t yg h

e ey t y t y e y t y t yg gh h

λ
λ λ

λ
λ

λ λ
λ

ρλ λ
λ

ρλ
λ

ρ ρ
λ λ









−
− +

′ ′−

, =

− , − , +

+ − , − , +


′ ′ ′ ′ ′ ′, − , + , − , 



∫

∫

∫ ∫

 (29) 

 
To find the actual solution for modified pressure modp , the inversion formula is used, equation (22). 
By observing equations (29), (27) and (28), one can notice that there are integrals of the discrete 
variables u , v , xf  and yf . In order to compute these integrals, the following integral separation is 
proposed:  

 
max

10
1

( )d ( )dq

q

iL x

x y x yx
q

u v f f x u v f f x
−=

Λ , , , = Λ , , ,∑∫ ∫  (30) 

where Λ  is a general function of u , v , xf  and yf .  
 
Then, to compute the integrals analytically, a Taylor expansion is used to expand the variables u , 
v , xf  and yf  in each subdomain:  
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Solution for avgp  ( 0λ = ) 

In order to obtain the transformed differential equation for 0λ = , a very similar process is done. 
The transformed equation is given bellow:   

 
2

0
0 02

( )
( ) ( )

y tp y t y tghy
ρ ρ

∂ ,
= , − ,

∂
 (31) 

 0

0

( )
0

y

y tp
y =

∂ , 
= ∂ 

 (32) 

 0( )
0

y H

y tp
y =

∂ , 
= ∂ 

 (33) 

where:  

 0 0
( ) ( )d

L
y t g x y t xg , = , ,∫  (34) 

 0 0
( ) ( )d

L
y t h x y t xh , = , ,∫  (35) 

The previous equation admits analytical solution of the following form:  

 ( )0 1 20 00 0
( ) ( ) ( ) d d

y y
y t y t y t y y c y cp ghρ

′′
′ ′ ′ ′′, = , − , + +∫ ∫  (36) 

applying the boundary conditions, one arrives to the following system of equations:  
 1 0c =  (37) 

 ( )0 100
0 ( ) ( ) d

H
y t y t y cghρ= , − , +∫  (38) 

which tells that 1c  must be zero and the integral also must be zero:  

 ( )0 00
( ) ( ) d 0

H
y t y t yghρ , − , =∫  (39) 

 
Equation (9) is know as the Poisson-Neumann compatibility condition [Abdallah (1987; 1988); 
Pozrikidis (2001)]. Knowing these information, the solution of the transformed differential equation 
is achieved:  

 ( )00 00 0
( ) ( ) ( ) d d

y y
y t y t y t y yp g hρ

′′
′ ′ ′ ′′, = − , + ,∫ ∫  (40) 

 
Then the same integral separation (equation (19)) and Taylor series expansions are used to derive 
analytically the coefficients 0h  and 0g :  

Double Transformation (DT) 

In a very similar manner from previous formulation, one first establishes the transformation pair. In 
order to obtain that for this approach, two eigenvalue problems are defined. The eigenvalue problem 
associated with the x  direction is given by: Eigenvalue problem associated with the problem in x  
direction  

 
2

2
2

d ( ) ( ) 0
d

n
n n

X x X x
x

λ+ =  (41) 

 (0) 0 ( ) 0X X L′ ′= =  (42) 
which has the following solution:  
 ( )( ) cosn nX x xλ=  (43) 
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 for 1 2 3n
n n …

L
πλ = = , , ,  (44) 

 
The problem associated with the y  direction is given by:  

 
2

2
2

d ( ) ( ) 0
d

n
m n

Y y Y y
y

β+ =  (45) 

 (0) 0 ( ) 0Y Y H′ ′= =  (46) 
which has the following solution:  
 ( )( ) cosn mY x yβ=  (47) 

 for 1 2 3m
m m …

H
πβ = = , , ,  (48) 

 
The transformation pair can be defined:  

 
0 0

Transformation ( ) ( ) ( ) ( ) d d
H L

n mn m t p x y t X x Y x x yp ,⇒ = , ,∫ ∫  (49) 

 
0 0

( ) ( ) ( )
Inversion ( )

NyNx
n mn

n m n m

y t X x Y ypp x y t
∞ ∞

= =

,
⇒ , , =∑∑  (50) 

where the norms Nxn  and Nym  are defined by:  

 2

0
d for 0Nx 2

L
n n

LX x n= = ≠∫  (51) 

 2

0
d for 0Ny

2
H

mm
HY x m= = ≠∫  (52) 

it is also known that 0Nx L=  and 0Ny H=   

Applying the operator 
0 0

( ) d d
H L

n mX Y x y•∫ ∫  on the Poisson equation, the following transformed 

Poisson equation (algebraic) is obtained:  
 2 2( ) ( ) ( ) ( )n m n m n mn my t y t y tp ghλ β ρ, ,,− + , = , − ,  (53) 
where the transformation of the parameters g  and h  are given by:  

 
0 0

( ) ( ) d d
H L

n mn m t g x y t X Y x yg , = , ,∫ ∫  (54) 

 
0 0

( ) ( ) d d
H L

n mn m t h x y t X Y x yh , = , ,∫ ∫  (55) 

 
Which has a direct solution shown bellow:  

 2 2

( )
( ) n m n m

n m
n m

g htp
ρ

λ β
, ,

,

−
=

+
 (56) 

In order to obtain the final solution, the inversion formula needs to be applied, obtaining:  

 2 2
0 0

( ) ( ) ( )( )
NyNx

n m n m n m

n m nn m m

g X x Y yhp x y t
ρ

λ β

∞ ∞
, ,

= =

−
, , =

+∑∑  (57) 

which can also be rewritten in the form:  
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0 00 0 0 0
2 2

1 10 00 0

2 2
1 1

( ) ( )( ) ( )( )
Ny Ny NyNx Nx Nx

( ) ( ) ( )
NyNx

m nm nm n

m n nm nm

n m n m n m

n m nn m m

g gp Y y X xh hp x y t

g X x Y yh

ρ ρ
β λ

ρ
λ β

∞ ∞
, ,, , ,

= =

∞ ∞
, ,

= =

− −
, , = + + +

−
+

+

∑ ∑

∑∑
 (58) 

where 0 0p ,  is an arbitrary constant, which will be considered to be zero.  
The greatest advantage of this approach is that it requires a lot less analytical effort and the final 
solution is more simple and compact. But the final solution has a double summation that can 
increase computational cost. In order to minimize this cost, one can use a reordering scheme, 
switching from the double summation to a single one.  

 
1 1 1n m k

∞ ∞ ∞

= = =

⇒∑∑ ∑  (59) 

 
This can be done knowing the sum terms with higher magnitude and putting them in the beginning 
of the sum. This is achieved by taking ( )n m,  pairs that promote lowers 2 2( )n mλ β+ . By doing that, 
one can arrive at the expression: 

 

0 00 0
2 2

1 10 0

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 ( )( ) ( ) ( )

( ) ( )( ) ( )( )
Ny NyNx Nx

( ) ( ) ( )
NyNx

m nm nm n

m n nm nm

n k m k n k m k n k m k

k n kn k m k m k

g gY y X xh hp x y t

g X x Y yh

ρ ρ
β λ

ρ

λ β

∞ ∞
, ,, ,

= =

∞
, ,

=

− −
, , = + +

−
+

+

∑ ∑

∑
 (60) 

Discrete Derivatives 

In order to solve the pressure problem, the discrete derivatives of u , v , xf  and yf  must be 
calculated. In this work, a second order central differencing scheme is used inside the domain and 
second-order the backward/forward (depending of the boundary) differencing scheme is used at the 
boundaries.  

Results 

For all cases presented in this chapter, 1L = , 1H = , and 1ρ =  were used. The chosen source term 
of the Poisson equation (4) satisfies the compatibility condition (9) and it is of the following form:  

 [ ] 4 3 2 4 3 277( ( ) ( ))
60i i i i j j j ji j

x x x x y y y yh x y t g x y t ρρ  
 ,  

 = + + + − + + +, , − , ,  
 

 (61) 

 
A comparison of computational cost is done for both techniques presented in this work. In order to 
compare the CITT performance, a fixed mesh is used and many truncation orders for the 
summations are computed, so only the CITT error is captured. The CITT error is calculated using 
the following formula:  
 CITT

max max max( ) abs[ ( ) ( 5)]i j i j i jn p n p n, , ,= − +  (62) 
 
The mesh error for the x -mesh and the y -mesh is calculated using the following formulations 
respectively:  
 1024 max 1024 max 2 1024 max( ) abs[ ( ) ( )]x

i i in p n p n, , ,= −  (63) 

 1024 max 1024 max 1024 2 max( ) abs[ ( ) ( )]y
j j jn p n p n, , ,= −  (64) 
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The codes were compiled and ran using GFORTRAN and the flags -O3 and -fopenmp and in a 8 
core CPU machine.  
In order to illustrate the convergence of the solution with the variation of x∆ , figure 1 shows a 
graphic of the maximum absolute error with the variation of the mesh size x∆ . As one can observe 
the convergence order is about 2, which was expected since all approximation made in the 
mathematical formulation were of this order.  
Figure 2 shows the convergence of the absolute error with y∆ . Although it seems to have a higher 
convergence order for the poorer refined meshes, the order stabilizes at 2 when more refined 
meshes are implemented.  
 

 
Figure 1. Convergence for the mesh in x -direction, max 15n =  and using max 1024j = . 

 

 
Figure 2. Convergence for the mesh in y -direction, max 15n =  and using max 1024i = . 
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In order to illustrate the problem, tables 1 and 2 show the value of the pressure for different points 
of the domain. It is clear that both methodologies converge to the same value, even though the 
values are not fully converged with six digits accuracy. One can see that the mesh convergence is 
very similar for both methodologies.  

 

Table 1. Convergence of the mesh for some points of the domain for 0 25y = .  and max 30n = . 

 
max maxi j×   0 25x = .   0 75x = .    

 ST  DT  ST  DT   
16×16  0.0801190  0.0793513  -0.0799973  -0.0809956   
32×32  0.0811750  0.0810473  -0.0807687  -0.0811251   
64×64  0.0814272  0.0814572  -0.0809571  -0.0811557   

128×128  0.0814885  0.0815574  -0.0810034  -0.0811630   
 
 

Table 2. Convergence of the mesh for some points of the domain for 0 75y = .  and max 30n = . 

 
max maxi j×   0 25x = .   0 75x = .    

 ST  DT  ST  DT   
16×16  0.183004  0.186430  -0.185268  -0.181505   
32×32  0.186532  0.187220  -0.184883  -0.183862   
64×64  0.187368  0.187422  -0.184825  -0.184438   

128×128  0.187571  0.187473  -0.184815  -0.184580   
 
Figure 3 shows a comparison of the computational cost of both methodologies for a mesh of 
32 32× . One can clearly see that the Double Transformation (DT) needs more time to obtain the 
same error. This effect is due to the introduction of a double summation needed to solve the 
problem by the DT which requires a bigger effort to compute the solution. Even with the 
implementation of the reordering scheme, it is not enough to beat the computational cost of the ST. 
The same effect can be seen on figure 4, which shows the computational cost for a mesh of 
128 128× . 
 

ICCM2014, 28th-30th July 2014, Cambridge, England

605



 
Figure 3. Comparison of the computational cost of CITT using single transformation and 

CITT using double transformation for a mesh max 32i =  and max 32j = . 

 
 

 
Figure 4. Comparison of the computational cost of CITT using single transformation and 

CITT using double transformation for a mesh max 128i =  and max 128j = . 
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Conclusion 

This work presented results of the solution of the Poisson equation arising from the incompressible 
Navier-Stokes equations. The main motivation of the proposed work is the implementation of this 
semi-analytical formulation for the Poisson equation in the momentum equation and thus solve it 
using a numerical technique for initial value problem.  
 
The solution of the Poisson equation using this semi-analytical approach was accomplished using 
two different schemes: CITT single transformation (ST) and CITT double transformation (DT). 
Both techniques presented a very similar convergence behavior and results, showing that the 
formulations proposed are consistent. The comparison between both schemes showed that the 
double transformation has poorer performance in comparison with the single transformation 
scheme. Even though the performance of the double transformations was not so good, this 
formulation has a simpler analytical solution, which might be more interesting when implementing 
the pressure solution in the momentum equation, and so being possible a fully explicit time 
marching method for time.  
 
The proposed schemes are very good for smooth pressure fields, but it might have some 
convergence problems with discontinuous pressure fields, which arise in phase-change problems, 
due to the Gibbs phenomenon in series truncation. This issue must be further investigated in order 
to compute the real impact of the implementation of the proposed formulations in these type of 
problems.  
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Abstract 
FDM (finite difference method) has advantages for direct code expansion to numerically solve 

PDE (partial differential equation).  In contrast to finite element method configured with 
nonhomogeneous element size based on interested region, a constant increment size of element or 
grid is used in existing FDM.  As a result, the calculation near boundary could be inaccurate and 
incomplete. Particularly, in electrokinetics, except for diffuse layer (about 10~104 Angstrom) near 
solid and fluid interface, calculation of the charge density distribution with having the same and 
fine space increments at another region is inefficient and could meet the catastrophic memory lack 
error. In this study, we provide a method how to make the nonhomogeneous space incremental FD 
grid and to configure PDE having complicated and mixed boundary conditions (e.g. Dirichlet and 
Neumann) with suggested simple matrices. The suggested FDM using the nonhomogeneous 
increment of fine grids near the boundaries and interfaces could increase the accuracy of solutions 
and efficiency of calculations.   

Keywords: Finite Difference Method, Partial Differential Equation, Nonhomogeneous Increment,  
Dirichlet and Neumann Boundary Conditions 

Introduction 

Solutions of electrokinetic problems are important to understand living bone remodeling 
processes by electromechanical transduction effects on osteocytes, osteoclasts and osteoblasts. 
Since this electromechanical transduction postulation about bone remodeling processes requires the 
existence of ionic interstitial bone fluid flow in bone tissues, the resulting streaming potential is 
being focused on bone mechanics as a remodeling stimulation on bone cells [Pienkowski and 
Pollack (1983); Zhang et al. (1997)].  The streaming potential is about coupled phenomenon 
described by elasticity of bone tissue, fluid mechanics of interstitial fluid flow through canaliculi 
and lacunae, and electricity of charged ions in bone fluid.   

In addition, the streaming potential that is an electrokinetic phenomenon is closely related to 
electrical charge on the wall of lacunocanalicular flow path. The streaming potential is very 
sensitively affected by the interface surface electrical potential of the canalicular wall [Ahn and 
Grodzinsky (2009)].  Since bone is a piezoelectric material [Bassett (1968)], the surface electrical 
potential of the canalicular wall is changed by the elasticity of bone tissue.  As a result, a full 
analysis including transient behavior of streaming potential can be achieved for the multi-physical 
study of bone tissue after firstly considering effects of its piezoelectricity on the just boundaries of 
the lacunocanalicular flow paths on the transient electrokinetics. 

To solve electrokinetic problems using FDM, except for diffuse layer (about 10~104 Angstrom) 
near solid and fluid interface, calculation of charge density distribution with having the same space 
increments at another region is inefficient. In this study, we provide a method how to make the 
nonhomogeneous space incremental FD grid and to configure PDE having complicated and mixed 
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boundary conditions with suggested simple matrices. The suggested method is verified using the 
existing closed solution in the electrokinetics [ref].  
 

Numerical Method 

Notation and Definition 

  For the formulation used in this study, we used the following notations and definitions. 
τ

kjif ,,                                                                   (1) 
where subscript i , j ,and k are the space incremental numbers; and superscript τ is the time 
incremental number.  1~1 += Li ; 1~1 += Mj ; 1~1 += Nk ; and 1~1 += Tτ where i, j, and k 
are the positive integer. f is a unknown quantity.  

Position 

  The position is described as ix , jy , and kz  in the Cartesian coordinate, ir , jθ , and kz  in the 
cylindrical coordinate, ir , jθ , and kφ  in the spherical coordinates. 

Variable Increment 

  The increment of the position or time is described by forward, backward and central difference.  
( ) 0ppp −=∆ ++  
( ) −− −=∆ ppp 0

                                                             (2) 
( ) ( )−+ −=∆ ppp 5.00

 
where p  means an arbitrary position, time, or value; superscripts + ,− , and 0 mean forward, 
backward, and central infinitesimal approaches, respectively.  In the Cartesian coordinate, time and 
spatial increments are represented by (3).   

( ) τττ ttt −=∆ ++ 1     ( ) 1−−
−=∆ τττ ttt     ( ) ( )110 5.0 −+ −=∆ τττ ttt  

( ) iii xxx −=∆ +
+

1     ( ) 1−
− −=∆ iii xxx     ( ) ( )11

0 5.0 −+ −=∆ iii xxx                   (3) 

( ) jjj yyy −=∆ +
+

1    ( ) 1−
− −=∆ jjj yyy    ( ) ( )11

0 5.0 −+ −=∆ jjj yyy  

( ) kkk zzz −=∆ +
+

1    ( ) 1−
− −=∆ kkk zzz     ( ) ( )11

0 5.0 −+ −=∆ kkk zzz  

First Order Derivatives 

  The first order derivatives of time and space are described by (4). 
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Second order derivatives 

  The second order derivatives are described by (5).
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  Thus, the second order derivatives of time and space are described by (6). 
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Laplacian  

  In the Cartesian coordinate, Laplacian of a quantity is described by (7). 
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Boundary Conditions 

  The Boundary conditions are defined on the interface locating at 1, L + 1, M + 1, and N + 1. 
  Dirichlet boundary condition ( 0=φ  at interface) could be formed as (8). 

x coordinate : 0,,1 =τ
kjf  or 0,,1 =+

τ
kjLf  or 0,,1,,1 == +

ττ
kjLkj ff  

y coordinate : 0,1, =τ
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τ
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ττ
kMiki ff   (8) 

z coordinate : 01,, =τ
jif  or 01,, =+

τ
Njif  or 01,,1,, == +

ττ
Njiji ff  

  Neumann boundary condition ( 0/ =∆∆ xφ  at interface) could be formed as (9). 
x coordinate : ττ

kjkj ff ,,2,,1 =  or ττ
kjLkjL ff ,,,,1 =+  or ττ

kjkj ff ,,2,,1 = and ττ
kjLkjL ff ,,,,1 =+  

y coordinate : ττ
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kiki ff ,2,,1, =  and ττ

kMikMi ff ,,,1, =+   (9) 

z coordinate : ττ
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Formation of Matrix 

  For example,  







∂
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2

2

x
 could be represented by (10) as a matrix form. 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

611



( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )



























∂
∂

=





































∆∆∆∆
−

∆∆

∆∆∆∆
−

∆∆

∆∆∆∆
−

∆∆

∆∆∆∆
−

∆∆

=







∂
∂

+−+−

−
+

−
−

−
+

−
−

−−

+−+−

+−+−

0
x

0

x

2

2

2

2

L

LLLLLL

LLLLLL

xxxxxx

xxxxxx

xxxxxx

xxxxxx

~2

00

0
11111

0
1

0
33333

0
3

0
22222

0
2

000000

121000

012100

001210

000121
000000















(10)

 

 
  The matrix (10) is a square matrix composed of ( ) ( )11 +×+ LL . To obtain the elements of the first 
row, the history at ( )−∆ 1x is required as well as 0x .  However, 0x  is not yet defined.  Thus, the 
elements of the first row are all zero.  Since 2+Lx  is not defined for ( )++∆ 1Lx ,  the elements of  the 

(L+1)th column of the matrix are all zero.  As a result, the matrix 







∂
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2

2

x  
is composed of  second 

order derivatives from the second and to Lth rows.  In addition, the first and (L + 1) rows are formed 
by boundary conditions. 
 

Formation of Matrix with Boundary Conditions 

  When a matrix A  has Neumann boundary condition at node 1, Dirichlet boundary condition at 
node L + 1, and the second order derivatives of the matrix A is the same as a matrix B, (11) can be 
written. 
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   As a matrix form of (11) can be (12) 
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where M has a following form. 
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  Therefore, (12) can be represented by (13) 
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Verification  

  Verification of theoretical approach was accomplished by comparing with the reference method 
[Bazant et al. (2004)].   As shown in Fig. 1, an external electrical potential is applied to the isolated 
ironic fluid. 
 

 
Figure 1. Electrolyte system affected by external electric field which induces the electric potential 

               distribution of ϕ(y) with surface potential ϕL = −1.0 V and ϕR = +1.0 V 

 

Analytical Method 

  The governing equation for the charge density can be represented by (14). 

φεκρκρ
ρ 22221

∇+−∇=
∂
∂

fff
f

tD                     (14)
 

ff ερψ /2 −=∇  
φ  is the external electrical potential generated by external electric field.  For the external electrical 
potential, 02 =∇ φ .  Thus, (14) is reduced to Debye-Falkenhagen equation (15). 
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ρ 221
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  Based on (15), distributions of the electric charge density, ρf , change distributions and magnitudes 
of internal electric potential, ψ . 
  If fρ  is a function of the only x-coordinate,  
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where  is the total potential that is a summation of the external and internal potentials. 
  As assumed to be two plates, the one-dimensional boundary condition is represented by (17). 
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  A general solution of (17) in the Laplace domain (s-domain) can be obtained by (18) [Bazant et al. 
(2004)].  
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where ( ) ( )







 +++

−
=

−

hD
kshkkh

khVsk
sA

s
s

f

λ
κ

λ

ε

1)tanh(

sech

2

12

,   22 κ+=
D
sk . 

ICCM2014, 28th-30th July 2014, Cambridge, England

613



Table 1. Symbols 

Symbols                        Definitions 

fρ    charge density 

ψ   internal potential due to charge 

density distribution 

φ   external potential due to external 

electric field 

D   diffusion coefficient 

  κ   inverse of Debye length 

fε   dielectric permittivity 

h   half channel height 

sλ   effective thickness for the compact 

part of the double layer 

V   external potential imposed by 

the external circuit 

Numerical Method 

  The governing equation for the charge density can be discretized by (19). 
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Boundary condition 

  The boundary conditions can be represented by (21). 

  
( ) ( )[ ]2121

2
21

φφψψεκρρ −+−−=− fff                              (21)
 

  
( ) ( )[ ]11

2
1 +++

−+−−=− LLLLfLfLf φφψψεκρρ  
  At the interface, the internal potential should be 0 to satisfy  ψL+1 = ψ1 = 0.  Then, (21) turns out 
to be (22). 

  
( )[ ]212

2
21

φφψεκρρ −+−=− fff                                        (22)
 

  
( )[ ]1

2
1 ++

−+−=− LLLfLfLf φφψεκρρ  
  The governing equation (20) can be described by (23). 
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  The boundary conditions (22) can be represented by (24). 
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  After combining the boundary conditions to the governing equation, the final form can be obtained 
as (25). 

(25)

 

 Table 2. Properties used in this study    

  Symbols                            Values  
D    ][100.1 17 m−×  

  κ    ]/1[1029.1 9 m×  
fε    ]/[1094.6 10 VmC−×  

h    ][100.1 8 m−×  
sλ    ][100.5 10 m−×  

V    ][0.1 V  
 

1

,1

2

1

2

1

,1

2

1

L~2

2

,

1

2

L~2

1

,

11

10

11

11
1

11

11
1

1

2

1

1

2

1

+

+

+

+

−

+











































−

−
+





























































−

−
+



























∂
∂

+











































∆
⋅

















−

−
+
















+



























∂
∂

+
















∆
=



























∴

+

+

t

kjL

L

f

t

kjL

L

f

t

kjf

f

f

f

t

kjf

f

f

f

L

L

L

L

tD

tD

ψ
ψ

ψ
ψ

εκ

φ
φ

φ
φ

εκ

ρ
ρ

ρ
ρ

κ

ρ
ρ

ρ
ρ







00

0
x

0

0
0I0

0

0
0

0I0
0

0
x

0

0
0I0

0

2

2

2

2

ICCM2014, 28th-30th July 2014, Cambridge, England

615



  Utilizing the data in Tab. 2, transient behaviors of the charge density in the space are calculated 
and compared in Fig. 2 from the closed form solution and the numerical method proposed in this 
study.  In general, the results from the analytic and numerical methods are in agreement for each 
time as shown in Tab. 3.  In transient analyses, the behavior from the numerical method has a 
time-delay of 0.01 sec than that from the analysis.  However, two behaviors from the numerical 
method and analysis in steady state are almost identical in time and space.  

Table 3. Defined variances* for comparisons of numerical solutions on analytic results  

  Time [sec]   Values [dimensionless]  
0.1   2105042.4 −×  

  0.2   2101764.4 −×  
0.5   2104787.3 −×  
1.0   2105344.2 −×  
Steady State  3103630.2 −×  

*Defined variance: ∑
=
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Figure 2.  Comparisons of the analytic solutions on the numerical results (upper : total charge 
                 distribution and  lower : magnified left side) 
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Conclusion 

  In electrokinetics, accurate prediction of the temporal and spatial charge density distributions near 
the ironic fluid and piezoelectric solid interface become important from the multi-physical point of 
view.  Since the interested region for the changes of charge density distribution is the order of 10 
Angstrom just near the interface, a very fine FD grid is required.  When a constant fine space 
increment is applied for electrokinetic problems to obtain an accurate solution using FDM, the 
calculation process is inefficient.   
  In this study, FDM using the nonhomogeneous space increment is formulated and applied to an 
electrokinetic problem.  A very fine FD grid is used for the interested diffuse layer just near the 
interface.  At the same time, coarse FD grids are applied to the other ironic fluid path that is the 
order of several nanometers.  In addition, a governing equation matrix is combined with a boundary 
condition matrix to construct an integrated equation matrix.  As a result, PDE problems having 
mixed boundary conditions could be easily formulated and numerically solved by the proposed 
FDM using the simple matrix method.  
  In addition, the formulated FDM using the simple matrix method becomes a fully implicit form for 
space.  Therefore, effects of amount of space increment on solution procedures could be minimized.  
The proposed method could be useful for obtaining transient solutions in electrokinetic problems 
particularly for bone remodeling, which electrical potentials are being changed temporally and 
spatially by the piezoelectricity of bone matrix. 

Acknowledgment 

This work was sponsored by the National Research Foundation of Korea (NRF) grants (No. 
2012R1A2A2A01016829 and  No. 2010-0001151) funded by the Korean Ministry of Science, ICT and Future Planning. 
 

References 

Ahn, A. C., and Grodzinsky, A. J. (2009) Relevance of collagen piezoelectricity to "Wolff's Law": A critical review, 
Medical Engineering and Physics 31, 733-74. 

Bazant, M. J., Thornton, K., and Ajdari, A. (2004) Diffuse-charge dynamics in electrochemical systems, Physical 
Review E 70, 021506–1–54.  

Bassett, C. A. (1968), Biologic significance of piezoelectricity, Calcified Tissue Research 1, 252-272. 
Pienkowski, D., and Pollack, S. R. (1983) The origin of stress-generated potentials in fluid-saturated bone, Journal of 

Orthpaedic Research 1, 30-41. 
Zhang, D., Cowin, S. C., Weinbaum, S. (1997) Electrical signal transmission and gap junction regulation in a bone cell 

network: a cable model for an osteon, Annals of Biomedical Engineering 25, 357-374. 

ICCM2014, 28th-30th July 2014, Cambridge, England

617



Accurate Transient Response Analysis of Non-Classically Damped 

Systems 

Li Li, *Yujin Hu, and Ling Ling 
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China. 

*Corresponding author: yjhu@mail.hust.edu.cn 

Abstract 
It is difficult, or even unnecessary, to obtain all the modes of a large-scaled model. Thus, 
the modal truncation error is generally introduced and the quality of the responses may be 
adversely affected. Based on the Neumann series and the FFT technique, an accurate 
modal superposition method is presented to calculate the transient response of non-
classically damped systems. The presented method maintains original-space without 
having to involve the state-space formula. The method is convergent if and only if all the 
complex modes whose resonant frequencies are less than the maximal sampling 
frequency of the FFT must be available. Finally, the applicability of the method is 
investigated using a simple numerical example with non-classical damping. 

Keywords: Transient response analysis, Non-classically damped systems, FFT, Modal 
truncation error, Mode superposition method, Krylov subspace 

Introduction 
The purpose of a transient response analysis is to calculate the behaviour of a structural 
or mechanical system subjected to a time-varying forces. The inclusion of damping in the 
dynamic analyses of structural or mechanical systems has become an integral part of 
many design methodologies, including predicting vibration levels, transient responses, 
transmissibility and design problems dominated by energy dissipation. 
 
In general, two different methods are used for the transient response analysis: direct 
transient response method (DTRM) and modal transient response method. The DTRM 
calculate dynamic responses by performing a direct numerical integration on complete 
coupled equations of motion at discrete times, typically with a fixed time step. In the 
most likely case for many engineering applications, the DTRM should be implemented 
for many time steps and large-scaled problems. Under such circumstance, it may be more 
effective by using reduced basis technique. Often the modes are used as the reduced basis 
vectors (known as the mode superposition method). The mode superposition method 
allows us to treat the equations of motion as a reduced-order form so that the step-by-step 
solution is less costly. It is should be noted that the quality of the responses depends on 
the number of modes involved. Although the accuracy of the calculated responses can be 
improved by increasing the number of modes, the convergence rate is very slow. Note 
that the eigenvalue solution is very computationally expensive, or even impossible, 
especially for large-scaled problems. Many approaches (Huang et al., 1997; Palmeri and 
Lombardo, 2011; D'Aveni and Muscolino, 2001; Besselink et al., 2013; Qu, 2007) were 
presented to deal with the modal truncation problems. However, these correction 
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approaches are only restricted to the case of undamped or proportionally damped systems. 
In general, proportional damping means that energy dissipation is almost uniformly 
distributed throughout the mechanical system. There is no any physical reason why the 
proportional damping must be satisfied. In practice, mechanical systems with 
significantly different levels of energy dissipation are frequently encountered in dynamic 
designs. As can be seen from experimental data, physical system produces complex 
modes and therefore no physical system is strictly proportionally damped system. To this 
end, the concern of this study is the non-classically damped system. Several 
approximation techniques are developed to efficiently calculate the responses of non-
classically damped systems. Among these approximation methods, the most common 
method is so-called the proportional approximation method (PAM), which is simply to 
ignore the off-diagonal (coupling) elements of the transformed damping matrix. It was 
shown that light damping, diagonal dominance of the transformed damping matrix and 
good separation of the normal modes (these conditions are once believed to produce 
small errors) are not sufficient conditions for the accuracy of the PAM. Although the 
PAM is a powerful approximate method, the results of the PAM are not always with 
acceptable accuracy. The accurate responses may be obtained by using the complex 
modal superposition method. Although these correction approaches used in undamped 
systems can be extended to non-proportionally damped systems based on the state-space 
formula, these state-space approaches are usually time-consuming since its size is two 
times the size of the original space and lack the physical insight provided by the 
superposition of the modes of the equation of motion in physical space. Note that the 
complex modes may be also efficiently calculated using the computational methods in the 
original space (Fischer, 2000; Holz et al., 2004; Adhikari, 2011; Rajakumar, 1993; Lee et 
al., 1998). Some of these original space based approaches have been programmed in 
famous softwares [see, e.g., Nastran (Komzsik, 2001)]. Some works (Li et al., 2014c; Li 
et al., 2014b; Li et al., 2013) were therefore developed to eliminate the complex modal 
truncation error of the frequency responses of damped systems without having to involve 
the state-space formula. It is shown (Li et al., 2014c) that the complex modal truncation 
error can be exactly expressed as a power-series expansion in terms of the available 
modes and system matrices and a hybrid expansion method (HEM) is presented to 
calculate the frequency responses of non-classically damped systems. Complex modes 
can be also recently shown to transform any viscously damped system with N DOF into 
N independent second-order equations [see, e.g., (Kawano et al., 2013; Morzfeld et al., 
2011; Ma et al., 2010) for details]. 
 
This paper presents an accurate method to calculate the transient response of non-
classically damped systems based on the Neumann series and the FFT technique. The 
method maintains original-space without having to involve the state-space formula so 
that it is efficient in computational effort and storage capacity. The method is convergent 
if and only if all the complex modes whose resonant frequencies are less than the 
maximal sampling frequency of the FFT must be available. Finally, it will be shown by a 
numerical example that, the proposed method can show a good agreement with the exact 
responses. 
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Transient response analysis 
The equation of motion of an N DOF linear damped system with zero initial condition 
appears as the following matrix form 

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f   (1) 

Here M, C and K are real mass, viscous damping and stiffness matrices, respectively. x(t) 
( )tx  ( )tx  and f(t) are displacement, velocity, acceleration and force, respectively. In this 

paper, assume that K is a positive definite symmetric matrix, M and C are symmetric 
matrices. 
 
The time domain equation of motion may be cast into a frequency domain form by using 
the Fourier transform technique 

 ( )2 +i ( ) ( )ω ω ω ω− + =M C K X F  (2) 

where 

 [ ]( )= ( )F tωF f  and [ ]( )= ( )F tωX x  (3) 

Here F[ ] denote the Fourier transform and ω is the circular (angle) frequency. The form 
can be given under the assumption that the complex input forcing can be interpolated by 
trigonometric polynomials. In practice, we usually need to find the frequency spectra of 
excitation by using the Fourier transform. 
 
The transient response can be then obtained by using the inverse Fourier transform, that 
is 

 [ ]1( )= ( )t F ω−x X  (4) 

In practice, a general analytical loading function cannot be easily obtained. It means that 
the discrete Fourier transform and inverse discrete Fourier transform algorithms given 
below should be used. 
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 (5) 

Here NFT is a number of sample points. xn are the elements of discrete time displacements 
and Xk are the elements of frequency spectrums of the discrete time series {xn}. Note the 
forcing samples should be obtained using the discrete Fourier transform [Equation (3)] 
and the transient response [Equation (4)] can be obtained by using inverse discrete 
Fourier transform once the frequency spectrums are calculated by solving Equation (2). 
The inverse Fourier transform procedure is defined using a positive sign in the 
exponential term and can be efficiently calculated using the inverse fast Fourier 
transform (IFFT) algorithm, which has been developed into a mature technology applied 
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successfully to calculate the displacement both in the frequency and time domain [for 
detail discussions on this aspect can be found in (Barkanov et al., 2003; Brigham, 1988; 
Duhamel and Vetterli, 1990)]. 

Accurate calculation of frequency spectrums 
The eigenvalue problem can be written in matrix form as 

 ( )2    1,  2,  , 2j j j j Nλ λ+ + = ∀ = …M C K φ 0  (6) 

Here λj and φj denote the jth eigenvalue and eigenvector (complex mode shape). Suppose 
these eigenvalues are ordered following increasing magnitude of imaginary parts. 
Assume these eigenvalues are distinct, the frequency spectrums can be calculated using 
the complex mode superposition method as 

 ( )
2

1

( )
( )

i

TN
j j

j j j

ω
ω

ω λ θ=

=
−∑

φ F φ
X  with ( )2T

i i i jλ θ+ =φ M C φ  (7) 

Note the parameter θj can be chosen to be unity by normalizing eigenvectors. The method 
requires that all the modes should be available to obtain an exact response. Often only a 
few lower modes are considered in practical analysis. Suppose the lower L pairs of 
complex modes are available, the frequency spectrums are usually calculated in the 
following way with a modal truncation error involved 

 MDM MDM( )= ( ) ( )ω ω ω+X X E  (8) 
in which 

 ( )
2

MDM
1

( )
( )

i

TL
j j

j j j

ω
ω

θ ω λ=

=
−∑

φ F φ
X  (9) 

 ( )
2

MDM
2 1

( )
( )

i

TN
j j

j L j j

ω
ω

θ ω λ= +

=
−∑

φ F φ
E  (10) 

Equation (10) is known as the mode displacement method (MDM). Although the MDM 
is an efficient approximate method, the results of the MDM are not always with 
acceptable accuracy since the modal truncation error given by Equation (11) is introduced. 
Sometimes, the MDM will lead to misleading results [see, e.g., in (Li et al., 2014c; Li et 
al., 2014a)]. Recently, some reduced basis techniques were developed for the frequency 
response analysis [see e.g., (Hetmaniuk et al., 2012; Freund, 2003; Bai and Su, 2005; 
Hetmaniuk et al., 2013; Rumpler et al., 2014) for details].  
 
Next, we present an accurate mode superposition method to calculate the frequency 
spectrums. 

Theorem. Suppose the damped system (1) only has distinct eigenvalues and the sample 
frequencies ω satisfy the convergence condition 

 2 1Lω λ +<  (11) 
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Then the frequency spectrums can be given by 

 ( ) ( ) ( )ω ω ω= +X X E   (12) 
where 

 ( ) ( )
2 2
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Proof. The frequency responses can be exactly expressed as the lower available modes 
and system matrices in terms of Neumann series expansion (Li et al., 2014c) 
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In practice, a few terms in power-series expressed by the second term on the right-hand 
of Equation (17) are considered for suitable accuracy requirements. Suppose the first h 
power-series terms are retained, the frequency response can be expressed as 
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2 2
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The series-truncation error of Equation (18) is introduced and given by 
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Here we introduce an important property between system matrices and complex modes 
(Li et al., 2014c) 
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Substituting Equation (20) into Equation (19) yields 
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If the convergence condition (12) is satisfied, one obtains 

   2 1,  2 2,  ...,  2j j L L Nω λ< ∀ = + +  (21) 
Then the series-truncation error can be given by Equation (15) by using the theory of the 
geometric sequence, and the theorem is proved. 
 

Remark 1. The method is convergent if and only if all the complex modes whose 
eigenvalues are less than the maximal sampling frequency of the FFT are available. 
Equation (14) can be used in the dynamic analysis of practical problems since the number 
h of correct terms is usually very small. Since the power-series expansion is truncated, 
the series-truncation error given by Equation (15) is introduced. When the convergence 
condition is satisfied, the errors can be decreased with the number h is increased. By 
comparing Equations (11) and (15), it is clearly shown that the frequency response 
obtained by Equation (14) can improve the accuracy of the response calculated by MDM 
if the sample frequency is at 0-|λL+1| rad/s. 
 
Remark 2. One of the most robust approaches to obtain these vectors Er(ω) (known as 
the Krylov vectors) is to firstly compute a matrix factorization (e.g., LDLT factorization) 
of the sparse stiffness matrix K. Note it only need to be obtained once for different 
sample frequencies. Then vectors Er(ω) can be determined by an iteration process in 
terms of forward and backward substitutions. In general, the computational cost of 
forward and backward substitutions is much smaller than the matrix factorization. 
 

Criteria. The number h for any simple frequency ω can be determined if the following 
inequality is satisfied. 

 ( ) ( 1)     1h h hε+ − < ∀ >S S  (22) 
in which 
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Here the parameter ε is the given accuracy tolerance. 

Numerical Example 
To illustrate this new method, we consider a simple there DOF damped system with the 
mass, damping and stiffness matrices given by  

2

4

1 0 0
0 10 0
0 0 10

 
 =  
 
 

M , 3

5 0 1
10 0 1 1

1 1 3

− 
 = × − 
 − − 

C , 8

2 0 2
10 0 2 2

2 2 9

− 
 = × − 
 − − 

K  

The complex eigenvalues are obtained as: −0.2475±222.46i, −5.0526±1421.4i and 
−2499.8±13920i. The excitation point is located at the first DOF and the force is shown 
in Figure 1. The time step is chosen as ∆t=0.005 seconds, which means that the 
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maximum simple frequency is 400π rad/s. In view of the convergence condition (12), the 
first pair of complex modes must be included to calculate the transient responses. The 
MDM is also considered to calculate the responses by using the first pair of complex 
modes. Figure 2 shows the responses at the first DOF (here NFT=512). In this case, the 
responses calculated by the MDM is misleading and meaningless. The proposed method 
can show a good agreement with the exact responses by considering a few numbers of the 
correction terms. 

 

   Figure 1. Applied force.                              Figure 2. Transient response. 

Conclusions 
This paper consider the transient response analysis of non-classically damped systems. 
When the mode superposition method is used to calculate transient response, the modal 
truncation error is generally introduced since it is difficult, or even unnecessary, to obtain 
all the modes of a large-scaled model. An accurate modal superposition method is 
presented to calculate the transient response of non-classically damped systems based on 
the Neumann series and the FFT technique. The method maintains original-space without 
having to involve the state-space formula. The method can converge to exact results if 
and only if all the complex modes whose resonant frequencies are less than the maximal 
sampling frequency of the FFT must be available. The applicability of the method is 
investigated using a simple numerical example with non-classical damping. It is shown 
that, the responses calculated by the MDM is misleading and meaningless and the 
proposed method can show a good agreement with the exact responses. 
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Abstract 
The increasing development of materials technology and the consequent rise in complexity of 
structures, demand a proper knowledge of the safety levels involved in the design. The reliability 
techniques applied to structural analysis allow dealing with the uncertainties inherent in the design 
of structures, so that the failure probability can be predicted since the design stage. In this context, 
the design variables are described as random variables, within the choice of an adequate distribution 
model to represent data is required. In an oil and gas well scenario, the casing design is a crucial 
stage of the whole project, representing the major structural elements responsible to maintain the 
well integrity through its lifetime, allowing adequate production activities. The occurrence of 
failures in casing systems can lead to irreversible safety problems in well operation. For the 
evaluation of the strength of the tubes used in casing design, the code API 5C3:1994 is widely 
applied by several companies overall. This deterministic formulation cannot deal with the 
uncertainties associated with the tube manufacturing process, as variations in geometrical and 
mechanical properties. This paper addresses the analysis of casing strength in a reliability-based 
approach, regarding the failure modes usually verified in well casing design. The reliability analysis 
is performed by the Monte Carlo simulation and the First/Second Order transformation methods 
(FORM/SORM). The safety levels associated to the referred formulation are estimated and 
discussed. 

Keywords:  OCTG, Well casing design, Structural reliability, Burst, Collapse 

Introduction 

Casing systems in wells play an important role as the major structural system that keeps the well 
integrity since the drilling and along its lifetime. The main elements in the casing are the tubulars 
and connections between them, which have to be designed in order to support the external loadings 
that they are subjected. In offshore well construction, which includes drilling, casing and 
completion stages, the casing system may represent around 15% to 20% of the total cost. The search 
for oil and gas in increasingly higher depths exposes the casing to extreme conditions, including 
high levels of pressure and temperature, besides chemical attack as, for instance, corrosion due to 
hydrogen sulfide gas. In this scenario, the adequate balance between cost and safety levels has to be 
reached in the design, and the structural reliability theory can assist the designer in this decision-
making process. 
 
The main loadings experienced by casing in vertical wells are represented by internal pressure, 
external pressure and axial force. The failure modes associated to internal and external pressure, so-
called burst and collapse, respectively, are the governing failure modes in the problem. Tensile or 
compressive forces occur along the casing, but rarely induce tube failure alone. In the case of 
directional wells, not assessed in this work, additional torsion and bending effects can stand out. 
The strength equations of tubulars are posed in the code API 5C3:1994, which is widely applied by 
oil and gas companies. This formulation refers to a serviceability limit state (SLS) related to the 
elastic regime. Therefore, the tubes are designed to bear loads up to reaching the steel yielding 

ICCM2014, 28th-30th July 2014, Cambridge, England

626



limit, disregarding its bearing capacity after this point. This is one of the reasons that makes this 
code seems conservative, underestimating the actual strength of the tube. The API 5C3:1994 
normative code suggests the Barlow’s equation for burst design strength, whose derivation is done 
by assuming thin wall hypothesis, which can be inadequate in some tubes commonly adopted in 
casing design. In terms of external pressure, the code provides four minimum collapse formulas for 
design strength, developed on the 1960’s, being each formula suitable for a distinct D/t interval. 
 
A new version of the code (API 5C3:2008, identical to ISO/TR 10400:2007) introduces the ultimate 
limit state (ULS) philosophy in casing design and suggests that reliability-based procedures can be 
performed in order to enhance the strength evaluation. An ultimate limit state equation is usually 
related with experimental rupture test results, since it tries to estimate the load at which the casing 
actually fails. Therefore, a proper equation is usually chosen by fitting experimental test data. 
Although this proposed improvements, the older version from 1994 is still the most adopted in 
design routines. The new paradigm of ULS associated to probabilistic design is slowly being 
introduced in the companies by consulting and research activities. 
 
The increasing development of materials and structural modeling, and the consequent growing in 
complexity of structures, demand a proper knowledge of safety levels involved in the design. The 
structural reliability theory provides methods to evaluate these safety (or risk) levels, accounting for 
the uncertainties inherent to the design. In engineering applications, the uncertainties commonly 
verified relates to mechanical (material) parameters, as Young modulus or tensile strength, and 
dimensional parameters, as lengths and masses, for instance. It refers directly to non-uniformity on 
the manufacturing process of structural materials and elements. In the light of probability and 
statistics concepts, these uncertainties are modeled as random variables, and collected together in a 
framework of mathematical models that estimate the probability of failure associated to a specific 
failure mode defined by the user. Fundamentals and applications of the structural reliability theory 
can be found in Melchers (1999), Ang and Tang (2007), Ditlevsen and Madsen (2005), among 
others. 
 
Specifically, in oil and gas industry, well casing design is related to steel tubular manufacturing, 
whose production quality and inspection procedures have been improved significantly in the last 
decades. The suggested casing strength formulas are dependent on the outside diameter (𝐷) and 
wall thickness (𝑡) – usually referred by the slenderness ratio 𝐷/𝑡 – and yield stress. In this case, the 
old version of API code recommends adopting conservative minimal or nominal values for these 
parameters and, additionally, in the design process, safety factors are applied to ensure implicitly a 
tolerable risk level (TRL). On the other hand, if the supplier guarantees accuracy in the manufacture 
and inspection processes, with lower dispersion levels in the tube performance values, and 
consequently the TRL can be kept by allowing the structural element to bear a higher load than the 
one predicted by the standard. 
 
Some works in the literature address the recommended formulas from API 5C3:1994 and discuss its 
seeming conservative nature, besides proposing ULS formulations. Some works can be found in the 
literature with distinct ultimate limit state equation suggestions for burst [Klever and Stewart 
(1998); Klever (2010)] and collapse [Abbassian and Parfitt (1995); Klever and Tamano (2006); 
Tamano et al. (1985)]. As previously stated, new design codes also proposes to going beyond the 
elastic limits, enforcing this ultimate limit state philosophy. 
 
The probabilistic analysis of casing design have been studied by some authors, since the 1990’s. 
Adams et al. (1998) present the behavior of failure probabilities for API 5C3 strength in the ULS 
analysis provided by Tamano et al. (1985), and verify that it gives a wide range of variation for 
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failure probabilities over a 𝐷/𝑡 range, concluding that this behavior is not desirable and suggesting 
a new reliability-based method for collapse casing design. Ju et al. (1998) proposes a different 
formulation. The code API 5C3:2008 itself does a very similar development, but it adopts Klever 
and Tamano (2006) as the ultimate state limit equation suggesting a more robust probabilistic 
method for collapse casing design. Burres et al. (1998) propose an interesting discussion, working 
on the calibration of safety factors in design equations in order to reach a specific TRL. 
 
This paper addresses two kinds of reliability analyses. The first one is done by verifying the 
probabilities of API 5C3:1994 design strength be exceeded when the maximum deterministic load 
that it was designed is reached, instead of the failure probability of the casing actually fails if the 
same load is achieved. It means that this paper is not going to analyze the probability of failure for 
an ultimate limit state, but it is going to do it for the design equation, which is really used in design 
procedures. This kind of analysis can be useful to verify the influence of the dispersion of design 
variables in each design equation, across the 𝐷/𝑡 range, and to check the probability of this design 
strength be exceeded, leading the casing tube to transcend the elastic limit. A second analysis is 
developed by addressing a hypothetical design scenario, including defined loading profiles, for 
which the probability failures are evaluated along the depth of the well. This application becomes 
useful when the results are compared to the safety factors adopted by each company for each failure 
mode in the deterministic design. 
 
The First and Second Order Reliability Methods (FORM/SORM) and the Monte Carlo simulation 
are used in this paper to perform the probabilistic analysis. The evolution of safety levels implicitly 
associated to the referred equations across 𝐷/𝑡  and for distinct grades is investigated, and a 
performance comparison between these methods is carried out. 
 
This work is divided in three main sections. The first one has a brief review of what is and how 
works a structural reliability analysis. The second one brings an overview of the recommended 
practices for casing burst and collapse design made by API 5C3:1994. Finally, in the last section, 
the concepts are combined and the simulations are presented, discussing the results. 

Structural Reliability Analysis 

Essentially, a structural reliability analysis needs a limit state function, some random variables and a 
reliability method. The limit state function must represent the problem which is going to be studied, 
in general, it gives positive values for safe events and negative values for failure events. The failure 
modes considered in this paper represent the safety margin of probabilistic API 5C3 casing design 
strength be exceeded by the deterministic corresponding strength. Equation (Erro! Fonte de 
referência não encontrada.) presents the failure mode adopted 𝐺(𝑿), where 𝑅(𝑿) is the resistance 
term and 𝐿 is the load term. 

 𝐺(𝑿) = 𝑅(𝑿) − 𝐿 (1) 

where 𝑿 is a vector containing the random variables. As the focus of this paper consists on the 
analysis of casing strengths, only the resistance term is going to be assumed as probabilistic. 
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Random variables must estimate the behavior of geometric/mechanical properties and other design 
variables related to the structural element, that influence the resistance term in limit state function. 
On the other hand, the load term in limit state function also could have random variables, which 
could be the self-weight, some external mechanical load or the one caused by temperature variation, 
for instance. The correlation between random variables also can be attached on reliability-based 
problems, although the literature states that adopting the variables as independent is a conservative 
procedure. In the following analysis, random variables are going to be independent, but the 
correlation between them can be adopted in future works. 
The reliability-based method is going to link the limit state function with the random variables to 
compute a failure probability. For structural reliability the Monte Carlo Method, FORM and SORM 
are the most known ones [Melchers (1999)]. In the next sections, these methods are briefly detailed. 

Monte Carlo Simulation 

The method consists in generate 𝑛  random scenarios to be tested in the limit state function, 
computing the number of failure events 𝑛𝑓 (when 𝐺(𝑿) ≤ 0), and estimate the failure probability 
by 𝑃𝑓 = 𝑛𝑓 𝑛⁄ . 
The random scenarios are defined by generating 𝑛  aleatory values for each random variable 
assumed in the analysis. Therefore, the statistical characterization of each variable and a random 
number generator are required. An illustrative example of a Monte Carlo simulation is presented in 
Fig. Erro! Fonte de referência não encontrada., in which a thousand events are generated. Each 
event is tested with the limit state function, where if the resistance (𝑅) is higher than the load (𝐿), 
there is a safe event, otherwise there is a failure event. In this hypothetical example 𝑅 and 𝐿 are 
Gaussian distributed random variables with means 115.0 and 90.0, and standard deviation equals to 
4.0 and 10.0, respectively. It is usual to adopt the notation    𝑅 = 𝑁(115.0; 4.0)  and 𝐿 =
𝑁(90.0; 10.0). 
 

 
Figure 1. Monte Carlo illustrative example assuming R=N(115.0;4.0) and L=N(90.0;10.0) 

 
By its nature, Monte Carlo provides very accurate results, since an adequate number of simulations 
is performed. However, this method may have issues with very low failure probabilities once it will 
need, at least, the inverse of the failure probability number of scenarios to possibly be capable to 
detect one failure event, i.e., if the problem has a probability of failure equals to 10−6, a minimum 
of 10−6 scenarios has to be generated and simulated. It has to be regarded that the estimated value 
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𝑃𝑓 is also a random variable, and some expressions are proposed to define a minimum number of 
scenarios which leads to a desirable covariance of 𝑃𝑓 . The computational cost in Monte Carlo 
simulations may increases substantially in some applications, being noted as a possible 
disadvantage. Some strategies of random data generation can be applied in order to improve 
performance in this method as, for instance, stratified sampling and other importance sampling 
procedures. 

First/Second Order Reliability Methods 

A reliability analysis problem can be mathematically expressed considering the limit state function 
(𝐺(𝑿) = 0) and the adopted random variables 𝑿, being 𝑃𝑓 exactly evaluated by the integral: 

 𝑷𝒇 = 𝑷(𝑮(𝑿) ≤ 𝟎) = ∫ 𝒇𝑿(𝒙)𝒅𝒙𝑮(𝑿)≤𝟎  (2) 

in which 𝒇𝑿(𝒙)  is the joint probability density function of the random variables 𝑿 . However, 
depending on the number of random variables, this integral is not easy to solve and numerical 
approximations should be applied, where Monte Carlo simulation is an option. Transformation 
methods as the First Order Reliability Method (FORM), which one is analytically derived and 
iteratively solved, stand out as an interesting choice. The method consists in transforming all 
random variables (𝑿) in its corresponding standardized normally distributed ones (𝑼), this is done 
by first applying a normal tail approximation and then reducing them to standard normal probability 
distribution function. It is also necessary to rewrite the limit state function for this standard normal 
space (𝐺(𝑼) = 0). In this new space, the probability of failure concept can be associated with the 
shortest distance between the new adopted limit state function and the transformed random 
variables space origin. This distance is known as the reliability index 𝛽 and its relation with 𝑃𝑓 is 
provided by: 

 𝑷𝒇 = Φ(−𝛽) (3) 

The reliability analysis is posed as a nonlinear optimization problem, in which one wants to 
minimize the distance 𝛽 subject to the constraint function 𝐺(𝑼) = 0. The point 𝑼∗ in which this 
condition is the most probable failure point, the so-called design point. Thus, the reliability index 
corresponds to the norm of the position vector of this point, i.e., 𝛽 = ‖𝑼∗‖. The random variables 
transformation is made as suggested by Hasofer and Lind (1974). The limit state function is 
approximated by a first order Taylor series at the current search point from the iterative 
optimization problem. The optimization problem can be expressed as follows: 

 𝛽 = min(‖𝑼‖) , 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑡𝑜 𝐺(𝑼) = 0  (4) 

The algorithm HLRF (Hassofer, Lind, Rackwitz and Fiessler) is classically employed to the 
optimization problem solution. In general, in few iterations (less than 10) the convergence is 
reached. An advantage of this method is that it can be solved faster than Monte Carlo simulation, 
regarding a good level of accuracy, in many applications. Moreover, if the limit state function is 
linear on the random variables, these ones presenting Gaussian distribution, FORM results are 
exact. Figure 2 illustrates the procedure. 
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Figure 2. FORM illustrative Scheme: original and standard normal spaces 

 
Another information extracted from FORM is the importance factor of each random variable, for 
the achieved failure probability. This information is associated with the position vector 𝑼∗ and the 
partial derivatives 𝐺(𝑼) at this point. The importance factor give the influence of the random 
variable in the aleatory process. 
 
It should be noted that, in the case of correlation between random variables, additional steps are 
necessary. In order to calculate the equivalent correlation coefficient for each pair of variables in the 
transformed normal space, the procedure proposed in Nataf (1962) can be applied. Moreover, this 
correlation has to be eliminated, so that the final transformation into standardized normal 
independent variables 𝑼 can be performed. These procedures are detailed in Melchers (1999). 
 
In some cases, in which the variables are tightly correlated, or present non-Gaussian distributions, 
or when the limit state function is strongly nonlinear, the use of a second order approximation of the 
limit state function can improve the accuracy of results obtained in the transformation method. This 
give rises to SORM (Second Order Reliability Method). This approximation demands more 
information over the limit state function, as its curvatures. The final approximation consists in a 
parabolic equation centered on the design point. In this work, the Breitung approximation is adopted 
[Breitung (1984)]. More details can be seen in Melchers (1999). 

Casing Strength Formulation 

The recommended practices for casing well design described by API 5C3:1994 are summarized in 
this section, focusing the axial, burst and collapse strengths. 

Axial Strength  

The axial strength that corresponds to a stress equal to the minimum yield strength, given as 
follows: 

 𝑅𝑡 = 0.7854(𝐷2 − 𝑑2)𝑌𝑝  (5) 

where: 
𝑅𝑡 pipe body yield 
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𝑌𝑝 material minimum yield strength 
𝐷 specified outside diameter 
𝑑 specified inside diameter 
 
The axial force is the result of the balance between self-weight of the pipe and the pressure caused 
by the drilling fluid and other fluids from formation. As stated before in this text, it does not 
configure a governing failure mode by itself. 

Burst Strength 

The internal pressure that leads to a stress, on the inside wall, equals to the minimum yield strength. 
The failure mode associated is a brittle rupture of the tube. The equation is based on the Barlow’s 
equation, suitable to thin wall tubes: 

 𝑃𝑖 = 0.875 �2 𝑌𝑝 𝑡
𝐷
� (6) 

Where 𝐷 is the outside diameter, 𝑡 is wall thickness and 𝑌𝑝 the minimum yield strength of the steel. 
The reduction factor 0.875 refers to a tolerance of -12.5% in the wall thickness. This value is the 
allowable limit due non-uniformity in manufacture process, and is preconized by the code API 
5CT:2010. This is one the reasons why the equation seems to be conservative. 

Collapse Strength 

When a pipe collapses due to external load, it changes the geometry to elliptical or other non-
circular shape. It brings structural problems associated to loss of rigidity and local instability in the 
tubes, besides operational issues as blocking of passage of equipment into the tube. The external 
load is usually caused by pore-pressure, pressure from the drilling fluid, or fluid expansion due to 
temperature gradient. According to API 5C3:1994, four distinct casing slenderness 𝐷/𝑡 domains 
compose the collapse design strength. Yield strength collapse pressure formula (Eq. (7)) provides 
the load that generates minimum yield stress 𝑌𝑝 on the inside wall of the tube. This formula is 
achieved by means of Lamé’s classical equation. 

 𝑅𝑐𝑦 = 2𝑌𝑝 �
(𝐷 𝑡⁄ )−1
(𝐷 𝑡⁄ )2 �  (7) 

Average plastic collapse pressure formula (Eq. (8)) was derived empirically from several collapse 
tests for casing tube grades K55, N80 and P110. This is the usual nomenclature for the steel which 
the casing tube has been made, where the first letter refers to its tensile strength and the following 
digits refers to its minimum yield stress. The data used by API 5C3:1994 authors was taken from a 
report made by a Workgroup composed by members from manufacturers and members from API 
itself. Collapse tests data were fitted separately for each grade, and then, constants 𝐴 and 𝐵 were 
empirically determined to generalize an average plastic collapse pressure formula. To obtain the 
minimum plastic collapse pressure formula a constant pressure for a particular grade, a constant 𝐶 is 
subtracted from the average expression. This constant 𝐶  is a tolerance limit and represents the 
conception that there is a 95% probability or confidence level that the collapse pressure will exceed 
the minimum stated with no more than 0.5% failures. 

 𝑅𝑐𝑝 = 𝑌𝑝 �
𝐴

(𝐷 𝑡⁄ ) − 𝐵� − 𝐶  (8) 

Transition collapse pressure formula (Eq. (9)) overcomes an anomaly that happens between 
minimum plastic collapse formula and minimum elastic collapse formula: they do not intersect 
across the 𝐷/𝑡 range. Thus, this formula has been developed intersecting the 𝐷/𝑡 value where the 
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average plastic collapse pressure formula gives a collapse pressure of zero and is tangent to the 
minimum elastic collapse pressure. 

 𝑅𝑐𝑡 = 𝑌𝑝 �
𝐹

(𝐷 𝑡⁄ ) − 𝐺� (9) 

Finally, the minimum elastic collapse pressure formula (Eq. (10)) was derived from theoretical 
elastic collapse pressure formula, resulting in the equation: 

  𝑅𝑐𝑒 = 46,95×106

(𝐷/𝑡)×((𝐷/𝑡)−1)2
   (10) 

The 𝐷/𝑡  limits are the ones which define the collapse domains. They are determined by the 
intersection of the collapse pressure formulas described above and are shown below 

(𝐷/𝑡)𝑌𝑝 =
�(𝐴−2)2+8�𝐵+� 𝐶

𝑌𝑝
��+(𝐴−2)

2�𝐵+� 𝐶
𝑌𝑝
��

 (11) 

(𝐷/𝑡)𝑃𝑇 = 𝑌𝑝(𝐴−𝐹)

𝐶+𝑌𝑝(𝐵−𝐺) (12) 

(𝐷/𝑡)𝑇𝐸 = 2+𝐵/𝐴
3𝐵/𝐴

 (13) 

These 𝐷 𝑡⁄  limits are dependent only on the yield stress (in psi) and must be calculated for each 
steel grade. Once they are determined, it is necessary to verify the casing design collapse domain by 
its thickness 𝐷 𝑡⁄ . If casing 𝐷 𝑡⁄  is lower than(𝐷 𝑡⁄ )𝑌𝑝, yield collapse pressure formula must be 
applied. If casing 𝐷 𝑡⁄  is higher than (𝐷 𝑡⁄ )𝑌𝑝, but lower than (𝐷 𝑡⁄ )𝑃𝑇 , minimum plastic collapse 
pressure formula must applied. If casing 𝐷 𝑡⁄  is higher than (𝐷 𝑡⁄ )𝑃𝑇 , but lower than (𝐷 𝑡⁄ )𝑇𝐸 , 
transition collapse pressure formula must applied. If casing 𝐷 𝑡⁄  is higher than (𝐷 𝑡⁄ )𝑇𝐸 , minimum 
elastic collapse pressure formula must be applied. The coefficients 𝐴, 𝐵, 𝐶 , 𝐹  and 𝐺  are shown 
below: 
 
𝐴 = 2.8762 + 0.10679 x 10−5 𝑌𝑝 + 0.21301 x 10−10 𝑌𝑝2 − 0.53132 x 10−16 𝑌𝑝3 
𝐵 = 0.026233 + 0.50609 x 10−6 𝑌𝑝 
𝐶 = −465.93 + 0.030867 𝑌𝑝 − 0.10483 x 10−7 𝑌𝑝2 + 0.36989 x 10−13 𝑌𝑝3 

𝐹 =
46.95 x 106 � 3(𝐵 𝐴⁄ )

2+(𝐵 𝐴⁄ )�
3

𝑌𝑝 �
3(𝐵 𝐴⁄ )
2+(𝐵 𝐴⁄ ) − (𝐵 𝐴⁄ )� �1 − 3(𝐵 𝐴⁄ )

2+(𝐵 𝐴⁄ )�
2 

 

𝐺 =
𝐹𝐵
𝐴

 

The collapse resistance of casing in the presence of an axial stress is calculated by modifying the 
yield stress to an axial stress equivalent grade according to: 

𝑌𝑝𝑎 = ��1 − 0.75�𝑆𝑎 𝑌𝑝⁄ �
2
− 0.5�𝑆𝑎 𝑌𝑝⁄ �� 𝑌𝑝 (14) 

where: 
𝑆𝑎 axial stress (pounds per square inch) 
𝑌𝑝 minimum yield strength of the pipe 
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𝑌𝑝𝑎 yield strength of axial stress equivalent grade, pounds per square inch. 

Analysis and Results 

In order to associate the concepts presented in previous sections, some reliability analyses are 
performed as follows. The transformation methods FORM and SORM, besides crude Monte Carlo 
simulation are applied. The set of  random variables contains the yield strength 𝑌𝑝 , the outer 
diameter 𝐷 and the wall thickness 𝑡, and its statistical parameters are taken from the code ISO 
10400:2007. The referred statistical database compiles several manufacturing production data, 
between 1977-2004, being representative of different manufacturing technologies and quality 
levels. The statistical parameters are evaluated by using the coefficients shown in Table 1, for the 
three steel grades adopted, K55, N80 and P110. The grades represents that the steel used has a 
minimum yield strength of 55000 psi, 80000 psi and 110000 psi, respectively. In this table, mean is 
equal to the actual mean value divided by the nominal value, and COV is the standard deviation 
divided by the actual mean value. According to the reference, the variables are normally distributed. 
 
The tolerable failure probability values are not an unanimity over the scientifical/technical 
community in structural engineering in general. It depends on the class of the structure, the failure 
cost, among others. The implication of human lives and environmental risks are also determinant 
aspects on the definition of a required safety level. Recommendations on some normative codes just 
begin to appear, e.g., the ones based on JCSS (Joint Committee on Structural Safety) suggestions. In 
well design industry, it consists in a subject of relatively incipient discussion. In the present text, 
probabilities of failure higher than 10-3 are considered unallowable, based on technical literature for 
applications in engineering. 

Table 1. Statistical coefficients used to characterize the random variables 
𝑌𝑝 𝐷 𝑡 

mean COV mean COV mean COV 
K55 

1.0059 0.00181 1.0069 0.0259 

1.23 0.0719 
N80 

1.21 0.0511 
P110 

1.09 0.0377 

Collapse and Burst Design Formulation Analyses 

In that follows, both for collapse and burst, the reliability evaluation uses a limit state function that 
assumes the strength as probabilistic and the load as deterministic. The probabilistic strength 
formula is obtained by adopting the variables as random in the API 5C3 design equation. The 
deterministic load is set equals to the value of API 5C3 design strength, calculated on the nominal 
values. It means that the failure probability achieved represents the probability of the design 
strength be exceeded if there is a load equal to the minimum strength currently used in design. 
Thus, the limit state function can be written as: 

 𝐺�𝑌𝑝,𝐷, 𝑡� = 𝑅𝑐𝑜𝑛𝑓�𝑌𝑝,𝐷, 𝑡� − 𝐿𝑑𝑒𝑡 (15) 

It has to be noted that the correction factor 0.875 is not used in the term 𝑅𝑐𝑜𝑛𝑓�𝑌𝑝,𝐷, 𝑡� in burst 
analysis. The variability of wall thickness is consistently treated here, by assuming it as a random 
variable. Figure 3 presents the results for collapse reliability analysis. 
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Figure 3. Collapse failure probabilities over D/t range 

 
The four collapse domains described in the previous section present different failure probabilities 
over 𝐷/𝑡 range, besides the theoretical formulas give nearly constant failure probabilities (yield and 
elastic collapse pressure formulas) and the empirical formulas give variable failure probabilities 
(plastic and transition collapse pressure formulas). For the three grades it is noticed that the 
probability of failure grows as the casing tube 𝐷/𝑡 increases. This kind of behavior is not desirable 
in a design formulation, since it is expected constant safety level for all casing tubes designed by the 
same normative code. This is one of the main arguments posed by the committee which worked on 
the new version of the code (API 5C3:2008), proposing only one ULS formulation, and 
encouraging to use probabilistic analysis in design. 
 
The analysis of burst formula is presented in Fig. 4. 
 

 
Figure 4. Burst failure probabilities over D/t range 
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In this case, the failure probabilities have a constant behavior over the 𝐷/𝑡 range.  However, the 
failure probabilities are not constant when the casing grade varies. It is noticed that grade N80 has a 
much lower failure probability then the other two grades. This behavior may occur because mean 
and COV of 𝑌𝑝 vary with grade. However, the design formulation should have been calibrated to 
achieve a target reliability level considering the statistical data from production. 
 
It should be noted that FORM results agree with SORM and Monte Carlo in both collapse and burst 
reliability analysis. The nature of these equations and its smooth nonlinearity contributes to this 
fact. It is possible that, in strongly nonlinear limit state functions, SORM provides quite different 
results. The maximum relative error observed between 𝑃𝑓 values obtained by FORM and SORM is 
around XX% for collapse and XX% for burst. Monte Carlo is not compared with a numerical 
measurement error due its intrinsic random results, although the graphical visualization 
demonstrates a good agreement between Monte Carlo and the other reliability methods. 
 
The importance factors obtained by FORM for collapse analysis are shown in the following Fig. 5. 
 

 
Figure 5. Importance factors over D/t range for collapse achieved probabilities of failure 

 
For all grades, the most influent random variable in the process is the wall thickness, except for 
thick casing tubes in which the yield stress governs the probabilistic behavior. On the other hand, 
the diameter has a negligible influence in all these results. It means that considering it as 
deterministic will not affect significantly the failure probability values. These importance factors 
results are mainly impacted by the formulation used and by the adopted dispersion for each random 
variable, as it can be noticed in Table 1 that the diameter has the lowest COV. 
 
FORM burst analysis provides the importance factors shown in Fig. 6. The yield stress is the most 
influent random variable in the achieved failure probability, followed by the wall thickness in all 
grades. Observing Table 1 and Fig. 6 it can be seen that the higher COV gives the higher importance 
factor for K55 grade. The others grades respect the following order. Once again, external diameter 
is the less important random variable, meaning that its dispersion is very small. 
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Figure 6. Importance factors over D/t range for burst achieved probabilities of failure 

Analysis of an Extreme Design Scenario: Kick 

In a casing design routine, the tubes are designed for different loading conditions throughout the 
well depth. Depending on the depth and the geomechanical conditions, extreme scenarios may 
occur along the drilling, casing, completion and production stages. These kind of scenarios has to be 
simulated in the well design. A kick situation is defined when a gas invades the drilling column, 
increasing drastically the expected internal pressure levels on the casing system, leading to possible 
accidents as a blow-out. For design purposes, it is considered that the last 2/3 of well depth are 
occupied by gas. 
 
It is assumed a drilling of a 5700 m depth well, under 2000 m of water. The calculations of each 
pressure term are neglected, for sake of conciseness. The loading profile is shown in Fig. 7, in 
which is defined the differential pressure over the depth, resulting on a burst (internal pressure) 
failure mode overall. For this analysis is assumed a 10 3/4 in 85.3 lb/ft tube, which is widely 
applied in surface and intermediate casing structures. It has outer diameter of 10.75 in and wall 
thickness equals to 0.797 in. 
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Figure 7. Loading Profile on the kick scenario 

 
Regarding the reliability analysis, the limit state function adopted has the format: 

 𝐺�𝑌𝑝,𝐷, 𝑡� = 𝑅𝑐𝑜𝑛𝑓�𝑌𝑝,𝐷, 𝑡� − 𝐿𝑑𝑒𝑡 (16) 

in which  the load term is evaluated along the well depth according to the presented loading profile. 
The reliability evaluations are done every 100 m. The results are shown in Fig. 8, in which the 
failure probability values are log scaled. 
 
As expected, the tube made of grade K55 reaches higher failure probability values. The severe 
values of pressure from 2000 m up to 4000 m leads to unallowable levels of 𝑃𝑓  for this tube, 
showing its inadequacy for this scenario. 
 
Considering that the differential pressure is constant up to around 3223 m, from which is considered 
the fluid inflow, the failure probabilities remain unchanged. From this point on, until 5700 m, it is 
observed a quasi-linear decrease of 𝑃𝑓 values, referring to the reduction of applied pressure, due to 
the low specific weight of the invading fluid. 
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Figure 8. Evolution of failure probability along the depth 

 
This kind of analysis allows to compare the 𝑃𝑓 values in any point along the well depth with the 
safety factors usually employed in casing design. This discussion is not developed here, considering 
that these factors are defined by each oil company. 

Conclusions 

The classical casing collapse and burst strength equations are revisited in the light of a probabilistic 
approach. Moreover, the reliability analysis is applied to the verification of an extreme event kick 
scenario. 
 
Regarding the analysis on the collapse design formulation, it is noticed that there are some high 
failure probability values associated to the collapse design strength, when a deterministic load 
equals to the minimum casing strength is considered.  Moreover, the non-uniformity of the safety 
levels across the slenderness 𝐷/𝑡 is not a proper behavior, for structural design purposes. The 
importance factors values indicates that wall thickness is the most influent random variable in the 
achieved failure probability. 
 
For burst analysis, moderate failure probability values are verified. The importance factors values 
indicates that the material yield limit is the most influent random variable in the achieved failure 
probability, followed by the wall thickness. The supposed conservative nature of the burst equation, 
posed by several authors in the literature, is apparently verified here. 
 
The application of a probabilistic evaluation in the casing design practice can be done by 
procedures such as the scenario analysis presented. It brings robustness to the analysis, and assess 
the designer in decision-taking processes aiming both investment savings in simple wells and 
feasibility in complex wells. 
 
In this context, the need of detailed analysis both on casing design formulation and about the non-
deterministic nature of strength parameters stands out. The standardization codes and oil/gas 
companies are interested in these issues since the last two decades, and some scientific and 
technical publications has been developed. Some effort has also to be done in order to consider 
combined load cases in a probabilistic approach, focusing on the stochastic behavior of 
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environmental load scenario. Reliability-based analysis also proves to be useful for industry and 
designers as a device to identifying aspects in which the manufacturing process has to be improved 
in its accuracy and quality inspection. 
 
It should be remarked that the results presented in this paper are only indicatives of the probabilistic 
behavior associated to the design formulations studied. The 𝑃𝑓  values themselves have to be 
interpreted with caution, as they reflect the behavior of a specific statistical database, provided by 
the code ISO 10400:2007. 
 
This research group is engaged in probabilistic analysis of combined failure modes for well casing 
by both SLS and ULS approaches. A graphical user interface have been developed in order to 
disseminate the reliability analysis practice among casing designers. 
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Abstract 
A kind of smart mandrels (shape memory polymer (SMP) mandrels) have been 
demonstrated to make up the drawbacks of traditionally mandrels (multi-pieces metal 
mandrel, water-soluble mandrel and elastomeric rubber mandrel), such as time-
consuming and difficulty to remove. In the paper, the styrene-based SMP has been 
used to fabricate the bottle-shaped and air-duct shaped smart mandrel. Firstly, the 
glass transition temperature of SMP has been obtained by dynamic mechanical 
analysis (DMA) test, the peak value of the loss angle has been chosen as the glass 
transition temperature (63oC). Secondly, the bottle-shaped and air duct-shaped smart 
mandrels have been manufactured by the process of curing, forming, heating, 
inflating, cooling and removing. At the same time, the corresponding recovery 
processes of smart mandrels have been measured to show the good shape recovery 
ability of SMP mandrels. Finally, the shape recovery process of bottle-shaped 
mandrel is simulated by finite element method. These results show that SMP can 
provide some experimental and theory guide for the application field of mandrel 
fabrication. 

Keywords:  Shape memory polymer, Smart mandrel, Shape recovery process, Finite 
element method 

Introduction 
Shape memory polymer is a kind of new smart materials, which can keep one 
temporary shape and recover the original shape under some special external stimulus 
[Leng et al. (2011); Baghani et al. (2012); Liu et al. (2006)], such as temperature 
[Tobushi et al. (1997); Tan et al. (2013)], electricity current [Liu et al. (2009); Lv et al. 
(2010)], light [Lendlein et al. (2005) ], magnetic filed [Conti et al. (2007)] and 
solution [Wang et al. (2012); Lv et al. (2008)], and so on. Nowadays, SMPs have 
attracted a great deal of interest since the development of 1984, particular in the last 
few years [Leng et al. (2011)]. A typical thermomechanical cycle can be shown in 
Figure 1 [Lan et al. (2009)]:(1) Fabricating the original shape of SMP sample and 
heating it above the glass transition temperature; (2) Loading the sample to a 
temporary shape; (3) Keeping the deformation and cooling the temperature to the 
room temperature (lower than glass transition temperature); (4) Keeping the 
temperature and removing the external load; (5) Reheating the sample above the glass 
transition and recovering the original shape. 
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Figure 1. The schematic of a typical thermomechnical cycle of SMP sample  

[Lan et al. (2009)] 
 
Compared with traditionally metal materials and shape memory alloy (SMA), SMP 
possess the unique advantages of low density, high elastic deformation, low energy 
consumption for shape programming, excellent manufacturability, and low cost 
[Baghani et al. (2012); Xie (2010); Meng and Li (2013)]. Today, SMP have been 
synthesized, fabricated, designed, investigated, developed and utilized in a wide range 
of application [Baghani et al. (2012)]. Such as aerospace [Sokolowski and Tan 
(2007)], medical research [Lendlein and Langer (2002)], textiles industry [Hu et al. 
(2012)] and mandrel fabrication technology [Everhart et al. (2005; 2006)]. 
Cornerstone Research Group (CRG) Company have fabricated some smart mandrels 
by using shape memory polymer and verified the feasibility of this kind of technology 
[Everhart et al. (2005; 2006)]. In this paper, the application of SMP for mandrel 
fabrication in aerospace field is investigated, mainly including bottled-shaped 
mandrel and air duct-shaped mandrel. 
 
Traditionally, the fabrication methods for complex shape composite parts are mainly 
multi-piece metal mandrel, water-solution mandrel and inflation elastomeric mandrel 
[Everhart et al. (2005; 2006), Kim et al. (2010)]. However, there are some inherit 
disadvantages for every kinds of mandrels. Multi-piece metal mandrel must be 
disassembled one by one after curing the composite parts and reassembled before 
next use; water-solution mandrel must collect the waste and dispose it for next use 
[Everhart et al. (2005; 2006)]; inflation elastomeric mandrel is difficult to provide 
enough stiffness for uncured composites and the mandrel is easy to damage. On the 
other hand, SMP mandrel can provide large deformation under high temperature and 
keep the shape until low temperature, when the temperature is lower than glass 
transition temperature, the materials can also meet the need of filament winding under 
small deflection [Everhart et al. (2005; 2006)]. Considering these factors, SMP can be 
expected to be used as a kind of mandrel for the fabrication of complex shape 
composite parts in the future. 
  
Based on the above-mentioned state, the mainly content can be organized as follows. 
In section 2, the polymer materials to fabricate the SMP mandrels are selected and the 
mechanical properties (such as storage modulus and loss angle) are measured by 
DMA; In section 3, the SMP bottle-shaped mandrel and air duct-shaped mandrel are 
fabricated by inflation method; In section 4, the shape recovery ability of SMP 
mandrels has been demonstrated under some special temperature, then, shape 
memory process of bottle-shaped SMP mandrel can be simulated by finite element 
method; Finally, in section 5, the summary and conclusions are given to verify the 
feasibility of SMP mandrel for the future aerospace applications. 

Materials 
As shown in our prior paper, there are many kinds of SMP materials for application, 
mainly including styrene, epoxy, cyanate, and so on [Liu et al. (2014)]. In our work, 
the material for fabricated SMP mandrels is styrene-based SMP material due to the 
relatively large deformation ability and shape recovery ability. The general 
mechanical properties for styrene-based SMP can be measured by DMA device, the 
three-point testing is selected and the temperature range is designed from 298K(25°C) 
to 363K(90°C) with the heating and cooling rate 5K/min. The values of loss angle can 
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be shown in Figure 2. The peak of loss angle (63°C) can be selected as the glass 
transition temperature in our work.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The DMA curve of styrene-based SMP 

Fabrication of SMP mandrel 
In this section, the bottle-shaped SMP and air duct-shaped mandrel are demonstrated 
by the fabrication technique of inflation method. 

Fabrication of bottle-shaped SMP mandrel 
The basic fabrication diagram of bottle-shaped SMP mandrel can be shown in Figure 
3, mainly including curing, forming, heating, inflation, cooling and removing steps. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. The design diagram of bottle-shaped SMP mandrel 
 
As shown in Figure 3, the two kinds of additive molds for fabricating bottle-shaped 
mandrel are steel materials with high stiffness and low thermal expansion coefficient 
to make sure the accuracy of SMP mandrels. The original SMP mandrel is a tube with 
internal diameter 36mm, outer diameter 40mm and thickness 2mm, the length is 
120mm; the final bottle-shaped mandrel with the maximum diameter 50mm at the 
middle part of the mandrel and 40mm at the two end of mandrel. The shape 
deformation can be defined by the change in the middle part of mandrel, so the 
maximum ratio is 25%. In addition, the bottle-shaped mandrel with 50%, 75% and 
100% can be fabricated with the same method. 
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Fabrication of air duct-shaped SMP mandrel 
After the bottle-shaped SMP mandrel is fabricated, the air duct-shaped mandrel is 
also designed and fabricated. The geometry of air duct-shaped mandrel is that a 
rectangle section at one end with the length 48mm and width 36mm, the other end is 
circular section with a diameter 55mm, the middle part is gradually transformed from 
the rectangle section to circular section [Lin et al. (1989)]. The original shape of air 
duct-shaped mandrel is a tube due to the simple fabrication process, the final air duct 
shape can be obtained by inflating method, the final shape and original shape of air 
duct-shaped SMP mandrel can be shown in Figure 4. 

 
Figure 4. The air duct-shaped SMP mandrel with final deformable state and 

original state 
 
As shown in Figure 4, the original shape of air duct-shaped SMP mandrel is a tube, 
the final shape is a serpentine shape, the transition range is continuous and smooth 
with a large curvature. The diameter of tube produces obviously change after carrying 
out the internal pressure. The left end is a circular section and the right section is 
rectangle section. The experimental results show that the SMP materials can be easy 
to duplicate the inner surface shape of outer steel mold with a small pressure; the 
SMP mandrel owns good shape fixity ability for temporary shape.  

Experimental result and discuss 

Shape recovery process of bottle-shaped mandrel 
As a kind of reusable smart mandrel, SMP mandrel can retain the temporary shape 
and recover original shape under some external stimulus, the good shape fixity ability 
can make sure the accuracy of mandrel production and the good shape recovery 
ability is a key factor for successful extraction from curing composite part. The shape 
recovery process of bottle-shaped mandrel under 90°C (above transition temperature 
63°C) can be shown in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The shape recovery process of bottle-shaped smart mandrel 
 [Zhang et al. (2014)] 
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As shown in Figure 5, there are some perpendicular lines on the surface of mandrel to 
locate the deformation. The shape recovery process mainly consists of three steps 
when placing the mandrel in the oven with temperature 90°C: step 1, the mandrel 
starts recovery after the mandrel putting into the oven, the rate is relative slow; step 2, 
The recovery rate markedly increases after 15s and gradually gets the peak; step3, the 
rate is declined to recover the original shape, when the time is 70s, the bottle-shaped 
mandrel nearly recovers the original shape. The total recovery rate curve is similar to 
Gauss function with a single peak. The recovery trend can be effective to alleviate the 
shock effect when SMP materials are used to fabricate the deployable space structures, 
such as hinge, solar array, and so on.  
 
As above-mentioned state, the shape fixity ability and shape recovery ability are two 
very important factors to the application of SMP. In our work, the shape fixity ability 
and recovery ability are obtained by measuring the maximum diameters change in the 
deforming process and recovering shape. The maximum diameters change are 25% 
and 50% in the paper, the definition can be shown as follows: 
 
Shape fixity ratio Rf 

%100×=
H

L
f D

DR                                                                 (1) 

Where DH, DL represent the diameter after high temperature deformation and the 
diameter after cooling to room temperature, respectively. 
 
Shape fixity ratio Rr: 

%100×=
R

O
r D

DR                                                                 (2) 

Where DR, DO represent the diameter after high temperature recovery and the 
diameter before deformation (original shape), respectively. 
 
The shape fixity ratio and shape recovery ratio can be measured and computed as 
Table 1. 

Table 1. Shape fixity ratio and shape recovery ratio of bottle-shaped mandrel 
 Mandrel with 25% deformation Mandrel with 50% deformation 

Measuring 
Location 

Upper 
section 

Middle 
section 

Lower 
section 

Upper 
section 

Middle 
section 

Lower 
section 

DH 40.00 50.00 40.00 40.00 60.00 40.00 

DL 39.85 49.72 39.81 39.92 59.67 39.66 

Rf 99.63% 99.44% 99.53% 99.80% 99.45% 99.15% 

DO 38.49 38.59 38.57 38.90 38.81 38.85 

DR 38.62 38.71 38.87 38.95 38.91 38.97 

Rr 99.66% 99.69% 99.22% 99.87% 99.74% 99.69% 

Table 1 shows that the shape fixity ratio and shape recovery ratio are more than 99%, 
which verify the good shape fixity ability and shape recovery ability of SMP mandrel 
and provide deformation indexes for the application of SMP mandrel in the future. 
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Shape recovery process of air duct-shaped mandrel 
Air duct-shaped mandrel is more complex component-curved shaped structure, in 
order to better show the good shape recovery ability and reusable ability, the shape 
recovery experiment is carried out under some special temperature. In our work, the 
shape recovery temperature is selected as 55°C and the shape recovery process can be 
shown in Figure 6. 

Figure 6. The shaper recovery process of air duct-shaped mandrel 
 
As shown in Figure 6, due to the environment temperature (55°C) is relatively lower 
than glass transition temperature (63°C), the air duct-shaped mandrel can not 
obviously change during the first 30s; in the second 30s, the mandrel starts to provide 
some markedly recovery on the two end. Particular in the circular section, which 
undergoes the maximum deformation during the deforming process; in the third 30s, 
the rectangle section gradually transforms to circular section and the curvature of 
transition zone declines significantly; in the fourth 30s, the curvature zone 
continuously transform to circular section but the rate is slow; in the fifth 30s, the air 
duct-shaped mandrel nearly recover the original tube shape with a diameter 40mm. It 
is noted that the recovery process can take place in the around of transition 
temperature, when the temperature is less than glass transition temperature, the 
recovery time is increased obviously. 

Shape memory process simulation of bottle-shaped smart mandrel  
It is well known that the SMP is in the rigid elastic state when the temperature is low, 
the deformation is stored and stiffness is commonly enough for filament winding and 
curing the fiber and matrix to obtain the final composite part. After that, the 
temperature is reheated above glass transition temperature and the mandrel comes 
into the soft rubber state with low stiffness, the storage deformation is released and 
the mandrel recovers the original tube shape to remove the mandrel from composite 
part. In our work, the shape memory process of bottle-shaped mandrel is simulated to 
verify the feasibility of SMP mandrels; the finite element software is applied by 
UMAT function based on three-dimensional viscoelastic model [Zhou et al. (2014)]. 
The deformation and recovery process of bottle-shaped mandrel can be shown in 
Figure 7. 
 
Firstly, the bottle-shaped smart mandrel is inflated by internal pressure effect on the 
high temperature environment, as shown in Figure7(a), then, the mandrel is kept the 
temporary shape and the temperature is cooled below glass transition temperature, as 
shown in Figure 7(b); after that, removing the outer force some elastic deformation is 
springback, as shown in Figure 7(c); Finally, reheating the SMP mandrel above the 
transition temperature, the mandrel recovers the original tube state, as shown in 
Figure 7(d). It is noted that the springback effect can be controlled by changing 
material parameters in the simulation process, In addition, the surface of polymer tube 
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is smooth and without damage, which can save the manufacturing cycle and reduce 
the cost significantly.  

 
Figure 7. Shape memory process simulation of bottle-shaped mandrel with 25% 

deformation 
 

Conclusions 
The aim of this paper is design and evaluation of bottle-shaped smart mandrel and air 
duct-shaped smart mandrel based on shape memory polymer. The method is different 
from the traditional techniques and owns many unique advantages, such as low 
weight, short production cycle and low cost. The shape recovery testing has been 
carried out and some results can be shown as follows: 
(1) Bottle-shaped SMP mandrel owns good shape fixity ability and shape recovery 
ability, which is large than 99% in the deformation process and recovery process. The 
advantage is obviously for SMP mandrel as a kind of mandrel manufacturing 
techniques for future applications;  
(2) Bottle-shaped SMP mandrel and air duct-shaped mandrel can recover the original 
shape (tube) under some special temperature environment. It is noted that the air duct-
shaped mandrel even recovers the original shape under the temperature lower than 
glass transition temperature. 
(3) Bottle-shaped SMP mandrel deformation and recovery process can be simulated 
by finite element method, the three-dimensional viscoelastic model is applied, the 
results show the good feasibility of SMP mandrel for the shape memory effect of 
complex shape composite parts. 
 

References 

Baghani, M., Naghdabadi, R., Arghvani, J. and Sohrabpour, S. (2012) A thermodynamically-consistent 
3D constitutive model for shape memory polymer. International Journal od Plasticity, 35, 13-30. 

Conti, S., Lenz, M. and Rumpf, M. (2007) Modeling and simulation of magnetic-shape-memory-
polymer composites. Journal of the Mechanics and Physics of Solid, 55, 1462-1486. 

Everhart, M. C. and Stahl, J. (2005) Reusable shape memory polymer mandrels. Proceedings of SPIE, 
Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures 
Technologies, 5762, 27-34. 

Everhart, M. C., Nickerson, D. M. and Hreha, R. D. (2006) High-temperature reusable shape memory 
polymer mandrels. Proceedings of SPIE, Smart Structures and Materials: Industrial and 
Commercial Applications of Smart Structures Technologies, 6171, 61710K 

Hu, J. L., Meng, H., Li. G. Q. and Ibekwe, S. I. (2012) A review of stimuli-responsive polymers for 
smart textile applications. Smart Materials and Structures, 21, 053001. 

Kim, G. H., Choi, J. H., and Kweon, J. H. (2010) Manufacture and performance evaluation of the 
composite hat-stiffened panel. Composite Structures, 92, 2276-2284. 

ICCM2014, 28th-30th July 2014, Cambridge, England

647



Lan, X., Liu, Y. J., Lv, H. B., Wang, X. H., Leng, J. S. and Du, S. Y. (2009) Fiber reinforced shape-
memory polymer composite and its application in a deployable hinge. Smart Materials and 
Structures, 18, 024002. 

Lendlein, A., Jiang, H. Y., Junger, O. and Langer, R. (2005) Light-induced shape memory polymers. 
Nature, 434, 879-882. 

Lendlein, A. and Langer, R. (2002) Biodegradable, elastic shape-memory polymers for potential 
biomedical applications. Science, 296, 1673-1676. 

Leng, J.S., Lan, X., Liu, Y. J. and Du, S. Y. (2011) Shape memory polymers and their composites: 
stimulus methods and applications. Progress in Materials Science, 56, 1077-1135. 

Lin, Q, and Guo, R. H. (1989) Flow characteristics in an s-shaped rectangular-round diffuser at high 
incidence. Acta Aerodynamica Sinica, 7, 220-226 

Liu, Y. J., Lv, H.B., Lan, X., Leng, J. S. and Du, S. Y. (2009) Review of electro-active shape memory 
polymer composite. Composites Science and Technology, 69, 2064-2068. 

Liu, Y. J., Du, H. Y., Liu, L. W. and Leng, J. S. (2014) Shape memory polymers and their composites 
in aerospace applications: a review. Smart Materials and Structures, 23, 023001. 

Liu, Y. P., Gall, K., Dunn, M. L., Greenberg, A. R. and Diani, J. (2006) Thermomechanics of shape 
memory polymers: uniaxial experiments and constitutive modeling. International Journal of 
Plasticity, 22, 279-313. 

Lv, H. B., Liu, Y. J., Gou, J., Leng, J. S. and Du, S. Y. (2010) Electrical properties and shape memory 
behavior of self-assembled carbon nanofiber nanopaper incorporated with shape memory Polymer. 
Smart Materials and Structures, 19, 075021. 

Lv, H. B., Liu, Y. J., Zhang, D. X., Leng, J. S. and Du. S. Y. (2008) Solution-responsive shape-
memory polymer driven by forming hydrogen bonding. Advanced Materials Research, 47-50, 258-
261. 

Meng H, and Li GQ. (2013) A review of stimuli-responsive shape memory polymer composites. 
Polymer, 54, 2199-2221. 

Sokolowski, W. M. and Tan, S. C. (2007) Advanced self-deployable structures for space applications. 
Journal of Spacecraft and Rockets, 44, 750-754. 

Tan, Q., Liu, L. W., Liu, Y. J. and Leng, J. S. (2013) Post buckling analysis of the shape memory 
polymer composite laminate bonded with film. Composites Part B: Engineering, 53, 218-225. 

Tobushi, H., Hashimoto, T., Hayashi, S. and Yamada, E. (1997) Thermomechanical constitutive 
modeling in shape memory polymer of polyurethane series. Journal of Intelligent Material System 
and Structures, 8, 711-718. 

Wang, C. C., Huang, W. M., Ding, Z., Zhao, Y. and Purnawali, H. (2012) Cooling/Water -responsive 
shape memory hybrids. Composites Science and Technology, 72, 1178-1182. 

Xie T. (2010) Tunable polymer multi-shape memory effect. Nature, 464, 267-270. 
Zhang, L., Du, H. Y., Liu, L. W., Liu, Y. J. and Leng JS. (2014) Analysis and design of smart 

mandrels using shape memory polymers. Composites Part B: Engineering, 59, 230-237. 
Zhou. B.,  Liu. Y.J., and Leng. J.S. (2009) Finite element analysis on thermo-mechanical behavior of styrene-

based shape memory polymer polymers.  Acta Polymerica Sinca, 6, 525-529. 
 

ICCM2014, 28th-30th July 2014, Cambridge, England

648



Influence of Random Nucleation Condition on Transformation  
Kinetics in Phase Field Simulations 

* Takuya Uehara¹ 
1Department of Mechanical Systems Engineering, Yamagata University, Japan 

4-3-16, Jonan, Yonezawa 992-8510, Japan 

*Corresponding author: uehara@yz.yamagata-u.ac.jp 

Abstract 
Influence of nucleation condition in phase field simulation is systematically investigated. Two-
dimensional multi-phase-field model for poly-crystalline material was used, and the transformation 
kinetics was compared with conventional Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. At 
first, the nucleation was set as the initial condition, and the nuclei arrangement was varied as on 
regular lattice points or randomly distributed. In such a model, the kinetics did not correspond well 
to JMAK plot. Time-dependent nucleation was then considered, and it revealed that the kinetic 
curve agrees well to JMAK plot. Finally, limitation was imposed on the setting of nucleation sites. 
As a result, it revealed that restriction in the nucleation site interfere the free growth and that the 
kinetics deviate from the ideal one. It is concluded that proper time-dependent condition with 
nucleation site set make better correspondence in the transformation kinetics with the JMAK plots.  

Keywords:  Phase transformation, Phase field model, Microstructure, JMAK model, Nucleation, 
Uncertainty, Computer simulation 

Introduction 

Phase field (PF) model has become a useful tool for simulating microstructure formation process of 
engineering materials, and various complex patterns, such as dendrite, cells, lamella, and poly-
crystals, have been regenerated successfully [e.g. Provatas and Elder (2010)]. The model has a basis 
on the thermodynamics, and free-energy minimization is ensured for growing process of the 
precipitated phase. Nucleation of the new phase is, however, out of the framework of the PF model, 
and nuclei are disposed as a computational condition. In solidification process, the melt is usually 
homogeneous and specific site-dependency in the melt is not found except the wall and surfaces. 
Randomness is then unavoidably introduced such that the nucleation site is scattered in the model 
using random numbers, but it brings uncertainty in the obtained results. For re-crystallization during 
hot-work process, recently, site-dependent nucleation is modeled based on the finite-element 
analysis using crystal-plastic theorem and sophisticated methods have been in great progress [e.g. 
Takaki et al.(2009], but the random nucleation model is still a major tool for PF simulations in 
general. On the contrary, macroscopic kinetics of phase transformation has long been studied. 
Johnson-Mehl, Avrami and Kolmogorov independently derived kinetic equation, currently known 
as JMAK equation, in which time evolution of the volume fraction is described using exponential 
term with empirical parameters. This equation is applied for various processes such as solidification, 
in-solid phase transformation and re-crystallization processes, and has been built in finite-element 
codes for engineering use. Phase field simulation exhibits microstructure in detail, while the total or 
averaged evolution of transformation area is not necessarily accorded with the kinetics [Jou and 
Lusk (1997), Li et al. (2007), Simmons et al. (2004), Alekseechkin (2011), Uehara (2014)] which is 
an outstanding problem for bridging the scale. Therefore, in this study, the comparison of the 
kinetics between PF simulation and JMAK algorithm is systematically demonstrated. A simple two-
dimensional model is used to pick out the dominative factors.  
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Phase Transformation Kinetics 

The conventional transformation kinetics known as JMAK form is summarized in this section.  
Assuming solidification process, solid region is initiated with nucleation, and it grows 
concentrically at a constant rate G.  Then a spherical region of the radius R = G t is formed at time t, 
and the volume is V = 4πR3/3. When the frequency of the nucleation is N per unit time, the number 
of nuclei generated in the duration between t and t + dt is N dt, and the resulting volume of solid 
region is V = 4πG3(t −t)3/3. Important notice is that every sphere is assumed to continue growing 
despite they collide to each other in reality. The volume calculated based on this assumption is 
termed extended volume Ve, which is represented by  

          3 3 3 4
e 0

4 ( ) d
3

t
V NG t NG tπ t t π= − =∫ ,                                                                                       (1) 

where the second equality holds when both G and N are constant. Now, denoting the volume 
fraction of solid at time t by x(t), the liquid fraction is 1−x(t), and the solidification actually occurs 
in this region. Then the increment of the solid fraction is dx = (1−x(t)) dxe, where xe is the extended 
volume fraction. Substituting Eq. (1) into this relation,  

          41 exp( )x At= − − ,    where     3

3
A NGπ
=                                                                              (2) 

is obtained. Generally, this formula is expanded as 1 exp( )nx At= − − , where exponent n is a 
parameter or named Avrami number, which is one of the fitting parameters. The theoretical value in 
the two-dimensional model is n = 3, which is used as a reference in this paper.  

Fundamental Equation for Phase Field Simulation 

A poly-crystalline microstructure formation is considered in this study, and multi-phase-field model 
originally proposed by Steinbach et al. [Steinbach et al. (1996)] is used. Only the fundamental form 
is described here:  

          2 2 2

1

2 ( ( ) ( ) )
n

i ij ij i j k ik jk k k ik jk k
j

m f w w a a
n

f ff f f
=

= − + Σ − +Σ − ∇∑  ,                                             (3) 

where fi is the multi-phase field which is assigned for every grain of precipitated phase for i = 1 to 
N while i = 0 is assigned for the original phase, mij, fij, wij and aij are the parameters and n is the 
number of existing phase. The values of these parameters, of course, affect the transformation 
kinetics and should be discussed in detail. However, in this study, to focus on the fundamental 
characteristics of the pattern formation, constant values for every combination i and j are assumed, 
and standard values are used. Instead, the total number N of precipitated phase considered is the 
focused parameter in this study.  In the poly-crystalline model, the number of grains Ng is consistent 
with the number of multi-phase-field variable, i.e. Ng = N, to identify each grain as a different phase, 
but it is time-consuming since the number of combination increases. In this paper, N is taken as 16 
even for models with Ng larger than 16, since significant difference was not found in the 
preliminary calculation.  

Model and Conditions 

Phase field equation (3) is numerically solved using finite difference method. Two-dimensional 
square domain is divided by 400x400 lattice points, and periodic boundary condition is imposed on 
every directions. The whole domain is initially homogeneous original phase. Various nucleation 
conditions are applied, and three cases reported in this paper are listed in Table 1. Commonly the 
nucleus position ri = (xi, yi) is selected using random number and the phase field value of fi is 
changed to 1, if it is still 0. If the position is already in precipitated phase, the nucleation procedure 
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is skipped. Firstly, in Case 1, nuclei are 
set as the initial condition; all nuclei are 
initially disposed on random position, 
while regular arrangement is also tested 
for comparison. Time-dependent 
nucleation is assumed in Case 2; nc nuclei 
are generated every tc time steps. Finally 
in Case 3, the nucleation site is limited on 
specific position; the case for square 
lattice is demonstrated in this paper. 
Volume fraction, or actually area fraction, 
is calculated by x(t) = Np / NT, where Np 
is the number of grids where the phase 
field value f0 representing the original phase is 0 and NT is the total number of grids (NT=160000). 
Time-evolution curve of the volume fraction is compared with JMAK plot according to equation (4). 
The exponent is set as n = 3 as the two-dimensional ideal model, and the parameter A is determined 
so that the time for x = 0.5 coincides; i.e. A = − ln(1−x)/t3 = − ln(0.5)/th

3, where th is the time when x 
reaches 0.5 in the PF simulation. 
 

Results and Discussion 

Case 1 --- Nucleation as Initial Condition 

Results for Case 1 are shown in Figs 1 and 2. Figure 1 shows the phase-field distributions at the 
early stage which represents the initial arrangement of nuclei, and the resultant polycrystalline 
structure just before the phase transformation completes in the whole model. The cases for total 
number of nuclei n = 16 and 100 are presented. The color indicates the identifying number of the 
multi-phase-field variable, where f0, i.e. the original phase, is shown in blue. As a matter of course, 
the growing domains collide to each other, and grain boundaries are formed; regularity of the 
obtained structure is dependent on the initial nuclei arrangement.  
 
Figures 2 (a) and (b) represent variation 
of the volume fraction for regular and 
random arrangement, respectively. In 
addition to n = 16 and 100, the cases for 
n= 36 and 64 are also plotted. Since the 
results for random arrangement are 
dependent on the random number 
generated on the computer, two trials for 
every condition are plotted. Fig. 2 (c) is 
comparison between the PF result and 
JMAK model which is fitted according to 
the above-mentioned procedure, where 
the average values of two trials for 
random case are exhibited. Overall, faster 
growth is observed for regular 
arrangement, because the distance 
between the nuclei is uniformly large, and 
hence free growth duration lasts long. 
Compared to JMAK plots, PF result 

(b) =16: randomn (c) =100: randomn(a) =16: regularn  
 

Figure 1. Variation of the phase-field distribution 
for Case 1.  

Table 1. Simulation condition 
              

Case No. Arrange Timing 
1 Regular / 

Random 
Initial set 

2 Random 1 nucleus per 10 steps / 
1 nucleus per 2 steps / 
2 nuclei every step 

3 R2 lattice / 
R3 lattice 

Initial set  / 
1 nucleus per 10 steps / 
1 nucleus per 2 steps 
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shows faster growth in the case of regular arrangement for both n=16 and 100. For the random 
arrangement, on the contrary, PF result shows remarkable delay from JMAK plot, and the delay is 
significant in the latter stage. This tendency is more apparent in Fig. 2(d); all plots are re-drawn 
against normalized time t*, in which time is divided by the time when the volume fraction reached 
0.5. Note that JMAK plot is identical independent of the fitting parameter A.  
 

Case 2 --- Time-dependent Nucleation 

Results for time-dependent nucleation condition in Case 2 are shown in Figs 3 and 4. Here, three 
conditions are considered: a) one nucleus is generated every 10 steps, (b) one nucleus per 2 steps, 
and (c) 2 nuclei are generated every time step. Upper figures in Fig. 3 are the phase-field 
distributions at the 200th time step, and lower figures are those at the time step just before the 
transformation completes. Naturally, fine grains are formed when nucleation is more frequent, and 
coarse structure is formed when the nucleation rate is slower. Despite of this obvious difference in 
the microstructure, the kinetic curves correspond well to each other and also fit the JMAK plot. As 
shown in the magnified view in Fig. 4, a little discrepancy is found, but they are thought to be in the 
negligible range. Therefore, it is concluded that the time-dependency of the nucleation plays 
dominant role for transformation kinetics.  
 

Case 3 --- Restriction in Nucleation Site 

Finally, the effect of site-dependent nucleation is investigated. As shown in the result for Case 1, 
initial nuclei arrangement influences the transformation kinetics. In this section, the time-
dependency is also considered. Nucleation site is limited on the square lattice, while the actual 
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Figure 2. Variation of the volume fraction for Case 1.  
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position on the lattice is set at random. 
Two types of lattice (2x2 (denoted as R2) 
and 3x3 (R3)) are used. The nucleation 
rates are assumed as same as those in the 
previous section, while the case for 
nucleation at the initial condition is also 
used for comparison.  
Simulation results are shown in Figs 5 and 
6. In Fig. 5, variation of the phase field 
represents the grain growth from the 
nucleation sites on the R2 or R3 lattice. 
Before two grains on the lattice collide on 
the lattice, they grow freely, but after the 
collision, the growth direction is limited 
inside the lattice. This causes one-
dimensional grain growth, and hence 
deviation from JMAK plot becomes 
significant, as shown in the kinetic curve 
in Fig. 6. Especially when many nuclei are 
set as the initial condition, (see "R2 init"), 
there is no duration of free growth, and the 
resultant kinetics appears to be rather 
linear. As the nucleation rate becomes 
slower, the kinetics becomes closer to the 
ideal curve, which is apparent in Fig. 6(b). 
Also, the case for R3 lattice shows better 
correspondence to JMAK. This is because 
relative duration of free growth to the 
entire transformation is larger for R3. In 
other words, as the nucleation sites are 
strictly limited relative to the whole 
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  Figure 3. Distribution of phase field for Case2.           Figure 4. Time evolution for Case 2. 

(a) R2 lattice: initial set

(b) R2 lattice; 1 nucleus per 2 steps

(c) R2 lattice; 1 nucleus per 10 steps

(d) R3 lattice, 1 nucleus per 2 steps  
Figure 5. Distribution of phase field for Case 3. 
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domain, the kinetics deviates from the 
ideal kinetics.  

Conclusions 

Nucleation condition is determinative for 
microstructure formation, and the 
influence in the phase field simulation 
was systematically investigated. When 
the nuclei are set as the initial condition, 
the kinetics, i.e. the evolution of volume 
fraction of the transformed region, does 
not well corresponds to JMAK plot. 
When time-dependent nucleation condi-
tion was introduced, the kinetic curve 
revealed to agree well to JMAK curve. 
Restriction on the nucleation site was 
also determinative for deviation from 
ideal state. It is then concluded, in this 
paper, that proper time-dependent nuclea-
tion condition makes better correspond-
ence in the transformation kinetics with 
JMAK theory.  
The model considered here is, of course, 
too simple to be compared with realistic 
model or experimental results. Three-
dimensional model may have additional 
effects in the kinetics. Physical under-
standing and its modeling on nucleation 
process, as well as environmental conditions such as temperature and material composition, are also 
to be discussed. Nevertheless, fundamental feature of the transformation kinetics presented in this 
paper is considered to be valuable for further modeling and utilization of the phase field model.   
 

References 

Alekseechkin N.V. (2011) Extension of the Kolmogorov-Johnson-Mehl-Avrami theory to growth laws of diffusion type, 
Journal of  Non-Crystalline Solids 357, 3159-3167. 

Jou, H.-J. and Lusk, M. T. (1997) Comparison of Johnson-Mehl-Avrami-Kologoromov kinetics with a phase-field 
model for microstructural evolution driven by substructure energy, Physical Reviw B 55, 8114-8121. 

Li, J. J., Wang, J. C.,  Xu, Q. and Yang, G. G. (2007) Comparison of Johnson-Mehl-Avrami-Kologoromov (JMAK) 
kinetics with a phase field simulation for polycrystalline solidification, Acta Materialia 55, 825-832.  

Provatas, N. and Elder, K. (2010), Phase-Field Methods in Materials Science and Engineering, Wiley-VCH, Germany. 
Simmons, J. P., Wen, Y. and Wang Y. Z. (2004) Microstructural development involving nucleation and growth 

phenomena simulated with the phase field method, Materials Science and Engineering A 365, 136-143. 
Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M.,  Prieler, R., Schmitz, G. J., and Rezende, J. L. L. (1996) A phase 

field concept for multiphase systems, Physica D 94, 135-147. 
Takaki T., Hisakuni, Y. Hirouchi, T. Yamanaka, A. and Tomita, Y (2009) Multi-phase-field simulations for dynamic 

recrystallization, Computational Materials Science 45, 881-888. 
Uehara, T. (2014) Influence of randomness in nucleation condition on solidification structure generated by numerical 

simulation, Proceedings of the JSCES Conference on Computational Engineering and Science 19, to appear.  

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500

R2 Init
R2 1 per 2
R2 1 per 10
R3 Init
R3 1 per 2
R3 1 per 10

Vo
lu

m
e

fra
ct

io
n

x

Time step k

(a) PF simulation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5

R2 int
R2 1 per 2
R2 1 per 10
R3 1 per 2
JMAK

Vo
lu

m
e

fra
ct

io
n

x

Standarized time t*

(b) Comparison with JMAK

 
Figure 6. Evolution of volume fraction for Case 3. 
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Introduction 

 

In the past much effort has been made to utilize advanced computational 

fluid dynamic (CFD) programs for aeroelastic simulations and analyses of military 

and civil aircraft. Although the use of CFD has become broad for static 

aerodynamic calculations nowadays, it is limited in the field of unsteady 

aeroelasticity due to enormous size of computer memory and unreasonably long 

CPU time associated with the large number of mode shapes in the structural model. 

While a military airplane model may need 20-50 modes, commercial aircraft 

models typically require as many as 200 modes to describe the motion of the 

structure with sufficient accuracy. Thus, both aeroelastic and CFD researchers 

have explored and developed various ways to reduce the size of the unsteady 

aerodynamic system and minimize the memory and CPU time. Unfortunately, 

although these reduced-order models (ROM) retain much of the characteristics of 

the original full-order models and reproduce the full responses quickly and 

faithfully, very few of them can be constructed in a time period short enough to 

justify such an effort, especially when faced with the multiple mode inputs.  

  

 In this paper, a new aeroelastic reduced-order modeling based on coupled 

CFD-CSD aeroelastic responses with a reduced set of state variables is presented. 

Recently, a novel system identification and model reduction technique, also known 

as “Aerodynamics is Aeroelasticity Minus Structure” (AAEMS) was developed for 

linear time-invariant, coupled fluid-structure systems [1]. The method has been 

successfully applied based on numerical simulations of a scaled Boeing 

Commercial Aircraft model and AGARD Wing model [1]-[2] (See Figs. 1 and 2), 

and experimental data obtained of a rigid wing in subsonic wind tunnel [3] (Fig. 3).  
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The objective of this paper will be to continue this effort and find flutter 

instabilities of the AGARD Wing in transonic flows including effects of control 

surface and nonzero angle of attack. Towards this end, a control surface will be 

attached to the trailing edge of the wing and deflected at an angle. Then, the entire 

wing plus control surface will be put at a nonzero angle of attack. It is noted that 

the effects the angle of attack including the deflected control surface on the flutter 

instability in transonic flow zone have rarely been explored in the literature.  

 

 
 

Figure 1. The Twin-Engine Transport Flutter Model (TETFM) in the Transonic 

Dynamic Tunnel 

 

 
 

 

Figure 2. AGARD 445.6 Wing 
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Figure 3. 3D Experimental Wing 

 

 

AAEMS 

 

Unlike all of the previous ROM methods, the AAEMS works directly on  

time history data of the coupled aeroelastic system and therefore provides a 

realistic, easy and efficient tool to construct the aeroelastic ROM. Most 

importantly, the traditional mode-by-mode excitation of the unsteady 

aerodynamics is avoided saving a significant amount of model construction time 

and hence making the method very attractive for the practical applications. 

Assuming that structural properties are known a priori, and using linear 

transformations between the structural and aeroelastic states, it extracts and models 

the underlying unsteady aerodynamic system in discrete-time, state-space format 

with a finite number of state variables. The displacements and velocities of the 

structural coordinates are recorded in real time during the numerical simulations. 

In addition, unsteady pressures are recorded at various points on the lifting wing 

surface. All the responses are obtained for a fixed Mach, at a low sub-critical 

dynamic pressure value.  

 

Method of Excitation and Static Condensation 

 

To search for an efficient way to excite the aeroelastic model, various 

combinations of the structural coordinates as well as control surfaces can be used 

as potential inputs. It is important to make sure that all the important system modes 
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are perturbed by the excitation. If control surface inputs are not available, one can 

use initial conditions instead because a system response due to an initial condition 

is mathematically equivalent to a response due to an impulse input. Also, to find an 

optimum number and locations of the aerodynamic samples, different 

combinations of the pressures at different locations will be explored and the result 

will be reported in the paper. Considering that the aerodynamic flow will be highly 

nonlinear in transonic zone, it is critical to apply an input with a very small 

magnitude to extract only a statically nonlinear but dynamically linear (SNLDL) 

aerodynamic system. To this end, it is useful to check coherence functions of the 

various measurements and select only the responses that are linear or sufficiently 

linear for the system identification. Another issue encountered in the data 

processing is how to use the time histories that have mixed static/dynamic effects. 

Normally, unsteady CFD simulation is run after a steady-state equilibrium 

condition is established first because it might be different than the initial state at 

t=0. However, running the steady solution separately increases the CPU time 

significantly and therefore in this paper we will directly advance to the unsteady 

simulation without the steady calculation, mixing the steady and unsteady parts 

together. An analytic scheme will be developed such that the resulting time history 

contains only the effects of the unsteady part and hence is appropriate for the 

system identification. This so called ‘static condensation’ is necessary not only for 

extracting the unsteady solution part but also to avoid ‘drifting’ mode in the 

resulting reduced-order model. After the aerodynamic model is identified, an 

aeroelastic model can be constructed in discrete-time, state-space format by 

coupling the structural model and the aerodynamic system. The resulting reduced-

order model is suitable for constant Mach, varying density (CMVD) analysis 

including flutter prediction and dynamic response calculation.  

 

CFD Solver and AGARD Wing Model 

 

For application and verification of the method, the aforementioned AGARD 

Wing model with five structural modes will be studied. An in-house Euler solver 

developed by Temasek Lab will be used for the CFD part. Since the wing will be at 

nonzero angle of attack and produce nonzero static response, the static 

condensation method mentioned above will be critical in eliciting dynamic 

responses necessary for the system identification. It is also expected that the 

coupled responses will be highly nonlinear (the structural model is assumed to be 

linear) due to strong shock waves and numerical artifacts, so the optimum signal 

processing will be very important in constructing the SNLDL ROM successfully. 

Aeroelastic results including flutter speeds obtained from the reduced-order model 
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will be compared to results of the full-order models, and whenever available will 

be compared with experimental results for various Mach conditions.  

 

It is expected that the proposed new process will generate aerodynamic and 

aeroelastic ROMs that are useful for the analysis of flutter under the influence of 

nonzero angle of attack and deflected control surface with minimum amount of 

effort and time. 
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Abstract 
Laser peen forming, is a purely mechanical forming method achieved through the use of laser 
energy to form large-scale metal plate with small curvatures. The eigenstrain modeling method is 
used to cut the computational cost to obtain predictions in an efficiently way. The eigenstrain in one 
representative cell of overlapping laser shocks is obtained by an explicit model to simulate short 
shock induced plastic deformation. Then, the bending deformation of metal plate is analyzed with 
an elastic model using the simulated eigenstrain as initial strain. The eigenstrain is incorporated into 
the elastic model by thermal expansion with a predefined unit temperature field and different 
anisotropic thermal expansion coefficients. The model can give a consistent prediction for the 
deformed shape on aluminum alloy 2024-T351. 

Keywords:  Laser Peen Forming, Eigenstrain, Bending, Aluminum alloy, Finite Element Analysis 

Introduction 

Laser peen forming (LPF), a derivative of laser shock processing technology, is a locally effective 
forming process to form complex curvatures without dies. It is now emerging as a viable means for 
the shaping of metallic components. As a purely mechanical forming method, LPF has advantages 
of non-contact, tool-free and high efficiency and precision. Its non-thermal process also makes it 
possible to form without material degradation or even improve them by inducing compressive stress 
over the target surface, which is desirable because it is important in industry for shaped metal parts 
to resist cracks from corrosion and fatigue [Ocaña et al., (2007)]. 
 
The forming process of LPF has attracted many concerns of researchers. Hackle and Harris  
demonstrated that it could contour the thick part over its large area and showed that an enhanced 
convex curvature was achieved [Hackel and Harris, (2002)]. Hu et al investigated the mechanism of 
laser peen forming that can induce two bending directions under different plate thickness and laser 
conditions [Hu et al., (2010)]. However, a large number of trial-and-error experiments are typically 
required on components such as integral wing panel forming before practical applications can be 
achieved. Beyond direct explicit modeling of material dynamic response, the eigenstrain-based 
modeling method, which has been intensively investigated in the prediction of welding induced 
residual stress and distortion, has recently received attention for use in predicting residual stress for 
LP processes. Korsunsky adopted this method first to predict residual elastic strain with a simplified 
analytical model, where the eigenstrain distribution is determined by solving an inverse problem 
with the residual elastic strain using X-ray diffraction [Korsunsky, (2006)]. Achintha & Nowell  
have just adopted this method to predict laser-peening-induced residual stress to demonstrate 
feasibility [Achintha and Nowell, (2011)]. Further attention must be paid on the eigenstrain 
modeling of LPF with overlapping patterns to predict the deformed shape efficiently for a large-
scale component.  

ICCM2014, 28th-30th July 2014, Cambridge, England

660



The aim of this work is to propose a model approach using eigenstrain methodology to predict the 
deformed shape of a square aluminum plate by LPF. The repeating pattern of plastic strain field is 
identified and averaged in two axis directions. Then the approximate uniform eigenstrain field is 
applied to a thermo-elastic model to predict the deformed shape to compare with experiments.  

LPF Experiments 

The typical application of LPF is carried out under a confined regime configuration. The specimen 
is undergo a high strain rate deformation and be dynamically yielded due to the rapid laser induced 
shock pressure. A large number of laser shocks are applied successively to the specimen surface 
according to the specified path. It will generate incremental deformations in the specimen, which 
can be accumulated to obtain bending with convex or concave shape depending on process 
parameters.  
 
Experiments were conducted with a Q-switched Nd:YAG pulsed laser source in the fundamental 
transverse electro-magnetic mode. The laser was operated at the repetition frequency of 10 Hz and 
the pulse duration of about 10 ns in FWHM (Full Width at Half Maximum). A wavelength of 532 
nm was selected for experiments. The laser output pulse energy measured by a power meter was 
about 0.93J/pulse. The expanded laser beam passed through a positive long-focus lens to the target 
surface with the desired beam diameter of 2.0 mm. One kind of black tape, thick enough to maintain 
its integrity after irradiation of laser pulses, was used as the sacrificial overlay. Water was used as 
the transparent overlay to confine the generated plasma.  
 
4 mm thick plate sample of aluminum alloy 2024-T351 is prepared with the size of 67 mm ×67 mm. 
The sample was clamped by the fixture as shown in Fig. 1a. They were manipulated by an industrial 
robot to move with the predefined scanning path of the fixed laser beam. The overlap of laser spots 
was set to be 50%, and the shocked-covered region was 40×40 mm in the center area.  Fig. 1b 
shows top view of the sample with scanning laser shocks on the surface. It can be found that the 
shocked region has some shallow indentations. And the contour surface of sample was quantified 
by surface profile measurements with a Keyence KS-1100 optical surface profilometer as shown in 
Fig.1c. It can be found that the pate is deformed with convex curvatures in two directions after 
square distributed laser shocks.  
 

(a)

Plate Sample
Shocked region

 (b)  (c)  
Fig.1 The plate sample formed by laser peen forming with fixture: (a) the device to clamp 
sample ; (b) top view of the shocked surface; (c) measured surface contour 
 

Eigenstrain-based Modeling Approach 

The term eigenstrain, noted by ε*, was introduced by Toshio Mura (1987) to indicate any strain 
arising in material due to inelastic processes such as plastic deformation, crystallographic 
transformation, or thermal expansion mismatch between components of an assembly [Mura, (1987)]. 
Eigenstrain accounts for all permanent strains that arise in material exhibiting inelastic behavior.  
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The process-induced residual stress and deflections can be predicted through including the 
eigenstrain as the initial elastic strain distribution [Hu and Grandhi, (2012)].  
 
The generation of deflections due to laser shocks can be regarded as a pure mechanical process. The 
eigenstrain in laser peen forming is only represented by the plastic strain. Once the representative 
eigenstrain distribution has been determined under process conditions, the bending deflection and 
residual stress can be solved with a finite element (FE) model with full scale of component. The 
corresponding bending moments *

xM  and *
yM  mainly depend on the in-plane eigenstrain 

components of  *
xε  in the longitude direction and *

yε  in the transverse direction, respectively 
[Murakawa et al., (2009)]: 

* *( / 2)x xM E z h dxdzε= −∫            (1) 
* * ( / 2)y yM E z h dydzε= −∫           (2) 

where h is the plate thickness.  

The eigenstrain value is mainly related to the process parameters, material properties, and the 
specimen thickness in the LPF process, but it is geometry insensitive. Moreover, the eigenstrain 
generated by each shock is confined to a local region. It allows us to adopt a very small 
representative cell model to obtain the eigenstrain field, and then apply them to a large-scale model 
for efficient predictions under the same process conditions and material. For the prediction of 
deformed shape induced by large-scale array of overlapping shocks, the plastic strains in one 
repeating pattern of overlapped laser shocks as shown in Fig.2 is very useful to significantly reduce 
the computation cost. Considering an example of 50% overlap with each laser shock separated with 
0.5R in Fig.2a, the representative cell size can be selected to be square with the dimension of 2R 
according to the distribution of laser shocks. The dimension with spot size 2R is proposed as the 
simplest repeating pattern for most conditions because it is consistent with the covered area of each 
shock. The plastic strain field in one representative cell can be reproduced and applied to the 
practical part model as eigenstrain, one after another, to predict the residual stress and deformation 
fields based on the characteristic of the repeating pattern. The eigenstrain in one representative cell 
can be determined efficiently through an explicit infinite-square plate model by simulating multiple 
sequential laser shocks as shown in Fig.2b. Then the determined eigenstrain field can be applied to 
the elastic model one by one as shown in Fig.2c for the prediction of deformation fields.  

Laser Spot Trace 

Representative Cell

…

…
…

…

Infinite-square Plate Model
Representative Cell

Full size Model with Eigenstrain

Representative Cell with ε*

(a) (b) (c) 

Full-size Plate for LPF

 
Fig.2 The repeating pattern of a large scale overlapping laser shocks with the 
percentage overlap of 50%: (a) full-size plate with arrays of overlapping laser shocks; 
(b) infinite-square pate model to determine the eigenstrain in one representative model; 
(c) full-size plate model to predict the deformed shape and residual stresses.  

 
Therefore, the eigenstrain-based modeling of LPF process includes two FE models. One is the 
explicit FE model of a infinite-square plate to determine the eigenstrain in one representative cell. 
As shown in Fig. 3, this dynamic model is composed of finite part and infinite part. The size of 
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finite part is determined by the critical distance analysis to be 14R×14R, and shock-covered region 
is 10R×10R on the top surface.  

Representative cell

 
Fig.3 Infinite-square plate model to determine eigenstrain in one representative cell 

 
The time history of shock pressure loading p(t) is calculated by one-dimensional analytical model, 
proposed by Berthe et al [Berthe et al., (1997)], and the spatial distribution of the pressure considers 
the difference on the transverse and longitudinal  direction with the Eq. 3 

2 2
1 2

2
( )

( , ) ( )
x y

Rp r t p t e
β β+

−
=          (3) 

Some uncertain parameters existing in the Berthe’s model and spatial equation were calibrated first 
to give a consistent prediction of indentation profiles of single shock.  In the infinite-square plate 
model, the target material is subjected to a shock pressure of few GPa with a short interaction time. 
The material model for simulation must consider the material behavior dependence of high strain 
rate to simulate the high-velocity process. The simplified Johnson-Cook model without thermal 
effect is adopted as the constitutive equation in the explicit model to consider the high-strain-rate 
effect on the flow behavior of metals:  
 ( )( )*1 lnnA B Cσ ε ε= + +                                                                                                       (4) 

where *
0ε ε ε=    is the dimensionless strain rate, and A, B, C and n are considered to be material 

constants [Johnson, (1985)].  Table 1 provides the material properties of aluminum alloy 2024-T351 
required for dynamic simulation.  
 

Table 1 Material properties of aluminum alloy 2024-T351 
Properties 2024-T351 Units 
Density, ρ  2770 kg m-3 
Poisson’s ratio, ν  0.33  
Elastic modulus, E 73.1 GPa 
JC model A  265 MPa 

B  426 MPa 
n 0.34  
C 0.015  

 
After the eigenstrain is determined, the eigenstrain field in the representative cell are averaged in x 
and y directions, respectively. Then they are imported into the elastic model in the center region 
with laser shocks for the computation of deformation field. The thermal analysis is an optional 
method to incorporate the determined eigenstrain field into the model. In the thermal analysis, if the 
model is defined with the material property of anisotropic thermal expansion coefficients α, the 
corresponding strain can be calculated as ε = αΔT under the temperature field ΔT. Therefore, the 
eigenstrain field can be imported by assigning the anisotropic thermal expansion ratios equal to the 
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value of eigenstrain with six components at each position (Eq.5) and applying a unit temperature 
variation (Eq.6) to the full model in the Abaqus/implicit module:  

*( , , ) ( , , )x y z x y zα ε=         (5)  
( , , ) 1T x y z =          (6) 

Results and discussion 

Figure 4 provides the model output of dynamic model and static elastic modes for eigenstrain and 
deformed shape, respectively. The contours of simulated equivalent plastic strain field on the top 
surface are shown in Fig. 4a. It can be observed that the plastic strain distribution is periodic with 
repeating patterns for the model. Due to the 2-axis distribution of shock pressure, the plastic strain 
in x-direction is a little more than that in y-direction.  With the eigenstrain in one representative cell 
determined by the infinite plate model, the in plane plastic strain *

xε  and *
yε  along the depth is 

averaged within the representative cell. After importing to the full size model of plate sample, the 
deformed shape as shown in 4b is provided with the predicted contour of deformation with the z-
displacement. It can be found that a convex shape can be obtained with square shock in the center 
area.  
 

(a)

Representative cell

 
(b)  

Fig.4 Model output of dynamic model and static elastic modes: (a) eigenstrain in the 
dynamic model; (b) z-displacement of deformed shaped in the static elastic model 

 
To validate the eigenstrain strain modeling method, the bending profiles obtained by experiments 
are compared with the predicted values in Fig.5. Fig.5a shows the z-displacement of the centerline 
along x direction on the top surface for the experiment and simulation. The experimental results 
shows that the downward bending is about 534 μm, while the model predicted value is about 433μm, 
producing a consistent agreement but a little underestimated.  Fig.5b shows the z-displacement of 
the centerline along y direction. The experimental results shows that the downward bending is about 
388 μm, while the model predicted value is about 380μm, also producing a good agreement with the  
bending profile.  
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Fig.5  Infinite-square plate model to determine eigenstrain in one representative cell 
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Conclusions 

The eigenstrain modeling method is developed to predict the deformation shape of square plate after 
laser peen forming.  The predictions are validated by the experimental results of overlapping LPF 
bending of 2024-T351aluminum alloy plate. The eigenstrain modeling method is verified to be an 
effective approach to simulate the LPF process to predict the bending deformation. The prediction 
for the large-scale LPF forming process can be completed by identifying the eigenstrain in one 
representative cell and applying it one after another in the shocked region as an approximation of 
the actual eigenstrain field. Compared with the direct explicit modeling methods, a shorter 
computation time is taken for the eigenstrain modeling method to complete the simulation for the 
LSP application on the large-scale components.  
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Abstract 

Application of feedback control in nonlinear systems is an area of active research. 
Control algorithms utilising Lyapunov methods, Describing Functions, backstepping 
etc. are some of the approaches being explored. Feedback Linearisation, which 
effectively renders the nonlinear system exactly linear through the application of 
nonlinear feedback, is another approach that has been investigated. Many publications 
presenting analytical, numerical and also experimental findings have emerged. Much of 
this work addresses systems with smooth nonlinearities, often described by a polynomial 
function. The underlying theory of feedback linearisation is well-defined for such 
systems and is readily available through classical texts and also other publications. For 
non-smooth systems, however, the applicability of the method is not quite as obvious. 
The present work aims to demonstrate that at least for some types of non-smooth 
nonlinearity, the theory of feedback linearisation holds soundly. Successful application 
of the method in closed-loop control is demonstrated through a numerical example.  

Keywords:  nonlinear, control, feedback linearisation, non-smooth 
 

Nomenclature and abbreviations 

, ,α β ξω ω ω   – uncoupled natural frequency in , ,α β ξ  DOFs 
, ,α β ξζ ζ ζ  – viscous damping coefficients in , ,α β ξ  DOFs 

a   – distance from aerofoil mid-chord to rotational axis, normalised by b 
b   – aerofoil semi-chord 
c  – distance from aerofoil mid-chord to aileron hinge line, normalised by b  

, ,K K Kα β ξ  – structural stiffness in , ,α β ξ  DOFs 

1 2, , ,D E E F  – matrices relating to the augmented states of the aeroelastic system 
, ,t t tM C K  – overall mass, damping and stiffness matrices of aeroelastic system 

,r rα β   – radius of gyration in ,α β  normalised by b 
, *U U   – air velocity, reduced air velocity ( * /U U b αω= ) 

xα   – COM distance of wing+aileron from rotational axis, normalised by b 
xβ  – COM distance of aileron from hinge line, normalised by b 

 

COM  – centre of mass 
DOF(s) – degree(s) of freedom 
LFS – linear flutter speed 
UoL  – University of Liverpool 
WTAR  – wind tunnel aerofoil rig 
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1 Introdu ction 

Suppression of vibration is among the major considerations not only in the design and 
manufacture of new systems, but also in improving existing and well-established 
ones. A variety of active and passive control methods have been explored. Active 
control poses the advantage of being able to alter the control inputs based on observed 
response, thus allowing greater control of the plant. The modelling of nonlinearities in 
the system being controlled is becoming increasingly important, fuelled by the ever-
growing desire to increase effectiveness of existing control methods or develop new 
ones altogether. In this work, the numerical illustration considered is that of flutter 
suppression in a 3-DOF pitch-plunge-flap aeroelastic system. 
 
There have been many publications in the literature dealing with the control of 
systems with smooth nonlinearities, including aeroelastic systems. The application of 
feedback linearisation on nonlinear aeroelastic systems with smooth structural 
nonlinearities, mainly of the hardening type, was investigated in (Platanitis and 
Strganac 2004, Strganac, et al. 2000, Ko, et al. 1999, Jiffri, et al. in press, Jiffri, et al. 
2013, Jiffri, et al. 2013, Jiffri, et al. 2013); both theoretical and experimental aspects 
have been addressed. Papers related to non-smooth systems are also available, albeit 
in less abundance. A method for adaptive control with feedback linearisation of 
systems containing a freeplay input was presented in (Recker, et al. 1991), which was 
extended subsequently to include also a freeplay output (Tao and Kokotovic 1997). 
The cases of partial feedback linearisation with and without relative degree were 
addressed subsequently in (Ma and Tao 2000). Other papers related to control of non-
smooth nonlinear systems include (Zheng, et al. 2013, Tao, et al. 2013).  
 
The present work applies partial input-output feedback linearisation on a 3-DOF 
aeroservoelastic numerical model with a piece-wise linear stiffness in the pitch DOF, 
with the aim of stabilising the linearised response through pole-placement. The model 
employed is that developed by Edwards et al. (Edwards, et al. 1979), which includes 
actuator dynamics and approximates unsteady behaviour using two additional 
augmented aerodynamic states. Other work in which this model has been used 
include (Conner, et al. 1997, Li, et al. 2010). In the present work, the parameters of 
the model are tuned to match the dynamics of the wind tunnel aerofoil rig (WTAR) at 
the University of Liverpool. 
 
This paper commences with a description of the nonlinear aeroelastic system. 
Equations of motion are given, and are followed by frequency and time-domain 
simulation results based on the WTAR parameters. Expressions for input-output 
linearisation of the plunge DOF are derived, including those for the zero-dynamics. 
Numerical simulation results from the closed-loop system are then presented, 
demonstrating successful control of the system with a piecewise linear non-smooth 
nonlinearity both when full knowledge of the nonlinearity is assumed, and when there 
is uncertainty associated with the nonlinearity.  

2 Model description 

In this section, a detailed description of the aeroelastic model employed in this work 
is given. Thereupon, numerical simulation results performed using aeroelastic 
parameters pertaining to the WTAR at the University of Liverpool will be presented. 
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2.1 Equations of motion 

The aeroelastic model of Edwards et al. (Edwards, et al. 1979) featuring 
approximation of the unsteady aerodynamic loads through the use of augmented 
states is employed in the present work. This model consists of a total of 8 states in the 
first-order state-space representation. Six of these are structural states, namely plunge 
(normalised with respect to the semi-chord b), pitch, aileron flap ( , ,ξ α β  
respectively) and their time-derivatives ( , ,ξ α βɺ ɺɺ  respectively). The remaining two are 
the augmented aerodynamic states mentioned above (

1 2
,a ax x ). Equations of motion 

for the model are given as 
 

 

{ } { }
{ } { } { }

( ) ( ) ( ) ( )

( )

1 2

1 2 8

3 3 3 3 3 2 3 1

1 1 1 1

2 2
1 2 2 1

, where ,    ,

, , ,

0
, , 0

T T

com a

T TT

a a a

t t t t t t

u u x x x

x x

rβ β

β

ξ α β ξ α β

ω

× × × ×

− − − −

×

= + = = =

= = = =

     
     = − − = =     

    
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x Ax B x q v q

q v q q

0 I 0 0

A M K M C M D B M G G

E E F 0

ɺ ⋯

ɺ ɺɺ ɺ  (1) 

 
and the definition of all quantities appearing within the above equation may be found 
in (Edwards, et al. 1979, Li, et al. 2010). The input in the above equation is the 
desired flap angle of the aileron.  
 
This particular model is chosen as it models the dynamics of the actuator, the means 
through which the input will be applied. As will be seen later, the existence of a non-
smooth nonlinearity in the system will necessitate a non-smooth input during closed-
loop control. Since such an input cannot be achieved in practice, modelling of the 
actuator dynamics is necessary to produce a numerical model that is representative of 
reality. This becomes an even more important issue when implementing feedback 
linearisation in practice, as using a control law that is based on a model without 
actuator dynamics will give rise to a discrepancy between the required non-smooth 
input and the actual smooth input provided by the actuator. It is expected that such a 
discrepancy will degrade controller performance. 
 
The nonlinear case of the above model may be readily expressed in the affine form 
 
 ( ) ( ) ,u= +x f x g xɺ  (2) 
 
where, in the present case ( ) ≡g x B  and the use of different symbols is aimed at 
maintaining conventionally accepted notation in the linear and affine nonlinear cases. 

2.2 Aeroelastic Parameters of the WTAR 

From previous experiments and related numerical simulations performed on the 
WTAR at UoL (Papatheou, et al. 24-26 June, 2013), aeroelastic parameters that 
describe well the aerofoil behaviour were extracted. These are given in Table 1, along 
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with estimates for the parameters describing flap dynamics (not found during the 
experiments). 
 

Table 1 – Parameters of the UoL wind tunnel aerofoil rig, used in the present numerical model 

Parameter Value Parameter Value Parameter Value 

αω  (rad/s) 35.354 c  0.5428 βω  (rad/s) 100 
rα  0.4 b  (m) 0.175 rβ  0.079057 
xα  0.09 µ  69.0 xβ  0.0125 

ξω  (rad/s) 22.948 ξζ  0.002 βζ  0.002 
a  -0.33333 αζ  0.015   

 
This format of parameters is widely used in the literature, and is defined in 
(Theodorsen 1935) in addition to the papers referenced earlier. 

2.3 Frequency domain results for the linear system 

For the linear case of the aeroelastic system, one may plot the variation of the 
eigenvalues with respect to reduced air speed. For a speed range of *U =  0.1 – 3.0, 
the resulting plot is shown in Fig. 1. 
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Fig. 1 – Normalised eigenvalues of structural modes varying with airspeed 

 
The linear flutter speed (LFS) is located at the point where the normalised real part of 
an eigenvalue becomes positive. It is evident from Fig. 1 that this occurs with the 
plunge mode. The reduced LFS in the present system is found to be *U =  2.793 (this 
translates to an absolute airspeed of 17.28 m/s). 

2.4 Nonlinear time-domain response with piece-wise linear stiffness in pitch 

A symmetric piece-wise linear nonlinearity is now introduced into the pitch DOF. 
The parameters describing the nonlinearity are given in Table 2. 
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Table 2 – Nonlinearity parameters for piece-wise linear pitch stiffness 

Parameter Description Value 

gα  initial (lower) stiffness region  
on either side of 0α = �  

1◦ 

λ  ( )
( )1

g
K K

α α
α αλ

≤
= − , where 

( )g
K

α α
α ≤

  

is the initial (lower) stiffness 
0.6 

Kα  
stiffness in the outer regions ( gαα > ), 

chosen to be equal to linear pitch stiffness Kα  
2 2rα αω  

 
The resulting pitch moment profile is depicted by the solid line in Fig. 2.  
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Fig. 2 – Pitch moment profile in the presence of piece-wise linear stiffness 

 

For the purpose of applying feedback linearisation, it will be necessary to define a 
target linear system, i.e. the desired system once the nonlinearity has been eliminated. 
This is especially relevant if the feedback linearisation cancels out only the nonlinear 
terms and not the entire open loop dynamics. Naturally, the target linear system may 
be chosen as a system whose pitch stiffness is equal to the slope of the outer regions 
in the nonlinear case. The pitch moment profile in this case is shown by the dash-dot 
line in Fig. 2. It is now possible to define also the nonlinear moment, i.e. the moment 
which, when added to the linear moment produces the net, nonlinear moment profile. 
This non-smooth nonlinear moment profile is shown by the dashed line in Fig. 2. 
 
The nonlinear system is now simulated at a reduced velocity * 2.0U =  with plunge 
and pitch initial values of 0.01, 3ξ α= = �  respectively, and with all other states set 
to zero. The resulting structural responses are shown in Fig. 3. 
 

0 2 4 6
-0.05

0

0.05

time (s)

ξ

0 2 4 6
-5

0

5

time (s)

α 
(d

eg
)

0 2 4 6
-2

0

2

time (s)

β 
(d

eg
)

 
Fig. 3 – Structural states of nonlinear system at U*=2.0 

 
It is evident that the response settles into an LCO, which occurs at an airspeed which 
is less than the LFS *U =  2.793, which is expected as the initial stiffness in the 
nonlinear case is lower than that of the linear system. 
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3 Feedback l inearisation 

This section presents the application of feedback linearisation on the nonlinear 
aeroelastic system described by eq. (2). Feedback linearisation (Isidori 1995, Khalil 
2002) is a process whereby a nonlinear system is rendered linear through the 
application of nonlinear feedback and a co-ordinate transformation. The system in (2) 
is first expressed as 
 

 ( ) ( )
1 2

, ,a nl

a

   
   = + + + =   
 + +     

v 0

f x Ψq Φv Λq Ωf g x Ξ

E q E v Fq 0

 (3) 

 
where 
 

 
1 1 1
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Ψ M K Φ M C Ω M

Ξ M G Λ M D
 (4) 

 
The nonlinear force vector arising from the piece-wise linearity, as illustrated in Fig. 
2 above, is expressed as 
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where 
 
 { }

( )
( )2 2 , 0 0 , 1

g

TT
s K g K K

α α
α α α α αλ

≤
∆ = = = −K e e g  (6) 

 
and where 2e  is the second column of a 3×3 identity matrix. The feedback 
linearisation method requires that the outputs are continuously differentiable, and 
therefore smooth. The non-smooth nature of the nonlinearity would result in non-
smooth – but continuous – forces/accelerations. However, the resulting changes in the 
system states (both displacement and velocity) will be smooth, as they are obtained as 
time-integrals of the accelerations (which are continuous, albeit non-smooth). Thus, 
all the states of the system are continuously differentiable, satisfying the condition for 
feedback linearisability. 

3.1 Plunge output linearisation 

The classical input-output linearisation approach (Isidori 1995, Khalil 2002) is now 
followed to apply feedback linearisation by controlling the plunge displacement. The 
co-ordinates of the linear system are obtained as 
 
 1 1 2 1 4,z y x z y x x= = = = =ɺ ɺ  (7) 
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using equation (1). Here, the output y  is chosen as the plunge displacement 1xξ = . 
The partially linearised system may then be obtained as 
 

 ( )( ) { }1 1
1 1 2 34

2 2

0 1 0
, , ,

0 0 1
Tz z

v v u
z z

ξ ξ ξ ξ      = + = + =      
       

f x Ξ
ɺ

ɺ
 (8) 

 
with v being an artificial input associated with the linearised system. Since there 
remains an un-linearised set of 6 states, it is necessary to examine the zero-dynamics to 
ensure their stability when designing a controller. Expressions for the remaining linear 
co-ordinates are first required to complete the transformation. These are chosen as 
 

 3 2 4 3 2 4 1 5 5 3 4 1 6

6 3 5 2 6 7 7 8 8

, , ,
, , ,

z x z x x x z x x

z x x z x z x

ξ ξ ξ ξ
ξ ξ

= = + − = −
= − = =

 (9) 

 
completing the 8×8 transformation from nonlinear to linear co-ordinates as 
 
 .= zxz T x  (10) 
 
The resulting zero-dynamics are found as 
 

 ( ) ( )[ ]( )( )

( )( )

( ) ( ) ( )
1

1
2 33:8 4:6,4:6 3:8 4:6,4:61:8,3:8

1
1 2 1:8,3:8

ZD ZD
nl

p

z−

−

 
  
  = + +   
  
     

zx zx zx

zx

P 0

z T Ψ Φ Λ T P z T Ωf

0E E F T

ɺ  (11) 

 
where 
 

 
1

2
1 2

1 3 3

0 0 1 0 0 0
10 0 0 0 , 0 0 0 0 0 0 .

0 0 0 0 0 0

ξ
ξ

ξ ξ ξ

− 
   = − =   
    

P P  (12) 

 
The zero-dynamics are checked to verify stability of the internal dynamics of the 
partially linearised system. A stability investigation of the zero-dynamics yields that 
there exist 3 equilibrium points – one zero-equilibrium and two non-zero equilibria. 
The eigenvalues pertaining to the trivial equilibrium point are found to have negative 
real parts, viz., 
 

-4.31592 + 98.20627i -0.84754 + 16.22586i -37.91684 + 0.00000i 
-4.31592 - 98.20627i -0.84754 - 16.22586i -3.79316 + 0.00000i 

 
demonstrating stability of this equilibrium point. 
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3.2 Linearised response with pole-placement implemented 

A desired natural frequency nξ
ω  and damping ratio nξ

ζ  may be set for the controlled 
DOF ξ  by choosing the artificial input as 
 
 2

1 22 .n n nv z z
ξ ξ ξ

ω ζ ω= − −  (13) 
 
For this simulation, target values are chosen as 1Hz, 0.1n nξ ξ

ω ζ= = . The resulting 
closed-loop response, for the same initial conditions as the open-loop case, is shown 
in Fig. 4. 
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Fig. 4 – Closed-loop response of system at U*=2.0 

 
It is evident from the first subplot that the target natural frequency of 1 Hz is achieved 
in the plunge motion, as expected. The pitch motion, confined to the internal 
dynamics settles down to the stable zero equilibrium, as seen in the middle plot. The 
flap motion, given by the final subplot, is plotted alongside the commanded input in 
Fig. 5, where the difference between the two is highlighted. 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-10

0

10

time (s)

β 
(d

eg
)

 

 

commanded flap input
flap state

 
Fig. 5 – Comparing commanded and actual flap angles U*=2.0 

 
Closer inspection of the input reveals non-smooth changes corresponding to the 
switching points between the two stiffness regimes in the pitch DOF. This is 
expected, as the input is designed to cancel the system dynamics which include the 
non-smooth nonlinear forcing terms. Since the dynamics of the actuator are accounted 
for in the model and consequently in the computation of the non-smooth input, there 
will be no degradation on closed-loop response during feedback linearisation, and 
exact pole placement will be achieved in the absence of nonlinearity parameter errors. 

4 Adaptive feedback linearisation 

In real situations, complete cancellation of the nonlinearity will not be achievable. This 
could be due to a variety of reasons such as inaccurate measurement of the nonlinearity, 
incorrect assumption of the form of the nonlinearity etc. Adaptive Feedback 
Linearisation is a method that may be used to guarantee asymptotic closed-loop 
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stability in the presence of a discrepancy between the actual nonlinearity parameters 
and those assumed in the design of the controller. The assumed nonlinearity parameters 
are updated at every time step according to an adaptive law, which has the effect of 
driving the closed-loop controlled responses to zero.  
 
The previous numerical simulation is continued. The inclusion of uncertainty/error in 
the description of the piece-wise linear stiffness would ideally require a few 
nonlinearity parameters (to describe the inner and outer stiffness and the range of the 
inner stiffness), but in this work we assume symmetry, knowledge of the inner 
stiffness; only the stiffness parameter Kα  is considered uncertain. Since the zero-
dynamics have an asymptotically stable equilibrium, and the nonlinearity is linearly 
parameterisable, the conditions for Adaptive Feedback Linearisation are satisfied. A 
40% error in Kα  is now assumed. Thus, 1.4 .K Kα α′ =  Commencing with a scalar 
quadratic Lyapunov function 
 
 ( ) ( )

2
1,2 1,2 , , 0 ,TV K K K Kα α α α′= + = − >z Pz Pɶ ɶ  (14) 

 
it can be shown that a parameter update law 
 

 ( )( ) ( )1, : 1,2

T
T T

lKα′ = r Ω B Pzɺ  (15) 

 
can be derived, which asymptotically drives the closed-loop controlled response to 
zero by ensuring that V  is a decreasing function. Inclusion of this update law 
translates to an increase in the dimension of the state vector. In (15), 
 

 

( )
( )
( )

2 2

2 2

2 2

for  

for  , 0

for  , 0

T

T

T

g

g

g

α

α α

α α

α α

α α α

α α α

= − ≤

= − > >

= > <

r e e q

r e e g

r e e g

 (16) 

 
and [ ]0 1 T

l =B  is the input matrix of the partially linearised system (equation (8)). 
The entries in the arbitrary matrix P  are chosen judiciously so as to ensure rapid 
convergence of Kα′ . For the same initial conditions as before and the same pole-
placement requirement from the exact linearisation case above, the close-loop 
responses for the structural DOFs are given in Fig. 6. 
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Fig. 6 – Closed-loop response of system with Adaptive Feedback Linearisation at U*=2.0 

 
It can be seen that the closed-loop response is characterized by higher frequency 
harmonics as compared with the exact linearisation case. Furthermore, the response 
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takes longer to settle, although it eventually decays to zero. The pitch response is 
again driven to the zero equilibrium. A noticeable difference between the controlled 
response in this case and in the case of exact feedback linearisation is that the pole-
placement objective is not achieved here. This is expected, as the adaptive law does 
not take into account this objective, and merely guarantees the convergence of the 
response to the origin. 

5 Conclusions 

This work has presented the application of partial feedback linearisation on a 
dynamical system having a piece-wise linear structural stiffness nonlinearity. 
Although the nonlinear forces and the required inputs are non-smooth, the structural 
states themselves are smooth and continuously differentiable, thereby satisfying the 
requirements for feedback linearisability. The non-smooth nature of the inputs 
necessitates modelling of the actuator dynamics, so as to replicate the situation one 
would encounter in practice, namely that a real actuator is only capable of applying 
smooth inputs. Numerical simulation results from the 3-degree of freedom aeroelastic 
model demonstrate successful linearisation of the plunge response, whilst driving the 
uncontrolled pitch response to zero, as expected from the zero dynamics. The final 
section presents a simple case of nonlinearity parameter uncertainty and application 
of the associated adaptive algorithm during feedback linearisation; it is shown from 
numerical results that the system responses are successfully driven to zero. 
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Abstract

A methodology to compute the error due to homogenization of an heterogeneous
stochastic problem is presented. The method is developed for the heat equation,
and in order to be applicable, it is required that the conductivity is statistically
invariant over the domain. Examples illustrate the behaviour of the bounds.

1 Introduction

In this paper a methodology to compute the error due to homogenization of an
heterogeneous stochastic problem is presented. By bounding the error, we mean
to bound the difference between the expectation of a quantity dependent of the
solution that is defined by the analyst and its estimation from the homogenized
problem. The computation of the bound is purely deterministic, however, it
involves the solution of another problem, called the dual problem.

All the theory regarding the bound is presented for a Poisson problem (heat
equation), though this method can be extended to much wider that fulfill some
characteristics listed in this work.

The main features of the bound are its simplicity and low computational
cost. On the other hand, under some circumstances, the interval defined by
the bound can be very wide. An example is shown and an explanation to this
behaviour is given in the Appendix.

The paper is organized as follows. In section 2, the problem is defined and
the required notation is introduced. In section 3, the bounds are derived. The
following section, presents a couple of simplifications which make the compu-
tation of the error bound very efficient. Section 5 presents two test cases to
validate the presented bounds.

∗Contact e-mail: daalpa@gmail.com
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2 Problem and notation

2.1 Stochastic problem

The problem is defined on a domain Ω×Θ, where Ω ⊆ R2 is the spatial domain
and Θ is the stochastic domain. The boundary of Ω is denoted by Γ, which can
be further divided in two subsets ΓD and ΓN . Deterministic Dirichlet boundary
conditions (temperatures) are prescribed on ΓD, while deterministic Neumann
boundary conditions (fluxes) are prescribed on ΓN . The conductivity k depends
on the spatial coordinate and also on the realization; however, it is statistically
invariant, ∫

Θ

k =
1

|Ω|

∫
Ω

k. (1)

With that notation, the partial differential equation reads,

−∇ · (k∇u) = f(x) ∀x ∈ Ω×Θ

−k∇u · n = g(x) ∀x ∈ ΓN ×Θ

u = h(x) ∀x ∈ ΓD ×Θ

where, f, g and h are known deterministic functions.
Through Green’s lemma, the problem can be rewritten in its weak form:

Find u ∈ H1∫
Ω×Θ

k∇u · ∇v =

∫
Ω×Θ

fv −
∫

ΓN×θ
vg ∀v ∈ H1

0 (2)

where

H1 =

{
u ∈ L2(Ω×Θ)|u = h(x) on ΓD × Ω and

∂u

∂xi
∈ L2(Ω×Θ)

}
and

H1
0 =

{
u ∈ L2(Ω×Θ)|u = 0 on ΓD × Ω and

∂u

∂xi
∈ L2(Ω×Θ)

}

We conclude this section introducing more notation. The left hand side of
(2) is a bilinear form, that will be denoted by

a(u, v) =

∫
Ω×Θ

k∇u · ∇v

and its induced norm (since it defines an inner product)

‖v‖a =
√
a(u, u)

; while the right hand side will be denoted by

L(v) =

∫
Ω×Θ

fv −
∫

ΓN×θ
vg
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2.2 Quantity of interest

The quantity of interest is the result of applying a certain functional to the
solution field. This functional must be expressed as the integral of a linear
operator J over a subset of Ω, therefore, the average temperature on a square
or the average flux on part of the boundary are examples of quantity of interest.
Due to the stochastic nature of the model, this paper is concerned with the
expectation of the quantity of interest. The quantity of interest will be denoted
by

qθ(u) =

∫
Ω′
J(u)

and its expectation will be denoted by

q(u) = E[q(u)] =

∫
Θ

∫
Ω′
J(u)

Now, we proceed to introduce the adjoint problem,

Find φ ∈ H1
0 ∫

Ω×Θ

k∇φ · ∇v = q(v) ∀v ∈ H1
0 (3)

Its relevance will be made clear in the following sections.

2.3 Homogenized problems

In this section, we proceed to introduce two more problems. Both problems
are deterministic since k is substituted by k̄ obtained through homogenization.
Since the following problems are easier to solve, their solution is going to be
used to compute the quantity of interest and the error due to the substitution
will be bounded. The problem reads

Find ū ∈ H̄1∫
Ω

k̄∇u · ∇v =

∫
Ω

fv −
∫

ΓN

vg ∀v ∈ H̄1
0 (4)

where

H̄1 =

{
u ∈ L2(Ω)|u = h(x) on ΓD and

∂u

∂xi
∈ L2(Ω)

}
and

H̄1
0 =

{
u ∈ L2(Ω)|u = 0 on ΓD and

∂u

∂xi
∈ L2(Ω)

}

We will denote the approximation of the solution of this problem (obtained
by finite elements, for instance) by uh. And the error field, u − uh will be
denoted by e. The second problem reads:
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Find φ̄ ∈ H̄1
0 ∫

Ω

k̄∇φ̄ · ∇v = q(v) ∀v ∈ H̄1
0 (5)

The approximation of its solution will be denoted by φh, while its associated
error field, φ− φh, will be denoted by eφ.

3 Derivation of the error bounds

In this section, we proceed to bound the following quantity,

q(u)− q(uh)

with an upper and lower bound. The computation of those bounds will not
involve the solution of a stochastic problem.

We start by using using equation (3) and the fact that a is linear with respect
to its second argument,

q(u)− q(uh) = a(φ, e)

To this expression, we add and subtract a(φh, e) to obtain

q(u)− q(uh) = a(eφ, e) + a(φh, e) (6)

Now, we make use of the following result related to the residue,

R(v) = L(v)− a(uh, v) = L(v) + [a(u, v)− a(u, v)]− a(uh, v) = a(e, v)

which allows us to rewrite (6)

q(u)− q(uh) = R(φh) + a(eφ, e)

It is relevant to emphasize that R(φh) is a deterministic quantity, since

R(φh) = L(φh)︸ ︷︷ ︸
deterministic

−
∫

Ω

∫
Θ

k∇uh · ∇φh = L(φh)− E[k]

∫
Ω

∇uh · ∇φh︸ ︷︷ ︸
deterministic

since k is statistically invariant.
Since the bilinear form a(·, ·) defines an inner product, we can use the

Cauchy-Schwarz inequality to obtain,

R(φh)− ‖eφ‖a‖e‖a ≤ q(u)− q(uh) ≤ R(φh) + ‖eφ‖a‖e‖a

Now, we proceed to bound the norms of the errors since they are not computable.
In order to do that, we introduce an inner product, its induced norm,

< u, v >k−1=

∫
Ω×Θ

k−1uv ‖u‖k−1 =
√
< u, u >k−1

and a vectorial field Q̂ that fulfills,

∇ · Q̂ = f(x) ∀x ∈ Ω

Q̂ = g(x) ∀x ∈ ΓN
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In other words, a flux field that fulfills the prescribed flux boundary conditions.
Notice that all the terms in those two equations are deterministic. In [1] several
techniques to compute a field with such characteristics are compared.

The aim is to prove that,

‖e‖a ≤ ‖Q̂+ k∇uh‖k−1 = η (7)

Firstly, we turn our attention to the following equalities,

−
∫

Ω×Θ

Q̂ · ∇v = L(v) ∀v ∈ H1
0∫

Ω×Θ

k∇u · ∇v = L(v) ∀v ∈ H1
0

and to their difference,

0 =

∫
Ω×Θ

(Q̂+ k∇u) · ∇v ∀v ∈ H1
0

Setting v = −u+ uh, we obtain that

< Q̂+ k∇u,−k∇u+ k∇uh >k−1= 0

in other words, Q̂+k∇u is orthogonal to−k∇u+k∇uh in the k−1-inner product.
This allows us to use the Pythagoras theorem to obtain the desired result

‖Q̂+ k∇uh‖2k−1 = ‖Q̂+ k∇u− k∇u+ k∇uh‖2k−1 =

= ‖Q̂+ k∇u‖2k−1 + ‖ − k∇u+ k∇uh‖2k−1 = ‖Q̂+ k∇u‖2k−1 + ‖e‖2a ≥ ‖e‖2a
In a similar manner, the result can be extended to ‖eφ‖k−1. The bounds can
be summarized in the following equation

ζl = R(φh)− ηηφ ≤ q(u)− q(uh) ≤ R(φh) + ηηφ = ζu

Finally, we show that η is a also deterministic quantity. By expanding its square,

‖Q̂+ k∇uh‖2k−1 =

∫
Ω×Θ

k−1Q̂ · Q̂+

∫
Ω×Θ

k∇uh · ∇uh + 2

∫
Ω×Θ

Q̂ · ∇uh

= E[k−1]

∫
Ω

Q̂ · Q̂+ E[k]

∫
Ω

∇uh · ∇uh + 2

∫
Ω

Q̂ · ∇uh (8)

it becomes explicit that it is only a sum of integrals over the spatial domain.
Before concluding this section, it is worth to mention this error bound can

be extended to other problems, such as linear elasticity. The results required
that the bilinear form to define an inner product, in order to be able to use the
Cauchy-Schwarz inequality.

3.1 Deterministic heterogeneous problem

We would like to emphasize that the derivations exposed in the previous could
be session could be repeated to compare the solution of an heterogeneous de-
terministic problem and the solution of it homogenized counterpart. However,
in this case, an integral would have to be performed over the heterogeneous
domain which may involve the generation of an integration mesh, while for
stochastic problem, since the material properties are statistically invariant, the
integral is performed over an homogeneous domain, which greatly reduces the
computational costs.
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4 Simplifications

In this section, we intend to show how under some assumptions, it becomes very
efficient to compute the error bound proposed. Our first assumption considers
that the homogenized problems were solved through the finite element method
with a mesh that is fine enough to assume Q̂ = −k̄∇uh. We will be also
assuming that the Dirichlet boundary conditions are homogeneous. Given that,
the finite element method would produce the following two system of equations,
for the primal and the dual problem:

[A][u] = [l]

[A][φ] = [q]

Now, the computation of R(φh) reduces to

R(φh) = [l]
T
[φh]− E[k]

k̄
[u]T [A][φh]

and the three integrals that define η2 are reduced to,

E[k−1]k̄[u]T [A][u] +
E[k]

k̄
[u]T [A][u]− 2[u]T [A][u]

5 Numerical results

In this section, two numerical examples are presented to illustrate the behaviour
of the bound.

5.1 Low conductivity contrast

The domain of consideration is a L-shape (figure 5.1) made of matrix of conduc-
tivity km = 1 and filled with 75 circular particles of radius 0.05 and conductivity
ki = 0.6, resulting in approximate volume fraction of 0.196. The centers of the
particles follow an uniform random variable inside, thus, the particles are not
allowed to intersect with each other or with the boundaries of the domain. The
functions f, g and h are defined as follows,

f(x) = 0 ∀x ∈ Ω

g(x) =


−10(y + 1) ∀x ∈ {1} × [−1, 1]

−10(x+ 1) ∀x ∈ [−1, 1]× {1}
0 ∀x ∈ {−1} × [0, 1] ∪ [0, 1]× {−1}

h(x) = 0 ∀x ∈ [−1, 0]× {0} ∪ {0} × [−1, 0]

On the other hand, an approximation of the solution is obtained in a domain
with an homogeneous conductivity. The homogeneous conductivity k̄ is ob-
tained through the rule of mixture (which in this case, is the same as the E[k])
which gives a value of We define our quantity of interest to be the average
temperature on ω = {1} × [−1, 1] ∪ [−1, 1]× {1},

qθ(u) =
1

|ω|

∫
ω

u
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Figure 1: Domain

To validate the bounds a reference quantity of interest will be computed through
Monte Carlo using 64 realizations.

Figure 5.1 and 5.1 show the temperature and the gradient field for the ho-
mogenized domain and for a random realization.

The following table summarizes the results

q(uh) ζl ≤ q(u)− q(uh) ≤ ζu ζl + q(uh) ≤ q(u) ≤ ζu + q(uh)
22.10 -1.20 0.46 1.20 20.90 22.56 23.30

It can be observed that the bounds for q(u) − q(uh) are symmetric, since φh

belongs to the test space of the uh.

5.2 High conductivity contrast

In this section, we are going to repeat the previous numerical example with a
high contrast between the conductivity of the matrix and the inclusion. The
conductivity of the matrix remains the same km = 1, however, the conductivity
of the inclusion is set to ki = 0.1. The following table summarizes the results:

q(uh) ζl ≤ q(u)− q(uh) ≤ ζu ζl + q(uh) ≤ q(u) ≤ ζu + q(uh)
25.88 -42.71 5.33 42.71 -16.83 31.22 68.59

The purpose of this numerical example was to show that the interval described
by the bounds grows in length very fast when there is a high contrast between
the material conductivities, making it unusable. In the appendix an explanation
for this behaviour is given.

6 Conclusions

An bound on the error due to homogenization of an heterogeneous stochastic
problem was presented in this paper. The bounds can help to asses the validity
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Figure 2: Left: Temperature field for a realization Right: Temperature field for
the homogenized field
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Figure 3: Left: Gradient in the X direction for a realization Right: Gradient in
the X direction the homogenized field
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of the approach. The computational cost, in some circumstances, is very low,
specially, when compared to the deterministic approach, since it only involves
an integral over an homogeneous domain.

On the other hand, the numerical examples have highlighted one of the
limitations of this work. The error bounds do not behave well, when there
exists a huge contrast between the conductivities of the several materials. This
will be explored in future works.

That is not the only limitation of this work. The bounds presented are only
valid for the expectation. For some analysis, the analyst might also be interested
on how the quantities are spread around the expectation. Also, the bound does
not take into account the effect of the shape of the particles. The authors have
extended the present work to deal with the last two limitations, a bound on the
variance, and a bound on the expectation that takes into account the particle
shapes. Both ideas will be the object of upcoming publications.
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APPENDIX

In this section, we intend to explain the behaviour shown in section (5.2). In
order to do so, we start by finding the homogenized conductivity that minimizes
η and ηφ under the following considerations:

• The Dirichlet boundary conditions are homogeneous.

• ū is the solution of the homogenized problem for a conductivity k̄

• Q̂ is chosen to be the flux of ū, in short, Q̂ = −k̄∇ū

Under those considerations, if the conductivity is changed to k̄′, the solution
field becomes k̄

k̄′
u. Applying the assumptions to eq. (8) gives[

E(k)

k̄′2
− 2

k̄′
+ E(k−1)

]
k̄2

∫
Ω

∇ū2

an expression that can be minimized with respect of k̄′. By taking its deriva-
tive with respect to k̄′, we find that this expression reaches a minimum for
k̄′ = E(k), which means that the best bound is obtained, under the stated
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assumptions, when rule of mixture is applied. Substituting this value in the
previous expression [

E(k−1)− 1

E(k)

]
k̄2

∫
Ω

∇ū2 (9)

If the expectation of the conductivity has the following form,

E(k) =
N∑
i=1

αiki where
N∑
i=1

αi = 1

then, the expectation of its reciprocal is

E(k−1) =
N∑
i=1

αi
ki

Bringing this into the expression inside brackets of equation (9), we obtain

E(k−1)− 1

E(k)
=

N∑
i=1

αi
ki
− 1∑N

i=1 αiki

which is the difference between the reciprocal of the weighted harmonic mean
and the reciprocal of the weighted arithmetic mean of ki (i = 1...N). By the
generalized mean inequality, it is known that this term will be always equal or
greater than 0, having the equality only when k1 = k2 = ... = kN . The greater
the contrast between the conductivities, the further the expression is from 0.
Figure 4 represents the difference between reciprocal of the means for N = 2.
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Figure 4: Difference between the reciprocals of the harmonic and the arithmetic
mean for k2 = 1 and N = 2.
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Abstract 
A methodology for obtaining fully analytical solutions for the extended Graetz-Brinkman problem 
including the effects of axial conduction in infinite and semi-infinite domains has been proposed. 
The infinite domain formulation consists of a preparation (unheated) region (x < 0) followed by a 
heated one (x > 0) such that back diffusion effects can have an influence on the temperature fields. 
The solution methodology is based on the Generalized Integral Transform Technique, in which 
eigenfunction expansions in terms of orthogonal bases are employed. A simple eigenfunction basis 
in terms of Helmholtz problems are used to maintain the calculation of integral coefficients and the 
solution of the involved eigenproblems themselves analytical and simple. With the exception of 
matrix eigenvalues calculation the solution process is mainly analytical.  
 
Keywords: Generalized integral transform, Laminar flow, Forced convection, Duct flow. 

 

Introduction 

Graetz problems have been studied for a long time, since early works that include those of Graetz 
himself [Graetz, 1882]. Initially, simpler versions of the problem, having negligible axial diffusion, 
simple wall heating conditions (isothermal and isoflux), simple geometry cross-section (either 
parallel plates or circular channels), and no fluid flow heating effects were investigated, which can 
be generally denoted the Classical Graetz Problem. This problem is basically of parabolic nature, 
such that its solutions is given by from a known inlet condition, and extents infinitely in the 
direction of the flow. Over the course of the decades that followed, a number of extensions to the 
problem were presented. Since the Graetz problem itself, regardless of the proposed extension, is 
generally linear, many analytical solutions were proposed, but numerical solution schemes are also 
found in the literature for the more complicated extensions of the problem. 

A common extension to the Graetz is the introduction of axial diffusion into the problem, which 
complicates matters notably due to the back-diffusion effects that is increased for smaller values of 
the Péclet number. For this situation, the solution domain must be altered as a preparation unheated 
(uncooled) region must be considered prior to the heated (or cooled) section. This is usually carried-
out by considering an infinite domain that extends from −∞ to ∞ in the flow direction, with a step 
change in the wall boundary condition at the center of the domain. 

Hsu [1968] studied a Graetz problem with axial diffusion in a circular tube, using a semi- infinite 
domain formulation with a specified inlet condition, while Michelsen and Villadsen [1974] 
analyzed the effects of axial diffusion in a infinite domain formed by a insulated preparation region 
followed by an isothermal wall. Both studies used a numerical scheme to complete the solution of 
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the problem. 

Vick et al. [1980] considered a similar Graetz problem with an insulated preparation region 
followed by a finite isoflux region, and presents an approximate (lowest order analysis) analytical 
solution in terms of eigenfunctions that arise from the solution of case without axial diffusion. A 
similar approximate solution procedure was carried out by Bayazitoglu and Ozisik[1980], which 
solved the axial diffusion Graetz problem with convective boundary conditions at the duct walls and 
internal energy sources (i.e. flow heating effects). Further on, Vick and Ozisik [1981] and Vick et 
al. [1983] analyzed similar problems (isoflux walls and convective wall, respectively), but proposed 
a solution in terms of an alternative eigenfunction basis arising from a problem that does not belong 
to the traditional Sturm-Liouville class. 

Ku and Hatziavramidis [1984] also solved the extend problem subjected to a step-change in wall 
temperature such that the infinite domain is divided in two portions having an isothermal wall 
conditions, but with different temperatures. A numerical solution by means of expansions using 
Chebyshev polynomials was carried out. 

Laohakul et al. [1985] and Najjar and Laohakul [1986] considered the infinite domain formulation 
with two different wall boundary condition arrangements: a heated isothermal wall region 
surrounded by two cooled isothermal walls, and a heated isoflux wall region surrounded by two 
insulated regions, respectively. Both studies presented approximate analytical solutions for both 
large and small Péclet number values in terms using integral transforms with orthogonal 
eigenfunction expansions. 

Ebadian and Zhang [1989, 1990] presented an alternate analytical solution to the extended Graetz 
problem, writing the temperature field in the infinite domain in terms of a Fourier integral. 
Although the authors presented a closed-form solution for the temperature field, a Runge-Kutta 
method was required for performing the required integration to obtain the temperature distribution 
and Nusselt values. 
  
Johnston [1991] investigated the Graetz problem with axial diffusion in a semi-infinite domain with 
a prescribed inlet condition, and also used an integral transform solution technique with an 
orthogonal eigenfunction basis arising from the simpler version of the problem without axial 
diffusion. However, the author was able to calculate the complete solution of the system (beyond 
the lower order approximation) in an analytical fashion, by rewriting the transformed ODE system 
in a first-order differential form. 

Min et al. [1997] presented a solution for a Graetz problem with axial diffusion and flow heat- ing 
effects in a semi-infinte domain with a given inlet condition, for the velocity profile obtained for a 
Bingham plastic. The solution is expressed in terms of an eigenseries expansion using the same 
non-Sturm-Liouville basis employed in previous investigations. Olek[1998] also presented a 
solution for similar extended Graetz problem with a non-Newtonian velocity profile; nevertheless, a 
solution method similar to that of [Johnston, 1991] was employed. 

Çetin et al. [2008] considered a Graetz-type problem for a slip-flow regime with viscous dissipation 
heating and included the effects of axial diffusion. The authors considered a semi-infinite domain 
with a prescribed inlet condition, in which a coordinate transformation was employed for arriving at 
a finite domain. The resulting problem was numerically solved via finite differences. The same 
authors Çetin et al. [2009] proposed a solution to a similar problem, using a different wall heating 
condition (step-change in wall temperature), and considering an eigenfunction expansion approach 
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in terms of a non-Sturm-Liouville eigenfunction basis. Sharma and Chakraborty [2008] also 
adopted a similar solution technique for tackling an extended Graetz problem with a velocity profile 
arising from combined pressure and electroosmotic flow driving mechanisms. 

In this study, an extended version of a Graetz problem with axial diffusion in an infinite domain is 
considered. Two heating conditions are analyzed, these being a step change in wall temperature, 
and a step change in wall heat flux (the lower value corresponding to an insulated condition). The 
adopted solution strategy is based on orthogonal Sturm-Liouville eigenfunctions expansions of the 
sought solutions, following the formalism of the nowadays called Generalized Integral Transform 
Technique [Cotta, 1993]. Closed-form analytical solutions are obtained, and the solution process 
involves a single numerical methods step, which involves the calculation of numerical matrix 
eigenvalues and eigenvectors. 

Problem Formulation 

The studied convective heat transfer problem is an extension of the Graetz problem, including the 
effects of axial diffusion, for an infinite circular channel with a sudden change in boundary 
condition at the wall at the origin of the axial coordinate. The problem formulation is given by two 
sets of equations, valid for different regions. For the upstream region (  ≤ 0) the governing 
equation and boundary conditions in the transversal direction are given by: 
 

 
(1a) 

 
(1b) 

 
(1c) 

 
 
whereas for the downstream region (ξ ≥ 0), the equations are given by: 
 

 
(2a) 

 
(2b) 

 
(2c)

 

 
 
where and represent the dimensionless temperatures in the two different regions. The  
coefficient will lead to different wall heating conditions:  = 0 for isothermal wall and  = 1 for 
constant heat flux.  
 
Part of the required boundary conditions in the axial direction are the inlet and outlet conditions at 
infinity, defined as: 
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 (3a)
 

 
 
which reflect the fact that the temperature gradient cannot increase indefinitely for a large value of 

. This form for the boundary is chosen since both prescribed wall temperature and wall flux 
conditions are used. If only a prescribed wall temperature was used, the actual temperature at 

 become bounded. Nonetheless, for the employed solution strategy the currently adopted 
form suffices. The remaining boundary conditions in this direction are coupling conditions between 
the two regions, at the axial coordinate origin (  = 0): 
 
 

(3b) 
                            

  (3b) 
 

 
The employed dimensionless variables are defined by the following equations: 
 

 
(4a) 

 
(4b) 

 
 
where D is the channel diameter and  is a reference temperature, and the temperature difference 

 can have two different definitions according to the wall heating condition in the downstream 
region:  

 
(5) 

 
 
where and  represent the wall temperature and wall heat flux in the downstream region. 
 
The presented governing equations allow for a variety of dynamically-developed velocity profiles. 
However, for illustration purposes, a Hagen-Poiseuille profile is used: 
 

(6) 
 
In spite of this choice, as it will be seen, the solution methodology is practically independent of the 
choice of *u , such that any other expressions for *u  as a function of  can be used. 
 
Finally, the Nusselt number in the downstream region can be calculated from In the upstream 
region, special cases exist: 
 

 (7a) 
 

 (7b) 
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where  is the dimensionless wall temperature, and the dimensionless bulk temperature  is 
calculated form: 
 

(7c) 
 

Proposed Solution Scheme 

The adopted solution methodology is based on the Generalized Integral Transform Technique 
(GITT). As usual among this type of methodology, filter problems are proposed for removing non-
homogenities from the original system. Since the upstream portion of the problem is homogeneous, 
only the downstream formulation needs to be filtered, which is carried out based on the following 
solution separation: 
 

(8) 
 
in which θ  represents the filtered variables, whereas F represent the filter function, which is  
commonly obtained from simpler versions of the original problem. 
 
For the isothermal walls condition ( β  = 0), the selected downstream filter function is simply a 
constant: 
 

 (9a) 
 
whereas for the isoflux wall condition ( β  = 1) a polynomial filter is used: 

 
 (9b) 

 
whereas, both filters correspond to the solution of the problem as . 
 
If the previously presented filters are employed, the resulting filtered problem for the downstream 
region is given by: 

 
 

 (10a) 
 

(10b) 
 

(10c) 
 

 
and the boundary and coupling conditions in the axial direction are given by: 
 

 
(11a) 
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(11b) 
 

(11c) 
 

Integral Transformation 

The solution of the considered problem is accomplished employing the Generalized Integral 
Transform Technique []. The solution process is started by defining the transformation pairs: 
 

 
(12a) 

 
(12b) 

 
(12c) 

 
(12d) 

 
 

 
 
 

where nΛ s are orthogonal solution of a Sturm-Liouville problem. For the current application, a 
one-dimensional Helmholtz problem is selected: 
 

 
(13a) 

 
(13b) 

 
which leads to infinite nontrivial solutions in the form: 

 
 (14a) 

 
for 1, 2, , .= ∞  For the constant heat flux condition (β  = 1) problem (13) admits a non-trivial 
constant solution for 0λ  = 0. As a result, one must also include definitions for this situation: 
 

 (14b) 
 
 

such that for isothermal wall conditions ( β  = 0) trivial solutions are obtained. 
 
The eigenvalues are calculated numerically, being obtained from the roots of the following 
equations: 

 
(14c) 

 
(14d) 
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Finally, the norms are obtained from: 
 

(15) 
 
noting that for isothermal walls there is no need for calculating 0N  as the trivial solution is obtained 
for n = 0. 
 
The transformation of the given problem is accomplished by multiplying equations (1a) and 
(10a) by nηΛ , integrating within 0 1η≤ ≤ , and applying the inversion formulas (12b) and (12d) 
to the non-transformable terms. This process yields the following coupled system of ODEs: 
 

(16a) 
 

(16b) 
 
 

(16c) 
 
 

(16d) 
 

(16e) 
 

 
for n 0,1, 2, , .= ∞  However, one should note that for β  = 0 there is no need to calculate 0φ  and 
the summations in equations (16a) and (16b) should start from m  = 1, such that there is no 
need for an equation for n  = 0. 
 
The coefficients , , ,  and n m n nA b d  are given by: 
 

(17a) 
 

(17b) 
 

(17c) 
 

 
In order to solve system (16), the infinite system representation must be truncated to a finite number 
of terms, which is denoted the truncation order. Once truncated, the resulting system can be solved 
numerically using a commercially or publicly available ODE system solver. Nevertheless, an 
analytical alternative to the ODE integration can be achieved if the truncated systems are reduced to 
first order forms by writing it in terms of new unknown vectors  and x y : 
 

(18a) 
 

(18b) 
 
 

2
2 2

,2
0

d d Pe ( ) 0,  for 0,
d d

n m
n m n n

m
Aθ θ λ θ ξ ξ

ξ ξ

∞

=

− − = ≥∑
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Where a condition of a prescribed wall flux in both upstream and downstream regions has been 
considered. For isothermal walls x  needs not include 0φ  nor 0φ ′ , and y needs not include 0θ   nor 

0θ ′ .  
 
By employing the new unknown vectors, equations (16a) and (16b) are rewritten in the following 
forms: 

 
(19) 

 
 
 

Where M is a block matrix defined as:  
 

(20) 
 

 
in which the sub-matrix  is given by the coefficients  and  is given by: 
 

 (21) 
 
Once the transformed ODEs have been written in the modified form given by equations (19), a 
solution can be obtained using analytical integration. If the eigenvalues and eigenvectors of  are 
calculated, the solution for the components of x and y can be written in the following form: 

 
 

(22a) 
 

(22b) 
 
in which = 2  for constant wall temperature and = (2 + 1) for constant wall flux. 
The coefficients  originate from matrices  that contain the eigenvectors of as columns. The 
coefficients  are the eigenvalues of  while  and  are arbitrary constants, to be determined 
from boundary conditions. The matrix yields about  positive eigenvalues and  negative 
eigenvalues, such that roughly half of the arbitrary coefficients can be directly eliminated to satisfy 
the boundary conditions at  and : 

 
(23a) 

 
(23b) 

 
The remaining  and  values are calculated directly from solving the linear algebraic system 
that stems from the coupling conditions at . These equations can be directly combined into a 
single vector equation: 
 

(24) 
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where the vectors  and  are given by the coefficients   and  the vector  is defined as: 
 

(25) 
 
 
After using equations (23), equation (24) is directly solved to yield the remaining unknown 
coefficients, and the solution of the transformed potentials in both upstream and downstream 
regions is complete. Once  and  are determined, the temperature profiles are obtained directly 
from the inversion formulas (12b) and (12d) combined with the separation formula defined by 
equation (8). 
 

Results and Discussion 

After describing the problem formulation and solution methodology, numerical results are 
presented. The first set of results are dedicated to examining the solution convergence for the two- 
different boundary condition cases. Table 1 presents the calculated values of the Nusselt number for 
different axial positions (all within the downstream region) and different values of the Péclet 
number for the isothermal walls configuration. As can be seen, the convergence behavior follows a 
pattern in which notably better convergence rates are obtained as one moves downwards with the 
flow. For positions in this region, 40 to 60 terms (depending on the value of Péclet) are sufficient 
for ensuring a Nusselt values with six converged digits. For positions near the boundary condition 
discontinuity (ξ = 0) a worse convergence rate is seen, and the convergence becomes highly 
dependent on the Pe value. For Pe = 1 and ξ = 10−3 not even a single converged digit is obtained 
with 100 terms; however, for Pe = 100, 100 terms in the series leads to four converged digits. 

Also on this table, the converged solution of the case with no axial diffusion (labeled as Pe = ∞) is 
presented for verification purposes. As one can observe from these values, it is clear that as Pe is 
increased, the Nu values gradually approach the solution with no axial diffusion. 

The next table (Tab. 2) presents similar Nusselt number convergence results for the isoflux walls 
situation. As one can observe from the presented results, again, better convergence rates are seen in 
regions further downstream; however, when compared to the isothermal walls case, much better 
convergence rates are obtained. In fact, in several occasions, as much as five terms in the series 
yield six converged Nu-digits. When looking into the convergence dependence on the Péclet 
number, one notices that the convergence in positions near the channel entrance is notably less 
dependent on Pe than for the case with isothermal walls. Finally, when comparing the Nusselt 
number values with axial diffusion with the case with no axial diffusion, one notices that with 
increasing Pe number, the converged Nusselt values approach the Pe = ∞ case, as expected. 

The last set of results examine the behavior of the Nusselt number for different values of the Péclet 
number. Fig. 1 shows the distribution of Nu in the thermal developing region for different Péclet 
values. As can be seen, the Péclet number has a much more pronounced effect on the Nusselt values 
for positions near the channel entrance. In fact, although hard to see in the presented scale, different 
Péclet values also yield different Nu values for the isothermal walls conditions (as expected) in the 
thermal developed region (ξ > 1), which can be seen from the data in table 1. 
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Figure 1 – Nusselt distribution for isothermal wall 
 
 
Subsequently, figure 2 depicts the Nu distribution in the thermally developing region for different 
Péclet values, for the case with an insulated downstream and a uniform heated upstream. As one can 
infer from the presented results, a somewhat different behavior is seen when compared to the 
previous case. Firstly, the Nu values are independent of the Péclet number in the developed region 
(as expected, and seen in table 2). Secondly, although the dependence on the Péclet number 
becomes very notable as one moves further into the thermal entrance region, the Nu values have a 
general tendency of decreasing with increasing Péclet for this case, rather than increasing (which 
was observed for the isothermal walls case). 

 

 

 
Figure 2 Nusselt distribution for insulated/isoflux wall 
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Table 1 
Isothermal walls 

 ξ=0.001 ξ=0.01 ξ=0.1 ξ=1 ξ=10 
Pe=2 

10 28.8358 22.875 7.07583 3.8087 3.80203 
20 54.1035 34.0065 7.07748 3.80826 3.8016 
40 100.116 43.107 7.07682 3.8082 3.80154 
60 140.698 45.6955 7.07676 3.8082 3.80153 
80 176.489 46.4317 7.07674 3.8082 3.80153 
100 208.054 46.641 7.07674 3.8082 3.80153 
conv. 443.795 46.7239 7.07673 3.8082 3.80153 

Pe=5 
10 24.7794 15.09 4.61058 3.69582 3.69581 
20 43.1881 17.4615 4.60843 3.69527 3.69526 
40 72.3622 18.0455 4.60815 3.6952 3.69519 
60 93.6745 18.0689 4.60813 3.6952 3.69518 
80 109.242 18.0694 4.60812 3.69519 3.69518 
100 120.613 18.0693 4.60812 3.69519 3.69518 
conv. 151.419 18.0691 4.60811 3.69519 3.69518 

Pe=10 
10 23.1915 10.8647 4.16302 3.66821 3.66821 
20 36.6831 11.025 4.16151 3.66763 3.66763 
40 53.7184 11.0232 4.16131 3.66756 3.66755 
60 62.8062 11.0223 4.16129 3.66755 3.66755 
80 67.6537 11.0221 4.16129 3.66755 3.66755 
100 70.2391 11.022 4.16128 3.66754 3.66754 
conv. 73.1923 11.0219 4.16128 3.66754 3.66754 

Pe=50 
10 20.7269 7.67478 4.01245 3.65792 3.65792 
20 21.8546 7.64915 4.01115 3.65733 3.65733 
40 22.0204 7.64572 4.01098 3.65725 3.65725 
60 22.0114 7.64537 4.01096 3.65724 3.65724 
80 22.0071 7.64529 4.01096 3.65724 3.65724 
100 22.0055 7.64525 4.01096 3.65724 3.65724 
conv. 22.0039 7.64522 4.01096 3.65724 3.65724 

Pe=100 
10 19.8799 7.54188 4.0077 3.65758 3.65758 
20 18.1528 7.51788 4.0064 3.65699 3.65699 
40 17.9536 7.51471 4.00623 3.65692 3.65692 
60 17.9428 7.51438 4.00622 3.65691 3.65691 
80 17.9404 7.5143 4.00621 3.65691 3.65691 
100 17.9395 7.51427 4.00621 3.65691 3.65691 
conv. 17.9386 7.51424 4.00621 3.65691 3.65691 

 
                                                   Pe=  

conv. 16.264 7.47038 4.00463 3.65679 3.65679 
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Table 2 

      Isoflux walls 
 ξ=0.001 ξ=0.01 ξ=0.1 ξ=1 ξ=10 

Pe=2 
10 7.9516 7.44095 5.50366 4.36881 4.36364 
20 8.10429 7.5016 5.50319 4.36881 4.36364 
40 8.17579 7.51492 5.50314 4.36881 4.36364 
60 8.19683 7.5161 5.50313 4.36881 4.36364 
80 8.20611 7.51626 5.50313 4.36881 4.36364 
100 8.21101 7.51628 5.50313 4.36881 4.36364 
conv. 8.22006 7.51629 5.50313 4.36881 4.36364 

Pe=5 
5 9.40303 8.15929 5.1761 4.36377 4.36364 
10 9.77981 8.23411 5.17148 4.36377 4.36364 
20 9.97406 8.24913 5.17099 4.36377 4.36364 
40 10.0564 8.24983 5.17093 4.36377 4.36364 
60 10.0764 8.24977 5.17092 4.36377 4.36364 
80 10.0837 8.24975 5.17092 4.36377 4.36364 
100 10.0869 8.24975 5.17092 4.36377 4.36364 
conv. 10.0903 8.24974 5.17092 4.36377 4.36364 

Pe=10 
5 11.819 8.9259 5.04433 4.36365 4.36364 
10 12.2099 8.86054 5.04022 4.36365 4.36364 
20 12.4298 8.85146 5.03973 4.36365 4.36364 
40 12.5093 8.85019 5.03968 4.36365 4.36364 
60 12.5235 8.85007 5.03967 4.36365 4.36364 
80 12.5272 8.85004 5.03967 4.36365 4.36364 
100 12.5284 8.85003 5.03967 4.36365 4.36364 
conv. 12.529 8.85002 5.03967 4.36365 4.36364 

Pe=50 
5 20.9235 9.53499 4.97964 4.36364 4.36364 
10 18.9231 9.30816 4.97572 4.36364 4.36364 
20 18.6708 9.29342 4.97524 4.36364 4.36364 
40 18.6412 9.2916 4.97519 4.36364 4.36364 
60 18.6382 9.29142 4.97518 4.36364 4.36364 
80 18.6375 9.29138 4.97518 4.36364 4.36364 
100 18.6372 9.29136 4.97518 4.36364 4.36364 
conv. 19.6625 9.29551 4.97283 4.36364 4.36364 

Pe=100 
5 24.5256 9.53521 4.97728 4.36364 4.36364 
10 20.2961 9.31245 4.97337 4.36364 4.36364 
20 19.7092 9.2976 4.9729 4.36364 4.36364 
40 19.6679 9.29577 4.97284 4.36364 4.36364 
60 19.6641 9.29559 4.97284 4.36364 4.36364 
80 19.6631 9.29554 4.97283 4.36364 4.36364 
100 19.6628 9.29553 4.97283 4.36364 4.36364 
conv. 19.6625 9.29551 4.97283 4.36364 4.36364 

Pe=  
conv. 19.9868 9.29502 4.97205 4.36364 4.36364 
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Conclusions 

This paper presented an analytical solution to the extended Graetz problem with axial heat diffusion 
in an infinite domain configuration with a step change in wall boundary condition at the axial 
coordinate origin. The channel geometry comprises circular channels (tubes or pipes), and both 
isothermal walls and insulated/isoflux walls were analyzed as boundary conditions. The solution 
methodology was based on the Generalized Integral Transform Technique using simple 
eigenfunctions as a basis for the sough solution. The eigenfunctions are obtained from a Helmholtz 
problem, and all integral coefficients can be calculated analytically. In fact, the entire solution 
procedure is analytical, except for the numerical calculation of matrix eigenvalues and eigenvectors. 
The solution method was verified to lead to converged values which are in accordance with 
physically expected results. The results also match the values without axial diffusion as the Péclet 
number is increased. After demonstrating the convergence of the solution, the Nusselt number 
distribution for different Péclet values was analyzed, and the results are also in accordance with 
expected literature values. As final comments one should mention that the same solution procedure 
can be used for any dynamically developed velocity profile, as it occurs in many other occasions. 
Also, the methodology can be easily extended to other configurations such as other channel 
geometries, different wall heating conditions, and vicious and other flow heating effects. 
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Abstract 
Using finite element (FE) models the residual stress present in a glass sample was constructed using 
the knowledge of surface deformation resulted in from the stress relaxation along a newly cut plane. 
The residual stress profile, validated with a scatter light polariscope, was then used to accurately 
establish the misfit strain (i.e. eigenstrain) of the original glass specimen. The paper shows that once 
the underlying eigenstrain distribution has been determined, the complete residual stress distribution 
can simply be determined by incorporating the eigenstrain profile as a misfit strain in an appropriate 
FE model. The results show that stress depth profile generated in float glass is parabolic. It is also 
shown that the hybrid model enables modelling residual stress in new geometries (e.g. stress 
concentrations around the hole) and/or during subsequent loading application, by simply using the 
knowledge of eigenstrain depth profile. 

Keywords: Contour Method, Eigenstrain, Finite Element, Glass, Residual Stress 

Introduction 

Over the last decades, owing to its unique properties, designers began to use glass as a load bearing 
structural material in buildings [IStructE (1999)]. One of the greatest difficulties that inhibits 
accurate prediction of the structural response of commercial glass is the lack of comprehensive 
analytical/numerical tools to predict residual stress distributions generated due to manufacturing 
cooling process. The current design guidelines in the UK are lacking in complete design 
methodology, most of them being based on rules of thumb [IStructE (1999)]. The Institution of 
Structural Engineers design guidelines [IStructE (1999)] provide design permissible tensile stress 
values (e.g. 28 N/mm2 for float glass with a thickness up to 6 mm) but recommend that: “In the 
absence of code-based allowable tensile stresses it is left to the judgment of the engineer what 
figures to adopt”. This often results in over designed conservative structures. 
 
The misfit strains developed during the cooling of glass in the manufacturing process generate 
residual stresses. As it is known the effect of residual stresses can be significant in the strength 
prediction of materials [Withers (2007)]; thus negligence of this can lead to premature failure of the 
structures. Glass, in particular, is susceptible to brittle fracture failures due to the presence of 
inevitable surface defects. 
 
The non-crystalline microstructure of the glass makes it impossible to determine the residual stress 
using conventional experimental methods such as X-ray or neutron diffraction. A scattered light 
method [Aben et. al. (2008)], which uses the magnitude of birefringence in glass, may be used to 
determine residual stresses. However, the method is limited by not being able to accurately 
determine the through thickness stress profiles at certain depths, especially in annealed glass. The 
current paper presents a validated hybrid contour /eigenstrain method to characterise the full field 
residual stresses in commercially available float and tempered glass. 
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Methodology 

The contour method, originally developed by Prime (2001) to model residual stresses in metallic 
components, was used in the present study to determine the residual stress in glass. Although the 
contour method provides information about the residual stresses, it is not able to advance any details 
about the cause of the residual stresses (i.e. eigenstrain). Using the knowledge of the residual stress 
distribution constructed from the contour method, the eigenstrain distribution in the sample was 
computed from an inverse eigenstrain analysis developed by Korsunsky (2009). The knowledge of 
the eigenstrain profile was then used to compute the stress concentrations around a hole in plate 
with new geometry, and/or under applied loads. Fig. 1 presents the step-by-step procedure of the 
current method. 

Original glass sample 

     Cut sample in half and 
                  measure surface displacements 

Displacement contour of the cut plane 

            Finite element analysis 

Residual stress 

Inverse eigenstrain analysis 

Eigenstrain distribution 

      Finite element model 

Residual stress in new geometries/during applied loadings 

Figure 1. Step-by-step procedure of contour/eigenstrain hybrid method 

Construction of residual stress using contour method 

In the contour method, the residual stress distribution is determined by incorporating the surface 
contour perpendicular to the cut plane as a displacement boundary condition in a static finite 
element (FE) model representing an initially stress-free half sample of the original specimen. 
Therefore, the determination of the displacement contour of the cut plane is a prerequisite in the 
present analysis. The contour method principle illustrated in Fig. 2 shows that after cutting the 
sample in half (Fig. 2b), the surface deformation (average of surface deformation of both sides is 
used to account for possible shear effects) is used to construct the residual stress developed in one 
half of the specimen as a response of forcing back the deformed surface to the initially planar state 
(Fig. 2c). The contour method proved its success in modelling residual stress in steel and metal 
alloys in different applications e.g. bent elements [Pagliaro (2008)], welds [Hosseinzadeh (2011)]. 
A comprehensive discussion of theory of the contour method can be found elsewhere [Pagliaro 
(2008); Johnson (2008)]. 
 

 
Figure 2. Contour method principle [Prime (2001)] 
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The analysis of a comercially available float glass sample (Pilkington Glass) of 150 x 100 x 10 mm 
is discussed below to demonstrate the application of the method to construct residual stress field. 
Making a cut which is free from defects is not trivial, in particular due to the brittle nature of glass. 
The most suitable cutting technique used for metal specimens is the wire electric discharge machine 
(EDM) [Prime (2001)], where the material removal is done by spark erosion. However the method 
cannot be used to cut glass and different alternatives such as diamond disk cutting and water-jet 
cutting were investigated. The results revealed that water-jet cutting (done by a comerical contractor) 
with a jet diameter of ~1 mm and a 80 mesh garnet grade provides a good “cut plane”. It should be 
appreciated that in the experiments sacrificial glass pieces, as shown in Fig. 3a, were used on either 
side of the main specimen to eliminate the “edge effects”. 
 
After the sample was cut into two halves, the displacement contour of both cut surfaces was 
measured using a 3-D micro-coordinate system which offers great accuracy being able to achieve a 
vertical resolution of up to 10 nm [Alicona, 2.1.5]. It was observed that the GFM G4 10x objective 
offers the optimum magnification for determining the displacement contour profile of the sample. 
The 3-D contour presented in Fig. 3b was done with a sampling distance of 1.75 µm. The 
measurement was made along the thickness of the sample (10 mm) and accros a width of 1 mm, 
chosen to eliminate the effects due to potential local defects (e.g. micro-cips). 
 

 
Figure 3. a. Half of the sample after cutting (left), b. 3-D contour of the cut-plane (right) 

 
It should be appreciated that the deformations due to stress relaxation in this specimen are ~1-2 µm. 
However, the current work is a feasibility study to demonstrate the application of the present hybrid 
model to predict stresses in tempered glass, which is widely used in commercial applications. 
Because of the significantly high stresses in tempered glass it is expected that displacement along a 
cut plane in tempered glass will be more significant than that in an annealed glass specimen. 
 
The surface deformations of each side of the cut shown in Fig. 4a are very similar. Separate 
measurements across the length of the sample were taken and it was concluded that the surface 
deformation is mostly uniform in the lateral direction and varies only along the thickness. For 
instance, Fig.4b shows the measured contour depth profile at three different locations within the left 
cut plane; all three profiles are very similar. Therefore, it is appropriate to incorporate the surface 
contour of the cut-plane into a FE model as a polynomial curve that varies in thickness. The average 
depth profile presented in Fig. 4a was represented by a best fit 2nd order polynomial with 
coefficients: -0.045, 0.419, -0.616.  
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Figure 4. a. Averaged middle profile and fitted polynomial (right), b. Displacement profiles at 

various locations (left) 
 
ABAQUS/Standard [Abaqus, 6.9-3] was used in the present study to model the residual stress 
distribution. A 3-D model with 8-noded, linear brick stress elements (3D8R) was used in the 
simulation. With a linear-elastic behaviour, it was appropriate to assume a material model with 
Young modulus =70 GPa and a Poisson’s ratio =0.23 to characterise material properties of glass. 
The residual stress distribution was conveniently determined by incorporating the approximate 
polynomial curve of the displacement contour (Fig. 4a) in a FE model representing the initially 
stress-free half sample of the original glass specimen. 
 
The residual stress distribution computed using the above FE simulation is presented in Fig. 5a 
(only the stress component normal to the cut surface is shown here since it is the most relevant 
stress distribution). The results show a parabolic stress distribution, with tension at the outer surface 
(~8 MPa) and compression (~7 MPa) at the mid-thickness. The depth of the tension zones on each 
side is 2 mm (~20% of the specimen thickness) and is balanced by a middle compression zone of 6 
mm thick (~60% of the overall thickness). It is worth noting that the “edge effects” due to FE 
simulation could not be avoided, thus the surface stress predicted from the present FE model may 
be slightly overestimated. Thus, the above quoted surface tension value is actually the value slightly 
below/above (~1 mm) the actual surface. Fig. 5b shows that the cumulative force along the depth is 
zero when integrating the stresses along the depth profile. 
 

  
Figure 5. a. Residual stress (left), b. Cumulative force distribution (right) 
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The unique characteristic of the current method is that the full stress field can be predicted fulfilling 
the overall equilibrium, compatibility and boundary conditions. It should be noted that the 
magnitudes of the predicted residual stresses agree with the expected stresses in practice [Geandier 
et. al (2003)]. Experiments using a scatter light polariscope are currently being undertaken to 
validate the present results. 
 

Eigenstrain profile estimation using the constructed residual stress distribution 

Although, the contour method can be used to model the residual stress in a given glass specimen, a 
separate experiment programme is required to predict the stress distribution in a new specimen. The 
residual stress is a response to the eigenstrain developed in the specimen during glass 
manufacturing process. Thus, as shown hereafter, once the knowledge of the eigenstrain distribution 
is available the stress state in real-life practical structural elements can be determined in a 
computationally efficient manner. 
 
The eigenstrain method [Korsunsky (2009)], which is used here to determine the eigenstrain profile, 
uses a least square approach to determine the unknown eigenstrain distribution based on the residual 
elastic stresses measured at a finite number of locations. The technique was successfully used 
[Achintha and Nowell (2011)] to reconstruct the full residual stress field in alloy materials due to 
laser shock peening. 

Assume eigenstrain distribution 
(A Chebyshev series) 

         FE model for each 
         polynomial of the series 

Resultant residual stress distribution 
       Minimisation of the mismatch 
       between the measured  
       and calculated stress 

Accurate eigenstrain profile of the sample 

 Finite element model 

Residual stress in new geometries/during applied loadings 
Figure 6. Step-by-step procedure of an inverse eiegnstrain analysis of the hybrid method 

For the glass sample discussed previously, the eigenstrain distribution was considered to be uniform 
in the lateral direction, varying only with thickness. Initially an eigenstrain profile represented as a 
series of Chebyshev polynomials [Mason and Handscomb (2003)] was assumed (although 
alternative polynomial choices are possible). The number of polynomials in the series is to some 
extent arbitrary, but it should be large enough to capture the exact form of the eigenstrain 
distribution accurately. In the present study the analysis was done for a different number of 
polynomials to ensure that the result is independent of the value chosen. On separate FE models 
each polynomial of the assumed Chebyshev series was implemented individually and the respective 
residual stress in the specimen was determined. The response of the specimen to the applied 
eigenstrain is elastic, thus the resultant residual stress distribution caused by the original assumed 
eigenstrain distribution is the sum of each individual residual stress. Using a least-square analysis 
between the predicted stress and the corresponding measured data, the accurate estimate of the 
actual eigenstrain distribution was established. It should be appreciated that the stress values 
determined previously using the contour method were used as experimental data in this analysis. 
Once the best estimate of the eigenstrain distribution has been established, the residual stress 

ICCM2014, 28th-30th July 2014, Cambridge, England

705



distribution can be determined in the usual way by incorporating this eigenstrain distribution in a 
FE model. The step-by-step procedure of the analysis technique is presented in Fig. 6.  
 
Fig. 7a shows the “best estimate” of the eigenstrain depth profile and Fig. 7b shows the comparison 
between the residual stress depth profile determined from the earlier contour analysis and that from 
the eigenstrain analysis. From Fig. 7b it is evident that, as expected, the predictions from the 
eigenstrain method agree with that constructed from the contour method. The small mismatch 
between stress profiles is related to the procedure in which the residual stresses were determined. 
The contour method uses boundary displacement to obtain residual stress and thus the residual 
stress distribution is correctly predicted only at that edge. In the case of eigenstrain method the full 
residual stress was determined as an overall response of the model to the eigenstrain profile. 

 
Figure 7. a. Computed eigenstrain distribution (left) b. Comparison of stress profile (right) 

Prediction of stress distribution in different structural elements 

The knowledge of the eigenstrain distribution allows determining the structural response of real-life 
structural glass elements of practical geometries and/or under applied loading. 
 
For instance, the knowledge of the eigenstrain profile was used to study the effects due to geometry 
in a practical glass element. The results of a glass plate (150 x 100 x 10 mm) with a 20 mm 
diameter central hole, under uni-axial tensile loads of 10 and 20 MPa (X direction) are discussed. 
Symmetry conditions are used to model only a quarter of the specimen. As it can be seen in Fig. 8a, 
after the eigenstrain distribution was implemented to the FE model, a full residual stress field (only 
the middle principal stress is shown in Fig. 8a) was achieved in the sample (e.g. B) fulfilling the 
equilibrium conditions at the boundaries (e.g. A, C, D). 

 
Figure 8. a. Residual stress field (Mid. Principal) b. Stress profile in X direction (S11) at 

different locations in the sample 
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Initially the sample has no applied load and the presence of the hole does not influence the residual 
stress distribution. The results presented in Fig. 8b show that the residual stress in X direction (i.e. 
along the direction of the applied uni-axial tension) across path A of the hole, and across path B 
(through thickness) in the plate matches the one of the flat sample without the hole. 
 
Under tensile load, the stress distribution in the sample is no longer uniform; stress concentrations 
around the hole have developed as can be seen in Fig. 9a. Fig. 9b presents the same sample as 
before without any initial residual stress. As expected, the magnitude of the stresses in the sample if 
there was no initial residual stress is lower than that in the sample incorporating residual stresses. 
From both models it is evident that path A represents a locus where stress concentrations arise, but 
only the model incorporating initial residual stress is able to provide a comprehensive analysis of 
stress distribution and evolution in the sample during loading. 
 
It is expected that residual stresses distribution affects the failure of a structural element. If, for 
example, the exampled considered here was to have an ultimate tensile load of 40 MPa, the FE 
glass model not incorporating the initial residual stress distribution would result in a satisfying 
structural design. Whereas, as shown in Fig. 10a, in the case of the FE glass model, in which the 
residual stress distribution was considered, it is clear that the ultimate limit was reached and the 
structural element might unexpectedly fail. 
 
Considering the stress distribution along the path A (Fig. 9) was a favourable case, because both 
models were presenting stress concentration there. If one is to consider a random path away from 
the edges (path B) then accounting for stress distribution in the analysis makes a significant 
difference. As can be seen in Fig. 10a the results show that the residual stress (RS) completely 
changes the stress profile and the magnitude of the surface tension is more than double the value 
that was computed using a FE model without any initial residual stress. This proves that by 
incorporating residual stresses into analysis facilitates the modelling of the full stress field 
generated during subsequent loading. The results presented in Fig. 10b show that even though the 
step size of the load was constant (10 MPa) the magnitude by which the residual stress distribution 
(across path A) for each step increased was not constant. 
 

 
Figure 9. a. Glass sample with residual stress under 20 MPa (X direction) tensile load (left),   

b. Glass sample without residual stress under 20 MPa (X direction) tensile load (right) 
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Figure 10. a. Stress profile at 10 MPa tensile loading (left) b. Stress profile along path A for 

different load steps (right) 

Conclusions 

This paper presents a hybrid validated experimental/numerical-modelling tool to characterise the 
residual stress present in commercially available glass. The study shows that the hybrid modelling 
approach works well to model the residual stresses. It has been shown that, by applying contour-
method based finite element models, the full residual stress distribution that satisfies overall 
equilibrium, compatibility and boundary conditions can be accurately determined. An inverse 
eigenstrain analysis has been developed to estimate the eigenstrain distribution of glass. The 
eigenstrain distribution depends only on the glass manufacturing process, therefore, once the 
knowledge of the eigenstrain depth profile in a given glass type is available, structural response of 
practical glass elements under service loads can be determined in a computationally efficient 
manner. 
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Abstract 
Cavitation can occur in vane pumps when the local fluid static pressure falls below the vapor 
pressure at the operating conditions. Cavitation can reduce the flow rate and erode the internal 
surface of a vane pump. Because direct measurement is difficult to implement, predictive tools 
based on Computational Fluid Dynamic (CFD) has become a valid alternative approach to 
determine the position and size of cavitation in a vane pump. In this study, a purpose-built code has 
been developed for use with Star-CD to capture the gap shape between the vane and stator with a 
moving mesh. The internal flow of a vane pump has been simulated with the volume of fluid 
method, together with Rayleigh cavitation model and RANS-based Mender's SST k  turbulence 
model. The simulation results demonstrate the initiation, development and collapse of cavitation 
during the rotation of vane, which leads to accumulation or release of the mass of oil, resulting in a 
reduced or increased area of cavitation respectively. The transient flow rate at the inlet is stable 
while the outlet flow rate fluctuates significantly. The radiuses of vane tip and gap size are found to 
influence the size of cavitation and flow rate of the vane pump. The computational model presented 
here can provide the basis for optimal design of vane pumps. 
 

Keywords:  Vane pump, Numerical simulation, Moving mesh, Volume of fluid method, Cavitation 
model, Turbulence model  

Introduction 

The physical phenomenon of cavitation can occur in vane pumps when the local fluid static 
pressure falls below the vapor pressure at the operating conditions. The vane pump operating 
performance is greatly affected by the cavitation. Usually, the cavitation can reduce the working life, 
efficiency of vane pump and can generate vibration, noise and solid surface erosion in vane pump. 
Vane pump cavitation are mainly blade surface cavitation and clearance cavitation. The blade 
surface cavitation is generated at the position with low static pressure induced by the secondary 
flow near blade surface while the clearance caviation is generated for the local high speed leakage 
velocity near the clearance between tip of vane and stator wall. Researchers [Shcherbin and 
Smolyanskii (1994); Cho and Han (1998);Wu (2005); Antonio and Rosario (2005), L.Wang and Quan (2006)] have 
utilized theoretical analysis and empirical formulas to investigate the effect factors like profile 
curve of the stator, flow rate fluctuation of pump, and indicated the important effect factors of the 
performance and service life of vane pump. In the past, theoretical analysis and empirical formulas 
have been mainly relied on during the process of pump design, however it is not sufficient. It is 
important to follow a combined strategy between simulation, experiment and analysis to design a 
vane pump with the characteristics of large flow rate, high pressure and low noise. Solving the three 
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dimensional Navier-Stokes equations based on finite volume method plays an important role in 
predicting the performance of the vane pump. 
The key factors of accurately simulating the vane pump internal flow are grid deformation and 
reconstruction as the chamber volume changes. The selection of cavitation model and turbulence 
model also plays an important role. The common CFD softwares utilized in the simulation of vane 
pump flow include FLUENT, Pumplinx and Starccm+, etc. But simplifications were made such as 
simplifying the geometry and fitting the profile curve of vane tip to the profile curve of stator. 
Sometimes artificially enlarged leakage gap was performed in order to avoid numerical 
convergence problems. All these modifications led to less accurate simulations of the leakage and 
cavitation phenomena of the vane pump. 
In this paper, a purpose-built code for the computational fluid dynamics software Star-CD has been 
completed. This program can generate the grids in the cases of different vanes number, different 
profile curves of stator or different gap sizes in a fast way. It is especially capable of capturing the 
gap shape between the vane and the stator. In the present simulation, this feature was used 
combined with the Menter SST k-ω turbulence model [Menter (1994)], the Rayleigh cavitation 
model [Ahuja et al (2001); Bakirand Gerber (2004)] and VOF [Hirt and Nichols (1981); Ubbink and Issa (1999)] 
method. The flow characteristics together with the generation, development and collapse of 
cavitation were analyzed. Influences of the radius of vane tip on the pump performances were 
investigated. The comparisons of the computed results are consistent with the experimental data, 
indicating the appropriate selections of numerical method and models. 
 

Governing Equations and Cavitation Model 

To simulate the generation, development and collapse of cavitation in a vane pump, the three 
dimensional averaged Navier-Stokes equations combined with the VOF method and Rayleigh 
cavitation model were solved. The governing volume-fraction equations for the vapor and liquid 
lubricant oil are as follows: 
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where and are volume fractions of liquid and vapor lubricant oil respectively. The sum of the 
two volume fractions must satisfy: 1   .The source term S accounts for mass exchange 
between the liquid and vapor phases during cavitation generating. l and v are densities of liquid 
and vapor of oil respectively. It is S .is calculated from the Rayleigh cavitation model. 
The governing momentum equation for the vapor-liquid mixture is: 
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where density  is defined through the volume fractions as l g      . f is the source term of 
momentum transport at the interface between the liquid and vapor phase. 

 

''

3
22 jiij

k

k
ijij uu

x

u
S  





 

)(
2
1

i

j

j

i
ij x

u

x

u
S










 (4) 

  vl    (5) 

ICCM2014, 28th-30th July 2014, Cambridge, England

710



 
 

ij is the deformation tensor. ij is the Kronecker operator. ijS is the deformation rate tensor. And the 
dynamic viscosity is defined through the volume fractions.  
Due to the grid deformation and reconstruction during simulation, an additional equation has to be 
satisfied simultaneously with the other conservation equations. The space conservation law (SCL) 
[Demirdzic and  Peric (1998)] is used to avoid generating artificial mass sources during numerical 
solution procedure. The conservation equation is described by: 
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where gjv is the grid velocity, fn the number of grid cells on the surface of the control volume, and 
the surface vector jdS . 

Turbulence Model 

The eddy viscosity model is used for the Reynolds stress term to close the equation set.  
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where k is the turbulent kinetic energy and t  is the turbulent viscosity. 
The shear stress transport (SST) k-ω turbulence model is developed by Menter, who used the SST 
k-ω model often merit it for its good behavior in adverse pressure gradients and separating flow. 
The SST model can be switched to a k-ε turbulence model in the free-stream and thereby avoids the 
common k-ω problem that the model is too sensitive to the inlet free-stream turbulence properties. 
 The turbulence kinetic energy k and the specific dissipation rate ω are obtained from the following 
transport equations:  
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where k ,  , , , 1F are the empirical constants obtained from theoretical analysis combined with 
experimental data. 

 Grid Generation and Numerical method 

Figure 1 is the section structure of the vane pump. The regions without vane rotating have been 
generated hexahedral grids using the mesh generator software ICEM-CFD while the region with 
vane rotating has been generated hexahedral grids with a purpose-built code developed by author. 
The purpose-built code can control the key nodes on the profile curve of the stator, and generate the 
moving grids by an algebraic grid generation method. So the gaps shape between the vane and 
stator can be captured well. The total amount of grid cells is about 560,000. Presented in Figure 2 is 
the grid of the rotating region (chamber), deforming with the rotation of the shaft. The thin layer 
grids on top surface and bottom surface are the gaps in axial direction. Figure 3 shows the good 
orthogonal grids near the gap with different radius (R=17mm, 34mm and 51mm) of vane tip. In the 
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sealing 
region 1

sealing 
region 2

suction region

delivery region

         Figure 1 Section structure of vane pump 

 

 
 

Figure 2  Grid of rotating region 

process of calculations, the grids deform at each time step. Grids were generated in the chamber 
cells at current time step and the three-dimensional coordinates of the nodes were output to a file. 
Then a commercial finite-volume-based CFD software Star-CD reads coordinate data from the file 
by subroutine and complete the iteration. The spatial discretization was achieved via a second-order 
difference scheme MARS (Monotone Advection and Reconstruction Scheme), which based on the 
TVD scheme. The SIMPLE algorithm is used for the pressure-velocity coupling for the unsteady 
calculations. In order to improve the convergence rate and stability, a solution based on single-
phase without cavitation model is first computed. Then initialized from this non-cavitating solution, 
the two-phase mixture solutions with activating cavitation model were calculated. 

 

Boundary Condition and Computational Cases 

Often the conditions at the boundaries should represent exactly the physical conditions. For the 
vane pump, inlet and outlet pressure of the pump have fluctuations in reality, and setting variable 
pressures at inlet and outlet boundaries which needs to be measured by tests is more accurate in 
computation. But it is difficult to match the transient pressures with the corresponding rotor angle 
even if the variable pressures are obtained. So a constant values of pressure were specified at the 
inlet and outlet of the pump. All wall surfaces were set in non-slip and non-permeable conditions. 
The grid-interfaces between vanes and stator were defined as the sliding boundary condition.  
Firstly, the original pump model with 4 vanes was simulated under rotation speed of 3268 RPM. 
For the original model, the gap between the vane tip and stator wall is 0.05mm, the radius of vane 
tip is 17mm, and the absolute pressures at the inlet and outlet boundary were given as 47KPa and 
501KPa respectively. After comparing the calculated results and experimental results of the case, 
the cases with different radius of vane tip (R=34mm and 51 mm) were simulated. The influences of 
different radius of vane tip to performances of vane pump were analysized. 

 
 
                   R=17mm                             R=34mm                                R=51mm 
 

Figure 3 Grid near the gap with different radius of vane tip 
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Figure 4 Cavitation distributions on a section of the vane pump 

 
Figure 5 Instantaneous flow rates at inlet and outlet

Results and Discussion 

Figure 4 presents the cavitation distributions on a section of the vane pump under different rotator 
angle. A volume fraction 1 represents the vapor of oil while zero stands for the liquid phase and the 
values between 0 and 1 represent transition region of liquid oil and vapor of oil. The cavitation 
region in the duct of inlet is relative stable during the vane rotating while the cavitation region along 
the rotor is unstable, which is generated before the sealing region is closed, developed in the sealing 
region 1 and collapsed during the sealing region being opened. The generation, development and 
collapse of cavitation lead to accumulation and release of the mass of oil. The instantaneous flow 
rates at inlet and outlet versus rotor angle are showed in Figure 5. Corresponding to the variation of 
cavitation region, the instantaneous flow rates at inlet is stable while the one at outlet fluctuates 
significantly. For the pressure in the delivery region is higher than the value in sealing region 1, 
when the vane rotates from sealing region 1 to the delivery region, some lubricant oil in delivery 
region flows back to sealing region 1, resulting in the phenomenon of rapid decrease and 
subsequent recovery of flow rate at outlet. The averaged values of flow rate at inlet and outlet over 
a period are 36.53L/min and 37.66 L/min. When the cavitation model is involved, numerical errors 
are introduced in the process of dealing with the vapor/liquid interface. As a consequence, there 
exists the difference between inlet and outlet values of average flow rate but the mass conservation 
law is still satisfied in general. The averaged values of flow rate at inlet and outlet is close to flow 
rate obtained from experimental test, which is 38.1 L/min. 
The caviatation distributions of pump with different radius of vane tip on a section depicted in 

Figure 6 are presented in Figure 7. With 
the increase of radius of vane tip from 
R=17mm to R=51mm, the cavitation 
areas are expanded a little when the 
sealing region is closed. At the same 
rotor rotating angle, the leakage velocity 
from delivery region to sealing region is 
showed in Figure 9. Although the 
minimal size of the gap is the same, 
which is 0.05mm, the area of inlet and 
outlet of the gap is reduced and the 
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Figure 6 Section position 

Volume 
fraction

R=17mm R=34mm R=51mm  
 

Figure 7  Cavitation distributions with different radius of 
vane tip 

Figure 10 Instantaneous flow rates at 
outlet with different radius of vane tip 

pressure loss is enhanced with increase of radius of vane tip. So the leakage velocity is somewhat 
larger for the case R=17mm. 
Corresponding to the differences of cavition distributions and velocity magnitudes discussed above, 
Figure 10 shows the instantaneous flow rate during the sealing region being closed is a little larger 
with R=51mm while the back flow rate during the sealing region is being opened is increase 
slightly. The averaged flow rate of outlet is given in the Table 1 below. 
                                                                             Table 1 Averaged flow rate at outlet 

Radius of vane tip (mm) 17 34 51 
Flow rate (L/min) 37.66 36.5 36.2 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Conclusions  

Cavitation is generated, developed and collapsed during the rotation of vane, which leads to 
accumulation and release of the mass of oil, corresponding to a reduced and increased area of 
cavitation respectively, and the transient flow rate of inlet is stable while the one at outlet fluctuates 
significantly. The radius of vane tip influences the cavitation area and leakage velocity during the 
sealing region being closed and opened; the averaged flow rate at outlet of pump over a period is a 
little larger in the pump with small radius of vane tip. 
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Abstract 
Concrete-filled steel tubular (CFST) arches with crown-pins are widely used in engineering 
practice. Investigation on the long-term features of CFST arches is essential to the stability and 
serviceability of CFST arches. This paper presents a long-term analysis of crown-pinned CFST 
arches subjected to sustained central concentrated load, accounting for the coupling effects of creep 
and shrinkage of its concrete core and temperature change. The algebraically tractable age-adjusted 
effective modulus method is used to model the creep behaviour of the concrete core and the 
analytical solutions of time-dependent structural behaviour are obtained. It is found that the 
coupling effects cause significant increase of deformation and internal force, which may affect the 
local strength reserve and the routine service of the CFST arches.  
 

Keywords:  Crown-pinned arch, CFST, Creep, Shrinkage, Temperature 

Introduction 

Among composite structures, concrete-filled steel tubular (CFST) cross-section is widely employed 
in engineering practice. As can be seen from the cross section in Fig. 1, the composite section is 
composed of two components including the steel tube and the concrete core, which facilitates the 
resistance of the structure to the external force.  

 
 

Figure 1. CFST crown-pinned arch subjected to a central concentrated load 
As time goes on, the creep deformation increases when a CFST arch undergoes a sustained load, 
while the shrinkage strain emerges all the time even when there is no applied load. The visco-elastic 
effects of the concrete core exert significant effects on the structural behavior of CFST arches. 
Studies of the buckling behaviour have been focused on pin-ended and fixed arches [Pi et al. 
(2002); Bradford et al. (2002)]. In these studies, the arch is assumed to be continuous without any 
pins between its ends. It is known that in many cases, arches are built by joining two separate 
curvilinear segments together at the crown, thereby reducing the arch size to meet transport 
requirements and to create a pin at the arch crown. Because of the crown-pin, the structural 
responses and buckling behaviour of the arch are different from those of arches without the crown-
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pin. However, investigations on crown-pinned shallow circular arches do not appear to be reported 
in the open literature. This paper, therefore, presents an analytical analysis to investigate the non-
linear long-term behaviour of crown-pinned CFST shallow circular arches subjected to a central 
concentrated load. 

Long-term effects of concrete 

Due to the different Young’s moduli of materials and the effects of creep and shrinkage in the 
concrete core, the stress  in the steel tube and the stress  in the concrete core are quite different 
with each other.  
 
The stress in the steel tube can be expressed as 

s sEσ ε=                                                                       (1)
 

in which sE  is Young’s modulus of steel, while the stress in the concrete core can be obtained 
based on the model proposed by ACI Committee-209 and the Australian design code for concrete 
structures AS3600 as 

( )c ec sh TEσ ε ε ε= + +                                                            (2) 
in which the age-adjusted effective modulus of concrete ecE  is given by [Gilbert (2010), Bazant 
(1972)] 
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in which ( )0,t tφ  is the creep coefficient and ( )0,t tχ  is the aging coefficient and they are given by 
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respectively, where uφ  is the final creep coefficient (the value when t →∞ ) and given by  
0.118

0 ,71.25u tφ φ−
∞=  and * 1 0
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k t
k t

χ =
+

                                           (5) 

With ,71.33
1 0.78 0.4k e φ∞−= + and ,71.33

2 0.16 0.8k e φ∞−= + . 

shε  is the shrinkage strain of the concrete and can be expressed by ACI Committee-209 and 
Australian design code for concrete structures AS3600 as 

*
sh sh

t
t d

ε ε =  + 
                                                             (6) 

in which t is the time in days, because the egress of the moisture in the concrete core is prevented 
by the steel tube, 35d =  days for moist curing can be used for the concrete core of CFST members, 
and *

shε  is the final shrinkage strain (the value when t →∞ ). Although experimental studies of the 
shrinkage strain shε  and creep coefficient ( )0,t tφ  of CFST columns have been reported by several 
researchers [Zhong (1994); Terrey (1994); Uy (2001); Han (2004)] and the empirical values for the 
final shrinkage strain *

shε  and the final creep coefficient  of CFST columns were proposed, these 
values for the CFST member cannot be used directly for the time-dependent analysis of CFST 
members. Instead, they can be derived from the creep and shrinkage test results of CFST columns. 
From the creep and shrinkage test results [Uy (2001)], the shrinkage strain and creep coefficient at 
time t = 140 days can be derived. Based on the derived data, the empirical value of the final 
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shrinkage strain * 6340 10shε −= ×  (the value when t →∞ ) and the creep coefficient ,7 2.5φ∞ =  are 
used in the following investigation. 

Tε  is the thermal strain resulted by temperature change in concrete core and can be expressed as 

( )0T c T Tε α= −                                                                       (7) 
where cα  is the coefficient of thermal expansion, 0T  is the reference temperature and 0T T T∆ = −  
indicates the temperature change in the ambient environment. 

Non-linear in-plane equilibrium 

Assumptions adopted in this investigation are: 1. The Euler-Bernoulli hypothesis is applied so that 
the plain remains plane when it rotates about the neutral axis. 2. The dimension of the cross-section 
is much smaller than the length and radius of the arch to ensure sufficient slenderness. Because the 
arch and load system is symmetric, equilibrium of a half arch ( 0 θ≤ ≤ Θ and Θ  is half of the 
included angle of the arch) is considered (Fig. 2). Based on the assumptions, differential equations 
of equilibrium for a crown-pinned circular arch can be derived from the principle of virtual work as 

1~~
and0 2 −=′′+=′ vvN

iv

µ
                                            (8) 

for the arches that are subjected to a central concentrated load Q [Pi et al. (2008)], where 
( ) ( ) θdd /≡′ , θ  denotes the angular coordinates, /v v R=  and /w w R= , v  and w are the radial 
and axial displacements with R being the radius of the arch, μ is the dimensionless axial force 
parameter defined by 2 /NR EIµ =  with E  being Young’s modulus and I being the second moment 
of area of the cross-section,  and the axial compressive force N is defined by 

( ) ( ) ( )21
2s s c ec c ec sh TN A E A E w v v A E ε ε ′ ′= − + − + − +  

       (9) 

 
 

Figure 2. Arch geometry  
 
The boundary conditions can also be derived as 

0 at 0v θ′′ = =  and 0 0 atw v θ= = = Θ                                          (10) 

Solving the equations given by Eqs. (8) and (9) simultaneously will lead to the solution of the radial 
displacement v  for crown-pinned arches subjected to a central concentrated load, and leads to the 
non-linear equilibrium equation between the internal force parameter µ  and external force Q  as 
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2
1 2 3 0AQ A Q A+ + =                                                                  (11) 

where Q  is the dimensionless load defined by 2 / 2Q R Q EI= Θ , and the expressions for 
coefficients for A1, A2, A3 can be obtained accordingly .                                                      

Long-term analysis 

The long-term deformation and internal force of a crown-pinned CFST shallow arch are illustrated 
in the following figures including three scenarios accounting for different long-term effects. In the 
example shown below, the crown-pinned arch is fixed at two ends. The geometry is given as 
follows: the span is 15L = m, the rise-to-span ratio is / 1/ 6f L =  and the thermal expansion 
coefficient of concrete is assumed as 6340 10cα

−= ×  with the temperature change being 
20T C°∆ = − . The dimension of the cross-section is assumed that the outer radius of the steel tube is 

0 250r = mm and the inner radius of the concrete core is 240ir = mm. 
  

 
 

Figure 3. Long-term deformation and internal force  
 

In Fig. 3, the central radial displacement of the arch is shown with respect to the increased time. 
,15cv  and ,15cN  represents the central radial displacement and central axial force at time 15t =  days, 

due to the coupling effects of creep, shrinkage and temperature change. Among these three curves, 
one situation that all of these non-mechanical factors are combined together will lead to a drastic 
increase of displacement in the long-term. So the coupling effects of creep, shrinkage and 
temperature change influence the structural behaviour most significantly. In this case, the large 
deformation may exceed the maximum limit of amount referred in design practice. The routine 
serviceability cannot be assured in the long-term either. For a crown-pinned CFST shallow arch, the 
long-term internal axial force will also increase but only slightly in the life time. It can be seen that 
the change scope is the greatest when the coupling effects of creep, shrinkage and temperature 
change is accounted for, although the axial forces are initially different at the first loading time 

15t =  days. The temperature change is assumed to be decreased in this example so the 
displacement is increased in radial direction, while the axial force is less than that of the other 
situations in which the temperature change is not considered.  
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Figure 5. Long-term displacement 
 
Following the same geometry and the other parameters of the arch above, the effects of the crown-
pin can be also investigated by comparing the structural behaviour of two CFST arches: one of them 
is crown-pinned and the other one is continuous along the arch body. The boundary conditions are 
different when solving the differential equations of equilibrium. As can be found from Fig. 5, the 
comparison reveals an obvious gap of increasing rates between the crown-pinned CFST arch and 
the continuous CFST arch. The long-term central displacement of the CFST arch with the crown-
pin is greater than that of the CFST arch without the crown-pin. The crown-pinned CFST arch will 
deflect within a broader range in the long-term and may become unsafe and cannot remain 
functional when it cannot withstand large deformation. The crown-pin acts as a degrader to the 
resisting ability of CFST arches to the external load in the long-term. 

Conclusions 

This paper studied the non-linear long-term behaviour of crown-pinned shallow CFST arches 
subjected to central concentrated load. It was found that the coupling effects of the creep, shrinkage 
and temperature change in the concrete core influence the long-term response significantly and may 
affect the local strength reserve and the routine service of the CFST arches. Hence, these effects 
need to be accounted for in design practice of CFST arches. It was also shown that the crown-pin 
also plays an important role in the long-term response. As time increases, the change scopes of 
deformations and internal forces were found to be different from that of the continuous CFST 
arches. In design practice, all these factors should be considered to ensure a safe structure that can 
satisfy the strength requirement and also the normal serviceability. 
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The effect of size and scale dependence on the behavior of truss models is investigated, by 
introducing higher order strain gradient terms and an internal length parameter (the gradient 
elasticity coefficient) into the constitutive stress-strain relation of the bar element of the truss 
model. Instead of an algebraic equation (1D classical elasticity stress-strain relation), a differential 
equation governs the response of the elastic bar element and extra boundary conditions are required 
at the nodes. The displacement fields are obtained by deriving the associated stiffness matrix 
directly from the governing differential equation of the gradient elastic bar element. 
Moreover by establishing a ratio between the micro-scale internal length and the macro-scale length 
of the bar elements the effect of changes in the truss bar element size and the microstructure internal 
length of the bar element material is revealed. A numerical example is presented as illustration.  

Keywords:  Size and Scale dependence, Gradient elastic coefficient, Gradient elastic truss bar, 

Gradient elasticity stiffness matrix 

1.   Introduction 
In developing new engineering structures the analysis of their mechanical properties and behavior is 
often based on qualitative analysis carried out to enable a reasonable evaluation of the feasibility 
before embarking on any elaborate expensive research. In this process, computational analysis and 
simulation play a major role in developing these new structures.  
 
Computationally, in order to study the nonlinear mechanical behavior of materials, a first choice is 
to use the standard Finite Element Method (FEM) with complex elements. While this method 
allows the computational stress analysis of a continuum with any boundary conditions and any 
loading, several problems and complications arise mainly due to the inclusion of a nonlinear 
constitutive law when updating the stiffness matrix of the finite element Argyris (1978, 1981, and 
1984). However, from a geometrical standpoint the simplest finite elements are one-dimensional or 
a line element which is the two-node bar element. One-dimensional models can be very accurate 
and very cost effective in the proper applications. Hence, in search of a less complicated and 
efficient computational tool for testing constitutive equations, a truss model can be used for the 
linear and nonlinear analysis of a continuum, since the bars of the truss are the simplest possible 
finite elements.  
 
In the nonlinear analysis of concrete, truss models have been used in Bazant et al. (1990) and 
Bazant (1997) and in Goel et al (1997) it was used for the analysis of steel structures. Akintayo et 
al. (1998, 2000), and Papadopoulos & Xenidis (1998, 1999) studied the response of concrete 
computationally using the plane truss model by considering coarse truss structures. Kiousis et al. 
(2010) using the model of Papadopoulos & Xenidis (1999) also studied concrete columns in 
compression. A random particulate model for fracture of aggregate and fiber composites was used 
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by Bazant et al. (1990) assuming the particles to be elastic and having only axial interaction as in a 
truss. In Salem (2004), a fine micro truss model was proposed for the analysis of reinforced 
concrete using isotropic truss members by a generalization of the strut and tie model. Nagarajan et 
al. (2010) studied the mesoscopic numerical analysis of reinforced concrete using a modification of 
the micro truss model of Salem (2004). Hence from these works it becomes apparent that the size of 
the truss bar element to be used could directly be related to the scale of interest and detailed analysis 
required in any simulation which may have an adverse effect on the result. 
 
In the investigation of new materials and structure, the ultimate goal of the engineer is to be able to 
obtain qualitative and reasonably quantitative analytic results. In order to achieve this, simple but 
effective models need be adopted to accommodate the micro deformation mechanisms of the 
structure. However, with the truss model increasing the fineness of the truss bars usually increases 
the computational cost. Therefore the effect of the size of the truss bar element and its relation to 
the scale of interest become a vital consideration in the simulation and analysis process.   
 
The interpretation of size and scale effects can be approached in different ways. Several theoretical 
models have been developed to interpret size effects such as the strain gradient theories of Aifantis, 
1999a and 1999b, Gao et al. 1997 and Fleck and Hutchinson 1997 with the formulation of the latter 
in Fleck and Hutchinson 2001. Other works include models with dislocation confined in thin films 
(Freund 1987, Thompson 1993 and Nix 1998); Theories on discrete dislocation dynamics include 
the works of Zbib and Aifantis 2003 and Needleman and Van der Giessen 2003. Atkins, 1999 and 
Bazant 1999 presented their study on fracture mechanics theories (especially for concrete) and 
statistical models was initially proposed by Irwin 1964 and later by Liu and Zenner 1995 and 
Seifried, 2004. 
 
The theory of gradient elasticity is a simple approach to include microstructure deformation in the 
analysis of a material/structure, since it becomes particularly useful for small volumes, where the 
internal length introduced by the gradient coefficients is comparable to the characteristic dimension 
of the system. Mindlin (1964) showed that by isolating a typical unit cell element from the grid of 
say a crystal lattice (local representative volume), the modeling of a continuum with micro 
deformation can be developed. Ben-Amoz (1976) by assuming a particulate composite material as 
consisting of the matrix and inclusion (unit cell) also showed it is possible to classify composite 
media by the degree of inhomogeneity with the ratio of the length of the local representation and the 
length of the unit cell. Hence a relation is established between the deformation within the local 
representative volume and the unit cell by using higher-order strain/stress gradients to represent the 
micro deformation within the macro structure/material. In line with this same concept, but in a 
different manner, the theory of gradient elasticity proposed by Aifantis (1984) included the higher 
order strain gradient directly into the constitutive relations and introduced an internal length 
parameter, which relates to the micro unit of the material. A recent review of this theory is given in 
Askes and Aifantis [2011].  
 
In recent years this theory has gained more increasing interest amongst researchers and the 
engineering community due to its ability to provide additional information, which the classical 
elasticity theory is incapable of providing. The failure of the classical elasticity theory to include 
higher order strain gradient contributions can lead to underestimates of stresses and inadequacy in 
capturing any scale and size dependent behavior in small-scale structures: since classical elasticity 
theory possesses no characteristic length (i.e. material parameter with internal length scale), which 
consider the interaction between macro and micro length scales in the constitutive response and the 
corresponding interpretation of associated scale and size effect.  
 
Many authors have studied the gradient theories using various computational methods. Amongst 
others include: In the framework of gradient plasticity Pamin and de Borst (1998) used the finite 
element method to simulate the crack spacing problem with a reinforced concrete model. Chang, et 
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al. (2002) applied higher-order strain/higher order stress gradient models derived from a discrete 
microstructure to fracture and related their constitutive equations to that of Aifantis (1984). By 
using the gradient elasticity theory of Aifantis (1984), Dessouky et al. (2003) presented a finite 
element model for the microstructure analysis of asphaltic materials. In a similar manner, Akarapu 
and Zbib (2006) also considered the analysis of plane cracks in elastic materials using the finite 
element methods. 
 
Motivated by this and using the constitutive stress-strain relation of the gradient elasticity model of 
Aifantis [1984], the gradient truss model was first studied in Akintayo (2011) and later presented in 
Akintayo et al. (2012). Subsequently, a more detailed study was presented in Akintayo 2014, in 
which different boundary conditions were imposed at the support of the bar element and the 
corresponding force-displacement relations were derived for a robust application in the proposed 
gradient truss model. It is shown that the gradient elastic bar element is able to support strain 
gradient along its length such that simulation of the micro-scale deformation is included and a 
means of relating the macrostructure bar length to the microstructure internal length is established. 
 
In this paper based on these findings, in a simple manner by using the gradient bar element stiffness 
expression and by considering the ratio between the size of the truss bar and the internal length of 
the material being simulated, the effect of changes in this ratio on the simulation is investigated. As 
an illustration, the gradient enhanced bar element is used to simulate a simple truss structure. 
Subsequently, by considering different bar length to internal length ratios, the response   of the truss 
structure to scale and size dependence behavior can be examined.  

Brief Review of the Classical Elasticity Bar Element and its Local Stiffness Matrix 
Consider the generic truss element shown in Figure 1(a). The force and displacement components 
are linked by the element stiffness relations 
 
      f Ku                                 (1) 
which written out in full is 
 

     

K K K K uxixi xiyi xixj xiyjxi xi
uK K K Kyi yiyixi yiyi yixj yiyj
uK K K K xjxj xjxi xjyi xjxj xjyj
uK K K K yjyj yjxi yjyi yjxj yjyj

    
         

         
          

               (2) 

 
There are several ways to construct the stiffness matrix K in terms of the bar length lo, modulus of 
elasticity E and bar cross-sectional area A. The most straightforward technique is the unit 
displacement method. 
By viewing the truss element in Figure 1(a) as a spring in Figure 1(b), we can set the element 
stiffness k =Ks ijij , with  
 

   AE
ks lo

                  (3) 

 
Consequently the force-displacement equation is 

 
 AE u uj i AE

F k d dsl lo o


                  (4) 
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where F is the internal axial force and d the relative axial displacement, which physically denote the 
bar elongation. 
 
 
 
 
 
 
 
                                       

    
(a)                                 (b) 

 
 
 
 
 
 
 

     
          (c)                                (d) 

 
    
Fig.1.(a). Generic 2-node truss bar element referred to its local coordinate system  x ,y  with 
nodal forces fij and displacements uij. (b) Interpretation of a Generic truss element as 
equivalent spring (c) Equilibrium for infinitesimally small truss element. (d) Kinematics for 
infinitesimally small truss element. 
 
 
By assuming the displacement is of equal magnitude and direction at each node as well as within 
the element (i.e. constant along the bar), the strain takes the form  
 

 u uj idu L
dx l lo o




                    (5)  

and on the basis of the one dimensional Hooke’s law the stress-strain relation is  
 

E                   (6) 
 
where  is the stress,  is the strain and E is the Elastic or Young Modulus.  
 
The elastic 2-node bar element of Fig. 1a is prismatic, weightless, and isotropic; the Poisson’s effect 
is not considered and the axial load is applied at the centroid. Then equilibrium in the x-direction 
for the infinitesimally small length of the truss bar element, shown in Fig 1c. gives 
 

 dN
qx dx

 

                 
(7) 

 
The normal constant stress σ of a one-dimensional truss is the force F applied on the truss per unit 
cross-sectional area; 

N 

dx 

qx 

N+dN 

dx du 

f , uxi xi  

f , uyi yi  

f , uxj xj  

f , uyj yj  
y  x  

i j lo 

ks=EA/lo (Equivalent Spring Stiffness) 

i j 

i j lo 

-F F 

d 
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F

E
A

                   (8) 

 
By considering the infinitesimal element Fig. 1c and denoting the infinitesimal elongation, by du, 
the relationship between the strain and the displacement is obtained as 

du
dx

                  (9) 

 
 

and the governing differential equation for truss members reads: 
 

2

2
d uq EAx
dx



                   
(10) 

 
which in terms of the force applied per unit cross-sectional area can be rewritten as 
 

du
N EA

dx
                (11) 

 
The element stiffness is given by Eq. 3 and since equilibrium suggests that fi = -fj, hence the force-
displacement relation for the bar is given by 
 

       

1 1
1 1

f uAEi i
f ulj jo

ee e

                  
Kf u

              (12) 

where fe, Ke and ue are the force, stiffness and displacement matrices respectively. 
However, in plane classical elasticity structural analysis, the simple local stiffness matrix of an 
isolated bar, with respect to reference axes (x,y), is usually split into the elastic or material stiffness 
ke and the geometric stiffness kg and is written as  
 

2 2

2 2

e g

c c c c c cx x y y x yEA N
l lo c c c c c cx y y x y x

 

          
      


k k k

            (13)

  
Where (lo , l) are the undeformed and deformed length of the bar, and (cx , cy) are direction cosines 
of the bar.  

Gradient Elastic Bar  
 

Consider an elastic bar length lo shown in Fig. 2, with modulus of elasticity E, and a cross-
sectional area of A, fixed at one end and subject to an axial tensile force F at the right end x =  lo. 
The one-dimensional gradient elasticity stress-strain constitutive equation presented in Aifantis 
1984 and used in Altan & Aifantis 1997, Akintayo 2011, Akintayo et al. 2012 is given by  
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2

2
d xE cxx dx

 
 
   
 

               (14) 

 
 
 
 
 
 
  
 
 

 
`Fig.2. A bar under axial tensile load F 

 
 
where σx is the stress and εx = du/dx is the strain, while c is the gradient elastic coefficient (c≡ℓ2 i.e. 
a microstructure-dependent internal length).  
From the stress-strain relation of Eq. 14, in relation to the force applied per unit cross-sectional area 
of Eq. 8, the following is obtained:  

3

3
du d uEA c F
dx dx

 
   
 

   
        

   (15)
 
 

  
 

and from the equilibrium condition of Eq. 11 the corresponding governing differential equation for 
the gradient elastic case takes the form 
 

 
2 4

02 4
d u d uEA c qxdx dx

 
    
 

             (16) 

 
The solution of Eq. 16 is easily obtained as  
 

1 2 3 4cosh( ) sinh( ) cosh( ) sinh( )x x x xu C C x C C
c c c c

   
        

               
 (17) 

 
where C1, C2, C3 and C4 are constants to be determined from the boundary conditions. 
 

Boundary Conditions and Determination of Constants 
In order to solve for the constants C1, C2, C3 and C4, classical and extra non-classical boundary 
conditions need be determined. The following classical boundary condition is used  

 0 ;       

duu EA Fx lo dx x lo                            
 (18) 

A general discussion of the extra boundary conditions for gradient elastic bar was provided in 
Akintayo (2011, 2012a). Hence this is not recapitulated, or expanded upon here, as it is out of the 
scope of the present paper. We proceed instead, with the consideration of the following simple case 
where zero strain is imposed at the free end and zero strain gradient at the fixed end given below 

 

l

F 

y,uy 

x, ux 

ICCM2014, 28th-30th July 2014, Cambridge, England

727



  
3 2

0; ; 0 ; 00 3 2
0

du d u du d uu EA c Fx dx dxdx dxx lox l xo

 
           

                        (19) 

Using these boundary conditions, the constants C1-C4 are determined as follows: 

   0; ;1 2 3 4 2
1

lo
cF Fe cC C C C
lEA o
ce EA

   
 
  
 
 

                         (20) 

Displacement, Strain and Axial Force 
With the obtained constants the displacement and axial force within the assumed gradient elasticity 
framework are obtained as     
  

         sinh sech ; cosh sech ;
sinh sech

Fx F c F F EAugx l x lo ou F
EA EA EA EA x lc c c c ox c

c c


                                             

    

                       (21) 

It is easily seen that the axial displacement, strain and force expressions contain the classical term 
and the gradient elastic contribution (the micro-scale deformation) which includes the internal 
length c. Hence, at the free end of a bar x = lo, the following relations are obtained for the 
displacement and axial force: 
 

  tanh ; 0;
tanh

Fl F c EAulo ou F lEA EA c ol co c


               

                                 (22)   

In Eq. (22) the classical displacement and strain values can be retrieved in the absence of the 
gradient elastic contribution. 
 

Gradient Elastic Bar Element Stiffness 
In this section, the gradient elastic bar element stiffness is derived. With this the simulation of a bar 
with a gradient enhanced bar element can be analysed. From Eq. 4 and Eq. 22, the corresponding 
gradient elastic bar stiffness is obtained as  
 
            

tanh

EAgki lol co c


    

              (23) 

 
It is readily seen that unlike the classical case for the gradient elasticity case the bar stiffness does 
not only depend on the conventional geometric and material properties of the bar, but also on the 
introduced micro-scale parameter √c of the underlying microstructure. From Eq. 23 in the absence 
of the gradient elastic contribution the classical bar element stiffness is retrieved. By considering 
the following arbitrary properties of the bar element: Area A = 1cm2, Elastic Modulus E=100MPa; 
bar length lo=10cm, the stiffness values for the classical case and the gradient elastic cases are given 
in Table 1 for different bar length and internal length ratios lo /√c. The different bar stiffness are 
represented as kc (classical elastic case) and kg

1 - kg
5 (gradient elastic cases) and  are given in 

Table 1 for the changes in lo/√c from 20 to 4.  
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Table 1. The following properties are used arbitrarily to obtain the bar stiffness kc (classical 
elastic case) and kg

1 - kg
5 (gradient elastic cases): A = 1cm, E=100MPa and lo=10cm 

 

Cases 
Bar Stiffness 
Values for  
lo/√c=20 

Bar Stiffness 
Values for 
lo/√c =10 

Bar Stiffness 
Values for  
lo/√c=6.7 

Bar Stiffness 
Values for 
lo/√c = 5 

Bar Stiffness 
Values for 
lo/√c=4 

kc 10 10 10 10 10 
kg

1a 10.526 11.111 11.765 12.4997 17.6259 
 
 
This numerical example reveals that as the bar length to internal length ratio lo/√c changes from 20 
to 4 i.e. the bar length becomes comparable to the internal length the simulation gives higher 
stiffness values. Moreover since the simulation values of the displacement at the nodes of a truss 
model depend on the stiffness of the bar, hence from Table 1, for any particular specimen size, bar 
elements sizes comparable to its material micro-scale characteristic length should give lower 
displacement values. Consequently, it is implied that the simulation result of a specimen of 
particular size for any scale of interest will be different for different bar element sizes used. Smaller 
bars will be stiffer than those with larger ones, hence finer truss models would give lower 
displacement values than coarse models.  Thus it is required first that the specimen size and a 
particular reference scale of interest be identified in order to choose the appropriate bar length that 
will adequately simulate the material or structure. 

Numerical Example  
In this numerical example, the gradient truss model is applied to the truss structure of Fig 3 simply 
supported. The vertical and horizontal bar length lo = 10cm and the diagonal bars length lo2 = 
102cm, and all bars have the same Young’s modulus E =100 Mpa. 

   
 
  
 
 
 
 
 
 
 
Fig. 3. (a). Loaded Seventeen element truss structure (b) Numbering of nodes and elements.  
 
 
 
Nodal coordinate  
{{0,0},{0,10},{10,0},{10,10},{20,0},{20,10},{30,0},{30,10},{40,0},{40,10}} 
 
Applied node forces 
{{0,0},{0,0},{0,-3},{0,0},{0,-3},{0,0},{0,-6},{0,0},{0,0},{0,0}} 

Boundary Conditions 
u = {0,0, 0,0, 0,-0.10, 0,-0.10, 0,-0.15, 0,-0.15, 0,-0.10, 0,-0.10, 0,0, 0,0} 
 
 For the gradient truss model the gradient elastic coefficient values considered are c = 0.5cm (lo/ 
√c = 20); 1.0cm (lo/√c = 10); 1.5cm (lo/√c = 6.7); 2.0cm ((lo/√c = 5); 2.5cm (lo/√c = 4), c = 3.0cm 
(lo/√c = 3.3); 3.5cm (lo/√c = 2.85); 4.0 cm (lo/√c = 2.5); 5.0cm ((lo/√c =2); 6.0cm (lo/√c = 1.7).The 
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cross-sectional area is taken as the same for all the bars: A = 1cm2. We proceed to obtain the 
element stiffness matrix in global coordinates.  
 
By using the Direct Stiffness Method, a simple Mathematica program is used for this analysis. It 
comprises of three major processing stages: (1) the pre-processing, (2) processing, and (3) post 
processing. 
 
The pre-processing stage is implemented by the driver program which puts the data structure in 
place by defining the model and directly setting the data structures.  
The processing stage involves three major stages and the in-built Mathematica function LinearSolve 
is used: Firstly the master stiffness matrix is assembled with a subroutine element stiffness module; 
secondly, the master stiffness matrix and the node force vector are modified for the displacement 
boundary conditions; thirdly, the solution of the modified displacement equations is then obtained. 
Once these three processing stages are executed and the displacements made available the post 
processing stage follows. 
 
At the post processing stage, through a Ku matrix multiplication, the forces are recovered to include 
the reactions. The internal (axial) forces in the truss elements are computed, and then the deflected 
shapes can be plotted.  
 
Below the deflected shapes indicating the displacement are given for the classical and gradient 
elastic cases.  
 
 
Classical Elastic Case 
 
 

 
 

 
   
  
    
  Fig. 4. Classical Elastic deformed configuration of truss structure. 
 

Gradient Elastic Cases 
For the truss structure of Fig. 3 the global stiffness matrices for Cases 1 – 10 and the deformation 
configurations are shown in Fig. 5. 
 
Here also it can be observed that as the lo/√c ratio changes from 20 to 1.7 (i.e. the bar length 
becomes comparable to the internal length), the structure increases in stiffness significantly and the 
displacement values are much less than the classical ones. 
 
Consequently, the truss model simulation result of a specimen of a particular size can be related to 
the particular scale of interest by identifying a ratio between a characteristic length scale of the 
specimen and the truss bar length to be used. This result is indicative that finer truss models of a 
particular specimen size would give lower displacement values than coarse models of the same 
specimen.  
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(e)          (f) 
 

      
 
 
 
 

                                   

(g)          (h) 
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Fig. 5. Gradient Elastic deformed configuration of structure. (a). (lo / √c = 20); (b). (lo / √c = 
10); (c). (lo / √c = 6.7); (d). ((lo / √c = 5; (e). (lo / √c = 4); (f). (lo / √c = 3.3); (g). lo / √c = 2.85); (h). 
(lo / √c = 2.5); (i). ((lo / √c =2); (j). (lo / √c = 1.7).
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Conclusion 
 
In this exploratory study size and scale dependent behaviour of truss models was examined using 
the gradient elasticity theory. With the introduction of a characteristic internal length parameter of a 
specimen at a defined scale, a ratio can be established with the truss bar element length. 
 
It is shown that the simulation result of a truss structure of fixed size differ according to the ratio of 
the truss bar element length to the internal length of the material. The simulation results with the bar 
length comparable to the chosen internal length are shown to be stiffer. Hence smaller bars will be 
stiffer than larger ones and finer truss models comparable to the characteristic length scale will give 
lower displacement values at the nodes than coarser models.  
 
Consequently, in order to adequately simulate a material or structure, a particular characteristic 
length scale of interest need be identified in relation to the specimen to be simulated and thus the 
appropriate corresponding truss bar element size can be identified and used.  
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Abstract 

Non-linear rod dynamics is the focus of research in many engineering areas such as structural, 
aerospace and petroleum engineering as well as multibody dynamics. Also in non-classical areas 
such as biomechanics, micro- and nano-mechanics, geometrically exact formulations for rod 
dynamics are of importance. Rod formulations can be distinguished in regard to the basic kinematic 
assumption underlying the formulation. In the so-called Timoshenko-type beams, shear effects are 
taken into account and so rotational degrees of freedom describing the rotation of the cross section 
are considered. These are highly non-linear in nature. In contrast the Euler-Bernoulli assumption of 
zero shear deformation can be carried over into the non-linear regime resulting in displacement-
only formulation but with highly non-linear expressions for the strain tensor incorporating higher 
gradients. In either formulation, the integration of the time dependent equations is challenging. It 
has been recognised that energy conservation is key for stable integration in long term dynamics.  
The so-called energy-momentum methods is a class of integrators, which, by design, conserve the 
momentum, angular momentum and the energy in the discrete case, if the same conservation 
properties are present in the continuous case. While for the Timoshenko beam some progress has 
been made and specific energy-momentum methods are known in the literature, the same is not true 
far the higher-gradient beam formulation of the Bernoulli beam.  
In this paper, we are going to develop a unified formulation of an energy-momentum integration 
scheme for both geometrically exact Bernoulli and Timoshenko beams. We will show that the 
stable integration in either case is achievable with excellent results. Further important novel aspect 
of the models are the full incorporation of the rotational inertia. A range of applications from 
structural dynamics to flexible multibody dynamics will show the excellent performance of the new 
energy-momentum integration scheme. 

Keywords:  Non-linear dynamics, Computational method, Euler-Bernoulli rod, Timoshenko rod, 
Energy-momentum method, Multi-body dynamics. 

Introduction 

Dynamics of beam as well as in many new emerging areas of applications such as nano, bio 
mechanics, remains a very active topic of research. In the geometrically exact beam theories, a 
popular approach is the one so-called Timoshenko kinematics which still makes use of the 
assumption of planar cross sections in the deformed configurations but allows for shear to be 
considered by dropping the assumption that the vector normal to the centre line remai ns normal 
after the deformation [Ibrahimbegovic and Fray (1993); Iura and Iwakuma (1991)]. An example is 
the formulation of Simo and Vu Quoc [Simo and Vu-Quoc (1986)] which is based on a previous 
intrinsic formulation by Reissner [Reissner (1972)]. The Timoshenko type beam is well known to 
be suitable for short beams, sandwich composite beams and high-frequency excitation beams. On 
the contrary, in many applications, we desire to have a displacement-only formulation for example 
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in mechanisms, nano and bio mechanics where the Euler-Bernoulli model is the best choice dispite 
of the complexities involved due to the kinematics assumptions.  
 
Beside the kinematics descriptions and the strain measures, the time integration of the dynamical 
equations has also been the focus of research for decades. It is now generally accepted that classical 
time integration methods such as Newmark, standard midpoint r ule do suffer severe shortcomings   
[Newmark (1959); Chung and Hulbert (1993)]. Especially the lack of stability is a major issue. It 
has been soon recognized that the conservation of energy is the key for the stability of the time 
integration scheme. Moreover, an efficient  time integrator so-called energy-momentum method has 
been developed which conserves not only the energy but also the momentum and the angular 
momentum of the system. This method can provide good accuracy and stability in long-term 
dynamics. The first attempt to an energy-momentum method was proposed by Simo and Tarrow 
[Simo and Tarnow (1993)] but this algorithm is only valid for quadratic-nonlinearities. The method 
has many applications in Timoshenko beams but the treatment of rotation is anything but trivial, 
especially when it comes to incorporate the inertial term. Due to the highly complex non-linearity as 
a result of the kinematics assumptions, such this formulation is not as common for Euler -Bernoulli 
beam model.  
 
In this paper, we aim to develop an energy-momentum integration scheme for geometrically exact 
Bernoulli and Timoshenko beams. Numerical examples will be provided to show the excellent 
performance of the method. 

Kinematics, dynamics equation and finite discretization 

Euler-Bernoulli beam model and kinematics description 

Let       , with    denoting the real numbers, define a reference configuration of the body. 
Without loss of generality we want to identify the reference configuration with the body itself. The 
actual configuration is denoted by      . We assume that our body is thin in two dimensions 
such that it is rod-like with a cross section A at the reference configuration. The material particles 
are identified by their position vectors    , the corresponding placement at the actual 
configuration by     . A deformation is a map        , the gradient of which defines the 
deformation gradient   

  

  
. We want to restrict ourselves to plane deformations and assume that 

the deformation lies in the       plane. For any material point in the cross section a suitable 
curvilinear coordinate system which we consider to be convected, is then given by the triple       .  
z is the coordinate in the direction of the normal vector in the cross section. The relation holds 
 
                                                                   (1) 
 
where         is the placement of the central line at the reference configuration. Correspondingly,  
   

   

  
  is a tangent vector. Similarly, we can introduce   

  

  
     

  

  
|
   

    
  

  
  The triple  

         defines a local curvilinear bases. The relations also hold 
          | |           

 

| |
     (2) 

where   denotes the cross product of vectors, a dot denotes the scalar product of vectors. The 
corresponding tangent vectors at the deformed configuration are defined as (      ) with    
 |       is the normal vector in the deformed configuration and 
    

  

  
         

 

| |
    

        

|        |
.   (3) 
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To derive the rod theory we adopt the Bernoulli hypothesis which assumes rigid cross sections and 
that the deformation can be completely characterized by the assumption      
  
                                             (4) 
 
where      is the displacement at the curvilinear coordinate  .   
In the context of an in-plane Bernouilli beam, the right Cauchy deformation tensor has only one 
single non-trivial component which is     which reads 
      (    

         )  (    
         )    (5) 

where  a comma denotes a derivative. With   
 

 
      as the Green strain tensor, one is then left 

with one sigle non-trivial component     which is given by (the term in    can be neglected since 
our thickness of the beam is small compared to its length) 
               

 

 
         (    (        )          )   (6) 

By defining     as the axial strain,   as the change of curvature, their expressions read   

              
 

 
(       )                    (7) 

                        (    
    )          

.                     (8) 

Timoshenko beam model and kinematics description 

Timoshenko beam model and Bernoulli one differ only in the assumption about the cross section 
which is still rigid but no longer perpendicular to the central line. Therefore, the kinematics should 
be described differently. The triple           defines the local curvilinear bases,   is the normal 
vector to the tangent space of the rod.   is given by the relation        . Altogether, the 
relations hold 

                                                              (9) 

Where   is a function of s and determines the angle closed between    and  . Accordingly, the 
displacement field is defined by 

       
Furthermore, one has         and correspondingly we obtain            .  
We consider now a rotational field          , where       is a group of orthogonal tensors with 
positive determinant. Since we remain in plane        , the rotation vector is fixed to vector    . 
Therefore, we obtain the following expression of the rotation tensor 
 

                                             
 

We denote the corresponding axial vector by  . To get the strain measures, we apply the direct 
method of a Cosserat line. Accordingly, we get the first Cosserat deformation tensor (the stretch 
tensor)       , the second Cosserat strain tensor        . Because the Cosserat is 
assumed to be one-dimensional and in-plane deformation, we can write down       as follows  
           ,                 ,          , where the expressions of the 
components are defined as 

                                                (10) 

                                                (11) 

                        (12) 
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In this model, the shear deformation is included in this model and is not assumed to be zero. 

Dynamics equations 

Starting from Hamilton Principle for our conservative mechanical system, the dynamics equation 
for our Bernoulli beam is written down as follows 
 
  ∫   ̈       

 
   ∫  ̈      

 
 ∫                    

 

 
 ∫             

 

 
 

          | 
                     (13) 

 
where   is Young's Modulus of the material,   is external force and   is external moments, I is the 
moment of inertia of the section and L is the length of the beam,   is the material density. 
The dynamics equation for Timoshenko beam has the following form  
 

  ∫   ̈       
 

   ∫  ̈    
 

 ∫ [            
       

  
     

       

  
   

  ̃   

  
   

 
      

  
  ]    ∫             

 

 
           | 

                (14) 
where   and   is the force and strain vectors respectively,   is the stored energy,  ̃  is the 
complementary energy related to the strains   using Legendre transformation in order to avoid 
locking phenomena and construct robust finite elements.  
 
Regarding to finite element approach in the Bernoulli case, given the fact that second derivatives 
are present in the equations (a result of the Bernoulli hypothesis), the finite element formulation 
must exhibit continuous first derivatives. Hence, we resort, within a finite element context to 
interpolation functions defined by cubic Hermite polynomials.  For Timoshenko model, the finite 
element will be of hybrid type, a two-node elements with linear kinematical fields and constant 
force   (normal and shear components) is considered.  

Energy-momentum time integration scheme 

After the spatial discretisation via the finite element method, the numerical approach is completed 
by devising a step-by-step time integration scheme for the time dependent equations. Classical 
implicite schemes like the Midpoint rule or Newmark method have been very popular in the 
structural dynamics community. However while these are stable integration methods in the linear 
regime, they proved less so in the highly non-linear one, especially in long-term dynamics. They 
suffer from numerical instabilities like blow-ups as well documented in the literature [Bathe (1997); 
Sansour et al. (1997); Sansour et al. (2004)]. Energy-momentum methods proved to provide here 
the necessary stability. In what follows we will develop such a method tailored to our rod 
formulation. However, so far no such formulation was attempted for the Bernoulli beam because of 
the complexities involved in the kinematic assumptions. In the following we want to develop for the 
first time such an Energy-momentum method. In doing so, we resort to an idea developed in 
[Sansour et al. (1997); Sansour et al. (2004)]. The method described there is attractive because it is 
independent of the involved non-linearity, the source of problem in the presently considered beam. 
The starting point, however is the standard midpoint rule. From step n, where all kinematical fields 
and velocities are known, we need to find these quantities at time step n+1, Consider   to be a scalar 
which defines any position within the time interval   , with      . We start with the following 
expressions: 
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                 ,    (15) 

 ̇    
       

  
      (16) 

 ̈    
       

  
      (17) 

Where   is an open parameter. The first defines a convex set, the following two are true for some 
value of  . The midpoint rule corresponding to      . 
 
The key step is to employ strain velocity fields to define the strain fields. Let us consider the 
following velocity fields: 

   ̇   ̇       
      ̇  .    (18) 

 ̇  (
  

    
  ̇   

  

     
  ̇   )      (19) 

Given the strain field defined at time n, the strain field at step n+1 then defined as following:  

              ̇
  

 

 

                    (20) 

              ̇
  

 

 

         (21) 

Specifically for ξ=1, the relations hold  

             ̇
  

 

 

         (22) 

             ̇
  

 

 

          (23) 

This time integration scheme is proved formally and numerically to be stable and which conserve 
the energy, the momentum and the angular-momentum for a dynamic nonlinear system in long-
term, some example are provided in the next section.  

Numerical example 

Example 1: Flying beam 

In the first example, to investigate not only the conservation of energy but also of momentum and 
angular momentum, we consider a flying beam without support, the beam is depicted in Fig. 1 The 
loading increases linearly to a peak and decreases at the same rate to zero, Fig. 2. We run t he 
calculation for one million time steps with         .  
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Table 1.  Parameters      

   
   Parameters                  symbol                value                  

 

  Beam length           L        3m 

  Length                1.5m 

  Cross section area             A                         200     

  Cross section inertia          I               66.67     

  Young’s modulus              E                         0.2E12 Pa 

  Density                      ρ   48831Kg/   
  Number of elements    4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Loading history 

Figure 3: Energy history Figure 4: Momentum history 

Figure 1: Beam figure 
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The Energy history is depicted in Fig. 3, while Fig. 4 and Fig. 5 reflect the linear momentum and 
angular momentum, respectively. In both figures not only the absolute value but also the 
components of the mentioned quantities are considered. Conservation is valid for the momentum 
and the angular momentum vector. Some deformations of the beam in space are captured in Fig. 6 
which shows not only that the beam experiencing high deformation but also large overall 
displacement (24m at t≈1.4s). 

Example 2: Chaotic motion of shallow arch 

In this example, we investigate a chaotic motion of an arch. The arch configuration is given in 
Fig.~\ref{shaar}. From the configuration it can be seen that the arch is shallow and indeed can 
undergo a snap-through phenomena.  
We consider here a system with a velocity-dependent damping with damping parameter D=2.5E-3 
Ns/m. The system is subjected to a time-dependent concentrated force at its center of the form 
            ,        Hz , F = 800N. The excitation can be modified either by changing 
its amplitude or its frequency. 

 
Parameters: 
 
Length        
Height h = 1.53 cm 

Thickness t= 1 cm 
Young’s modulus E=0.2E12 Pa 

Density                    Number of elements = 10 
Time increment:              Number of time steps = 3E6 
 

Figure 5: Angular momentum history Figure 6: Beam motion snapshots 

Figure 7: Shallow arch 
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Fig. 8 shows the phase space which plots the displacement against the velocity of the midpoint on 
the arch at each time step. The Poincaré section is presented in Fig.9. Those graphs show that the 
motion is chaotic which means long-term calculation is applicable. 

Conclusion 

A new time integration scheme has been presented for in-plane geometrically exact beam 
with/without rotational degree of freedom. The results showed an excellent performance of the 
method in term of accuracy and stability.  
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Abstract：This paper presents a theoretical analysis for the non-deterministic 
time-dependent non-linear behavior of shallow concrete-filled steel tubular (CFST) 
arches with interval parameters under a sustained uniform load. The change ranges of 
the final shrinkage strain and final creep coefficients of concrete core are derived 
from experimental results. The virtual work method is used to establish the 
differential equations of equilibrium for the time-dependent behavior and buckling 
analyses of shallow CFST arches, and the age-adjusted effective modulus method is 
adopted to model the creep behavior of the concrete core. Analytical solutions of the 
interval time-dependent displacements and internal forces of shallow CFST arches are 
derived. The lower and upper bounds of structural responses are determined. 
Comparisons of the interval analytical solutions with the interval finite element 
results show that the analytical solutions of the present study are accurate.  

Keywords:  CFST arches, interval analysis, creep, shrinkage 
 
1. Introduction 
Applications of concrete filled steel tubular (CFST) arches are increasing in 
engineering structures, particularly in bridge constructions. The visco-elastic effects 
of creep and shrinkage of concrete core are inevitable in the long term for CFST 
arches. When a CFST arch is subjected to a sustained load, the creep of the concrete 
core will lead to the increase of its deformations with time and the deformations may 
be significant, while the shrinkage strain may also develop even when the arch is not 
subjected to any load [B.C. Chen 2000]. Hence, an investigation of significant effects 
of creep and shrinkage of the concrete core on the time-dependent structural behavior 
of CFST arches is much needed.  
 
However, it is noted that the creep coefficient obtained from tests vary significantly 
from one experiment to another. Very different predictions of the time-dependent 
behavior of CFST columns have been reported in different studies. This shows that 
the uncertainties of creep and shrinkage of the concrete core do exist. To predict the 
long-term behavior of CFST columns reasonably, these uncertainties have to be 
considered.  
 
In this paper, intervals are adopted to represent the uncertainties. This paper, therefore, 
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aims to investigate the interval time-dependent non-linear behavior and buckling of 
shallow CFST arches under a uniform radial load, to derive analytical solutions for 
their time-dependent non-linear deformations, internal forces and buckling, and to 
determine their structural life time prior to the buckling. To investigate the effects of 
the creep and shrinkage of concrete core, it is important to use an efficient and 
accurate method to describe the creep and shrinkage of concrete. [Pi et al. (2002), Pi 
et al. (2007)] It is known that a number of methods have been proposed and used for 
the creep and shrinkage of the concrete. Among these methods, the age-adjusted 
effective modulus method recommended by ACI Committee-209 and Australia 
design code for the concrete structures AS3600 are commonly considered to be 
efficient and accurate in evaluating the time-dependent behavior of the concrete and it 
could conveniently be incorporated into the structural analysis [ACI Committee 209 
1982]. Algebraic formulas used in this method can be effective and practicable in 
modeling creep and shrink-age of concrete core, so the age-adjusted effective 
modulus method is used in this investigation. 
 
2. Interval nonlinear elastic analysis of long-term behavior of shallow CFST 

arches 
To predict the long-term performance, interval constitutive model considering creep 
and shrinkage of the CFST column needs to be established. The basic assumptions 
adopted for the interval long-term linear elastic analysis of CFST columns in this 
paper are: (1) deformations of CFST arch are elastic and satisfy the Euler-Bernoulli 
hypothesis, i.e. the cross-section remains plane and perpendicular to the arch axis 
during deformation; (2) the dimensions of the cross-section are much smaller than the 
length and radius of the arch so that the arches are sufficiently slender; and (3) the 
cohesion and adhesion of two different material components are fully bonded. 
To account for the non-linearity resulted from creep and shrinkage of the concrete 
core, the derivation of the differential equations of equilibrium for shallow CFST 
arches need to consider non-linear longitudinal normal strain-displacement 
relationship and the non-linear longitudinal normal strain ε of an arbitrary point in the 
cross-section of shallow CFST arches can then be expressed as [Pi et al 2002] 

21+ ( )
2

yvw v v
R

ε
′′

′= − −


                                (1) 

According to the third assumption, the deformations of each component should be 
compatible with each other, so their membrane strains and also the strains at the 
interface are identical. However, due to different Young’s moduli and the effects of 

creep and shrinkage in concrete core, the stress ss  in the steel tube and the stress 

cσ  in the concrete core are different and they are given by 

( ) (c ec sh ecE Es ee = + = u′ )shε+                     (2) 

and  

s sEs ε=                            (3) 
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where Eec is the age-adjusted effective modulus of concrete, shε is the shrinkage strain 

of concrete and can be given by AS3600 [AS3600 2001]  

( )
35

shfinal
sh t t

t
ε

ε = ⋅
+

                               (4) 

where t is the loading time, shfinalε is the final shrinkage strain of concrete when t →∞. 

Eec can be calculated by 

0
0 0

( , )
1 ( , ) ( , )

c
ec

EE t
t t

t
c t ϕ t

=
+

                          (5) 

where 0τ  is the age at loading, 0( , )tχ t is the aging coefficient and 0( , )tϕ t  is the 

creep coefficient that can be expressed as 
0.6

0
0 0.6

0

( )( , ) [ ]
10 ( ) final

tt
t
tϕ t ϕ
t

−
= ⋅

+ −
                         (6) 

where finalϕ  is the final creep coefficient when t →∞. The aging coefficient 0( , )tχ t  

can be expressed as 

( )( )
( )

*
0

0
0

1
( , ) 1

20
t

t
t

χ t
χ t

t

− −
= −

+ −
                           (7) 

where 
* 1 0

2 0

k
k

τχ
τ

=
+

                                   (8) 

with  
,71.33

1 0.78 0.4k e ϕ∞−= +                              (9) 

                ,71.33
2 0.16 0.8k e ϕ∞−= +                              (10) 

0.118
,7 0 1.25finaltϕ ϕ∞ =                              (11) 

The differential equations for the long-term analysis of a CFST arch can be obtained 
using a virtual work method. When the virtual work principle is used for the 
long-term equilibrium of the CFST arch, it can be stated as requiring that the 
functional 

2

-
[ ( ) ] d 0NR w v v v M v qR vd d d d d q

Θ

Θ
′ ′ ′ ′′--  + --  =∫                    (12) 

where the axial compressive force N is given by 
21d d ( )[ + ( ) ]

2s c

I I I
s c s s c ec c ec shA A

N A A A E A E w v v A Es s e′ ′ ′= − − = − + − −∫ ∫          (13) 

and the bending moment is given by 
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d d ( )
s c

I
s c s s ec cA A

vM y A y A E I E I
R

s s
′′

= + = +∫ ∫
           (14) 

in the axial direction: 
0N ′ =                              (15) 

in the radial direction: 
2 0M NRv NR qR′′ ′′− + + − =                    (16) 

and leads to the static boundary conditions for pin-ended arches as 
0M =  at θ = ±Θ  

From Eq.(15), the axial compressive force N is constant along the arch axis. 
Substituting the constant axial compressive force N and the expression for M given 
by Eq.(14) into Eq.(16) leads to 

2( )

iv

I
e

v v P
µ

′′+ =


                           (17) 

where I
eµ  is a time-dependent dimensionless axial force parameter defined by 

2 2

=[ ]I
e

s s ecs s ec c c

NR NR
E I E IE I E I

µ
++

，                   (18) 

and P is a dimensionless load defined by 
I

I
I

qR NP
N
−

=                           (19) 

By using the kinematic boundary conditions and the static boundary conditions and 
the kinematic boundary conditions , the solutions of Eq.(17) can be obtained as 
For Pin-ended： 
The radial displacement can be expressed as  

2 2 2 2
2 2

cos( ) cos( ) cos( ) cos( )1 1=[ { [( ) ( ) ]} { [( ) ( ) ]}
cos( ) 2 2cos( )
e eI e e

e e e e
e ee e

P Pv
µ θ µ µ θ µ

µ θ µ µ θ µ
µ µµ µ

− Θ − Θ
+ − Θ + − Θ

Θ Θ
 ，   (20) 

And the axial displacement can be expressed as: 
Lower bound of axial displacement: 

2 2

3

22

2 3 2

(1 ) [ sin( ) sin( )](1 ) ( )=
6 cos( )

cos( ) [ sin( ) cos( ) sin( ) cos( )
[1 ]

cos( ) 4 cos ( )

e e

e e

e e e e e

ee e e

P PP Pw

PP

µ θθ  µθθ
µ µ

µ θ µ θ µ θθ  µ µθ
µµ µ µ

+ Θ − Θ− −Θ
+

Θ Θ

Θ − Θ Θ
+ − +

Θ Θ Θ



    (21) 

Upper bound of axial displacement: 
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2 2

3

22

32 2

(1 ) [ sin( ) sin( )](1 ) ( )=
6 cos( )

cos( ) [ sin( ) cos( ) sin( ) cos( )( ) [1 ]
cos( ) 4 cos ( )

e e

e e

e e e e e

ee e e

P PP Pw

PP

µ θθ  µθθ

µ µ
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µµ µ µ

+ Θ − Θ− −Θ
+

Θ Θ

Θ − Θ Θ
+ − +

Θ Θ Θ



    (22) 

For Fixed: 
The radial displacement can be expressed as  
Lower bound of radial displacement: 

2 2
2

( )[ cos( ) cos( )] 1= { [( ) ( ) ]}
sin( ) 2

e e e
e e

ee

Pv
µ µ θ µ

µ θ µ
µµ

Θ − Θ
+ − Θ

Θ
        (23) 

Upper bound of radial displacement 

2 2
2

( )[ cos( ) cos( )] 1= { [( ) ( ) ]}
2sin( )

e e e
e e

ee

Pv
µ µ θ µ

µ θ µ
µµ

Θ − Θ
+ − Θ

Θ
        (24) 

And the axial displacement can be expressed as: 
Lower bound of axial displacement: 

2 2
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Upper bound of axial displacement: 
2 2

2

22 2
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2 3 2
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Θ

Θ ΘΘ
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Θ Θ
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Θ Θ Θ



   (27) 

 
3. Interval finite element analyses 
For interval buckling analysis, buckling load and equilibrium paths are sought by 
solving the equilibrium equation at each load increment. The equilibrium equation 
can be expressed as: 

I I
TK u P∆ = ∆                         (28) 

At each load increment, perturbation method was employed to calculate the global 
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stiffness matrix. In the following, the effects of the beam axial force and bending are 
included. The creep coefficient and final shrinkage strain are considered as interval 
parameters. Using the first-order Taylor expansion and the interval arithmetic 
operations [Rao et al. 1997], the interval stiffness coefficients of the beam-column 
element can be obtained as 

         

( , )

( , )
( , ) ( )

( , )
( )

( , )
( , )

I I
T i final shfinal

c c
T i final shfinalc c I c

T i final shfinal final finalc
final

c c
Ti final shfinal I c

shfinal shfinalc
shfinal

c c
Ti final shfinalc c

Ti final shfinal
fi

K

K
K

K

K
K

ϕ ε

ϕ ε
ϕ ε ϕ ϕ

ϕ

ϕ ε
ε ε

ε

ϕ ε
ϕ ε

ϕ

=

∂
+ −

∂

∂
+ −

∂

∂
= +

∂

( , )

finalc
nal

c c
Ti final shfinal

shfinalc
shfinal

ε

K
ε

ϕ

ϕ ε
ε

ε

+

∂

∂

 

 

          (29) 

where i denotes the number of elements, =
2

final finalc
final

ϕ ϕ
ϕ

+
, =

2
final final

final

ϕ ϕ
ϕ

−
 , 

=
2

shfinal shfinalc
shfinal

ε ε
ε

+
, =

2
shfinal shfinal

shfinal

ε ε
ε

−
 , =[-1 1]e ， . From Eq. (29), it can be 

easily observed that the stiffness is the function of the creep coefficient and final 
shrinkage strain.  
 
The interval global stiffness matrix of the structure is assembled using the following 
equation 

1

1

( , ) ( , )

( ) ( )
( , )

n
I I I I

T final shfinal Ti final shfinal
i

c cn
Ti final Ti shfinalc c

T final shfinal c c
i final shfinal

K K

K K
K E E e

ϕ e ϕ e

ϕ e
ϕ e

ϕ e

=

=

=

∂ ∂
= + +

∂ ∂

∑

∑   

       (30) 

Then the interval static equation of equilibrium in the interval finite element system 
becomes 

            ( , ) ( )I I c
T final shfinalK U Ue Pϕ e ∆∆ + ∆ = ∆              (31) 

yields 

1

1

( ) ( )
( , ) [ ]

c cn
Ti final Ti shfinalc c c

T final shfinal c c
i final shfinal

K K
U K E E e U

ϕ e
ϕ e

ϕ e
−

=

∂ ∂
∆ = +

∂ ∂∑      (32) 

To overcome the computational difficulties caused by the singularity of the tangent 
stiffness matrix at the limit points on the equilibrium path, the interval 
incremental-iterative solution is introduced for this study.  
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The incremental-iterative equilibrium equation at time t and iterative step i can be 
expressed as   

[ ] ( )t I t I t t t
T i i rK U P u P−∆∆ = ∆ + ∆                   (33) 

where the subscript i denotes the iterative cycle, the superscript t denotes the load step, 

( )t P u∆  is the incremental external forces at time t and t t
rP−∆ ∆  is the unbalance 

forces at time t t−∆ . 
 
4. Model validation and discussions 
4.1 Determination of intervals for the final shrinkage strain and creep coefficient 
the interval of the final shrinkage strain and creep coefficient of their concrete cores 

can be derived from other researchers’[Uy.B 2001] test results as shfinalε  = [43.5, 340] 

and finalϕ  = [0.5, 1.7] respectively, which are used in this study. It can be expected 

that the results obtained by the interval models proposed in this paper will contain 
these experimental results; in other words, the experimental results will fall into the 
interval bounds produced by the proposed models. 
 
The creep coefficients determined by Uy [Uy.B 2001] is adopted to compare with the 
results obtained by the interval analytical model developed in this paper, which are 
illustrated in Figs. 1. Similarly, the total shrinkage strain determined by Uy is 
compared with the results given by the proposed interval model in Fig. 2. It can be 
easily seen that the results produced by the proposed model contain these 
experimental results as predicated. The bounds can be further updated if more 
experimental results available. These bounds will be useful for the future 
experimental investigations and design.     

 

 
Fig.1 Comparison of creep coefficient 
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Fig.2 Comparison of shrinkage strain 

 
The typical long-term nonlinear responses of pin-ended and fixed shallow CFST 
arches under a sustained uniform radial load are compared in Figs. 3 with their linear 
counter parts as the variations of the dimensionless central radial displacements 

,15/c cv v  and the dimensionless axial displacements is /2 /2,15/w wθθ   at the quarter 

point with time t, where the Young’s moduli of the steel and concrete were assumed 
as Es=200 GP and Ec=30 GPa. .A circular cross-section with outer and inner radii: 
R=250 mm and r=240 mm was used in the investigation. The span of the arch was 
L=15 m and the rise-to-span ratio of the pin-ended and fixed CFST arch were 
f/L=1/12, respectively. 

 
Figure 3 Interval radial displacements 

 
5. Conclusions 
This paper presents a theoretical study on the uncertain long-term and buckling 
analysis of shallow concrete-filled steel tubular arches subjected to a sustained 
uniform radial load. An interval analytical model based on the algebraically tractable 
age-adjusted effective modulus method is proposed to describe the time-dependent 
behavior of concrete in CFST arches. Non-linear analytical solutions for the 
time-dependent displacements and internal actions were derived. It has been found 
that creep and shrinkage of concrete core have significant effects on the 
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time-dependent non-linear deformations, internal forces and buckling behavior of 
shallow CFST arches.  
 
An interval finite element was developed to describe the long-term behavior and 
analysis buckling. The buckling load or buckling time can be evaluated using this 
model. The result is compared with analytical results; it could be found it shows a 
good agreement.In the future, the proposed models will be further developed to 
analyze other types of CFST structures accounting for the uncertainties in their 
material and geometric properties. 
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Abstract 
We have been developing an interaction integral method for tetrahedral finite element, as a way to 
calculate the stress intensity factors for mixed mode crack problem. If cracks involve kinks, 
interaction integral method must have the surface integrals at the crack faces. The surface integral 
terms add complexities to the calculation procedures. In this paper, a method that can obviate the 
needs for the surface integral terms is proposed. Results that are computed by the proposed method 
are compared with there by the virtual crack closure-integral method. It is shown that the results of 
the proposed technique are more accurate than those of the conventional way.  

Keywords: J-integral, Stress Intensity Factors, Virtual Crack Extension, Interaction Integral 
Method 

Introduction 

We need to calculate the stress intensity factors for the predictions of crack propagation behavior 
using the fracture mechanics concept. Finite element method is used for calculating the stress 
intensity factors. The computations of the stress intensity factors generally require the use of 
hexahedral finite element. However, the generations of finite element models for the cracks, 
consisting of the hexahedral finite elements require a large amount of manual labor and man time. 
On the other hand, the meshing can fully be automated if we use the tetrahedral finite elements. The 
tetrahedral finite elements have been commonly used in three-dimensional solid analysis in recent 
years. 
We have been developing an interaction integral method for the quadratic tetrahedral finite element, 
as a way to calculate the stress intensity factors for mixed mode crack problem. And we showed 
that the method can calculate the stress intensity factors for mixed mode crack problem accurately, 
with the correction terms proposed by Daimon et al. (2014).  
If cracks involve kinks, the interaction integral method has the surface integral terms at the crack 
faces. The surface integral terms add complexities to the calculation procedures. In this paper, a 
method that can obviate the needs for the surface integral terms is proposed as an extension of the 
interaction integral method with the correction terms. Results that are computed by the proposed 
method are compared with those by the virtual crack closure-integral method of Okada et al. (2008). 
It is shown that the results, that are obtained by proposed technique, are more accurate than those by 
the conventional way. 
 

Calculation of mixed mode stress intensity factors by the interaction integral method 

The J-integral can be evaluated by the domain integral method 

The interaction integral method is based on the domain integral method of Nikishkov et al. (1987) 
that calculates energy release rate under linear elastic and small scale yielding conditions. The 
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formulation and the numerical evaluations of the domain integral method are briefly described, as 
follows.  
The J-integral that was proposed by Rice (1968) evaluates the energy release rate in two-
dimensional crack problems. The J-integral can also be defined in in three-dimensional problems as 
presented by Shivakumar et al. (1992). It is defined as a surface integral on an infinitesimally small 
pipe oS  surrounding the crack front, as depicted in Fig. 1. The size of Δ  and Δε  are set to be 0 in 
a limit, and we can write the three-dimensional J-integral, as: 
 

J = lim
ε /Δ→0
Δ→0

1
Δ

Wn1
ε − n j

εσ ij
∂u j
∂x1

%

&
'
'

(

)
*
*dS0S0

∫                                                   (1) 

 
Here, W  is the strain energy density, in  are the unit outward normal vector, iu  are the 
displacements, and jiσ  are the stress tensor.  
   

 
 

Figure 1.  Definition of three-dimensional J-Integral 
 
The J-integral can be evaluated by the domain integral method. Continuous and piecewise 
differentiable vector function iq  are introduced. They represent the virtual crack extension vector at 
the crack front and Aδ  is the area of virtual crack extension. The three-dimensional J-integral can 
be represented by its domain integral form, as:  
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The surface integral version of J-integral expression as shown in Eq. (2) is converted to the domain 
integral version by applying the Gauss divergence theorem. The domain of integration is as shown 
in Fig. 2. Here iq  are the components of vector function that are continuous and piece-wise 
differentiable in the domain of integration, the J-integral can be expressed by the following equation 
that is called the domain integral method. 
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If the crack were planer, the crack surface integral terms vanish because kk qn equals 0. But if cracks 

had kinks, kk qn  does not vanish, Eq. (3) contains a crack face integral.  
 

 
Figure 2.  Definition of the domain integral method 

 

Domain of integral method and distribution of value of q-function 

To evaluate the domain integral we need to set the domain of integral and the variation of q-
function. The domain is specified by using the q-function. In proposed domain integral method we 
set q-function to nodes by using the information of nodal locations. We set q-function values at 
each node by using the function ( )3, xrqq =  of distance r  from the crack front and the coordinate 
x3  in the tangential direction along the crack front. Here, r  and 3x  are defined as shown in Fig. 2 
(a). The q -function value linearly decreases as the distance r  increases and q  vanishes at the outer 
surface of the domain of integral. We define a trapezoid at a crack front node, as shown in Fig. 2(a) 
and rotate it around the crack front. The q -function values ( )3, xrqq =

 
are assigned to nodes inside 

the rotating body. Finite elements containing any nodes having non-zero q -function values are 
included in the domain of integral. As the result, the domain of integral has angular outer shape, as 
depicted in Fig. 2 (b). For the full details, the readers are referred to Okada and Ohata (2013). 

 
                             (a) Trapezoid in r - x3  plane    (b) A typical outer shape of domain of integral 

Figure 3.  Domain of integral for the evaluation of J-integral  
 

Description of interaction integral method   

The interaction integral method is a technique to evaluate the mixed mode stress intensity factors 
based on the J-Integral [Yau et al. (1980)].  
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The J-integral expresses the energy release rate of a crack in linearly elastic material. The energy 
release rate G  in an elastic body can also be expressed by the stress intensity factors ( )IIIIII KKK ,, . 
Therefore, we can write: 
 

( ) ∫Ω Ω
∂

∂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
−−=++

ʹ′
== d

x
q

x
u

W
A

KKK
E

JG
i

j
ijiIIIIIItotal

1
1

222 1
2
11

σδ
δµ

                     (4) 

 
Here, Eʹ′  equals E  for the plane stress and Eʹ′  is ( )21 ν−E  for the plane strain. µ  is the shear 
modulus and is expressed by ( )ν+12E . E  is the Young’s modulus and ν  is the Poisson’s ratio.  
The superposition of two solutions which satisfy the equilibrium can generate another equilibrium 
state. The independent equilibrium states are designated by superscripts (1) and (2). We can write:  
 

)2()1(
jjj uuu += ，

)2()1(
ijijij σσσ += ， 

)2()1(
ijijij εεε +=                                            (5) 

 

  ( )( ) )2()1()2()1()2()1()2()1(
2
1

ijijijijijij WWW εσεεσσ ++=++=                                           (6) 

 
)2()1(

III KKK += ，
)2()1(

IIIIII KKK += ，
)2()1(

IIIIIIIII KKK +=                                                 (7) 
 
We can derive the following equation by substituting Eqs. (5), (6), (7) in  Eq. (4).   
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⎪
⎬
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∂
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u
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E i

j
ij

j
ijiklkl

1

)1(
)2(

1

)2(
)1(

1
)2()1()2()1()2()1()2()1( 12

σσδεσ
µ ⅢⅢⅡⅡⅠⅠ            (8) 

 
We let the equilibrium state (1) be the solution of the boundary value problem which is solved by 
the finite element method and the equilibrium state (2) be the asymptotic solution at the vicinity of 
the crack. We can set the displacements of the equilibrium (2) by using asymptotic solution of 
displacement near the crack front as described in text book of Broek (1986).  
By setting the mode I, II or III stress intensity factor of the equilibrium state (2) be unity, we extract 
the respective stress intensity factor. For example, if we set ( ) 12 =IK  and ( ) ( ) 022 == IIIII KK  ,we extract 

( )1
IK  of the equilibrium state (1). 

The asymptotic solution of the crack with respect to the stress intensity factors can be expressed by 
using the local Cartesian coordinates ( )321 ,, xxx ʹ′ʹ′ʹ′  and cylindrical coordinates ( )3,, xr ʹ′θ  that are defined 
at the crack front as depicted in Fig. 4. The displacements can be written by: 
 

( ) ( ) ( ) ( ){ }θθθ
π

θ III
iIII

II
iII

I
iIi fKfKfKrru ++=

2
,                                                (9) 

 
If a node is above the crack face, a positive angle uθ  as shown in Fig. 4 is used in Eq. (9). If a node 
is below the crack face, a positive angle dθ  is used.  
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Figure 4.  The local Cartesian and polar coordinate systems around the crack front 

 

Correction terms to the asymptotic solutions (auxiliary solutions) adopted in the interaction 
integral method 

The auxiliary solutions defined by the asymptotic solutions of crack do not satisfy the equilibrium 
in terms of the finite element. Therefore, a method to recover the equilibrium by adding correction 
terms to the asymptotic solution was proposed by Daimon et al. (2014). We write the new auxiliary 
solutions by the following equations. 
 

)2()2()2( ˆ̂ˆ jjj uuu += ，
)2()2()2( ˆ̂ˆ jjj σσσ +=                                                        (10) 

 
Here, )2(ˆ̂

ju , and )2(ˆ̂
jσ  are the correction terms for the displacements and the stresses. 

We write the weak form of equilibrium equations in terms of )2(ˆ jσ , as:  
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(11) 

 
Here, V  is the domain of integral in the domain integral method, and jw  are the weight functions. 
We can derive a symmetric weak form by applying the Gauss divergence theorem and the 

generalized Hooke’s law ⎟
⎟
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(12) 

 
where ijklE  are the components of fourth order tensor representing the generalized Hook’s law. 
We can establish a finite element formulation based on the symmetric weak form and determine the 
correction terms.  
 

For cracks with kinks 

If a crack involve kinks, we must account for the surface integral terms of Eq. (2). Because the 
crack surface and the crack propagation direction are not parallel to each other, kk qn  does not equal 
0. [Okada et al. (2013)] proposed a method to vanish the surface integral terms in the domain 
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integral method by setting the value of q -function on the crack surface that is not parallel to crack 
propagation direction, as shown in Fig.5.  
 

 
 

Figure 5.  How to set the value of q 

Numerical examples  

In this section, some numerical results on the evaluation of the stress intensity factors of cracks 
involving kinks are presented. The stress intensity factors were also computed by VCCM proposed 
by Okada et al. (2008) and they are compared with those by present interaction integral method. 
The stress intensity factor evaluations by the interaction integral method were performed in two 
ways. One is to set the q -function value to be zero on the part of crack surfaces whose normal 
vector is not perpendicular to the direction of virtual crack extension. The other does not set q -
function value to be zero on the crack surfaces.  
The load conditions and the sizes of the tensile plate and the crack are as presented in Fig. 6 and 
Table 1. Uniformly distributed tractions are applied to the upper and lower surfaces of the plate. 
The crack has a kink as shown in Fig. 6. The kink angle θ  is set to be 30 or 45 degrees. 
The finite element analysis model is shown in Fig. 7 for the case of kink angle θ  being 45 degrees. 
The total numbers of nodes and elements are 119152 and 82815, respectively. The size parameters 
of domain of integral are set to be r1/ dc = 64.0, h0/ dc = 10.0 and h1/ dc = 14.0.  The size dc of finite 
element along the crack front is 0.0625 mm. The domain of integration includes the kink. 
The distributions of the stress intensity factors along the crack front are presented in Figs. 8 and 9. 
In Figs. 8(a) and 9(a), the results of the conventional way, that does not set the q -function value to 
be zero at all, are presented. The results of proposed way are presented in Figs. 8(b) and 9(b). All 
the stress intensity factors are normalized by that of two dimensional straight edge crack subject to a 
remote tension (see, for example, Murakami et al. (1987)). The formula is written by: 
 

( ) ( ){ }432 /39.30/72.21)/(55.10)/(231.012.1 wawawawaaKref ×+×−×+×−= πσ         (13) 
 

Here, σ , w  and a  in present problem are 1.0 (MPa), 20.0 (mm) and 10.0 (mm), respectively. 
It is seen in Figs. 8 (a) and 9 (a) that the distributions of the stress intensity factors exhibit some 
oscillations. They are notable in the mode II and III components. The oscillations somewhat 
disappeared when the proposed method is applied to compute the stress intensity factors, as seen in 
Figs. 8 (b) and 9 (b). 
 

Table 1. Sizes of the plate and crack 
h1 h2 w t 
20.0[mm] 20.0[mm] 20.0[mm] 10.0[mm] 
a1 a2 θ σ 
9.0[mm] 1.0[mm] 30,45° 1.0[MPa] 
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Figure 6.  Plate with a through crack                Figure 7.  Finite element analysis model 
with a kink 

 
 

 
(a) Conventional way                            (b) Proposed way 

Figure 8.  Distributions of the stress intensity factors for the case of kink angle (30˚)  
 
 

 
(a) Conventional way                            (b) Proposed way 

Figure 9.  Distributions of the stress intensity factors for the case of kink angle (45˚)  
 

Conclusions 

The interaction integral method for tetrahedral finite element to accurately compute the stress 
intensity factors of mixed mode for cracks involving kinks is proposed in this paper. Comparing 
results of proposed method with those of conventional way, proposed method is found to serve 
more accurate and stable solutions than the conventional way.  

crack 
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Abstract 

We have developed a general hyperelastic strain energy function for the modelling of orthotropic 
continua that is able to maintain the same logical properties of advanced isotopic hyperelastic 
constitutive laws. The isotropic model of Simo and Pister, due to its exceptional fit with 
experimental data and superior mathematical and logical features, is replicated in orthotropic form. 
Through the use of the proposed Intrinsic-Field Tensors yielding asymmetric strain tensors with 
additional degrees of freedom, orthotropic Lamé parameters where scalars are replaced by fourth-
order tensors and advanced fourth-order tensor operators, the desired general form of orthotropic 
hyperelastic strain energy function is achieved. 

Keywords:  Orthotropic hyperelasticity, composites, additional degrees of freedom, intrinsic-field 
tensors, fourth-order tensors, Simo and Pister, strain energy function. 

Introduction 

Hyperelastic materials are a class of solids that can be modelled as continua with rate-independent 
strain energy defined purely as a function of deformation and the material parameters. The Simo 
and Pister model[1], like most hyperelastic Strain Energy Functions (SEFs), is restricted to isotropic 
materials; one of its particular benefits is that pure distortional deformation is independent of the 
volumetric modulus for finite strain, and that the volumetric strain is a logarithmic function of 
deformation. From a mathematical standpoint, the scalar strain energy function is expressed as the 
product of scalar deformation invariants and scalar coefficients. 
 
In this paper we posit that there is a generalised form of the SEF that a large class of hyperelastic 
functions should be able to be written within, and that those that cannot can either be closely 
approximated by the general form or do not satisfy certain expected boundary conditions of finite 
strain hyperelasticity. This general form is an abstraction one level up of the classical SEF and is 
mathematically encompassing; we called it the Generalised Strain Energy (GSE). 
 
After first demonstrating that there is an exact representation for the Simo and Pister strain energy 
within the GSE, we further revisit the class of orthotropic tensors that are asymmetric and of the 
form of Intrinsic-Field Tensors (IFTs)[2]. We also propose a natural separation of the extended 
form of the Hookean material tensor for stiffness, which is naturally extended for IFTs such that it 
utilises all free terms within a fourth order tensor having major symmetry. These are the orthotropic 
Lamé material tensors for stiffness and compliance. 
 
These tools allow a new model for orthotropic Simo and Pister hyperelasticity that we purport to be 
the first of its kind and the only such model to inherit and maintain so may logical properties of 
isotropic hyperelasticity, structural tensors[3] and orthotropic material models simultaneously. 
Since the proposed model achieves these features by derivation and as pure theoretical 
development, the properties are ensured. Hence we do not, in this short paper, provide numerical 
examples or experimental correlations. The following section begins by analysing an alternate 
representation for the Simo and Pister model that is conducive to our subsequent transformations. 
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Isotropic Simo And Pister Model 

Classical form of the isotropic Simo and Pister strain energy function 

The isotropic hyperelastic model of Simo and Pister[1] is desirable due to various logical properties. 
Shown as follows, 

       2 21 1 1
2 2 2 2S&P

ln ln tr 3 ln ln tr , whereW J G J G J J         b E  (1) 

    1 1
2 22

2 and tr tr 3 tr 3G     E C b , 

the derivative of this gives the Kirchhoff stress  : 
  ln J   I b I . (2) 

The strain energy function W uses the Lamé parameters λ and μ in a scalar product with invariant 
components of the deformation/strain tensor. Here, lnJ is the natural logarithm of J, the determinant 
of the stretch tensor U or similarly of the deformation gradient F. Additionally, b = FF

T is the left 
Cauchy–Green tensor, noting that trb is the trace function of b, which is equal to trC, where C = 
F

T
F. Two particularly valued properties of the Simo and Pister model are: 

a) The deviatoric component of stress is only a function of μ 
b) The strain energy goes to infinity as either the volume goes to infinity or to zero (singularity) 

Surprisingly few models meet criteria a) and b), which can easily be demonstrated. First, the 
deviatoric part of the stress measure S is  
  1

3, where trdev vol vol   I      (3) 

Substituting Eq. (2), the volumetric part becomes 
  1

3ln tr 3vol J  I + b I  (4) 

 and, where e is the Almansi–Euler strain, the deviatoric part in Eq. (3) becomes 
      1 1

3 3ln ln tr trdev J J       I I e eI e eI  (5) 

noting that this is independent of the parameter λ. The next property, that of infinite strain energy at 
zero volume, can simply be seen to follow the logarithm of zero, ln0 = ∞.  
 
In this paper, we shall propose an orthotropic expansion of Simo and Pister’s model that preserves 
these properties while also remaining a valid orthotropic continuum model that collapses down to 
the isotropic model by nothing more than material parameters becoming isotropic. 

Transformation into standard scalar form using series strain 

In order to elevate the form of the strain energy function in Eq. (1) we need to first turn the strain 
energy in to a standard form that is similar to the St Venant Kirchhoff model.  
The first component of the function is simply transformed through the identity 
    

0
ln ln det tr ln trJ   U U E , (6) 

where 
0
E  is the logarithmic strain following the Seth-Hill[4], [5] form of general strain: 

  
 

 

1 n

0

10 :
,

0 : ln

n

n

n
n

n
n

n


  

  
  


E U I
E U I

E U

 (7) 

This can be used to develop and interesting equality to replace 
2
E  in Eq. (1). Initially we note 
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    
2

221 1
2 22 1 2 1 2 1 1

, 2 ,          E U I E U I E I E I E E E  (8) 

which represents 
2
E  in terms of 

1
E . This process is repeated to the limit as n → ∞, yielding 

 
 

1 2 30 1 21 1 1 1 1
2 4 8

1

2 2 2 2 2 2 2 2 21 1 1 1 1 1 1 1 1
2 4 8 16 2 2 22 1 0 02 2 2

21
2 020

... ...

n
n

n

  
 




 





            

 

E E E E E E E E E E E E

E E
. (9) 

Now, suppose we define a strain measure called Series Strain 

E , defined by 

  1

2 21
2 20

n
n

n









E E , (10) 

then we now have the identity 

 2

2 0
 E E E . (11) 

Substitution of Eq. (6) and (11) into Eq. (1) gives 

      
2 2

2 21 1
2 20 0 0 0S&P

tr tr tr tr trW     
 

   
           

E E E E E E , (12) 

which is remarkably similar to the St Venant Kirchhoff (SVK) model: 

  
2

21
2 2 2SVK

tr trW  
 

   
E E  (13) 

This form provides the basis for representation by the generalised strain energy function present in 
the section that follows. 

Generalised Strain Energy (Gse) 

GSE formulation 

Given a fourth order tensor possessing major symmetry  = T, we note the identity 

  : :  = ::A C A C , (14) 

where the operator  is the tensor product used by Itskov[6],   ij klijkl
A BA B . Using Eq. (14), 

we can represent the classical linear Hooke’s Law  
  1 1

2 2: : as ::W W     . (15) 

For a general representation of the model, we allow any order n of strain as per the Seth–Hill 
formula in Eq. (7), and so define a fourth-order tensor 
 

n n n
E E . (16) 

This yields a general model than can encompass the sum of any number of strain orders in 
consideration of the repeated indices on one side of the equation (Einstein summation convention): 
 1

2 ::
n n

W  . (17) 

The capacity of this to represent various models will become apparent in the coming sections. 
Further to this, we can define a fourth-order Strain Energy Tensor (SET), which maintains identity 
to the components of strain energy: 

ICCM2014, 28th-30th July 2014, Cambridge, England

761



 
 

 1
2

n n
  (18) 

This can be simply reduced back to the scalar value by summation of all elements of the tensor, as 
 

, , ,
ijkl

i j k l

W W  . (19) 

The form of Eq. (17) is not limited to a typical Hookean stiffness tensor– as mentioned, the 
summation index n refers to the order identifier of the general strain, but it also has a corresponding 
component of  such that 

n
n

 , where in the isotropic form it is split up into two fourth-order 

tensors separating the Lamé parameters, i.e. 

  1
2 :: ::

m m n n
W    , (20) 

where 
 

iso iso
, . , .    I I I I  (21) 

Eq. (20) has the capacity to encompass a wide range of existing strain energy functions with no 
approximation. Essentially, it is the transformation of the function of strain energy from the scalar 
product of scalar parameters and invariants of strain into the quadruple contractions of fourth-

order material tensors and fourth-order strains. 

Simo and Pister in GSE form 

With the development on the GSE in Eqs. (17) and (20) we can now easily transform the strain 
energy function of Simo and Pister, represented in a general scalar form in Eq. (12), simply by 
specifying the order of the strains: 

  1
2 0

:: ::W


   (22) 

In the case of the series strain, the corresponding fourth-order tensor is defined as 

  1
1

2 2 20
n

n n

n


 






 E E . (23) 

Eq. (22) is an exact representation of Simo and Pister’s isotropic hyperelastic model, though it is 
now in a form that is conducive to the introduction of direction dependence. 

Intrinsic-Field Tensors: Strain 

Deformation IFTs 

Earlier in this we referred to the classical stretch tensor U, we must now differentiate the stretch 
based on the material property-based domain. We shall introduce E to represent the domain of 
isotropic materials and the domain Œ to represent orthotropic materials. The property of symmetry 
is herein only afforded to the stretch tensor existing within the domain of isotropy, hence UE. 
 
The well-known polar decomposition of the deformation gradient F into stretch and rotation R can 
be represented in isotropic parts 

  
TE E T E E,    F R U F F U U , (24) 

where the former equation indicates the multiplicative decomposition, and the latter implies the 
unitary and orthogonal nature of R. These equations are indeterminate – they have infinite solutions 
– and so in mechanics we impose a symmetry condition onto the stretch tensor as follows: 
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    
T 2E E T E   U U F F U  (25) 

In the present method, we require a stretch whereby the condition of symmetry is removed, which it 
turns out is only necessary for orthotropic and anisotropic domains. Thus the stretch tensor UŒ is 
potentially asymmetric. This has been published in the thesis by Kellermann[2]. Hence Eq. (24) 
remains similar 

  
TŒ Œ T Œ Œ,    F R U F F U U , (26) 

while the enforced symmetry is replaced by dependence on the RŒ, the IFT rotation as a function of 
the Rodrigues Rotation Vector Ω, hence 

  
TŒ Œ   U R F . (27) 

We do not go into detail of the physical implications of IFTs here, though it should be noted that 
Eq. (27)is solved simply by minimisation of the strain energy function, the variables being the 
components of the Rodrigues vector. The result is an asymmetric stretch tensor such that 

Œ Œ
ij jiU U . 

Generalised strain as and IFT 

It follows from the Seth–Hill strain in Eq. (7) and the redefinition of stretch in Eq. (27) that we can 
define a new IFT form of generalised strain: 

  Œ1
n

n

n
  
  

Œ U I  (28) 

This measure is for the domain of orthotropic continua, and is not limited to positive integers, 
indeed negative values yield Eulerian measures; and, fractions to the limit of zero (the logarithmic 
strain as an IFT) are similarly useful. 

Material Tensors For IFTs 

Orthotropic Hookean tensors for IFTs 

Since IFT theory differentiates between in-plane shear components[7], we require additional shear 
parameters in the sense that xy and yx properties become unique. This is quite a natural extension, 
as it simply means using the 9×9 stiffness matrix that follows from a 3×3×3×3 material tensor. The 
most compact form of such properties uses indicial notation, where the compliance material tensor 

 in the orthotropic orientation denoted by  
   is expressed as 

     1ijkl ik jl ji ij kl lj lE        , (29) 

where ij  is the Kronecker delta, iE  are the components of the Young’s Modulus vector and ij  are 
the components of the Poisson Ratio matrix (see Reference [7]). 
Representing the compliance tensor in flattened matrix form   , it then is inverted as shown 

    
1

  (30) 

to yield the orthotropic Hookean material tensor 
orth

 for use with IFTs. 

Orthotropic Lamé tensors for IFTs 

Various previous efforts have proposed a set of “orthotropic Lamé parameters”, though none meet a 
very simple requirement set out here: 
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a) Reduces to the two isotropic Lamé material tensors in Eq. (21) when properties are isotropic 
b) Addition of each yields the Hookean orthotropic material tensor of Eqs. (29) and (30), ensuring 

consistent tangent stiffness 
 The resulting proposed orthotropic Lamé tensors are 

orth
 and 

orth
 corresponding to λ and μ in 

isotropy. These are given for both compliance and stiffness in two-dimension as follows. 

 

   

   

  

  

 

 

2 21
23 32 23 32 1 21 23 31 12

2 21
12 13 32 2 31 13 31 13 22

orth

23 32 23 32 1

31 13 31 13 2

orth
2 21

1 12

0 0

0 0

0 0 0 0
0 0 0 0

2 1 2 0 0 0
0 2 1 2 0 0
0 0 1 0
0 0 0 1

E E

E E

E

E

E

E

        

        

    

    





    
 
         
 
 
 

    


     
  




   

   

 

 

23 32 1 21 23 31 1

12 13 32 2 31 13 2

orth orth orth
2 21

1 12

1 0 0
1 0 0

0 0 1 0
0 0 0 1

E E

E E

E

E

      

      











 

  
 

         
       
 

  

 (31) 

where 12 21 23 32 31 13 12 23 31 21 32 131                  . 

Orthotropic Simo And Pister Model 

Orthotropic Simo and Pister using GSE 

Having shown the Simo and Pister model in the form of the GSE in Eq. (22), having presented the 
equivalent intrinsic-field tensors for the strains in orthotropy in Eq. (28) and having given the 
orthotropic equivalent of the fourth-order Lamé tensors in Box 1 we are able to convert Simo and 
Pister isotropic hyperelasticity into a fully logically-compliant hyperelastic model. This is achieved 

through the trivial step of replacing 
iso

 with 
orth

, 
iso

 with 
orth

 and  
n n

f E  with  
n n

f Œ . 

The resulting formula, expressed entirely as fourth-order tensors, is 

  1
2 0orth

:: :: ,
n n n

W


  Œ Œ  (32) 

with the more familiar form as follows. Orthotropic Simo and Pister Hyperelasticity: 

  1
2orth 0 0

: : : :W
 

 Œ Œ Œ Œ  (33) 

In the next section we will complete the development of the equation by demonstrating that it has 
the correct tangent stiffness. 

Linearisation back to Hooke’s law 

Finally we can demonstrate that the proposed model reduces back to orthotropic Hooke’s law for 
IFTs, which has been shown to have identical strain energy to classical orthotropic Hooke’s law. 
Physically, this also shows that the tangent stiffness of the proposed orthotropic hyperelastic model 
is consistent with classical elasticity. As deformation gradient gets very close to the identity tensor, 
all strain measures linearise to the infinitesimal strain measure of Cauchy, though in the case of 
IFTs it is asymmetric: 
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 as , ,
n n n n

     F I E E E Œ Œ Œ  (34) 

Thus equation (33) can be factored by the identical linear strain measures as 

  1
2orth

: :W  Œ Œ  (35) 

and from Box 1 we know that the two orthotropic Lamé tensor combine to give the extended 
orthotropic Hookean material tensor 

orth orth orth
  . Hence Eq. (35) returns to the familiar form 

 
1
2 orthorth

1
2 orth

: :

: : Orthotropic Hooke's Law

W 



Œ Œ

 
, (36) 

where 
orth

 is the classical orthotropic Hookean material tensor for stiffness. The proof of the 

equality between lines in Eq. (36) is obtained by using a mixing equation to generate the classical 
‘combined’ in-plane shear moduli and then finding that the energies are always identical since 

  1
2 ij ji ijŒ +Œ  . (37) 

Thus classical tangent stiffness is guaranteed in the proposed model, and for that matter, any 
orthotropic hyperelastic model of the form of Eq. (20). 

Conclusion 

In this paper a new class of hyperelastic, orthotropic strain energy functions is introduced by way of 
demonstrating the conversion of the well-known Simo and Pister model. This is done by first 
elevating the model from being isotropic & hyperelastic to being orthotropic & hyperelastic, and 
then reducing the orthotropic & hyperelastic model to being orthotropic & infinitesimal. Both the 
start point (Simo and Pister’s model) and the end points (Hookean infinitesimal orthotropy) are 
widely accepted models, and no approximations are made from the transition from one to the other. 
The resulting midpoint, the hyperelastic, orthotropic Simo and Pister model, maintains all the 
desirable qualities of its isotropic counterpart and of Hookean orthotropy. This alone should serve 
as a compelling argument for the introduction of intrinsic-field tensors and the greater proposed 
theory of Orthotropic Continuum Mechanics into the domain of contemporary continuum 
mechanics at large. This is by no means a specialised theory – its ability to encompass and adapt to 
a wide range of applications should be evident through the mathematics alone. 
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Abstract 

Rocks under the ground include pores and cracks which produce strong anisotropy. In addition, the 
pores and cracks are saturated with pore fluid. Therefore, the rocks can be considered as a general 
anisotropic fluid-saturated porous solid. Boundary element method (BEM) is well known as an 
effective numerical approach for wave scattering analysis because BEM can treat infinite or semi-
infinite domains without any modification. Convolution quadrature boundary element method (CQ-
BEM), which uses convolution quadrature method (CQM) for time-discretization, is known as a new 
time-domain BEM. The CQ-BEM requires Laplace-domain fundamental solutions and can produce 
stable numerical solutions, even for small time increments. In this research, a CQ-BEM for wave 
analysis in general anisotropic fluid-saturated porous solids is developed and accelerated by GPU 
parallelization. The proposed method and the effect of GPU acceleration are verified by solving wave 
scattering problems by a cavity. 

Keywords:  Boundary element method, Convolution quadrature method, Anisotropy, Pore fluid, 
GPU acceleration 

Introduction 

Wave analysis in rocks has been addressed in earthquake engineering and exploration geophysics. 
Waves propagating in rocks, especially near the fault fracture zones and reservoirs, have some 
important properties: anisotropy, dispersion, and attenuation. Anisotropy is generated by crystal 
preferred orientation of the rocks and aligned cracks in the rocks. On the other hand, dispersion and 
attenuation result from porous structure of the rocks and existence of pore fluid. Therefore, the rocks 
can be considered as a general anisotropic fluid-saturated porous solid. A theory of fluid-saturated 
porous solids has been proposed by [Biot (1956a; 1956b)], and the theory including consideration of 
general anisotropy was subsequently presented by [Biot (1962)]. The mechanical model proposed by 
Biot is called Biot’s model, and there are various expanded models which have been derived from 
Biot’s original one.  
 
Boundary element method (BEM) is an effective numerical approach for wave analysis. This is 
because BEM requires boundary discretization only and can treat infinite and semi-infinite domain 
without any modification. Therefore, BEM can provide accurate numerical solutions compared with 
other computational methods such as finite element method (FEM), and finite difference method 
(FDM), which require spatial discretization of analysis zone. In recent years, a novel time-domain 
BEM, convolution quadrature boundary element method (CQ-BEM), has been proposed by [Schanz, 
M. and Antes, H. (1997)]. CQ-BEM is the BEM that a convolution quadrature method (CQM) is used 
for time-discretization. CQM evaluates the Riemann convolution 𝑓(𝑡) ∗ 𝑔(𝑡)  numerically, and 
requires Laplace transform of the function 𝑓(𝑡). Therefore, in CQ-BEM formulation, time-domain 
boundary integral equations (BIEs) are solved using Laplace-domain fundamental solutions. Main 
advantages of CQ-BEM are to produce stable numerical solutions with small time increments, and to 
deal with waves affected by dispersion and dissipation.  
 
Boundary element method for dynamic poroelastic problems using Biot’s model has been presented 
by a number of researchers. A frequency-domain BEM was proposed by [Domínguez (1992)]. In 
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this research, the frequency-domain BIEs were derived from the analogy between dynamic 
poroelasticity and thermoelasticity and, described by two kinds of boundary values, i.e., solid 
displacements, and fluid pressure. On the other hand, time-domain BEMs for this kind of problem 
have been developed with the advent of the CQ-BEM [Schanz (2001); Saitoh et al. (2012)]. These 
formulations involved time-domain BIEs with respect to solid displacements and fluid pressure as 
boundary values. However, these previous BEM formulations can be applied to isotropic fluid-
saturated porous solids only, and the research on BEM for wave analysis in general anisotropic fluid-
saturated porous solids has not been carried out, as long as the authors know.  
 
In this paper, a CQ-BEM for two-dimensional wave scattering problems in general anisotropic fluid-
saturated porous solids is developed, and the validity of our presented method is confirmed. In general, 
BEM considering general anisotropy requires much computational time because the computation of 
fundamental solutions involves integration over the unit circle in two-dimensional problems. 
Therefore, GPU parallelization is applied to the proposed CQ-BEM and effect of GPU parallelization 
is confirmed. In the following sections, the theory of Biot’s model is summarized and CQ-BEM 
formulation for Biot’s model is subsequently presented. After these expressions, numerical examples 
and effect of GPU parallelization are illustrated.  
 

Biot’s Model for General Anisotropic Fluid-Saturated Porous Solids 

In this section, Biot’s model, a mechanical model for general anisotropic fluid-saturated porous solids 
proposed by [Biot (1962)], is described. The presented model shown here involves effects of 
anisotropy. The Biot’s model is based on the following assumptions:  

1. Fluid-saturated porous solid consists of solid skeleton and pore fluid as shown in Fig. 1.  
2. Infinitesimal transformations occur between the reference and current states of deformation.  
3. The wavelength is large compared with the dimensions of macroscopic values.  
4. The conditions are isothermal.  
5. The fluid is viscous.  
6. The fluid flows through the porous skeleton according to Darcy’s law.  

In this model, anisotropy is due to a preferential alignment of the pores or cracks. Therefore, 
anisotropic effects of both elasticity of the solid skeleton and permeability of pore fluid can be 
considered.  
 
The linear stress-strain relations of the Biot’s model are given by the following equations:  
 

 𝜎𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝑒𝑘𝑙 + 𝛼𝑖𝑗𝑀𝜁, (1) 

 𝑝 = 𝛼𝑘𝑙𝑀𝑒𝑘𝑙 + 𝑀𝜁 (2) 
 
where 𝜎𝑖𝑗 and 𝑝 represents the total stress of the porous solid and the fluid pressure, respectively. 𝑒𝑖𝑗 
is the strain components of the porous solid, and 𝜁 is the increment of the fluid content. In addition, 
𝐴𝑖𝑗𝑘𝑙 represents the elastic tensor of undrained porous solid. 𝑀 is Biot’s elastic modulus, and 𝛼𝑖𝑗 is 

 
 

Figure 1. Fluid-saturated porous solid. 
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Biot’s effective-stress coefficients in general anisotropic case. In Eqs. (1) and (2), the strain 
component 𝑒𝑖𝑗 is expressed, using the displacement components of the porous solid 𝑢𝑖, as follows:  
 

 𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗+𝑢𝑗,𝑖) (3) 

 
where ( ),𝑖 = 𝜕/𝜕𝑥𝑖 . Moreover, the elastic tensor of undrained porous solid 𝐴𝑖𝑗𝑘𝑙  is expressed as 
follows:  
 

 𝐴𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙 + 𝛼𝑖𝑗𝛼𝑘𝑙𝑀 (4) 
 
where 𝐶𝑖𝑗𝑘𝑙 represents the elastic tensor of drained porous solid (solid skeleton).  
 
Equations of motion of the Biot’s model are expressed as follows:  
 

 𝜎𝑖𝑗,𝑗 + 𝜌𝑏𝑖 = 𝜌𝑢̈𝑖 + 𝜌𝑓𝑤̈𝑖, (5) 

 𝑝,𝑖 + 𝜌𝑓𝑐𝑖 = −𝜌𝑓𝑢̈𝑖 + 𝑚𝑖𝑗𝑤̈𝑗 − 𝜂𝑟𝑖𝑗𝑤̇𝑗 (6) 
 
where ( )̇ = 𝜕/𝜕𝑡, and 𝑤𝑖 represents the flow of the fluid relative to the solid in the unit section. 𝜌 
and 𝜌𝑓 are the densities of the porous solid and pore fluid. 𝑏𝑖 and 𝑐𝑖 represent body force components 
of the solid and the pore fluid, respectively. In addition, 𝜂 is the viscosity of the fluid. 𝑚𝑖𝑗 is the mass 
matrix which depends on the pore geometry. Moreover, 𝑟𝑖𝑗  represents the flow resistivity matrix 
which is the inverse matrix of the permeability matrix based on Darcy’s law. Note that the third term 
of the right hand side in Eq. (6) is dissipation term. Therefore, dissipation depends on the viscosity 
of the pore fluid and the relative motion between the solid and the fluid.  
 
Characteristics of wave propagation in general anisotropic fluid-saturated porous solids have been 
studied by several researchers [Carcione (1996); Sharma (2005)]. According to these previous studies, 
anisotropic fluid-saturated porous solids generate four body waves; i.e., quasi-fast longitudinal wave 
(qP1), quasi-slow longitudinal wave (qP2), and quasi-transverse waves (qS1 and qS2). In addition, 
phase velocities of the waves depend on the propagation direction and the frequency. The viscosity 𝜂 
effects great changes on the behavior of qP2 wave. 
 

Convolution Quadrature Boundary Element Method for Biot’s Model 

In this section, a formulation of convolution quadrature boundary element method (CQ-BEM) for 
wave scattering problems in general anisotropic fluid-saturated porous solids is presented. Our 
formulation is based on that proposed by [Saitoh et al. (2012)]. Firstly, the BEM formulation based 
on time-domain boundary integral equations (BIEs) is described. Secondly, time- and spatial 
discretization of the BIEs are expressed. Finally, Laplace-domain fundamental solutions for the target 
problems are illustrated.  
 
CQ-BEM Formulation for Biot’s Model 
 
Formulation based on time-domain BIEs is described here. Considering infinite domain 𝐷 and its 
boundary 𝑆, time-domain BIEs for Biot’s model are expressed as follows:  
 

 
𝐶(𝐱)𝑞𝐼(𝐱, 𝑡) = 𝑞𝐼

in(𝐱, 𝑡) + ∫𝑈𝐼𝐾(𝐱, 𝐲, 𝑡) ∗ 𝑠𝐾(𝐲, 𝑡)𝑑𝑆(𝐲)
𝑆

 

− ∫𝑊𝐼𝐾(𝐱, 𝐲, 𝑡) ∗ 𝑞𝐾(𝐲, 𝑡)𝑑𝑆(𝐲)
𝑆

 
(7) 
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where ∗ denotes the Riemann convolution. For two-dimensional case, the subscript written by capital 
letter ranges from 1 to 3. In addition, 𝑞𝐼(𝐱, 𝑡) and 𝑠𝐼(𝐱, 𝑡) represent generalized displacement and 
traction at point 𝐱 at time 𝑡, respectively, shown as follows:  
 

 𝑞𝐼 = {𝑢1, 𝑢2, 𝑝}T,  𝑠𝐼 = {𝑡1, 𝑡2, 𝑝𝑛}T (8) 
 
where 𝑡𝑖  (𝑖 = 1,2) is the traction component of the solid, and 𝑝𝑛 is normal derivative of the pressure 
given by 𝑝𝑛 = ∂𝑝/ ∂𝑛. In addition, 𝑞𝐼

in(𝐱, 𝑡) represents generalized displacement for the incident 
wave, and the free term 𝐶(𝐱) is given by  
 

 𝐶(𝐱) = {
1 : 𝐱 ∈ 𝐷

1/2 : 𝐱 ∈ 𝑆
0 : 𝐱 ∈ 𝐷𝑐

 (9) 

 
where 𝐷𝑐  denotes complementary domain of the analytical domain 𝐷. In Eq. (7), 𝑈𝐼𝐾(𝐱, 𝐲, 𝑡) and 
𝑊𝐼𝐾(𝐱, 𝐲, 𝑡) represent time-domain fundamental solutions and its double layer kernels, respectively.  
 
Time- and Spatial Discretization of BIEs 
 
Algebraic equation which can be solved computationally is derived via time- and spatial discretization 
of the time-domain BIEs shown in Eq. (7). Time- and spatial discretization is applied by the following 
manners: Convolution quadrature method (CQM) based on the backward difference formula is used 
for time-discretization. Collocation method with constant shape function is used for spatial 
discretization. Approximation formula of the CQM is given by the following equations:  
 

 𝑓(𝑛𝛥𝑡) ∗ 𝑔(𝑛𝛥𝑡) = ∑ 𝜔𝑛−𝑘(𝛥𝑡)

𝑛

𝑘=0

𝑔(𝑛𝛥𝑡) (10) 

 
where 𝛥𝑡 represents time increment, and 𝜔𝑚 is the weight function as follow:  
 

 𝜔𝑚(Δ𝑡) =
1

2𝜋i
∫ 𝑓 (

𝛾(𝑧)

𝛥𝑡
)

|𝑧|=𝑅

𝑧−𝑛−1𝑑𝑧 (11) 

 
where i  is the imaginary unit, and  𝑓  denotes the Laplace transform of 𝑓 . In the numerical 
computation, the integration in Eq. (11) is evaluated by 𝐿-point trapezoidal rule. Therefore, the weight 
function 𝜔𝑚 is expressed as follows:  
 

 𝜔𝑚(Δ𝑡) ≈
𝑅−𝑚

𝐿
∑ 𝑓 (

𝛾(𝑧𝑙)

𝛥𝑡
)

𝐿−1

𝑙=0

e−
2𝜋i𝑚𝑙

𝐿 . (12) 

 
The CQM parameters γ(𝑧𝑙) and 𝑅, with an error magnitude 𝑂(ϵ), are written as follows:  
 

 𝛾(𝑧𝑙) = ∑
1

𝑖
(1 − 𝑧𝑙)

𝑖

𝑘

𝑖=1

,  𝑧𝑙 = 𝑅e−2𝜋i
𝑙
𝐿 ,  𝑅 = 𝜖

1
2𝐿 . (13) 

 
Note that Eq. (13) corresponds to the backward differentiation formulas of order 𝑘. Using the CQM 
formula and taking the limit process 𝐱 ∈ 𝐷 → 𝐱 ∈ 𝑆, the following discretized BIEs are obtained:  
 

 
[
1

2
𝛿𝑀𝑁𝛿𝐼𝐾 + 𝐵𝑀𝑁;𝐼𝐾

(0)
 ] 𝑞𝑁;𝐾

(𝑛)
− 𝐴𝑀𝑁;𝐼𝐾

(0)
𝑠𝑁;𝐾

(𝑛)
= 𝑞𝑀;𝐼

in(𝑛)

+ ∑[𝐴𝑀𝑁;𝐼𝐾
(𝑛−𝑘)

𝑠𝑁;𝐾
(𝑘)

− 𝐵𝑀𝑁;𝐼𝐾
(𝑛−𝑘)

𝑞𝑁;𝐾
(𝑘)

], (𝑛 = 1,2, ⋯ , 𝑁𝑡).

𝑛−1

𝑘=1

 
(14) 
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In Eq. (14), 𝑀, 𝑁 = 1,2, ⋯ , 𝑁𝑒 where 𝑁𝑒 represents the number of boundary elements. Equation (14) 
describes the BIEs at 𝑛-th time step, and 𝑁𝑡 is the total number of time step. Moreover, 𝐴𝑀𝑁;𝐼𝐾

(𝑘)  and 
𝐵𝑀𝑁;𝐼𝐾

(𝑘)  are the influence functions as follows:  
 

 𝐴𝑀𝑁;𝐼𝐾
(𝑚)

=
𝑅−𝑚

𝐿
∑ [∫ 𝑈̂𝐼𝐾(𝐱𝑀, 𝐲𝑁 , 𝑠𝑙)𝑑𝑆(𝐲)

𝑆𝑁

] e−2𝜋i𝑚
𝑙
𝐿

𝐿−1

𝑙=0

 (15) 

 𝐵𝑀𝑁;𝐼𝐾
(𝑚)

=
𝑅−𝑚

𝐿
∑ [∫ 𝑊̂𝐼𝐾(𝐱𝑀, 𝐲𝑁 , 𝑠𝑙)𝑑𝑆(𝐲)

𝑆𝑁

] e−2𝜋i𝑚
𝑙
𝐿

𝐿−1

𝑙=0

 (16) 

 
where 𝑠𝑙 = γ(𝑧𝑙)/Δ𝑡,  and 𝑈̂𝐼𝐾(𝐱, 𝐲, 𝑠)  and 𝑊̂𝐼𝐾(𝐱, 𝐲, 𝑠)  are the Laplace-domain fundamental 
solutions and its double layer kernels, respectively. Substituting prescribed boundary conditions into 
Eq. (14) and solving the resulting algebraic equation, unknown boundary values can be obtained.  
 
Laplace-Domain Fundamental Solutions 
 
Laplace-domain fundamental solutions are required for computation of the influence functions, and 
given by the following equation:  
 

 𝐿̂𝑃𝑄𝑈̂𝑄𝐾(𝐱, 𝐲, 𝑠) = −𝛿(𝐱 − 𝐲)𝛿𝑃𝐾 (17) 
 
where 𝛿(⋅) is Dirac delta function, 𝛿𝐼𝐾 is Kronecker delta, and  
 

 

𝐿̂𝑖𝑘 = 𝐶𝑖𝑗𝑘𝑙

𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑙
− 𝜌̃𝑖𝑘𝑠2,  𝐿̂𝑖4 = −𝛼̃𝑖𝑗

𝜕

𝜕𝑥𝑗
, 

𝐿̂4𝑘 = 𝛼̃𝑘𝑙

𝜕

𝜕𝑥𝑙
,  𝐿̂44 = −

1

𝑠2
𝑌𝑗𝑙

−1
𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑙
−

1

𝑀
, 

𝛼̃𝑖𝑘 = 𝛼𝑖𝑘 − 𝜌𝑓𝑌𝑖𝑘
−1,  𝜌̃𝑖𝑘 = 𝜌𝛿𝑖𝑘 − 𝜌𝑓

2𝑌𝑖𝑘
−1. 

(18) 

 
Solving Eq. (17) using Radon and Fourier transform, the following fundamental solutions are 
obtained:   
 

 

𝑈̂𝑖𝑘(𝐱, 𝐲, 𝑠) =
1

4𝜋2
∫ ∑ Λ𝑖𝑘

𝛼 (𝐩)Φ𝛼𝑑𝐿(𝐩),

4

𝛼=1
|𝐩|=1

 

𝑈̂𝑖3(𝐱, 𝐲, 𝑠) =
1

4𝜋2
∫ ∑ Λ𝑖4

𝛼 (𝐩)Ψ𝛼𝑑𝐿(𝐩)

4

𝛼=1
|𝐩|=1

, 

𝑈̂3𝑘(𝐱, 𝐲, 𝑠) =
1

4𝜋2
∫ ∑ Λ4𝑘

𝛼 (𝐩)Ψ𝛼𝑑𝐿(𝐩),

4

𝛼=1
|𝐩|=1

 

𝑈̂33(𝐱, 𝐲, 𝑠) =
1

4𝜋2
∫ ∑ Λ44

𝛼 (𝐩)Φ𝛼𝑑𝐿(𝐩)

4

𝛼=1
|𝐩|=1

 

(19) 

 
where  
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 Λ𝐼𝐾
𝛼 (𝐩) = 𝑘𝛼

(adj [𝐋̆̂
̃

]|
𝑘=𝑘𝛼

)
𝐼𝐾

𝜕
𝜕𝑘

det [𝐋̆̂
̃

]|
𝑘=𝑘𝛼

, (20) 

 Φ𝛼 = e−i𝑘𝛼|𝐩⋅𝐫|𝐸1(−i𝑘𝛼|𝐩 ⋅ 𝐫|)+ei𝑘𝛼|𝐩⋅𝐫|{𝐸1(i𝑘𝛼|𝐩 ⋅ 𝐫|) + i𝜋}, (21) 
 Ψ𝛼 = sgn(𝐩 ⋅ 𝐫)[−e−i𝑘𝛼|𝐩⋅𝐫|𝐸1(−i𝑘𝛼|𝐩 ⋅ 𝐫|)+ei𝑘𝛼|𝐩⋅𝐫|{𝐸1(i𝑘𝛼|𝐩 ⋅ 𝐫|) + i𝜋}]. (22) 

 
 
In Eq. (20),  ( )̃ and ( )̆ denotes Radon and Fourier transform. Moreover, in Eqs. (21) and (22), 𝐸1(⋅) 
is the exponential integral, and 𝐫 = 𝐱 − 𝐲. 𝑘𝛼 is obtained by solving the following equation:   
 

 det [𝐋̆̂
̃

] = 𝐶1𝑘𝛼
8 + 𝐶2𝑘𝛼

6 + 𝐶3𝑘𝛼
4 + 𝐶4𝑘𝛼

2 + 𝐶5 = 0,   Im[𝑘𝛼] > 0. (23) 
 
where 𝐶1, 𝐶2, ⋯ , 𝐶5 are coefficients.  
 
In Eqs. (19), the subscript written by small letter ranges from 1 to 2, and the integrals over the unit 
circle (|𝐩| = 1) are implemented as a consideration of the interference of the body waves propagating 
in every direction. Moreover, the summation with respect to 𝛼 denotes the superposition of the four 
body waves. In numerical computation, integrals over the unit circle are evaluated using double 
exponential formula [Takahasi and Mori (1974)]. The number of sampling points of these integrals 
is set to 1,400 in this research. Therefore, the computational cost is quite high. On the other hand, the 
double layer kernels 𝑊̂𝐼𝐾(𝐱, 𝐲, 𝑠) are given by the following equations:  
 

 𝑊̂𝐼𝐾(𝐱, 𝐲, 𝑠) = 𝐵̂𝐾𝐽
𝐲

𝑈̂𝐼𝐽(𝐱, 𝐲, 𝑠) (24) 
 
where  
 

 

𝐵̂𝑖𝑘
𝐲

= −𝐶𝑖𝑗𝑘𝑙𝑛𝑗(𝐲)
𝜕

𝜕𝑥𝑙
,  𝐵̂𝑖3

𝐲
=

𝑀𝑖𝑗

𝑀
𝑛𝑗(𝐲), 

𝐵̂3𝑘
𝐲

= −𝜌𝑓𝑌𝑘𝑙
−1𝑛𝑙(𝐲),  𝐵̂33

𝐲
=

1

𝑠2
𝑌𝑗𝑙

−1𝑛𝑗(𝐲)
𝜕

𝜕𝑥𝑙
 , 

𝑌𝑖𝑘 = 𝑚𝑖𝑘 +
𝜂

𝑠
𝑟𝑖𝑘. 

(25) 

 
 

Figure 3. Time histories of the displacement 

𝒖𝟏 around a cavity at several times.  

 
 

Figure 2. Analytical model for wave 

scattering analysis by a cavity.   
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In Eqs. (25), 𝑛𝑖(𝐲) represents the unit normal vector at the point 𝐲 on the boundary 𝑆.  
 

Numerical Examples 

 
Wave Scattering Analysis by a Cavity 
 
Wave scattering problem by a cavity is solved by the proposed CQ-BEM. Analytical model is 
illustrated in Fig. 2, and sandstone [Carcione (1996)] which is known as a transversely isotropic fluid-
saturated porous solid is used. The boundary 𝑆  is divided into 32 boundary elements, and time 
increment is given by 𝑐∗𝛥𝑡/𝑎 = 0.05. Note that 𝑐∗ = √𝐶66/𝜌𝑠, 𝐶66 is the component of elastic tensor, 
and 𝜌𝑠 is density of solid skeleton. The total number of time step 𝑁𝑡 is set to 512. In addition, incident 
wave is given by the following equations:  
 

 𝑞𝐼
in(𝐱, 𝑡) = −𝑊𝐼𝐾(𝐱, 𝐲src, 𝑡) ∗ 𝑝𝐾

src(𝑡), (26) 

 𝑝𝐾
src(𝑡) =

𝛿1𝐾

2
{1 − cos (

2𝜋𝑡

𝑇
)} {𝐻(𝑡) − 𝐻(𝑡 − 𝑇)} (27) 

 
where 𝐻(⋅) is Heaviside function. Moreover, the source point is set to 𝐲src = {−2.5𝑎, −2.5𝑎}T, and 
the period of source function 𝑝𝐾

src(𝑡) is set to 𝑇 = 16𝛥𝑡. The CQM parameters described in Eq. (13) 
are given as follows: 𝜖 = 1.0 × 10−12 ,and 𝑘 = 1.  
 
Figure 3 and 4 are shown time histories of the displacement components in 𝑥1-direction and fluid 
pressure, respectively. In these figures, incident waves generated at the source point are propagating 
with complex wave surfaces. When the incident waves arrived at the boundary of the cavity, scattered 
waves are generated.  
 
Performance of GPU parallelization 
 
In recent years, the use of GPU for general purpose computing, which is often called GPGPU, has 
received considerable attentions. GPGPU provides a fine-grained parallelization, and the structure of 
this parallelization is different from a structure using MPI which is coarse-grained parallelization. As 
mentioned in the previous section, the influence functions shown in Eqs. (15) and (16) require much 
computational time because these functions include two integrations: integrations over the boundary 

 
 

Table 1. Effect of GPU parallelization.   

 

 

 
 

Figure 4. Time histories of the fluid 

pressure 𝒑 around a cavity at several 

times.   
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element 𝑆𝑁 and the unit circle (|𝐩| = 1). Therefore, in this study, GPU parallelization is applied to 
the numerical computations of the influence functions. For the numerical computations, TSUBAME 
2.5 which is the supercomputer of Tokyo Institute of Technology is used. CPU and GPU of 
TSUBAME 2.5 are Intel Xeon 2.93 GHz, NVIDIA Tesla K20X, respectively.  
 
Wave scattering problems are solved for evaluating the effect of GPU parallelization. The total 
number of time step 𝑁𝑡 is set to 128, and other analytical parameters are the same as the previous 
analysis. Table 1 shows the computational time of three cases: CQ-BEM without parallelization, CQ-
BEM with OpenMP parallelization using 24 threads, and CQ-BEM with GPU parallelization. From 
these results, GPU parallelization can reduce computational time of the proposed CQ-BEM 
dramatically.  
 

Conclusions 

In this paper, a convolution quadrature boundary element method for general anisotropic fluid-
saturated porous solids and its GPU acceleration are presented. The presented Formulation is based 
on the formulation proposed by [Saitoh et al. (2012)], and CQM and collocation method are used for 
time- and spatial discretization. Wave scattering problem by a cavity in sandstone is solved using the 
proposed CQ-BEM. GPU parallelization is implemented to reduce the computational time of 
evaluations of the influenced functions given by Eqs. (15) and (16). The computational time is 
reduced compared with both conventional CQ-BEM and that with OpenMP. In near future, CQ-BEM 
for three-dimensional wave scattering problems in general anisotropic fluid-saturated porous solid 
will be developed.  
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Abstract 
Owing to increases in predicted wave crest heights, platform settlement and changes to sea-water 
levels, wave-in-deck loading on offshore structures has increasingly become a concern to the 
offshore oil and gas industry. In this paper, a numerical approach for simulations of extreme ocean 
waves interacting with fixed offshore structures is presented in the framework of an open source 
library, OpenFOAM. A wave generation model based on the “NewWave” focused wave group 
approach (Tromans et al. 2001) has been developed to represent the extreme wave conditions. To 
validate the simulation, the results from the current approach have been compared to wave profiles 
obtained by Ning et al. (2009) and also with those of Iwanowski et al. (2002) for the wave-in-deck 
loads for a simple box representing the Ekofisk platform deck in the North Sea. The dynamic 
response of a typical supporting jacket structure when subjected to these loads is also assessed. 

Keywords:  CFD, NewWave, wave-in-deck, offshore structure, OpenFOAM 

1. Introduction 

Wave-in-deck loading arises when the total surface elevation exceeds the air gap for which an 
offshore platform has been designed. This results in very large step changes in the load on the 
structure and is a major concern for oil and gas operators. This situation is becoming increasingly 
common due to: changes in the wave crest statistical models that lead to higher crest predictions; 
seabed subsidence due to oil & gas extraction; and sea-level increases due to climate change. 
 
Historically, the estimation of wave-in-deck load has mainly been conducted using semi-analytical 
formulations supported by laboratory experiments on scaled-down models (van de Graaf et al., 
1995). With the advent of high powered computer clusters, numerical simulation on full size models 
using state-of-art CFD (Computational Fluid Dynamics) techniques now offers an alternative for 
determining these complicated hydrodynamics forces. The advantages of numerical simulation 
through CFD are: 1) full scale simulation of nonlinear phenomena; 2) potentially more accurate 
(and less costly) prediction compared with model testing as viscous and inertia forces are included 
whereas a model based on Froude scaling can only capture the inertia forces; and 3) detailed insight 
into the flow and resulting loads.  
 
To evaluate wave-in-deck impact loads, an extreme wave generator needs to be employed. The 
extreme wave occurs as a highly transient event within a multi frequency sea state. Regular waves, 
such as Stokes, do not represent these extreme waves accurately and random wave generation is an 
extremely time consuming process, as these extreme events occur rarely in random time series. An 
efficient method is to use a “NewWave” focused wave group that describes the average shape of an 
extreme wave profile consistent with a random process and a specified energy spectrum (Tromans 
et al., 1991). NewWave theory combines random wave theory and conditional probability theory to 
obtain the frequency components and relative amplitudes of the wavelets of the target extreme 
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waves. These wave components interact and constructively interfere to build up a localized extreme 
wave, focused at a specified position in the domain. The representation has been studied 
theoretically by Boccotti (1983) and Tromans et al. (1991) and experimentally and numerically by 
several investigators, such as Taylor and Haagsma (1994), Baldock et al. (1996) and Borthwick et 
al. (2006). In this study, we adopt the numerical setup for the generation of NewWave as published 
in Ning et al. (2009).  
 
The NewWave model has been developed by leveraging on the open source CFD tool OpenFOAM 
in this study. This has an extensive range of features to solve various fluid flow problems. In the 
current OpenFOAM platform, the Navier-Stokes (N-S) equations are used to describe the fluid flow 
while the Volume of Fluid method (VOF) is used to capture movement of the water free surface.  

2. Methodology and simulation 

2.1 NewWave Theory  
The concept of the NewWave formulation is to generate the extreme waves from a specified 
frequency spectrum by superimposing several relatively small waves to form one focused extreme 
wave at a specified location and specified time. For the linear NewWave, each wave component i, 
of frequency if , the amplitude ia  is defined (see for example Ning et al., 2009) as  
 

∑ ∆

∆
= N

i
i

i
i

ffS

ffSAa
)(

)(  (1) 

 
where S(f) is the spectral density and f∆ is the frequency step depending on the number of wave 
components N and bandwidth. A is the target theoretical linear wave amplitude of the focused wave. 
The extreme wave represented by linear NewWave theory is simply the scaled auto-correlation 
function corresponding to a specified spectrum.  
 
The free surface elevation and velocity components are obtained by superposition as: 
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   (2) 

 
where z is the vertical coordinate measured upwards from the Mean Water Level (MWL), η  is the 
instantaneous free surface elevation, 00 , tx are the predefined focal location and focal time, 
respectively, g is the gravitational acceleration, h is the water depth, )tanh(/2 hkgk iii ω= is the 
wave number and ii fπω 2=  is the frequency.  The superscript (1) denotes linear contributions.  
 
For the second order NewWave [Ning et al. (2009), Hu et al. (2011) and Westphalen et al. (2012)], 
the corresponding wave elevation and velocity components u and w can be expressed as: 
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(3) 

 
where )1(η , )1(u and )1(w are the linear wave elevation and velocities, respectively and )2(η , )2(u and 

)2(w correspond to the second order wave elevation and velocities, respectively. Some conflicts 
exist amongst different papers on 2nd order terms of Eq.(3).  The details of the 2nd order terms in 
Eq.(3) that we derived and used in this study are given in the Appendix.  
 
Various idealized spectra may be used to represent the sea states. The JONSWAP frequency 
spectrum S(f) is frequently employed (e.g. Gao et al. 2012) and is used herein: 
 

]2/)1(exp[4542 22

])(25.1exp[)( λ
αγβ −−−−− −= fT

ppsJ
pfTfTHfS   (4) 

1)9.1(185.00336.0230.0
)ln01915.0094.1(06238.0

−+−+
−

≅
αα

α

γγ
γ

β J  ;  




>
≤

=
p

p

ff
ff

09.0
07.0

λ  

 
where sH  is the significant wave height; pT and pf  are the peak wave period and frequency 
respectively. The peak enhancement factor αγ  was taken as 3.3. Note that for the NewWave 
formulation the value of Hs is not relevant since the normalized spectrum is used (see Eq. (1)). 
 
2.2 NewWave boundary conditions for CFD 
For the boundary conditions in our CFD simulations we may use either the first order NewWave 
solution as given by Equation (1) or the second order NewWave solution provided by Equation (3) 
as the input initial conditions.  In this paper, all results are generated using second order NewWave. 
 
In general, there are two different initial conditions that can be used in the CFD simulation.  
 
Type 1 initial condition: surface profile and kinematics prescribed over the entire domain 
The surface profile and associate kinematics are imposed over the entire domain at t=0. At t > 0, the 
waves and kinematics are input at the boundary x = 0m.  
 
Type 2 initial condition: surface profile and kinematics prescribed at inlet boundary, zero 
conditions over remainder of domain.  
The surface profile and associate kinematics are imposed at the inlet boundary only. At t = 0, x > 0 
the surface profile and kinematics are zero over the entire domain.  
 
2.3 NewWave generation validation 
The OpenFOAM solver with the NewWave generator was validated by comparison with the 
analytical solution and numerical results from Ning et al. (2009). For the numerical simulations, it 
was assumed that the fluid is incompressible, the surface tension on the free-surface can be ignored 
and the mean water depth is constant. No turbulence model was applied.  
 
The setup was similar to the one in Ning et al. (2009). The computational domain was 13m long, 
1m high with a water depth of 0.5m. Between x =10m and x =13m, a relaxation zone in 
Wave2Foam was installed to prevent reflections from the right-hand boundary. The wavemaker was 
located at x =0m. We note, in passing, that once the waves leave the input boundary, their 
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propagation is controlled by fully nonlinear wave-wave interactions. We compare the CFD results 
with Case 2 in Ning et al. (2009) (as shown in Table 1) where the predefined focal point was set 
at mx 30 = , st 2.90 = and the linear input amplitude was A = )1(

maxη  = 0.0632m. The corresponding 
theoretical second order amplitude at the focal point is )2(

maxη = 0.0677m. 
 
Both types of initial conditions mentioned above were tested and the results were almost identical; 
however, Type 1 can employ a much shorter focal time because the simulation starts from an 
existing developed wave field and this is much more computationally efficient. Therefore, in the 
following, we consider only the results for initial condition Type 1.  
 
Ning et al. (2009) found that due to nonlinear interaction of the NewWave components, the highest 
elevation (the real focus point for the wave) occurs at ( 11 , tx  ), where ( 0101 , ttxx ≥≥ ). In our study, 
this “focusing delay phenomenon” is investigated. Several “probe points” were set around 0x  and 
the position of the free surface was extracted at these positions for every time step to identify the 
maximum surface elevation.  
 
Various mesh sizes were used (Table 2) to find the effect on the amplitude and real focus point 
location. The models were run on an HP Elitebook 8570W using 4 cores. The run times for 
calculation of wave propagation for 20s in time domain at coarse 
( 32/,67/ Hyx P ≈∆≈∆ λ , 01.0=∆t ), fine ( 56/,100/ Hyx P ≈∆≈∆ λ , 001.0=∆t ), and finest mesh 
( 102/,200/ Hyx P ≈∆≈∆ λ , 001.0=∆t ) were about 2 hours, 4.5 hours and 7.5 hours, respectively. It 
was found that the fine mesh size ( 56/,100/ Hyx P ≈∆≈∆ λ , 001.0=∆t ) is the optimal choice in 
term of accuracy and efficiency. Table 2 shows the results of the study: the real focus point occurs 
at ( 11 , tx ) and is delayed in both time and location. 
 

Table 1 Simulated case as per Case 2 in Ning et al., 2009 
 

Frequency 
band (Hz) 

Input 
Amplitude 
(m) 

No. of 
wave 
components   

Peak 
frequency 
(Hz) 

Peak wave 
period 
Tp (s) 

Characteristic 
wave length  

Pλ  (m) 
0.6 – 1.3  0.0632 16 0.833 1.2 2.0 

 
 

Table 2 Maximum elevation and focal point comparison for different mesh size 
( mx 30 = , st 2.90 = , )1(

maxη = A =0.0632m , )2(
maxη =0.0677m) 

 
Case Maximum 

elevation 
ηmax (m) 

Location 
of  

1x (m) 

Time of 
occurrence 

1t (s) 

Max crest/ 
linear crest, 
ηmax / )1(

maxη  
 

Max crest/ 
2nd order crest, 
ηmax / )2(

maxη  

 
Coarse mesh  0.0691 4.0 9.68 1.093 1.021 
Fine mesh 0.0750 3.5 9.57 1.187 1.108 
Finest mesh 0.0771 3.4 9.37 1.220 1.139 
Ning et al. (2009) 0.0704 3.4 9.64 1.114 1.040 
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Figure 1 shows the time history of surface elevation at the actual focal point obtained by the 
NewWave CFD simulation based on the fine mesh model (blue dashed line). The second order 
NewWave analytical solution is also shown for comparison (red line) and the black line is Ning et 
al.’s (2009) results. Ning et al. used a Higher-Order Boundary Element Method (HOBEM) with 
mesh size is 30/Px λ≈∆  and time step 024.050/ ==∆ PTt .  It is clear that the surface elevations at 
the real focal point from both OpenFOAM and the HOBEM solver used by Ning et al. are higher 
than the analytical solution. This is because the effect of nonlinear wave-wave interactions beyond 
second order is not included in the analytical solution. Overall the comparison is good although the 
surface elevation from the N-S solver (OpenFOAM) is 6% higher than the potential flow solver 
used by Ning et al. This may be due to the different mesh size and time step, or due to the 
difference between N-S solver and HOBEM solver.  
 

 
Figure 1 Comparison of wave elevations at focal points 

 
 

2.4 Numerical results for Wave-in-deck simulations 
Iwanowski et al. (2002) calculated 100 year wave-in-deck loads for a model representing the 
Ekofisk platform deck in the North Sea.  They presented and compared load time histories 
calculated by several different approaches, including analytical formulations and CFD simulations. 
In their work, the incident wave was a regular Stokes 5th order defined by the parameters H (wave 
height), T (wave period), and water depth d. We compare their results with our NewWave CFD 
model - the parameters for the target focused wave are summarized in Table 3. A comparison of our 
CFD results with Iwanowski et al.’s for wave-in-deck loads for Stokes 5th order waves (Chen et al. 
2014) is also presented. The deck was modelled as a simple box being 50m long and 10m high with 
wave inundation at 4m. Because this study is based on 2D simulation, the actual width of the deck 
being 30m (normal to the wave propagation direction) is only used in post-processing to calculate 
the force for comparison with Iwanowski et al. 
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For the NewWave simulation, a conversion factor of 1/0.93 was used to obtain Tp from the Stokes 
wave period (T). We then matched the amplitude1 of the Stokes 5th and the simulation based on 
NewWave. For a Stokes 5th wave of height 24.3m the corresponding wave amplitude is 14.263m. 
For the Newwave CFD, the input amplitude A was adjusted to 11.91m through trial and error to get 
the required wave elevation 14.263m. To achieve the required wave impact height 4=imph  the 
structural model was placed 10.263m above the water free surface.  
 
In the following simulations, the mesh size around the free surface and around the deck is  

50/,150/ Hyx P ≈∆≈∆ λ  . Type 1 initial condition was used with second order NewWave.  
 

Table 3 Parameters of waves for the model of Iwanowski et al. (2002) 
 

Parameter Stokes 5th wave NewWave  

Water depth d (m) 80 80 

Wave elevation E (m) 14.263 14.263 (A = 11.91) 

Wave Height H (m) 24.3 22.13 for the focus wave (calculated 
from the numerical results) 

Wave period T (sec) 14.5 Tp =(T/0.93) =15.59 

Peak frequency (Hz) - 0.06414 

Frequency band in 
JONSWAP spectrum (Hz) - 0.0237-0.1924  

(40 components) 

Wave length λ (m) 320 Pλ  =320 

Impact Height (himp) (m) 4 4 

Predefined focal time 0t  
for NewWave (s) 

- 0t = 1.5Tp = 23.34 

Predefined focal position 
0x  for NewWave (m) - 4805.10 == Px λ     

 
Figures 2 and 3 show the time force curves for the horizontal force Fx and vertical force Fz for 
OpenFOAM NewWave 2D simulation along with the 2D results based on Stokes 5th waves. The 
Stokes 5th wave 2D results from Iwanowski et al. (2002) by FLOW3D are also compared in the 
figures. 

 

1  In practice the crest height would be obtained using Forristall crest statistics (Forristall, 2000) and then NewWave and Stokes 5th 
waves would be selected to match that crest height.  
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Figure 2   Comparison of horizontal force 

 

 
 

Figure 3   Comparison of vertical force 
 
It is clear that there is good agreement between Stokes 5th wave 2D results for our OpenFOAM 
simulation and FLOW3D.  This demonstrates that the present computational simulation is 
comparable with other available CFD results in the literature.  
 
For the NewWave simulation with the same elevation as the Stokes 5th wave, it was found that the 
peak of horizontal force acting on the simple box for NewWave is higher than that of the Stokes 5th 
wave and its duration is less; however the area under the curve of the NewWave simulation (the 
impulse) is essentially the same as that for the Stokes 5th wave (NewWave impulse = 11.0 MNs; 
Stokes impulse = 10.9 MNs). In practice, one would derive the crest elevation based on Forristall 
crest statistics (Forristall, 2000). This study indicates that if a Stokes wave is matched to the crest 
amplitude, the corresponding force may be significantly underestimated compared with a NewWave 
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with the same crest amplitude. It is therefore recommended that focused waves based on NewWave 
are employed in CFD simulations.   
 
The forces obtained from our simulations are the forces on the deck without consideration of 
structural dynamic response. The effective force applied to the supporting jacket structure depends 
on the peak force, the duration of the force and the natural period of the jacket. To determine the 
effect of dynamics of the structure, the static force-time histories shown in Figure 2 were applied to 
a single degree of freedom mass-spring-damper system that represents the supporting jacket 
structure with a natural frequency of 2.5 secs and 3% critical damping. The input force (f_deck) and 
response curves (force in the jacket) are shown in Figure 4. In this case, although the overall 
impulse is the same, the resulting force in the jacket is greater for NewWave compared with Stokes 
5th. It is this dynamically enhanced force that is used for the assessment of structural integrity of the 
jacket structure. 
 
From the above we note that the static wave-in-deck force is amplified by the dynamic behavior of 
the jacket structure resulting in higher loads being transmitted to the jacket. The NewWave dynamic 
amplification factor (DAF) is 1.39 while the Stokes 5th DAF is 1.64. These are fairly typical values 
for a fixed jacket structure with wave-in-deck loading – the particular value depends on the applied 
wave-in-deck force-time history and jacket natural frequency as mentioned above.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4   Lateral dynamic response of jacket structure to wave-in-deck loading 
(Natural period = 2.5 secs; 3% critical damping)  

 
For the vertical force comparison in Figure 3, there are significant differences between the 
NewWave and Stokes 5th wave solutions. The upward vertical force Fz for NewWave is about 1/2 
that of the Stokes 5th wave. This is most likely due to the different wave shape and crest velocity of 
the different wave theories. 

3. Conclusions  

NewWave theory provides an efficient description of the average profile of an extreme event in a 
random sea. The advantage of NewWave is that the extreme wave can be generated at a predefined 
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location and time without extensive random time domain simulations. When implemented as an 
initial condition into a CFD package that solves the Navier-Stokes equations, cost effective wave-
in-deck loading simulations can be undertaken that include the full non-linearity of the waves. 
 
This paper describes the development of an extreme wave generator based on second order 
NewWave theory that was implemented into the OpenFOAM CFD software. A comparison 
between NewWave and a Stokes 5th wave has been made by calculating the wave-in-deck loading 
on a simple box and the corresponding response of a supporting jacket structure. This study 
indicated that if a Stokes 5th wave is matched to the crest amplitude of NewWave, the applied 
horizontal deck force and the jacket response may be significantly underestimated compared to 
NewWave. The upward vertical forces from NewWave are substantially lower than the Stokes 5th 
wave. It is therefore recommended that focused waves based on NewWave are employed in CFD 
simulations.  
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Appendix: Second order NewWave theory 
 
For 2nd order NewWave theory (Eq (3)), the underlying equations for 2nd order terms can be derived 
according to second order Stokes theory (Ning et al. 2009), which can be written as 
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Abstract 

An improved XFEM (in short, iXFEM) is introduced. The core of iXFEM is an extra-
dof free and interpolating PU enrichment based on a (moving) least-squares. 
Compared with the current XFEM, iXFEM does not introduce extra dof in PU 
enrichment and is well-conditioned in geometrical refinement. Selected numerical 
examples are provided to demonstrate its numerical performance.  

Keywords:  selectively interpolating moving least squares, partition of unity, XFEM 

Introduction 

The extended finite element method (XFEM [Belytschko and Black (1999); Moes et 

al. (1999); Belytschko et al. (2001)]) is a numerical technique based on the 
generalized finite element method (GFEM [Duarte et al. (2000); Duarte et al. (2001); 
Simone et al. (2006); Duarte and Kim (2008); O’Hara et al. (2009); Strouboulis et al. 
(2000a; 2000b; 2001)]) and the partition of unity method (PUM [Babuška and 
Melenk (1996; 1997)]). Only local parts of the domain are enriched and the mesh 
generation does not need to consider the internal structure. It adds special enrichment 
functions to approximate discontinuous fields and has been used for general interface 
phenomena e.g. in the framework of multi-material problems [Sukumar et al. (2001)], 
solidification [Chessa et al. (2002)], shear bands [Areias and Belytschko (2006)], 
dislocations [Belytschko and Gracie (2007)], and multi-field problems [Zilian and 
Legay (2008)]. 
 
Recently, a new GFEM without extra dof has been proposed as an improvement on 
the existing GFEM [Tian (2013)]. Based on the extra-dof free PU approximation, we 
have developed an improved XFEM with two distinguished features: (1) extra-dof-
free; (b) well-conditioned in the so-called geometrical refinement, which means the 
size of enriched sub-domain is fixed during mesh refinement. This short paper is 
intended for a brief introduction to the improved version of XFEM and a comparison 
with the two existing counterparts: the originally standard XFEM and the corrected 
XFEM [Fries (2008)]. By standard XFEM we mean a XFEM without blending 
element treatment. The corrected XFEM is an improved version over the standard 
XFEM by eliminating the blending element issue using a neat ramp formulation. 

The extra-dof free and interpolating XFEM 

Extra-dof free PU enrichment 

Let  be a sub-domain where all nodes are enriched. Let  denote nodal patch i 
composed of nodes from , where r is the patch size. The patch size is either the 
size of nodal support combining m≥1 layer(s) of elements surrounding node i for a 
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structured or an non-uniform mesh or simply the radius of an influence circle at node 
i for a unstructured uniform mesh. Node i is called “patch star” of , the topological 
centre of a patch.  is the node set of , where index i is solely kept for 
the patch star and k  for non-patch star nodes on the patch. 
  
On the patch, we construct an interpolant of  using the nodal values at 

 as 

    P

1

i
r
i

n

i k k

k

u x L x u


 ,    , Pr

k ix x   (0) 

where  Pr
i

kL x  is the shape function at k-th node of the node set, which also forms a 

partition of unity, ,  is the number of nodes on , and  is the 
conventional nodal unknown. Noted is that this approximation is local to patch . 
The approximation is called patch-wise local approximation. 
 
Using the patch-wise local approximation  as a local approximation at node i 
and substitute it for the nodal unknown  in the following standard FEM 

    
1

N
h

i i

i

u x N x u


  (0) 

we obtain a new PU approximation 

   P

1 1

i
r
i

nN
h

i k k

i k

u x N L u
 

  
   

  
   (0) 

where N and  are the same as those in the standard FEM (2). The difference is that 
in the new approximation (3) each ui now is associated with ni enrichment functions: 

 

1 2 PP PP P
1 2 ,

patch star node non patch star nodes

,  ,  ,  ,  , ,  
rr rr r
ni k i

ii i i i k k i i n iN L N L N L N L N L  (0) 

where Pr
k

iL (k = 1, 2, …i, …, ) are the local functions constructed on patch k with 
regard to node i, and index k can be understood as either the k-th node of the patch i 
or the k-th patch containing node i. Expanding and regrouping all the terms associated 
with ui we obtain 

   P P

1 1, 1

i
r r
i k

nN N
h

i i k i i i i

i k k i i

u x N L N L u N u
   

 
   

 
    (0) 

where , the number of nodes on patch i in (1), now really means the number of 
patches containing node i, but the two numbers are the same, and  denotes the new 
shape function, which is a summation of functions.  
 
The new PU approximation offers two unique features. One is that there is no extra 
dof; all nodal dofs are the conventional of the standard FE mesh. The other is that the 
new PU approximation interpolates as long as the patch-wise local approximation 
interpolates at its patch star, no matter it interpolates or not at the rest of nodes on the 

patch. Proof is immediate: if and only if  P 1
r
i

i iL x , then  h

i iu ux  because 

 , 0k k i iN  x .  P 1
r
i

i iL x is called a one-point interpolating condition.  
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In order to construct the one-point interpolating patch-wise local approximation, a 
selectively interpolating (moving) least squares approximation is employed. 

Selectively interpolating (moving) least squares approximation 

An approximation of the field function  on the patch i is constructed by, 
      T

iu x p x a x , Pr

ix  (0) 

where  
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2 2 2 2

m

i i
i i

p p p

x x y y
f r f r

ch ch

f r r r r r

 

   
  

   

  
  
 



p x x x x

 (0) 

is the normalized or shifted crack tip basis vector in two dimensions, and a is the 
vector of unknown coefficients. In order to construct a moving least-squares 
approximation passing the patch star, the discrete L2 error norm is defined by the 
following constrained form, 

        
2T T

1

1
2

in

k k k i i

k

J w u u
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    x p x a p x a  (0) 

For implemental convenience, the patch star i is also included in the summation term, 
  is the Lagrange multiplier that is used to enforce the satisfaction of 
  T

i iup x a  (0) 

 
Minimizing the L2 norm with regard to a and λ ( 0, 0)J J      a  leads to a 
Selectively interpolating moving least squares approximation: 
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where  is the first column of A
-1,  is the first element of ,   is the 

Kronecker delta. It can be verified that the SIMLS shape function  interpolates 
at patch star i 
    P P

,1,  0
r r
i i

i i j j i i   x x  (0) 

while approximating at the non-patch star nodes. 
 
By letting 1kw  , the local approximation is reduced to a least-squares type which is 
termed the Selectively Interpolating Least-Squares (SILS) local approximation. The 

SILS local approximation simplifies the calculation of derivatives and therefore is 

much more computationally cheap.  
 
For both the SIMLS and the SILS, it can be verified that 
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    P P1,  0
r r
i i

i i j i i   x x  and  i i iu ux  (0) 

which means that the local approximation interpolates at the patch star. It can be 
easily verified that using this kind of local approximation, iXFEM interpolates at all 

nodes although the local operation is in nature an approximation. 

 
Due to the limit of space, the rest details of the method are omitted here and will be 
presented in the conference. 

Selected numerical examples 

A crack tip benchmark problem is shown in Fig. 1. A square area with side-length of 
2a and a crack of a, where a = 0.5. The uniform mesh is used. The enriched sub-
domain is an area containing the crack tip while the rest of the domain is the standard 
FEM. The enriched sub-domain is the same in size during mesh refinement, which is 
respectively the half (Fig. 1(a)) and the one third (Fig. 1(b)) of the domain size. The 
patch size takes r=2h on ΩGFE. 10×10 Gaussian quadrature is only used on the 2×2 
elements directly neighbored to the crack-tip in Fig. 1(a) and subdivided 2×2 cells on 
the element containing the crack tip in Fig. 1(b). On the rest elements, 2×2 Gaussian 
quadrature is employed. Young’s modulus E = 1000 and the Poisson ratio v = 0.3 are 
assumed for plain strain. Along the outer boundary of the area, the displacements are 
prescribed to the following exact solution: 

 

 

2I

2I

2 1 cos 1 2 sin
2 2 2

2 1 sin 2 2 cos
2 2 2

K r
u v v

E

K r
v v v

E

 



 



 
    

 

 
    

 

 

where KI is taken as 1.253.  
 
The two patterns of crack layout, mesh aligned and mesh independent, are considered 
for convergence tests (Fig. 1). The SIMLS and the SILS are tested and compared. 
 

 
Figure 1. Crack tip benchmark problems. (a) mesh aligned crack; (b) mesh 

independent crack. 
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Assessment on convergence in geometrical refinement 

Errors are measured by the L2 and energy norms defined respectively below 

   
1

T 2exact exact dh hu


    
   u u u u ,    

1
T 2exact exact dh he



    
   ε ε σ σ  

Convergences are tested in the case of the so-called geometrical refinement. The two 
kernels, the SIMLS and the SILS, are tested. The results are displayed in Fig. 2. It is 
shown that iXFEM delivers optimal convergence for the crack tip benchmark 
problem.  
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Figure 2. Convergences in geometrical refinement.  

(a) mesh aligned crack; (b) mesh independent crack. 
 

 Assessment on accuracy of stress intensity factors 

Comparisons are based on the crack configuration of Fig. 1(b). The SILS 
approximation is adopted as it is the same accurate as the SIMLS (refer to Fig. 2) but 
is more computationally efficient. The patch size takes r=2h. iXFEM and XFEM use 
the same size of enriched domain. iXFEM is compared with the standard XFEM and 
the corrected XFEM proposed by Fries [Fries (2008)]. 7×7 Gaussian quadrature is 
used on the enriched elements and 2×2 on the rest. The embedded direct solver of 
Matlab® is used for linear systems. This circumvents bad conditioning in XFEM, but 
the solver complains the singularity of the linear system in the corrected XFEM. The 
normalized KI values for each method are shown in Table 1. 
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Table 1. Normalized KI values 
element size (h) iXFEM XFEM corrected XFEM 

dof KI dof KI dof KI 

1/9 220 1.0075 344 1.0068 344 1.0045 
1/15 540 1.0022 828 1.0007 828 1.0010 
1/21 1004 1.0010 1520 1.0000 1520 1.0002 
1/27 1612 1.0006 2420 0.9993 2420 0.9999 
1/33 2364 1.0004 3528 0.9990 3528 0.9999 
1/39 3260 0.9999 4844 0.9991 4844 0.9998 
1/45 4300 0.9996 6368 0.9990 6368 0.9998 
1/51 5484 0.9997 8100 0.9990 8100 0.9998 

 

Assessment on conditioning properties 

The conditioning is studied for the above same example by computing the maximum 
and the minimum eigenvalues of the global stiffness matrix before essential boundary 
treatment (the rigid body modes are included). The results are listed in Table 2. The 
eigenvalues of the standard FEM (crack and enrichment) are provided for reference. 
An eigenvalue less than 10-15 is taken to be zero. The variation of the condition 
number versus mesh size h is plotted in Fig. 3 for the standard XFEM, FEM and 
iXFEM.  
 

Table 2. Conditioning properties 
(the eigenvalues of the standard FEM are provided for reference) 

  iXFEM XFEM 

element 

size (h) 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

1/9 6.61E+03 3.40 3 6.19E+03 1.14E-03 3 
1/15 5.77E+03 1.47 3 6.44E+03 3.63E-05 3 
1/21 5.60E+03 0.813 3 6.52E+03 2.93E-06 3 
1/27 5.63E+03 0.517 3 6.57E+03 4.72E-07 3 
1/33 5.66E+03 0.358 3 6.60E+03 1.15E-07 3 
1/39 5.67E+03 0.263 3 6.62E+03 3.64E-08 3 
1/45 5.68E+03 0.201 3 6.64E+03 1.34E-08 3 
1/51 5.69E+03 0.159 3 6.65E+03 5.70E-09 3 
  corrected XFEM FEM 

element 

size (h) 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

1/9 6.10E+03 2.41E-06 7 5.18E+03 51.7 3 
1/15 6.36E+03 4.17E-08 7 5.30E+03 22.7 3 
1/21 6.44E+03 3.77E-09 7 5.34E+03 12.1 3 
1/27 6.49E+03 6.83E-10 7 5.36E+03 7.50 3 
1/33 6.53E+03 1.81E-10 7 5.37E+03 5.10 3 
1/39 6.56E+03 6.11E-11 7 5.37E+03 3.69 3 
1/45 6.58E+03 2.44E-11 7 5.37E+03 2.79 3 
1/51 6.60E+03 1.10E-11 7 5.38E+03 2.19 3 
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Figure 3. Variation of condition number versus mesh size.  

 
The following conclusions can be drawn: (a) iXFEM offers the similar stability as the 
standard FEM (Fig.3) and it is much better conditioned than the current XFEM. The 
condition number of the global stiffness matrix in iXFEM grows with h-1.8, where h is 
the mesh size, whereas the condition number in XFEM grows with h-7; For reference, 
the condition number in the standard FEM grows with h-1.9 in the same tests. (b) the 
corrected XFEM contains four spurious zero eigenvalues in stiffness matrices, which 
signals singularity of the stiffness matrix. The minimum nonzero eigenvalue is also 
generally smaller than that in XFEM. 
 

Assessment on expenses on equation solving 

The computational expense of the three methods is compared in terms of the number 
of dofs to be solved and the number of convergence iterations in a linear solve. The 
reason we choose an iterative solver for comparison is that subspace iterative methods 
are de-facto solvers in large scale problems and a direct solver is hardly scalable for 
problems at scale.  
 
The conjugate gradient method is used to solve the linear system of the methods. The 
convergence tolerance is set to 10-10 for iXFEM and 10-8 for the XFEMs. The 
standard conjugate gradient method without preconditioning is used for iXFEM and 
the SSOR preconditioned conjugate gradient method, which is also an embedded 
solver of Matlab®, is used for XFEM and the corrected XFEM to circumvent bad 
conditioning. The data are listed in Table 3. 
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Although a better pre-conditioner or an alternative robust solver definitely can be 
found for the XFEMs, we still can safely conclude that the standard XFEM and the 
corrected XFEM obviously suffer from very slow convergence due to bad 
conditioning; iXFEM, in contrast, not only computes a smaller size of linear system 
but also converges remarkably easily. The latter observation is as expected and 
should be understandable. 
 

Table 3. The number of dofs to be solved and convergence iterations 
h iXFEM  

(w/o preconditioning) 
(error tolerance: 10-10) 

XFEM 

(preconditioned) 
(error tolerance: 10-8) 

corrected XFEM 

(preconditioned) 
(error tolerance: 10-8) 

dofs iterations dofs iterations dofs iterations 
1/9 220 70 344 276 344 447 
1/15 540 93 828 1068 828 2337 
1/21 1004 111 1520 2389 1520 5796 
1/27 1612 130 2420 4395 2420 10000* 
1/33 2364 149 3528 6801 3528 10000* 
* the maximum number of iterations is reached but convergence is not yet observed 
 

Crack growth simulation in a double cantilever beam 

In this section, iXFEM is compared to the standard and the corrected XFEMs for 
crack growth simulation. The dimensions of the double cantilever beam (see Fig. 4) 
are 6cm × 2cm and an initial pre-crack with length of a = 2cm is considered. Plane 
stress conditions are assumed with Young’s modulus E = 1000 and the Poisson ratio v 

= 0.3. The crack is given a small perturbation at the tip of length ∆a=0.1cm in with 
initial angle dθ=5.71° as shown in Fig. 3. A structured mesh (60 × 180) is used and 
the crack advances 0.1cm at each step. The stress intensity factors are computed using 
the interaction integral method. The evolution of the crack paths are shown in Fig. 5. 
The crack path obtained using iXFEM for a fine mesh of 150 × 450 is provided as the 
reference solution. 
 

 
Figure 4. Geometry for the double cantilever beam 
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Figure 5. Double cantilever beam: comparison of crack path after 11 steps using the 

standard XFEM and iXFEM for dθ=5.71°. 
 
Due to the limit of space, the rest of numerical examples are to be presented in the 
conference.  

Conclusions 

An improved XFEM, in short iXFEM, has been briefly introduced. iXFEM has been 
compared with the standard XFEM and the corrected XFEM in terms of 
convergences, accuracy, conditioning properties, and the expenses on equation 
solving. The following conclusions are drawn: 
(1) The iXFEM offers the similarly excellent accuracy as the standard XFEM and the 

corrected XFEM provided that the blending element issue is dealt with properly 
and the enriched domain is the same in size. 

(2) iXFEM shows remarkable improvement on conditioning. The condition number 
of the global stiffness matrix in iXFEM grows with h-1.8, where h is the mesh size, 
while the existing XFEM grows with h-7. In the corrected XFEM, four spurious 
zero eigenvalues are detected, which means the singularity of global stiffness 
matrix. For reference, the condition number in the standard FEM grows with h-1.9 
in the same tests. iXFEM shows the similar conditioning as the standard FEM. 
Due to the good conditioning, iXFEM is robust to deliver optimal convergences 
in geometrical refinement. 

(3) iXFEM is computationally efficient. The shape function of iXFEM involves a 
matrix inversion operation. This increases computational expenses to a certain 
extent. On the other hand, for the same size of enriched domain, iXFEM uses less 
dofs and convergence iteration is also much faster compared with the standard 
and the corrected XFEMs. 
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Abstract 

Based on the recently developed Finite Integration Method (FIM) for solving one-dimensional 
ordinary and partial differential equations, this paper extends the technique to higher dimensional 
partial differential equations.  The main idea is to extend the first order finite integration matrices 
constructed by using either Ordinary Linear Approach (OLA) (uniform distribution of nodes) or 
Radial Basis Function (RBF) interpolation (uniform/random distributions of nodes) to higher order 
integration matrices. Illustrative two-dimensional numerical examples are given in two-dimension 
to compare the FIM (FIM-OLA and FIM-RBF) with the Finite Difference Method and Point 
Collocation Method to demonstrate its superior accuracy and efficiency. 
  
Keywords: finite integration method, radial basis functions, partial differential equation. 

Introduction 

Mathematical models in terms of partial differential equations (PDEs) have commonly been used to 
describe a wide variety of physical phenomena such as sound, heat, electrostatics, electrodynamics, 
fluid flow, and elasticity.  Under various boundary conditions, it is very rare that these models can 
be solved in closed form solutions.  Numerical methods are unavoidable for seeking approximate 
solutions to simulate the dynamic and characteristics of the models.  Due to the advance of 
computational methods, these kinds of numerical approximation can usually be achieved 
inexpensively to high accuracy together with a reliable bound on the error between the analytical 
solution and its numerical approximation. There are many numerical techniques available for 
solving differential equations [Lambert (1991), Hairer (1993)] including the Finite Element Method 
(FEM) and Boundary Element Method (BEM). In the last decade, the development of the Radial 
Basis Functions (RBFs) as a truly meshless method has drawn attention from many researchers.  In 
particular, the use of multiquadric radial basis function (MQ-RBF) [Hardy (1971), Goldberg and 
Chen (1997), Hon and Mao (1997), Atluri (2002), Liu (2003), ] has shown the superior convergence 
of the method in comparing with FEM and BEM. Numerical results indicated that these meshless 
methods provide a similar optimal accuracy for solving both  elliptic and parabolic equations in 2D. 
Recently, Wen et al (2013) and Li et al (2013) developed a Finite Integration Method (FIM) for 
solving differential equation in 1D and demonstrated its applications to nonlocal elasticity 
problems. It has been shown that the FIM gives higher degree of accuracy than the Finite 
Difference Method (FDM) and Point Collocation Method (PCM). In this paper, the FIM is further 
extended to solve multi-dimensional partial differential equations. Two-dimensional partial 
differential equations are given in illustrative examples.  Similar to the FDM and the PCM, a finite 
number of points, known as field points, are distributed in the computational domain. The field 
points are generated either uniformly (grid) along the independent coordinate or randomly in the 
domain. The integration matrix of the first order is obtained by the direct integration with either 
OLA approximation. Based on these first order integration matrices, any finite integration matrix 
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with multi-layer integration can easily be obtained. To compare with other numerical methods, the 
PCM and analytical solution are used.  

FIM for one-dimensional problems  
Numerical quadrature rule based on Ordinary 
Linear Approach (OLA) is the simplest 
computational scheme for integration [see Wen 
et al (2013)]. Starting from one-dimension 
problem, an integral of a given function u(x) can 
be written as  


x

duxU
0

)()(                  (1) 

Applying the linear interpolation technique to 
Eq. (1), we have 
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where, using trapezoidal rule,  
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and ( 1),   / ( 1),   1,2,..,ix i b N i N        
are nodal points in [0, b], and bxx N  ,01 . 
Note that Eq. (2) can be written in a matrix form 
as 
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and )(  ),( iiii xuuxUU   are the values of 
integration and the integral function respectively 
at each nodes. Thereafter, consider a multi-
integral for one-dimensional problem 
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Figure 1. Uniform distribution of collocation 

points. 

 

)()()()(
0

)2(

0 00 0

)2(
i

k

i

ki

k

i

iij

i

j

ki

x

k xuaxuaadduxU
k


 







.      (7) 
The above multi-integral can also be written in a 
matrix form as 

uAuAU
2)2()2(     (8) 

where 
 

 .     
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and the elements of matrix )2(
A are 
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      (10) 

For two-dimensional problems, let us consider a 
uniform distribution of collocation points as 
shown in Fig. 1. Similar to Eq. (1), we define 


x

x dyuyxU
0

),(),(  , 
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0
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and the total number of point is  
ijNk  )1(1 , where i and j denote the 

number of column and the number of row 
respectively.  This numbering system is called 
the global number system. We can also express 
each nodal value of integration in Eq. (11) in a 
matrix form as 

uAU xx                 (12) 
where integral nodal value 

T

xMxxx UUUU ],...,,[ 21 , nodal value 

 1 2, ,..., T

Mu u uu and M is the total number of 
collocation points ( 21 NNM   for grid shown 
in Fig. 1). For a rectangular domain, the first 
order integration matrix 

  
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N

x























A

A

A

A              (13) 

in which, A is integration matrix for one-
dimension given in Eq. (5) with dimension 

11 NN  . Similarly, the integration along y axis 
is  


y

y dxuyxU
0

),(),(  ,  


ky

kkky dyyxuyxU
0

),(),(        (14) 

which can be written in the matrix form as 
uAU 'y               (15) 

in the local system for the collocation points, 
where jiNk  )1(2 . The first order 
integration matrix in the local system is 

  
2
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

A

A

A

A
                                   (16) 

in which A is the integration matrix for one-
dimension integral given in Eq. (5) with 
dimension 22 NN  . By a simple re-
arrangement of the number of the nodes, Eq. 
(15) can be rewritten, in the global system, as 

.y yU A u                 (17) 
For the multi-integration in two-dimensional problem in a rectangular domain, we consider the 
following integral with respect to coordinate x 

],0[  ],,0[       ,),(),( 21
0 0

)2(
bybxddyuyxU i

x

ix

i

  


                   (18) 

and use the same procedure for one-dimension, one has 


 
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i

ixji

i

j

xkj

x

kkk uaaddyuyxU
k

0 00 0

)2( )()(),(),(


              (19) 

or in a matrix form 
uAU

2)2(
xx                    (20) 

where  
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Similarly, one has multi-integration ),()2(
yxU y  with respect to coordinate y 

  
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k
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

            (22) 

and 
uAU

2)2(
yy  .                 (23) 

This method can be extended to the higher order integrations, i.e.   

],0[],,0[                                                                                       
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            (24) 

Applying ordinary linear interpolation technique again for integral function ),()( yxU m , we have 
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      
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Again, it can also be written, in a matrix form, as 
uAUuAU

m

y

m

y

m

x

m

x 
)()(     ,                (27) 

In addition, this method can be extended to multi-layers integration with two coordinates x and y as 
follow: 

],0[  ],,0[               ... ...),(... ...),( 21

...

0 layer-

1
0

...

0 layer

1
0

)( bybxdddduyxU kk

m

m

y

n

n

x
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mn
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   



         (28) 

and the nodal values of the above integration are obtained in the matrix form as  
.)(

uAAU
n

y

m

x

mn                   (29) 

FIM with radial basis functions 

For uniform distribution of nodes (grid), the multi-layer integrations at each node can be obtained 
quite easily in a matrix form. However, in general case, if the nodes distribution is random, the 
algorithm OLA discussed in the Section above is not valid. In this case, interpolation schemes have 
to be introduced. Recently, the radial basis functions interpolation schemes and moving least square 
method are very popular meshless methods.  For example, the MQ-RBF was introduced by Hardy 
(1971) for the interpolation of topographical surfaces in the early stage of radial bases function 
application. Note that )(xu in the domain   can be interpolated over a number of randomly 
distributed nodes   Miyx iii ,...,2,1,, x , as  

   
 


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ii
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i

Q

q

qqiii uPRu
11 1

)()()()(),()( xβxPαxRxxxx    ,x                      (30) 
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where  1 1 2 2( ) ( , ), ( , ),..., ( , )M MR R RR x x x x x x x  is a set of radial basis functions centred at 

 yx,x , 1 2[ , , , ]T

M  α  and 1 2[ , , , ]T

Q  β are the coefficients to be determined, )(xi  
is shape function. Therefore, the integration matrices of the first order are 
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where   dydx iyiixi )(   ,)( xx  .  

The FIM for multi-dimensional problems 

The FIM is readily extendable to solving higher dimensional problems. For illustration, consider the 
following two-dimensional partial differential equation  

2 2

1 2 32 2( , ) ( , ) ( , ) ( , ),        ,

[ ( , )] ( , ),                                                     ,

u u
x y x y x y u b x y

x y

u x y h x y

  
 

   
 

  

x

x

           (31) 

where  is a boundary operator, ),(  and  ),(),,(),,(),,( 321 yxhyxbyxyxyx  are given functions. 
u is generally referred as potential, which represents the transversal displacement of a membrane. Ω 
and ∂Ω are simple connected domain and its boundary respectively.  Integrating twice in Eq. (31) 
with respect to coordinates x and y respectively, one has 

)()()()(
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        (32) 

where )( and )(),(),( 1010 xgxgyfyf  are unknown one-dimensional functions. Using the technique of 
integration by part, we have 

2 2
1 1 2 2

1 22 2

3 0 1 0 1

2 2

( , ) ( ) ( ) ( ) ( ).

u u dx u dxdx dydy u u dx u dydy dxdx
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(33) 

By using integration matrix mentioned in the previous sections, we have  
    
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where  ,,...,, 21 MxxxX  ,,...,, 21 MyyyY
T1 2

0 0 0 0, ,..., ,rf f f   f
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1 1 1 1, ,..., pg g g   g  , 

rp  and  are numbers of point to be used for 
interpolation of functions )(yf and )(xg  
respectively, yx ΨΨ  and are matrices of one-
dimensional shape functions with respect to 
coordinates x and y respectively, and 
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Integral functions ),( ),( 10 yfyf )(0 xg  and 
)(1 xg can be interpolated in terms of the nodal 

values in the following procedure: 
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(1) Determine the regions of functions )(yf  
and )(xg , i.e. ],[ 1 ryy , ],[ 1 pxx , and uniformly 
distributed points in these regions as shown in 
Fig. 2; 
(2) Determine one-dimensional shape function 
matrices yx ΨΨ  and  
      By using linear interpolation, one has 
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Therefore, the matrices of shape function are 
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and 
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                (39) 
in which )( and  )( yx ii   are shape functions 
in one dimensional case as shown in Fig. 2. In 
Eq. (34), we have M nodal unknowns of u , 2q 

unknowns of 0f , 1f  and 2r unknowns of 0g , 1g . 
 

For a rectangular plate with uniform distribution 
of nodes )( 21 NN  , obviously one has rp 22   
nodes located on the boundary. By selecting 

11  Np  and 12  Nr  for uniform 

distribution of node, there are  21 NN   
)2(2 21  NN  linear system of equations to 

determine all unknowns, i.e. u , 0f , 1f , 0g , and 

1g . In fact, the number of boundary points to 
determine four one-dimensional integral 
functions is arbitrary. The number of points (L) 
on the boundary should be greater than or equal 
to )(2 rp  . If )(2 rpL  , the standard 
Gaussian solver can be used directly. Otherwise, 
the Singular Value Decomposition [Press et al 
(1992)] scheme should be introduced.  
         
             

Figure 2. Interpolations for one dimensional 

function  )(yf  and ).(xg  

Numerical example 

Consider the following partial differential equation  

        
2 2

2 2(1 ) (1 ) 4 (1 )(1 ),     ( , ) ,

( , ) 0,                                                              ( , ) ,

u u
x x y y xy x y x y

x y

u x y x y

 
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 

 

                        (41) 

where [0,1] [0,1]  . The analytical solution is given by )1)(1(),(* yxxyyxu  . The 
average relative error is defined as 
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             Figure 3. Distributions of nodes. 

 
Uniformly distributed nodes is shown in Fig.3. 
For radial basis functions approach in Eq. (30), 
three radial basis functions are considered, i.e.  

(1) MQ function: 22)( rcrR  ; 
(2) Linear function (LF): rrR )( ;  

(3) Thin-Plate Splines (TPS): rrrR ln)( 2 .  
       In this example, we chose NNN  21  
and Nrp  . The shape parameter c of MQ is 
selected as c = 1 / N. For the RBF approach, 
single integration matrix in Eq. (70) is used. The 
average errors   for various number of 
collocation point are shown 
 in Table 1. Among these algorithms, the 
accuracy of OLA is the lowest and PSF of radial 
basis function is the highest.  
 
Table 1. Average errors (ε). 

N OLA MQF LF TPS 
10 0.019110 0.013707 0.017554 0.012985 
20 0.005689 0.005365 0.006462 0.004496 
30 0.013820 0.003083 0.003671 0.002373 

Conclusion 

In this paper, the Finite Integration Method (FIM) with Ordinary Linear Approach and Radial Basis 
Functions interpolation was extended to solve multi-dimensional differential equations. Compared 
with the Point Collocation Method (PCM) and the Finite Difference Method, the proposed FIM 
performs much superior in accuracy and stability. For the FIM with Radial Basis Functions 
interpolation, the use of randomly distributed nodes in the domain allows solving problems under 
irregular domains.  
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Abstract 

This paper aims to estimate a position and time dependent heat flux with high magnitude in a heat 
conduction problem. The heat flux is applied on one side of a flat plate, while the inverse problem is 
solved by using temperature measurements taken on the opposite side. The proposed forward 
problem is a surrogate model, derived from the simplification of a complete model. The inverse 
problem is then solved with the Kalman Filter. The temperature at the surface of the plate is 
approximated by using the improved lumped analysis, where the temperature gradients across the 
thickness of the plate are accounted for in an approximate manner. The measurements are simulated 
with the complete model, while the inverse problem is solved with the surrogate model. The 
temperature estimates show a good agreement with reference values. 

Keywords:  Inverse Problems, Heat Conduction, Kalman Filter, Improved Lumped Analysis 

Introduction 

Despite the modern and reliable available techniques for measuring temperature and heat flux, some 
particular scenarios are still challenging. Situations involving complex geometries or hazardous 
environments might make direct measurements of these quantities impractical [Dennis and 
Dulikravich, 2001]. Thus, estimation of these unknowns by using inverse analysis with temperature 
and/or heat flux measurements taken at other regions of the body of interest should be considered as 
a possible solution. Situations of this type become increasingly common, for example, due to the 
recent development of powerful microprocessors, which dissipates high amounts of heat. 
Techniques for dealing with such thermal loads are available, but new methodologies for proper 
quantification and more efficient cooling of these thermal loads are desired. Some results on the 
estimation of a high magnitude boundary heat flux in a heat conduction problem can be found in the 
literature [Dennis and Dulikravich, 2001; Feng et al., 2011; Dennis and Dulikravich, 2012; Afrin et 
al., 2013; Orlande et al., 2013]. All of these works emphasize the difficulties of solving the inverse 
problem with an accurate mathematical model, which would be a three-dimensional nonlinear heat 
conduction problem, thus resulting in high computational times [Dennis and Dulikravich, 2012]. In 
this work, the proposed forward problem is obtained by simplification of a more general heat 
conduction problem which, together with the modeling of uncertainties of observations and 
unknowns as Gaussians, allows one to use the Kalman filter [Kalman, 1960; Chen, 2003; Kaipio 
and Somersalo, 2004; Grewal and Andrews, 2008]. The physical problem considered in this paper 
involves heat conduction in a flat plate, where the temperatures at both surfaces are approximated 
by the Improved Lumped System Analysis [Cotta and Mikhailov, 1997]. In this formulation, the 
temperature gradient across the plate is approximated by Hermite’s formulae. The use of the 
Kalman filter requires much less computational effort in comparison with techniques such as 
particle filters and is more readily adaptable to parallel processing. 
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Forward Problem 
 
The physical problem considered in this paper involves a high magnitude heat flux applied to the 
top surface of a flat plate, while temperature measurements are taken at the opposite side, as shown 
in Fig. 1. The dimensions of the flat plate are given by Tab. 1. 
 

 
Figure 1: Geometry of the physical problem 

 

Table 1: Dimensions of the flat plate 

 

Dimension Value [mm] 
a 120 
b 120 
c 3 

 

All other boundaries are thermally insulated. The heat flux is position-and-time dependent and the 
initial temperature distribution is considered to be uniform. Based on these assumptions, the 
resulting mathematical model [Ozisik, 1993], named “Complete Model”, is given by Eqs. (1.a)-(1.f). 
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    0cT

y





    at    0y      and    y b      (1.c) 

    0cT

z





    at    0z       (1.d) 

    ( ) ( , , )c
T c

T
k T q x y t

z





    at    z c      (1.e) 

    0cT T     at    0t       (1.f) 

Since high temperature variations are expected, the volumetric heat capacity and the thermal 
conductivity are supposed to vary with respect to the temperature according to [Orlande et al., 
2013]: 

    ( ) 1324.75 3557900  [J/m³]C T T        (2.a) 

    6 2( ) 12.45 0.014 2.517 10 T   [W/mK]Tk T T          (2.b) 

The Kalman filter cannot be used to solve the inverse problem related to the estimation of the 
applied heat flux using this mathematical model, since it is non-linear. Regarding other techniques, 
a similar inverse problem solved with the complete model, using the Metropolis-Hastings algorithm 
in a time range of 2.0 seconds with 5mmx y    , 0.5mmz  , 0.01st   and 510  states of the 
Markov Chain, led to 8 days of computational time [Orlande et al., 2013]. In order to reduce this 
extremely high computational cost, a surrogate model is proposed in this paper as described below. 
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Surrogate Model 

 
The first step to obtain the surrogate model is to linearize the thermal properties, evaluating Eqs. 
(2.a) and (2.b) at a reference temperature * 600T K . This gives rise to the constant thermal 
properties presented on Eq. (3). 

    * * * *( )    and    ( )T TC C T k k T       (3) 

The next step aims to reduce the number of dimensions of the model. This is achieved by 
calculating the mean temperature in the z direction, using the operator described in Eq. (4). 

    
0

1( , , ) ( , , , )
c

T x y t T x y z t dz
c

        (4) 

Application of this operator in Eq. (1.a) is straightforward, except for the diffusion term in the z-
direction, where the result is the heat flux at z = 0 and z = c surfaces of the plate. This result can be 
combined with the linearized versions of Eq. (1.d) and (1.e), as shown in Eq. (5). 

    * *

00

1 1 ( , , )cc

T T

T T q x y t
k dz k

c z z c z c

   
     

       (5) 

Operation of the linearized versions of Eqs. (1.b), (1.c) and (1.f), is also straightforward. The final 
result is the following surrogate model, which is a linear two dimensional problem:  

    
2 2

* * *
2 2

( , , )
T T

T T T q x y t
C k k

t x y c

  
  

  
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0 , 0
0

x a t

y b

  

 
     (6.a) 

    0T

x





    in    0x   and x a      (6.b) 

    0T

y





    in    0y   and y b      (6.c) 

    0T T     in    0t       (6.d) 

This model is much simpler to solve than the complete model. However, its solution leads to the 
mean temperature in the z-direction, but the desired quantity is the temperature at the z = 0 surface. 
The Improved Lumped Analysis [Cotta and Mikhailov, 1997] allows one to approximate this 
quantity by using the Hermite’s formulas for integrals given by: 

      3

0

( ) (0) ( ) ( )
2

h
h

y x dx y y h O h         (7.a) 

     
2

5

00

( ) (0) ( ) ( )
2 12

h

x x h

h h dy dy
y x dx y y h O h

dx dx 

 
     

 
      (7.b) 

These formulas are used to approximate the mean temperature in the z-direction and the integral of 
the temperature gradient in the z-direction, that is, 

     
0

1( , , ) ( , ,0, ) ( , , , )
2 12 z z c

c T T
T x y t T x y t T x y c t

z z 

  
    

  
      (8.a) 
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z z z 
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The final result is an approximation of the temperature at the 0z  surface given by: 

    *( , ,0, ) ( , , ) ( , , )
6 T

c
T x y t T x y t q x y t

k
        (9) 

Inverse Problem 

 

The inverse problem related to the estimation of the applied high intensity heat flux is solved in this 
paper by using a Bayesian approach. A probability density function (pdf) of the unknown state 
variables nx  given the set of observations 0:ny  is built with Bayes’ Theorem. Statistical inference 
techniques can be applied to this pdf, called “posterior”, to extract information about the unknowns 
[Chen, 2003]. This work uses the Kalman filter, which requires the forward problem to be cast in 
the form of the Evolution-Observed Model given by Eqs. (10.a) and (10.b), where nw  and nv  are 
zero mean Gaussian noise vectors, with covariance matrices nQ and nR , respectively. 

    1 1n n n n  x F x w      (10.a) 

    n n n n y H x v      (10.b) 

The state vector for this problem, given by Eq. (11), is composed by the mean temperature and heat 
flux values, represented by the vectors nT and nq , at each control volume of the discretization grid. 
Thus, considering a grid with I  volumes in the x  direction and J  volumes in the y  direction, the 
number of unknowns is 2IJ . 

    n

n

n

 
  
 

T
x

q
     (11) 

The nF  matrix for the evolution model, with size 2 2IJ IJ , is built with four matrices of 
size IJ IJ , as: 

    n n

n

 
  
 

A B
F

0 I
     (12) 

The nA  and nB  matrices result from the discretization of the forward surrogate problem with the 
explicit scheme of the finite volume method [Patankar, 1980; Versteeg and Malalasekera, 1995; 
Ferziger and Peric, 2002]. nA  accounts for the heat diffusion in the domain, and nB is given by Eq. 
(13). 

    *n

t

cC


B I      (13) 

The 0  and I  terms are the zero and identity matrices, where a random walk model was used for the 
evolution of the unknown local heat fluxes. Considering the state noise as uncorrelated and with a 
standard deviation q , this model can be described by Eq. (14), where ω  is a standard Gaussian 
vector. 
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    1n n q q q ω      (14) 

For the observation model, the matrix nH  is described by Eq. (15), where the diagonal matrix 
results from the Improved Lumped formulation: 

    *6n

T

c

k

 
  
 

H 0 I      (15) 

The Kalman filter is applied to the solution of the present state estimation problem, (see Eqs. (16.a)-
(16.e)). If the hypotheses of linear problem and Gaussian noise are respected, this set of equations 
produces an unbiased and minimal variance recursive estimator [Chen, 2003; Grewal and Andrews, 
2008; Orlande et al., 2012]. Also, the covariance matrix of the estimates error nP  allows the 
construction of confidence interval for better analysis of the obtained results. 

    1 1n n nn x F x      (16.a) 

    11
T

n n n nn n 
 P F P F Q      (16.b) 

    1
1 1( )T T

n n n n nn n n n



 
 K P H H P H R      (16.c) 

    1 1( )n n n n nn n n   x x K y H x      (16.d) 

    1( )n n n n n
 P I K H P      (16.e) 

Results 

 

In this work, the experimental measurements were simulated with the complete model, using a fine 
grid with 768 768 64  volumes and time step 410t s   to ensure numerical convergence. The 
inverse problem was solved with 24 24 volumes and a time step 0.01t s  . This was done so that 
the simulated measurements are free of inverse crime [Kaipio and Somersalo, 2004]. The initial 
temperature was considered as 300K . The observation noise was assumed as Gaussian, 
uncorrelated, with zero mean and constant standard deviation, y . In a real situation, these 
measurements could be obtained with modern infrared cameras, which presents standard deviations 
of the order of 0.01 C [Orlande et al., 2013]. For testing the performance of the Kalman filter, a 
relatively high value ( 1y C   ) was selected. The proposed heat flux is described by Eq. (17) and 
Tab. 2. The size of the region of application of the heat flux is selected so that it does not 
necessarily coincide with the control volume size. 

    0 1 2 1 2 1if ,     and
( , , )

0 otherwise
q x x x y y y t t

q x y t
    

 


     (17) 

Table 2: Parameters of the proposed heat flux 

 
Quantity Value Quantity Value Quantity Value 

1x  60mm  1y  60mm  0q  710 W/m²  

2x  72mm  2y  72mm  1t  0.4s  
 
The comparison between the projection of the exact temperature field on the coarse grid and the 
estimated values at time 2.0st   is presented in Figs. 2.a-2.b. The agreement between these values 
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is excellent, once the region where the heating occurs is adequately identified and the estimated 
temperatures are very close to the exact values. No signs of correlation were detected in the 
obtained residuals. The largest residual was in the heated region and its vicinity, but its value was 
approximately 0.45°C. Thus, both the largest residual and the standard deviation of the 
experimental measurements have the same order of magnitude ( 1 C ), and the temperature 
estimates can be considered as good [Ozisik and Orlande, 2000]. 
 

 
(a) Exact 

 

 
(b) Estimated 

Figure 2: Comparison of the exact and estimated temperature field at time t = 2.0s . 

 
The same comparison made for the temperature is presented for the heat flux in Figs. 4.a-4.d, where 
the projections of the exact heat flux values in the coarse grid is presented in Fig. 4.a, while the 
estimated values at times t = 1.0s, 1.5s and 2.0s are presented in Figs. 4.b, 4.c and 4.d, respectively. 
 

 
(a) Exact 

 

 
(b) t=1.0s. 
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(c) t=1.5s 

 

 
(d) t=2.0s 

Figure 3: Comparison between the exact heat flux and the estimates at different times. 

 
The results show that the region where the heating occurs is very well identified. However, some 
quantitative differences can be observed between the reference values and the estimates. For better 
understanding of these differences, the evolutions in time of the exact and estimated values are 
presented in Figs. 5.a-5.b for the point ( , ) (62.5;62.5)mmx y  , located inside the heated region. 
 

 
(a) Temperature 

 

 
(b) Heat Flux 

Figure 4: Evolution of the reference and estimated values with time at (x, y) = (62.5;62.5)mm . 

 
For these results, the 99% confidence intervals show again the good quality of the temperature 
estimates. However, since the heating occurs on the opposite side from where the measurements are 
obtained, a time of approximately0.2s  is elapsed before the filter shows any change in the heat flux 
estimates resulting from the applied heat flux. This is due to the time required for the diffusion of 
heat through the thickness of the plate. Also, in the vicinity of 2.0st  , the estimates show a 
decreasing behavior as a result of the modeling errors of the surrogate model at high temperatures. 
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On the other hand, it is possible to extract information about the order of magnitude of the heat flux 
and its region of application. 
 
Conclusions 

 

The proposed inverse problem, for which nonlinear and three dimensional models would be needed, 
could be reasonably well solved with simplified models, allowing for the use of fast and 
computationally efficient algorithms, such as the Kalman Filter. The temperature estimates present 
very good agreement with reference values. For the estimation of the heat flux, although the effect 
of the modeling errors of the surrogate model is noticeable, the heating location is adequately 
identified and the obtained estimates have the same order of magnitude as the exact values. 
Improvement of these results relies in accounting for modeling errors in the solution of the inverse 
problem. 
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Abstract 

In this study, a combination of the lattice Boltzmann method (LBM) and the phase-field method 
(PFM) is used for the calculation of liquid-solid two-phase flows with solidification. PFM is used as 
a numerical tool to capture interface topology changes of solid and the flow of liquid is solved by 
using LBM. The no-slip boundary condition at the liquid-solid interface is satisfied by adding a 
diffusive-forcing term in LBM formulation. Calculations of Poiseuille flows and flows past a 
circular cylinder at different Reynolds numbers confirm that the no-slip boundary condition is 
effectively satisfied at the diffuse liquid-solid interface. Then, the present method is applied to the 
calculation of two-dimensional anisotropic dendritic growth of a binary alloy under melt convection. 
Two cases have been studied. Initially, the solid is stationary, and then the solid is free to move 
under the influence of the flow. The equations of motion are solved to track the translation and 
rotation of the solid. Qualitative comparisons of the solidification patterns reveal that the 
microstructure dendritic growth is mainly affected in the direction of the fluid flow. The results 
obtained with the present method agree well with those obtained with other available numerical 
techniques.  

Keywords:  Liquid-solid two-phase flow, Phase-field method, Lattice Boltzmann method, 
Solidification 

Introduction 

Dendrites are common structures in the solidification of metals and alloys. They reproduce due to 
unstable movement of a liquid-solid interface. Dendritic solidification is governed by complex 
processes such as surface tension, heat transport (for pure materials) and/or concentration gradient 
(for alloys). Due to the importance of this phenomenon, some numerical techniques using the 
phase-field method (PFM) have been proposed to effectively capture the interface morphology 
[Karma&Rappel (1998); Ohno&Matsuura (2009)]. Other important aspect in solidification is 
convection. Convection plays a crucial role on crystal growth, and its effects have been studied by 
taking into account the effect of melt convection [Beckermann et al. (1999), Lu et al. (2003), Miller 
et al. (2001), Medvened et al (2006)]. In order to simulate solidification under melt convection, the 
aforementioned methods combine PFM to solve the phase transformation process and an 
appropriate method to solve the fluid flow, i.e. the solution of the Navier-Stokes equations or the 
lattice Boltzmann method (LBM) [Chen&Doolen (1998)]. In this studies, the solid is assumed to be 
stationary, so that the momentum equation for the solid is not solved. 
 
In this study a combination of PFM proposed by Ohno&Matsuura [Ohno&Matsuura (2009)] and 
LBM has been used for simulation of solidification. The main advantage of this PF-LBM over 
others is the possibility of choosing different diffusivities in the solid and liquid parts, and therefore 
allowing solidification involving diffusion in solid of a binary alloy. Most importantly, the solid is 
allowed to move freely, and the equations of motion are solved to calculate the translational and 
rotational velocities. Additionally, LBM has been adopted for modeling the fluid flow due to its 
computational advantages related to easy programming and suitability for parallel computing.  
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First, the present method is applied to benchmark simulations with stationary diffuse interfaces. 
Poiseuille flows and flows past a circular cylinder are carried out to validate the no-slip boundary 
condition at the liquid-solid interface. Then, calculations of isothermal dendritic solidification under 
melt convection of an Al-Cu alloy are carried out. Two cases are considered to study the effect of 
melt convection. Initially, the solid part is considered to be stationary, and then the solid part is 
allowed to move with the fluid flow. The analysis of the results is based on qualitative comparisons 
of the differences in the solidification patterns. 

Numerical Method 

The present method uses the quantitative phase-field method for dilute alloy solidification 
[Ohno&Matsuura (2009)] and the lattice Boltzmann method with discrete forcing term 
[Chen&Doolen (1998)]. The interaction between solid and liquid parts is modeled by a diffuse force 
proposed by Beckermann et al. [Beckermann et al. (1999)]. A detailed explanation of the numerical 
methods is given in the following. 

Phase-field method 

The time evolution of the phase field, φ, is given by [Ohno&Matsuura (2009)] 

 ( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )ugfaaaaaa xssyyssxsts φλ−φ−φ∂θθ∂+φ∂θθ∂−φ∇θ⋅∇=φ∂θ '''' *22  (1) 

where as(θ) is a function to represent crystalline anisotropy, φ=-1 for liquid and φ=+1 for solid, 
as’(θ) = das/dθ, f(φ) and g(φ) are interpolating functions associated with the double-well and 
chemical potential, respectively, λ* is a dimensionless parameter that controls the coupling between 
the phase field and the concentration field represented by the dimensionless supersaturation, u. 
 
The time evolution of the supersaturation, u, is given by  

 ( )[ ]( ) ( )[ ] ( )[ ] JU ⋅∇−φ∂−++−∇φ∇=∇⋅+∂φ−−+ 2/)(112/)(11 hukjuqDuuhkk tATlt  (2) 

where k is the partition coefficient, h(φ) and q(φ) are interpolating functions, U is the fluid velocity, 
Dl is the liquid diffusivity, jAT is the antitrapping current term, and J is a function to include noise 
fluctuations [Echebarria (2010)]. 
 

Lattice Boltzmann method 

The lattice Boltzmann equation with single relaxation time, τ, and discrete forcing term, Gi, is given 
by 

 ttGtftftftttf i
eq

iiiii δ+−
τ

−=δ+δ+ ),()],(),([1),(),( xxxxcx  (3) 

where fi is the particle velocity distribution in the ith direction, x is the position vector, ci the 
discrete particle velocity, t the time, δt the time step size, fi

eq is the equilibrium distribution function. 
The fluid density, ρ, and velocity U are given by 

 ∑
−

=

=ρ
1

0

Q

i
if  (4) 
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Q

i
ii fcU  (5) 
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where Q is the number of discrete velocities. In this study, the two-dimensional nine-velocity 
(D2Q9) model is used in the calculations of the discrete velocity. The discrete forcing term, Gi, with 
second-order accuracy is given by 

 G
cucuc ⋅




 ⋅+−ρ= 42

)(93
cc

WG iii
ii  (6) 

where Wi is the weighting function related to fi
eq and c the lattice velocity (c=δx/δt=1). G is an 

external force. 
 
In the present study, effects of the gravity and other external forces are neglected. Therefore, the 
only force acting on the fluid flow is the one related to drag. A dissipative drag force is used to 
impose the no-slip boundary condition at the diffuse liquid-solid interface. It is given by 
[Beckermann et al. (1999)] 

 )(
2

12),(
2

UUxG −






 φ+ρν= Sgt  (7) 

where ν is the kinematic viscosity, g is a dimensionless constant, i.e. g = 2.757 and US is the solid 
velocity. The motion of the solid part is calculated by solving the following equations [Glowinski et 
al. (2001)]: 

 S
T

S dt

d
M G

U
=  (8) 

 S
S

S dt

d
TI =

ω  (9) 

where MS is the mass of the solid, UT  is the translational velocity of the solid, IS is the tensor for the 
moment of inertia, ωS is the angular velocity, GS and TS are the total force and torque acting on the 
solid, respectively. They are given by  

 ∑ ∆−=
x

xGG VtS ),(  (10) 

 ∑ ∆×−−=
x

xGXxT VtSS ),()(  (11) 

where ∆V is the volume of the computational cell and XS is the center of mass of the solid. The 
velocity US is given by US = UT + ωS × (x-XS). The location of the phase field is updated with an 
advection equation. The advection term is discretized with the WENO fifth-order scheme.  
 
The basic solution of the present method is illustrated as follows: 

1. Solve Eqs. (1) - (2) with the explicit Euler method. 
2. Solve the lattice Boltzmann equation, Eq. (3), with discrete forcing term, Eqs. (6) and (7), 

and obtain U. 
3. If necessary, calculate the motion of the solid with Eqs. (8), (9), (10) and (11) and update the 

location of the phase field with an advection equation. 

Validation 

Initially, calculations of Poiseuille flow and flows past a circular cylinder at different Reynolds 
numbers are carried out to validate the no-slip boundary conditions. The phase field does not  
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Figure 1. Velocity profile of Poiseuille flow 

 
Table 1 Comparison of drag coefficient for steady flows past a circular cylinder 

Re 10 20 40 
IB-FDLBM [Rojas et al. (2011)] 2.95 2.135 1.58 
Present method 3.16 2.31 1.75 

 
Table 2 Properties of Al-Cu alloy 

Diffusivity in liquid Dl [m2/s] 3.0×10-9 
Diffusivity in solid Ds [m2/s] 3.0×10-13 
Partition coefficient k 0.14 

 
change in these calculations and it is only used to distingue the fluid and the solid, e.g. walls or 
boundaries. For Poiseuille flows, the computational domain is long enough so that the predicted 
velocity profile corresponds to the fully developed flow. The phase field is set at φ=-1 at the flow 
region and φ = 1 at the top and bottom walls. Figure 1 shows a comparison of the theoretical 
velocity profile and the one predicted with the present method. As can be seen, both velocity 
profiles agree well. Moreover, the no-slip boundary condition at the top and bottom walls is 
effectively satisfied.  
 
Flows past a circular cylinder are calculated using a square computational domain. The dimensions 
are 1600 and 1600 lattice points in the x and y directions, respectively. The left boundary condition 
is inlet flow at U0, and the right, top and bottom walls are outflow boundary conditions. A circular 
cylinder is located at the center of the domain and the phase field is φ = 1, in the fluid flow φ = -1. 
Table 1 shows a comparison of the drag coefficient with other numerical results in literature [Rojas 
et al. (2011)]. The results obtained with the present method slightly differ from the results obtained 
by using an immersed boundary method. This is because in the present calculation the interface has 
a finite width and better agreements are expected as the interface width approaches cero. 

Simulation of dendrites 

In this section, numerical simulations are carried out to analyze the effect of melt convection on 
isothermal dendritic growth of an undercooled Al-Cu alloy. Some physical properties of an Al-Cu 
alloy are given in Table 2. Two cases are analyzed. In Case 1, the solid part of the alloy is 
stationary, i.e. US = 0. In case 2, the solid part is allowed to move within the fluid flow, i.e. free 
motion. The computational domain is shown in Fig. 2. The computational domain sizes, W×H, are 
1001×1001 and 2001×1001 lattice points for Cases 1 and 2, respectively. The computational 
domain of Case 2 is larger in the x-axis because the solid part is moving along this direction. A seed 
is located at (501,501) and its diameter occupies six lattice spacings. A uniform inflow at U0 comes 
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from the left boundary. The right boundary is continuous outflow condition and the top and bottom 
walls are slip boundaries. In this study, U0 = 0.01, τ = 1, and u = 0.4. 
 
The phase field distributions at two different instants, t1 and t2 are shown in Figs. 3 and 4. Figure 3 
illustrates the case when the solid part is stationary. In the absence of melt convection, dendritic 
growth is symmetric in all directions [Ohno&Matsuura (2009)]. On the contrary, the effect of melt 
convection breaks the symmetrical growth morphology. As can be seen, the upstream facing parts 
of the alloy grow faster than those downstream orientated. These patterns agree well with other 
qualitative results obtained by using other numerical methods [Beckermann et al. (1999), Lu et al. 
(2003), Miller et al. (2001), Medvened et al (2004)]. 
 
Figure 3 shows the phase field distribution of Case 2 at t1 and t2. The solid part has been displaced 
from its initial position with US. Despite dendritic growth seems to be symmetrical, a detailed 
examination revels that the rear tip grows slightly faster than the front and normal tips. This 
behavior is because the fluid flow enhances dendritic growth along its direction. As can be seen, the 
motion of the solid part is mainly related to the translational velocity of the solid. The effect of the 
rotational velocity is very small in this case. Therefore, calculations of dendritic growth in a shear 
flow are carried out to evaluate the rotation of the solid. The computational domain size is W×H = 
1001×1001. The dimensionless velocities at top and bottom walls are -0.02 and +0.02, respectively. 
Periodic boundary conditions are set along the x-axis. Figures 5 (a) and (b) show the distribution of 
φ at t1 and t2. As can be seen, the simultaneous growth and rotation of the solid is effectively 
predicted. Dendritic growth is favorable along the preferable directions, and the fluid flow slightly 
modifies the growth in the direction perpendicular to the preferable directions.    
  

 
Figure 2. Computational domain for simulation of dendrites 

φ 
-1 +1 

   
                                                          (a) t1                              (b) t2 

Figure 3. Phase field distribution, φ, at US = 0 
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                                       (a) t1                                                                    (b) t2 

Figure 4. Phase field distribution, φ, at free motion  

     
                                                          (a) t1                              (b) t2 

Figure 5. Phase field distribution, φ, of dendritic growth in a shear flow 

Conclusions 

A combination of the phase-field method and the lattice Boltzmann method was used for 
simulations of dendrites. Two cases were studied to analyze the effect of melt convection on 
dendritic growth. First, the solid part of the alloy was stationary and then it was allowed to move 
freely within the fluid flow. As a result, the following conclusions were obtained: (1) melt 
convection strongly affects the morphology of dendritic growth; it accelerates growth along its 
direction and (2) the motion of the solids affects dendritic growth in all directions, specially the 
direction of the fluid flow 
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Abstract

This paper presents a new computational method for compressible flows with both high and low Mach
numbers. In this method, the principal governing equations, such as the equation of mass, momentum
and internal energy, are described with conservation forms, which are discretized with finite volume
method (FVM) on a collocated grid system. In particular, since the special implicit method (C-ISMAC
method) is applied to these governing equations, their convection terms can be estimated with higher-
order TVD schemes in addition to the larger time increment ∆t compared with the usual explicit methods
that decreases computational time of our method.

The proposed computational method was applied to the shock wave problems with high Mach num-
bers as well as the natural convection flows driven by non-uniform temperatures with low Mach numbers.
It was shown that the conservation of mass and other physical properties are sufficiently satisfied and that
the predicted results are in good agreement with the theoretical values and calculated results reported by
other researchers.
Keywords : compressible fluid, FVM, implicit method, Mach number, natural convection

Introduction

In this paper, a numerical method is investigated to predict compressible flows for high Mach numbers
in addition to low Mach numbers. In order to construct such prediction methods, it is necessary to capture
accurately shock discontinuity due to shock waves with high Mach numbers as well as to predict the
compressible flows with low Mach numbers affected by large pressure or temperature differences.

To propose such computational method, the basic ideas used in the computations for incompressible
fluids are employed: the numerical procedures in collocated grid system, special implicit method appli-
cable to higher-order schemes in convection terms. Thus, the main numerical procedures are described
as follows:

1). The governing equations are described in the conservative forms and the convection and diffusion
terms are discretized with finite volume method (FVM).

2). As a result, the mass conservation law is satisfied accurately in the present computational method
compared with the usual finite difference methods (FDM) based on non-conservative forms.

3). The employed implicit method (C-ISMAC method [Ushijima and Nezu (2002)]) enables us to
utilize the higher-order TVD schemes and to use larger time increment ∆t than explicit methods.
Thus, accurate numerical results can be obtained with short elapse time.

Applying the present computational method to multiple problems, it will be confirmed that the present
computational method allows us to predict the one- to three-dimensional shock-wave problems with high
Mach numbers as well as the natural convection flows with low Mach numbers.
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Numerical procedures

Governing Equations

The governing equations are the conservation for mass, momentum and internal energy. In Cartesian
coordinate system they are given by

∂ρ
∂t

+
∂(ρu j)

∂x j
= 0 (1)

∂(ρui)
∂t

+
∂(ρuiu j)

∂x j
= − ∂p

∂x j
+

∂τi j

∂x j
−ρgδi3 (2)

∂(ρe)
∂t

+
∂(ρeu j)

∂x j
= −p

∂ui

∂xi
+ τi j

∂ui

∂x j
−

∂q j

∂x j
(3)

where ρ, ui, p, τi j, g, δi j, qi are the density, the velocity component in the xi direction, pressure, vis-
cous stress tensor, gravity, Kronecker’s delta and the heat flux in the x j direction, respectively. The x3
coordinate towards the vertically upward direction.

In the above equations, the relationship between the internal energy e and the temperature T is given
by

e = CvT (4)

where Cv is the specific heat at constant volume. The equation of state for ideal gasses is given by

p = ρe(γ−1) (5)

where the γ is the ratio of specific heat. The viscous stress τi j and the heat flux q j are defined as

τi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
−λ

∂uk

∂xk
δi j (6)

q j = −κ
∂T
∂x j

(7)

where λ = −(2/3)µ and κ is the coefficient of thermal conductivity.

Computational Method for Governing Equations

As shown in Fig.1, the governing equations are discretized on the collocated grid points in the cell
where Q denotes the scalar variables. The numerical procedure is given as follows:

1). The tentative velocity components u∗i are calculated at the cell-center points without pressure-
gradient terms.

2). The pressure-gradient terms are added to the velocity components after the interpolation of ub,i on
cell boundaries. The cell-boundary velocity components, including the pressure gradient terms, are
denoted by u∗b,i.
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Q

u3

u2u1 Q

ub,1

ub,2

ub,3

Figure 1. Collocated grid system

3). The density ρn+1 at n + 1 time step is calculated from Eq.(1) with the implicit method as detailed
later.

4). (ρT )n+1 is calculated from Eqs.(3) and (4) with the implicit method as well. The temperature T n+1

is determined with the ρn+1.

5). The pressure pn+1 is obtained by Eqs.(4) and (5) with ρn+1 and T n+1. Thus, the equation of state
is satisfied by all variables at n+1 time step.

6). The momentum (ρui)n+1 is calculated from Eq.(2) with the implicit method using the variables at
n+1 time step. The velocity un+1

i is determined with ρn+1.

The details of the above numerical procedures are as follows: the tentative velocity component u∗i is
calculated at the center of the cells with FVM:

u∗i =
1
ρn

[
(ρui)n +∆t

{
−

(
∂(ρuiu j)

∂x j

)n

+
(

∂τi j

∂x j

)n}]
(8)

where superscripts denote the time step. In order to estimate pressure-gradient terms accurately, these
terms are not included in the estimation of u∗i at the cell-center points.

After this procedure, the pressure-gradient terms estimated on the cell boundaries are added to the
interpolated velocity. Thus, we obtain the cell-boundary velocity component u∗b,i as follows:

u∗b,i = fb(u∗i )−
1
ρn

∂pn

∂xi

∣∣∣∣
b

∆t (9)

where fb() denotes the function to interpolate the variable on a cell boundary, which is a simple linear
average between the cell-center variables in the present paper.

Equation (1) is discretized with the implicit method called C-ISMAC method [Ushijima and Nezu
(2002)] proposed for the collocated grid system, which is based on the implicit SMAC method [Shin et
al. (1993)] in the staggered grid system. The C-ISMAC method allows us to decrease computational
time without decreasing numerical accuracy.

The equation discretized with respect to time by the C-ISMAC method is given by

ρn+1 −ρn

∆t
+αρ

∂(ρn+1u∗)
∂x j

+(1−αρ)
∂(ρnu∗j)

∂x j
= 0 (10)
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where αρ is a parameter whose range is 0 ≤ αρ ≤ 1. With the following definition,

ρn+1 = ρn + ρ̃ (11)

Eq.(10) is transformed to the following equation:

ρ̃
∆t

+αρ
∂(ρ̃u∗j)

∂x j
= −

∂(ρnu∗j)
∂x j

(12)

where ρ̃ becomes nearly zero when the flow field is almost steady or the time-scale of the flow field is
sufficiently larger than the time increment ∆t. Thus, we can apply a simple first-order spatial discretiza-
tion method to the left-hand side of Eq.(10), while higher-order scheme to the right-hand side. After
solving the simultaneous linear equations of ρ̃, which is derived from the discretized equation of Eq.(12)
with respect to space, ρn+1 can be obtained from Eq.(11).

With Eq.(4) in which Cv is assumed to be constant, Eq.(3) is rewritten as

∂(ρT )
∂t

+
∂{(ρT )u j}

∂u j
= −(ρT )(γ−1)

∂ui

∂xi
+

1
Cv

{
τi j

∂ui

∂x j
+

∂
∂x j

(
κ

∂T
∂x j

)}
(13)

Similarly, the equation discretized by the C-ISMAC method is given by

(ρT )n+1 − (ρT )n

∆t
+αρT

∂{(ρT )n+1u∗j}
∂x j

+(1−αρT )
∂{(ρT )nu∗j}

∂x j

= (γ−1)
[

βρT

{
−(ρT )n+1 ∂u∗j

∂x j

}
+(1−βρT )

{
−(ρT )n ∂u∗j

∂x j

}]
+

1
Cv

{
τi j

∂u∗

∂x j
+

∂
∂x j

(
κ

∂T n

∂x j

)}
(14)

where αρT ,βρT are parameters whose ranges are 0 ≤ αρT , βρT ≤ 1. With the following definition,

(ρT )n+1 = (ρT )n + ˜(ρT ) (15)

Eq.(14) is transformed to the following equation:

˜(ρT )
∆t

+αρT
∂{ ˜(ρT )u∗j}

∂x j
+βρT (γ−1)

{
˜(ρT )

∂u∗i
∂xi

}
= −

∂{(ρT )nu∗j}
∂x j

+(γ−1)
{
−(ρT )n ∂u∗j

∂x j

}
+

1
Cv

{
τi j

∂u∗j
∂x j

+
∂

∂x j

(
κ

∂T n

∂x j

)}
(16)

After solving the simultaneous linear equations of ˜(ρT ), which is derived from the discretized equation
of Eq.(16) with respect to space, we obtain (ρT )n+1 with Eq.(15).

With the similar procedures, Eq.(2) discretized with respect to time is given by

(ρui)n+1 − (ρui)n

∆t
+αρui

∂{(ρui)n+1u j}
∂x j

+(1−αρui)
∂{(ρui)nu j}

∂x j
= −∂pn+1

∂xi
+

∂τi j

∂x j
−ρn+1gδi3 (17)
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where αρui is a parameter whose range is 0 ≤ αρui ≤ 1. The component (ρui)n+1 is defined by

(ρui)n+1 = (ρui)n + ˜(ρui) (18)

Substituting Eq.(18) into Eq.(17), we have

˜(ρui)
∆t

+αρui

∂{ ˜(ρui)u∗j}
∂x j

= −
∂{(ρui)nu∗j}

∂x j
− ∂pn+1

∂xi
+

∂τi j

∂x j
−ρn+1gδi3 (19)

After solving the simultaneous linear equations of ˜(ρui), which is derived from the discretized equation
of Eq.(19) with respect to space, we obtain (ρui)n+1 with Eq.(18).

Applicability of the Numerical Method

Sod’s Shock Tube Problem

Firstly, the present computational method was applied to one dimensional Sod’s shock tube problem
[Sod (1978)], in order to confirm that the method is able to capture discontinuity of the variables. Figure
2 shows the initial conditions on the rectangular domain with l1 = 0.3 [m] and l2 = 1.0 [m]. A diaphragm
at x2 = 0.5 [m] separates two regions which have different densities and pressures.

The two regions are initially in a static state. The variables in the initial conditions are given as
follows:

ρL = 1.0 [kg/m3] , ρR = 0.125 [kg/m3],
uL = 0.0 [m/s] , uR = 0.0 [m/s],
pL = 1.0 [Pa] , pR = 0.1 [Pa],

 (20)

where subscripts L and R denote the values on the left and right sides of the diaphragm respectively. TL
and TR are determined by the equation of state. The ratio of specific heats γ is chosen to be 1.4 assuming
that γ of the gas is similar to that of air. The specific heat at constant volume Cv = 7.17×102 [J/(kg·K)].
The coefficient of thermal conductivity κ = 0 [W/(m·K)]. The coefficient of viscosity µ = 0 [Pa·s] and
the effect of gravity is negligible.

The boundary conditions are given as follows: A free-slip boundary condition is imposed on the top
and bottom walls and a non-slip boundary condition is imposed on the left and right walls. On all walls,
Neumann boundary conditions are employed: ∂T/∂n = 0, ∂P/∂n = 0 and ∂ρ/∂n = 0.
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Figure 2. Initial conditions for Sod’s shock tube problem
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In the computations, the time step ∆t is 4.0× 10−4 [s] and the number of computational cells is
102×1502. All convection terms on the right-hand side in Eqs.(12), (16) and (19) are evaluated with the
third-order MUSCL TVD scheme [Yamamoto and Daiguji(1993)].

Figure 3 shows the dimensionless mass error err = (M0 −M
′
)/M0 at t = t ′ [s]. Here M0 and M

′

denote the total mass at t = 0 [s] and at t = t
′

[s], respectively. It was shown that the mass conservation
law is satisfied accurately in the present computational method.

The numerical results at t = 0.2 [s] are shown in Fig.4, in which internal energy e is given by Eq.(4).
While the calculated internal energy in the range of 0.68 ≤ x2 ≤ 0.85 is somewhat smaller than the
theoretical values, the other predicted results reasonably agree with the exact solutions. Thus, it was
shown that the numerical method is applicable to the one-dimensional shock wave problem and that it is
able to capture discontinuity without artificial viscosity.
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Figure 3. Dimensionless mass error
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Figure 4. Numerical results (x1 = 0.5l1 and t = 0.2 [s])
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Explosion Test in Two-Space Dimensions

Secondary, the present computational method was applied to the two-dimensional problem in the
square domain of l1 = l2 = 2.0 [m], including a circular area at its center, as shown in Fig.5. The initial
conditions are different between the circular region, whose radius r is 0.4 [m], and the region outside the
circle.

The flow is in a static condition in all regions at t = 0 [s]. The initial conditions are given as follows:

ρin = 1.0 [kg/m3] , ρout = 0.125 [kg/m3],
u1in = 0.0 [m/s] , u1out = 0.0 [m/s],
u2in = 0.0 [m/s] , u2out = 0.0 [m/s],
pin = 1.0 [Pa] , pout = 0.1 [Pa],

 (21)

where subscripts in and out denote the values inside and outside the circle respectively. Tin and Tout are
given by the equation of state. The ratio of specific heats γ was chosen to be 1.4 assuming that air behaves
as an ideal gas. The coefficient of thermal conductivity κ = 0 [W/(m·K)]. The coefficient of viscosity
µ = 0 [Pa·s]. The time step ∆t is 5.0×10−4 [s] and the effects of gravity is also negligible.

The boundary conditions are given as follows: A free-slip boundary condition is imposed on all walls.
On all walls, ∂T/∂n = 0, ∂P/∂n = 0 and ∂ρ/∂n = 0.

All convection terms on the right-hand side in Eqs.(12), (16), and (19) are evaluated with the third-
order MUSCL TVD scheme [Yamamoto and Daiguji(1993)].The number of computational cells is 1002×
1002.

The predicted results at t = 0.25 [s] are shown in Figs. 6, 7 and 8. As shown in Figs. 6 and 7, the
density and pressure distributions qualitatively agree with the predicted values of [Toro(1997)]. Figure 8
shows a comparison between the present numerical results and the analytical solutions of [Toro(1997)].
While only the internal energy e in the range of 1.62 ≤ x1 ≤ 1.81 is smaller than the analytical solution,
the other numerical results reasonably agree with the reference values. From the above results, it can be
seen that the present numerical method is also applicable to two-dimensional problems.
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Figure 5. Initial conditions for cylindrical explosion
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Figure 6. Density distribution at t = 0.25 [s] Figure 7. Pressure distribution at t = 0.25 [s]
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Figure 8. Numerical results and reference values [Toro(1997)] (x2 = 0.5l2 and t = 0.25 [s])
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Explosion Test in Three-Space Dimensions

As the final example of the high Mach number flows necessary to be solved by the large scale compu-
tations, the present computational method was applied to the three-dimensional shock-wave problem in
the cubic domain with l1 = l2 = l3 = 2.0[m], including a spherical region located in its center, as shown
in Fig.9.

The initial conditions (t = 0 [s]) in the sphere of radius r = 0.4 [m] and the region outside the sphere
are given the same as the two-dimensional case listed in Eq. (21). In addition, the physical properties
and the gravity effects are also treated in the same way as the two-dimensional problem. The initial x3
velocity components are set at u3in = u3out = 0 [m/s].

Th boundary conditions are given as follows: A free-slip boundary condition is imposed on all walls.
On all walls, ∂T/∂n = 0, ∂P/∂n = 0 and ∂ρ/∂n = 0.

All convection terms on the right-hand side in Eqs.(12), (16) and (19) are evaluated with the fifth-order
compact upwind TVD scheme [Yamamoto and Daiguji(1993)].The time step ∆t is 1.0× 10−4 [s]. The
number of computational cells is 802×802×802. In order to solve this large scale problem efficiently,
the computation was parallelized by flat MPI on the basis of a domain decomposition method.

Figure 10 shows a comparison between the present numerical results at t = 0.25 [s] and the analytical
solutions of [Toro(1997)]. While some discrepancies are found in the distribution of the internal energy
e in the range of 1.61 ≤ x1 ≤ 1.79 and near the discontinuous distributions of density and pressure
compared with the analytical solution, the outline of the predicted results reasonably agree with the
reference values. Therefore, it was shown that the present numerical method can be applied to three-
dimensional problems as well.

In addition, the efficiency of the parallel computations was examined by changing the core numbers.
Fig.11 shows the speed-up ratios on the basis of 32 cores in the Cray-XE6 in Kyoto University (AMD
Opteron 2.5GHz, 32 cores / node, 64 GB memory / node). The maximum core number is 512 (16 nodes).
As shown in Fig.11, the tendency of the increasing speed-up ratio is near the linear line. Thus, the present
flat MPI parallelization enables us to decrease the elapse time satisfactorily.
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r
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Figure 9. Calculation area for spherical explosion
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Figure 10. Numerical results (at t = 0.25 [s])
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Natural Convection in a Square Cavity

On the other hand, in order to confirm the applicability of the present method to the flows with low
Mach numbers, it was applied to the natural convection in a square cavity with differentially heated side
walls. While the compressibility is not so dominant in the example employed in this section, this is a
suitable benchmark problem to confirm the applicability of the computational method.

As shown in Fig.12, the computational domain is a square cavity including the fluid of Prandtl number
Pr = 0.71. The length of the square cavity is l1 = l3 = 0.1[m]. The acceleration of gravity affects in −x3
direction. The the Rayleigh number Ra and Prandtl number Pr are defined as

Ra =
Bg∆T l3

3
Aν

(22)

Pr =
ν
A

(23)

where A, B, µ, ν are thermal diffusivity, coefficient of thermal expansion, viscosity and kinematic viscos-
ity, respectively.

The dimensionless numbers and the average Nusselt number are defined as

T ∗ =
Tcal −T

∆T
, x∗1 =

x1

l3
, x∗3 =

x3

l3
, , u∗1 =

u1l3
A

, u∗3 =
u3l3

A
(24)

Nu =
1
l3

Z l3

0
Nu dx3

∣∣∣∣
x3=0 or 0.1

(25)

where Tcal is the predicted results of the temperature.
The initial conditions are given as follows: the velocity component ui and the temperature T are set

to zero and 300 [K] in the cavity. The pressure is set by considering gravity and the density is given by
the equation of state with the initial pressure, temperature, the ratio of specific heats γ = 1.4.

T
 

T
 +

 Δ
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Figure 12. Calculation area for natural convection
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The boundary conditions are given as follows: A non-slip boundary condition is imposed on all walls.
T = 300 + ∆T [K] at x1 = 0 [m] and T = 300 [K] at x1 = 0.1 [m] where ∆T = 1 [K]. The boundaries
at x3 = 0 [m] and 0.1 [m] are adiabatic, ∂T/∂x3 = 0 and ∂ρ/∂x3 = 0. On the vertical walls ∂p/∂x1 = 0,
while p is set by considering gravity on the horizontal walls.

In the computations, The time step ∆t is 8.0×10−7 [s]. The number of computational cells is 152×
152. The predicted results were obtained at two Rayleigh numbers: Ra = 104 and 105. The coefficient of
thermal conductivity κ = 7.63467×10−2 [W/(m·K)] and the coefficient of viscosity µ = 5.42061×10−5

[Pa·s] at Ra = 104, while κ = 2.41429×10−2 [W/(m·K)] and µ = 1.71414×10−5 [Pa·s] at Ra = 105.
Figures 13 and 14 show the calculated results with the present method. As shown in Figs.13 and 14,

the isotherms and the isovels at steady state qualitatively agree with the predicted values of [Davis(1983)].
Table 1 shows the magnitude and the location of the maximum velocity u∗1max along the vertical

centerline, the maximum velocity u∗3max along the horizontal centerline and the average Nusselt number
Nu for Ra of 104 and 105. In Table1, the predicted results are compared with the benchmark results of
[Davis and Jones(1983)] and [Dixit and Babu(2006)]. While u∗1max at Ra = 105 at steady state is larger
than that of [Davis and Jones(1983)], the other results reasonably agree with them.From these results, in
addition to the high Mach number flows as shown in the above sections, it was shown that the present
numerical method enables us to deal with the flows in low Mach numbers affected by viscosity and
thermal diffusivity. It can be concluded that the numerical algorithm proposed in this paper is widely
applicable to the flows from low to high Mach numbers.

x

x

1

3

(a)
x

x

1

3

(b)
x

x

1

3

(c)

Figure 13. Contour maps for predicted results at Ra = 104 : (a) T ∗, (b) u∗1, (c) u∗3
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Figure 14. Contour maps for predicted results at Ra = 105 : (a) T ∗, (b) u∗1, (c) u∗3
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Table 1. Comparison among numerical results

Present [Davis and Jones(1983)] [Dixit and Babu(2006)]
Ra 104 105 104 105 104

u∗1max 16.193 43.87 16.178 34.73 16.179
x∗3 0.823 0.890 0.823 0.855 0.824

u∗3max 19.649 68.52 19.617 68.59 19.619
x∗1 0.117 0.063 0.119 0.066 0.121

Nu 2.245 4.528 2.243 4.519 2.245

Conclusions

In this paper, the computational algorithms and numerical discretizations were newly proposed for
governing equations of compressible fluids in an attempt to establish the numerical method which can be
widely applicable to the flows from low to high Mach number. In this method, some numerical techniques
proposed for the incompressible fluids are utilized on the collocated grid system on the basis of FVM. As
a result, the conservation of variables are satisfied and the equation of state is established for n + 1 time
step variables. In addition, the parallelization with the domain decomposition method is easily employed
due to the collocated grid system.

As a result of the computation of some benchmark problems, it has been shown that the present
computational method enables us to capture shock discontinuity without artificial viscosity. It was also
confirmed that the present method is applicable to the natural convection flow with low Mach number
affected by viscosity and thermal conductivity.
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Abstract 
The aim of this research is to compare different sparse matrix storages schemes in the 
finite element analysis of thermal-structure coupling problems. Thermal-structure 
coupling approach has been developed using the ADVENTURE System. The approach 
relies upon the existing module ADVENTURE Thermal, which handles the heat 
conduction problems to have the temperature distribution in the solid model and a module 
named ADVENTURE Solid which takes care of the stress analysis. Quite commonly, the 
matrix that participates in the finite element computation of thermal and structural 
problem is sparse. The present adventure modules which are based on the domain 
decomposition method use the sparse matrix-vector multiplication (SpMxV) as their basic 
operation. Sparse matrix by definition, are populated primarily with zeroes and thus 
special storage formats are used to enable efficient storage and computational operations. 
These representations usually store the non-zero values of the matrix with additional 
indexing information about the position of these values. A memory efficient storage 
format is proposed in this research. In the proposed technique, the inherent block sizes 
present in the sparse matrix are exploited to reduce the memory requirement as well as 
computation time.   A SpMxV library has been developed that could be used both thermal 
and structural problems. Impacts of sparse matrix storages formats on the total execution 
time of the solver are evaluated. A 3D blast furnace cooling stave is analysed efficiently 
in terms of computation time and memory using the developed approach.      

Keywords:  thermal-structure coupling; sparse matrix; indexing; cooling stave; 
ADVENTURE System 

Introduction 
With the advent of high performance computer, efficient modules for the finite element 
analysis (FEA) to solve large scale problems are the present demand of FEM users.  The 
ADVENTURE [adventure] is open source CAE software that has been developed for 
large scale analysis and design of computational mechanics system. This software is able 
to analyze three-dimensional (3-D) finite element models of arbitrary shape with 10-100 
million degrees of freedom (dof).  We have been developing the ADVENTURE system 
for the future high performance computer as a memory and time efficient FEA module.  
In this research a thermal-structure coupling system has been developed using two of 
ADVENTURE modules, ADVENTURE_Thermal and ADVENTURE_Solid. The 
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developed system could be used to analyze heat transfer problems that have complex 
geometries for the temperature distribution. The predicted temperature combined with the 
applied external load is then used to compute the deformation and thermal stresses of the 
model. Both thermal and solid modules use the parallel finite element method called 
domain decomposition method to solve problems in parallel computers.  
The performance of the domain decomposition method is dominated by the sparse matrix-
vector multiplication (SpMxV), Axyy   where, A  is a sparse matrix and yx, are 
dense vectors [Mukaddes (2014)]. The method is also influenced by the preconditioning 
techniques [Ogino (2011)]. Sparse matrix by definition, are populated primarily with 
zeroes and thus special storage schemes are used to enable efficient storage and 
computational operations. These representations usually store the non-zero elements of 
the matrix with additional indexing information about the position of these values.  A 
variety of compressed sparse row (CSR) format is used to store and manipulate the sparse 
matrix for the thermal problem [Mukaddes (2014)].  The matrix in the structural problems 
has inherent block shape. In order to reduce the memory requirement, exploiting the 
block shape of the matrix could be a beneficial choice. In this research, a diagonal block 
compressed sparse row (DBCSR) format for the structural problem are proposed and 
compared with other formats.  Here instead of entire rows or columns of a matrix, block 
algorithms operate sub-blocks or data blocks.     
 
The proposed storage formats are evaluated considering two models: High Temperature 
Test Reactor (HTTR) and 3D cooling stave [Kumar et al. (2012), Lijun et al. (2006)]. The 
numerical results obtained are presented and discussed. 
 
2. Thermal-Solid coupling analysis 
The developed system is conducted to predict temperature distribution in solid models 
and then to investigate the thermal expansion or deformation due to the temperature 
change. Analysis steps are as follows. 

1) Read the input data for the heat conductive analysis and decompose the model by 
ADVENTURE_Metis. 
2)  Analyze heat conduction problems using ADVENTURE_Thermal. 

3) Gather temperature of all nodes of the model from outputs of heat conduction 
problems. 

4)  Read temperature of all nodes and other input data for structural analysis and then 
decompose the model by ADVENTURE_Metis again. 

Figure 1 shows the flow chart of thermal-solid coupling analysis with the developed 
system.  The name of the ADVENTURE module used in each analysis is shown in 
parentheses. 
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Input data for thermal analysis 

Domain decomposition 
(ADVENTURE_Metis) 

Domain decomposition 
(ADVENTURE_Metis) 

Thermal analysis 
(ADVENTURE_Thermal) 

 

Structural analysis 
(ADVENTURE_Solid) 

 

Temperature information 

Stress/Deformation 

Input data for solid analysis 

 
Figure 1  Flow chart of thermal-solid coupling system. 

 
3.  Sparse storage formats and their implementations 
 
Sparse matrix storage schemes are described in this section. Consider the lower part of a 
typical symmetric matrix A. This matrix can be stored using different storage schemes. 
Several sparse matrix storage schemes are studied in this research and evaluated in both 
thermal and structural analysis. They are Compressed Sparse Row (CSR), Compressed 
Sparse Column (CSC), Variable Block Compressed Sparse Row (VBCSR) and Diagonal 
Block Compressed Sparse Row (DBCSR). The DBCSR are proposed in this research and 
compared with other storage format. For simplicity Skyline storage, CSR storage and 
DBCSR storage formats are explained for the example matrix A.   

 

1 
2 3 
4 5 6 
7 8 9 10 
11 12 13 14 15 
16 17 18 19 20 21 

22 23 24 25 
26 27 28 29 30 
31 32 33 34 35 36 

37 38 39 40 
41 42 43 44 45 
46 47 48 49 50 51 

 
Matrix A 

4.1 Skyline or Variable Band (SKY) 
The Skyline representation becomes popular for direct solvers especially when pivoting is 
not necessary. This is the most common matrix storage format. The matrix elements are 
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stored using three single arrays: data, row_index and row_pattern. The array data stores 
the elements of the matrix A row by row, row_index contains column number of first 
element of each row and row_pattern array points to the start of every row.  
                                                                
                                                        Table 1:  Skyline format 
data: 
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0 0 0 0 0 0 40 41 
42 43 0 0 0 0 0 0 44 45 46 47 48 0 0 0 0 0 0 49 50 51 
 
row_index: 
 
1 1 1 1 1 1 3 3 3 1 1 1 
 
row_pattern: 
 
1 2 4 7 11 16 22 26 31 37 47 58 69 
 
 
4.2 Compressed Sparse Row (CSR) 
Compressed sparse row format [Saad (1994)] is popular and the most general purpose 
storage format for the sparse matrix. The elements are stored using three arrays: data,  
row_pattern and col_index. The single array data of length number of nonzero (nnz) 
contains the non-zero elements of A row by row, col_index of length nnz contains the 
column number which correspond to the non-zero elements in the array data. The integer 
vector row_pattern of length nrow+1 contains the pointers to the beginning of each row 
in the array data and col_index. With the row_pattern array we can easily compute the 
number of non-zero elements in the ith  row as row_pattern[i+1] -  row_pattern[i]. The 
last element of row_pattern is nnz. The CSR representation of the symmetric matrix A: 
 

Table -2 CSR format 
data: 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 
42 43 44 45 46 47 48 49 50 51 
 
col_index: 
1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 4 5 6 
7 4 5 6 7 8 4 5 6 7 8 9 1 2 3 10 1 
2 3 10 11 1 2 3 10 11 12 
 
row_pattern: 
1 2 4 7 11 16 22 26 31 37 41 46 51 
 
 
4.3 Diagonal Block Compressed Sparse Row (DBCSR) 
 
 The DBCSR exploit the 3x3 block shape of the matrix. In this format the diagonal block 
can be stored separately in a diag array which does not require the indexing. The off-
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diagonal elements are stored in the data array. index_brow represents the position of first 
element of the first block in the data array. The last element of the index_brow is the 
number of elements in the off-diagonal blocks. Index_bcol stores the column number of 
the first elements of each off-diagonal blocks.  Such indexing reduces the working sets as 
well as memory requirements. 

Table-3 DBCSR 
diag: 
1 2 3 4 5 6 1

0 
1
4 

1
5 

1
9 

2
0 

2
1 

2
5 

2
9 

3
0 

3
4 

3
5 

3
6 

4
0 

4
4 

4
5 

4
9 

5
0 

5
1 

 
data: 
7 8 9 11 12 13 16 17 18 22 23 24 26 27 28 31 32 33 37 38 39 41 42 43 46
index_brow: 
1 10 19 27 

 
index_bcol: 
1 4 1 
 
4.4 Working sets of sparse matrix storage formats 
 
The skyline format takes more memory than others as it needs to store some unnecessary 
zero elements. The CSR requires less memory than skyline, as it does not store zero 
elements of the matrix. DBCSR reduces the memory requirement of the indexing part of 
CSR. The working sets of three storage formats are given below. 
 

Table-4 Working sets 
 

SKY CSR DBCSR 
 
elm + 4(row+1+row) 

 
8nnz + 4(row+1+nz) 

 
8nnz + 4(brow +1 + brow) 
 

elm: num. of matrix elements; nnz: num. of non-zero;  row: num. of rows; brow: num. of block rows 

 
5  Numerical results and discussions 
Evaluation of sparse matrix storage schemes:  

A large scale High Temperature Test Reactor (HTTR) model is used to evaluate the 

sparse matrix storage schemes. The computational environment is Intel Corei7-960 

(3.20GHz/L2 256KB/L3 8MB/QuadCore). The DBCSR are evaluated and compared with 

other sparse matrix storage fromats. Using the CSR type storage format computation time 

is reduced to around 50% and required memory is reduced to around 45% comapared to 

the skyline storage format.  Again, DBCSR shows better  performance over the CSR 

format. It reduces 21% computation time and 15% required memory compared to the 

CSR format.  
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Figure-2 Computation time for thermal (left) and sturcture (right) 

 

 
                                   

Figure-3 Required Memory for thermal (left) and structural (Right) 

 

Cooling stave analysis: 

In the present paper, a cooling stave of a blast furnace has been modeled and analyzed 

using the developed system.  Parts name are shown in figure 4a. For the finite element 

analysis, the 3D geometry of the cooling stave is made using the commercial CAD 

software, Meshman. After that the model is exported to .iges file. Then the file is 

imported to the ADVENTURE Systems. For simplicity, a part model of a cooling stave 

(figure 4b) is analysed. Results of full model are given later. The design parameters and 

material properties are taken from [Kumar et al. (2012)]. The boundary conditions for 

thermal and solid are set up as follows:  

 

 Air temperature is 323 K, water temperature is 303 K. 
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 Heat convection coefficients: between furnace shell and atmosphere-12 W/(m2 K), 

between water and inner sides of the furnace shell -8000 W/(m2K). 

 The upper and lower surface are fixed. 

The cooling channels are shown in figure 4b, where convection boundary conditions are 

considered. The figure 3a shows the temperature distribution after the thermal analysis 

using the ADVENTURE_Thermal. The ADVENTURE_PostTool is used to visualize the 

temperature, displacement and stress. The temperature information is used in 

ADVENTURE_Solid as loads to measure the thermal expansion and stresses. The 

thermal expansion (X 100) in the y direction is shown figure 3d and corresponding nodal 

equivalent stress is shown in figure 4a. Numerical results depict that the stress intensity 

on the cold surfaces is mainly affected by the cooling water and much higher on the hot 

sides.  

 

         
 

Figure-4 Cooling stave full (left) and part (right) 

                            
                                                                                                                                                                     

                  Figure 5: Temperature distribution (left) and expansion (x100, right) 
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(a)                                                     (b)                                                         (c) 

Figure 5: (a) Equivalent stress (b) Cooling channel (c) Temperature distribution of full 

model 

Finally, a full model of cooling stave is modelled and analysed as shown in figure 5b. 

After thermal analysis of the full model it is found that, the temperature on the top and 

bottom surfaces are higher than other regions and maximum values are on the hot sides 

(figure 5c).  

6. Conclusion 

In this research, the developed thermal-solid coupling system is successfully implemented 
to analyze the cooling stave of a blast furnace. The intensity of stress is reduced due to the 
cooling system. The computational cost of the developed system is improved dramatically 
by employing several sparse matrix storage formats. Several sparse matrix storage 
formats are implemented and compared. DBCSR type storage format shows better 
performance compare to the previous Skyline and CSR storage format. Future research is 
to compare different blocking strategies of DBCSR storage format.    
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Abstract 
Hydrodynamic analysis is one of the key steps in safety assessment of a structure in waves.  Many 
options are available for answering challenge raised from marine and offshore energy industry, 
from costly three dimensional CFD to the efficient but not perfect boundary element models.  Focus 
on the boundary element methods, analysis methods for the interaction of waves and structures are 
discussed.  Those boundary element models cover frequency domain and time domain, linear and 
non-linear.  Special attention is pay to the problems encountered in those models and approaches we 
adopted for their engineering solution.  

Keywords:  Boundary element method, Frequency domain, Time domain, Linear, Non-linear, 
multi-level. 

Introduction 
Hydrodynamic analysis with reliable accuracy is the first step in a successful structure assessment.  
This analysis in marine and offshore industry is usually dominant by the interaction of ocean waves 
and floating or fixed structure, and it seeks for a solution of a gravitational water wave field in an 
infinite fluid domain around the structure.  Varies numerical methods have been applied in this 
industry area, such as RANS, SPH, Rankin source distribution method, Green’s function based 
boundary integration method, and so on. They can be categorized in CFD method class and 
boundary element method (BEM) class.  RANS, as the typical CFD method, is the most robust 
method in this area. It performs the time domain simulation and has the capability to solve most of 
the problems, but the high computation cost is still the main obstacle to allow it been used in routine 
seakeeping analysis for design and design appraisal.  Comparing to CFD model, boundary element 
class is efficient and has different models for analysis in time domain and frequency domain, and 
for analysis of linear and non-linear problems. The most efficient tool in this class is the Green’s 
function based linear frequency domain model.  It can solve a few thousands of regular wave cases 
in one day on a high-end laptop.  To take advantage of this efficient, time domain boundary element 
tool based on frequency domain analysis results is developed to capture the so-called geometry non-
linear which dominants the solution of ship/offshore-structure response in large waves.  The most 
expensive boundary element tool is the Rankin source/panel model which can solve nonlinear 
seakeeping problem and has higher uncertainty and human effect in model setting, but it is still 
much cheaper in use comparing to CFD models.  What numerical model should be applied for a 
specific problem is the question that every engineer needs to answer.  How to extend the existing 
model for more complicate analysis is the challenge for researchers in industry.  In this paper, we 
discussed some of practices in Lloyd’s Register dealing with linear and nonlinear hydrodynamic 
assessment.  

Nonlinear Viscous Damping in Potential Flow Modeling 

Frequency domain BEM model is a linear analysis tool because hydrodynamic forces in this model, 
like wave exciting force, wave making added-mass and damping, are linear.  On the other hand, 
non-linear factors can be involved in ship motion equation as external force and modify the results 
of hydrodynamic pressure and load with effects of the nonlinear factor.  A typical example is the 
viscous roll damping.  For roll motion, wave making added-mass and damping is not the dominant 
component for ships with conventional hull form and the hydrodynamic force from viscous flow 
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becomes important.  A common approach is to enforce a nonlinear viscous damping moment in roll 
motion equation to correct the motion prediction.  An analysis example is shown in Figure 1.  The 
normalized roll motion result without viscous roll damping (VRD) is plotted in the left plot of the 
figure.  Blue marks show the experimental data and red line is from the computation of 
WAVELOAD-FD, a seakeeping analysis software package of Lloyd’s Register.  The predicted roll 
motion peak at the roll natural frequency is of 32.5 and 15 times larger than the experimental 
observation.  After adding the VRD effects in WAVELOAD-FD model, the predicted roll motion is 
in a good agreement with the observation as shown by the red line in the middle plot of the figure.  
The non-linear Ikeda roll damping model is applied in this example.  In the right plot of this figure, 
the pressure distribution on surface of hull and bilge keel is presented at a time when the ship is 
rolling counter-clock wise.  The orange colour indicates a higher pressure area and the light blue for 
the lower pressure area. The non-linear viscous damping is involved in the pressure computation.   
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Figure 1. Nonlinear viscous damping in roll motion from a boundary element model 

Left: without VRD; Middle: with VRD; Right: Pressure on hull and bilge keel 
 

This example demonstrates that some nonlinear factor can be correctly taken into account in linear 
BEM model.  For this viscous roll damping case, a further study revealed that the VRD can also be 
represented by an equivalent linear roll damping model as shown by the green marks in the middle 
plot of Figure 1. 
 
Viscous flow damping also plays import role on structures with tubular members, like some 
offshore rags and pipelaying vessels.  A pipelaying vessel assessment is used here to demonstrate a 
combination of nonlinear hydrodynamic model and linear boundary element seakeeping approach. 
Viscous flow will affect not only the roll but also other motion modes for this case. The panel 
model of the vessel with the stinger is shown on right of Figure 2, and the stinger configuration and 
force definition are presented on left of the figure. 

x

z

Stringer Configuration :

Position A

Position B

Tackel Force

Pivot Force
(in plane)

XY

Z

 
Figure 2. Model of a pipelaying vessel with stinger 

Left: two position of the stinger; Right: under water part of the vessel and stinger 
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A CFD model for this problem will not be a practice choice and a model based on nonlinear 
Morrison formula would be considered. The force in the normal plane of each tubular member can 
be estimated from the relative velocity and acceleration between the structure motion and the flow 
around it.  It is easy to compute this Morrison force for a fixed structure, but not for a floating one, 
as the vessel motion and Morrison force are coupled.  In many available codes, the Morrison force 
model is involved in time domain BEM model.  The time domain boundary element computation 
takes much shorter time than a CFD analysis, but its computing time is still beyond the acceptable 
level for design or design appraisal work.  To answer the requirement, a Morrison force model 
module has been added in the frequency domain BEM code of Lloyd’s Register, WAVELOAL-FD.  
The solution of this Morrison force coupled analysis is obtained from an iteration process.  The 
Morrison force is treated as an external force in ship motion equation.  In the first iteration, ship 
motion is obtained without Morrison force and then this ship motion is used to compute the first 
estimation of the Morrison force; the computed Morrison force is taken into account in ship motion 
solution of second iteration and repeat the 1st or previous iteration computation again for the new 
Morrison force.  This iteration continues until both ship motion and Morrison force converged.  
Motion RAO of the vessel at zero ship speed and 150 degrees of heading is shown in Figure 3.  The 
stinger decreases the ship motion and shifts the natural frequency of roll and pitch to high frequency 
side, and obviously the Morrison force coupling effect needs to be considered in the analysis. 
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Figure 3. Motion RAO of the pipelaying vessel at zero forward speed and 150 degrees of heading 
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Figure 4. RAO of tackle force and pivot force 
 

The stinger force result has been used to in a short-term statistic computation for a maximum value 
check.  We found from Figure 5 that, in a high sea state where Tp=10 sec., the maximum stinger 
force based on frequency domain analysis is significantly large than those obtained from a time 
domain boundary element computation.  The reason is that only one seed is used in the time domain 
analysis due to its long computation time.  In general more seeds are required to obtain a reliable 
time domain simulation.  
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Figure 5. Comparison of 3 hours maximum force by the time domain (TD) and frequency domain 

(FD) analyses 

Tank Sloshing of LNGC/FLNG 

The nonlinear viscous flow force has been successfully involved in linear boundary element model 
in examples of previous section.  But we do not always have luck to do so.  Sloshing load on wall of 
partially filled tank is a good example.  Structural damage, especially the fatigue one, on the tank 
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wall is the major threaten for a LNGC and sometimes FLNG.  The tank wall damage is induced by 
the sloshing load due to the liquid flow inside the tank.  A large LNGC can have a length of 350 
meters; one large LNG tank can be 80,000 cubic meters.  For this scale of the vessel and tank, a full 
ship CFD model, including both fluid domain around the ship and liquid domain inside tanks, will 
be out of consideration.  Instead of that, a combined frequency domain boundary element model 
and CFD tank model will be selected. In the sloshing coupled boundary element model, an 
individual tank boundary element model will be adopted to solve the so-called radiation problem of 
the liquid flow inside a tank.  This solution is still the velocity potential one exclude the non-linear 
flow effect.  Adding those added-mass and damping from each partially filled tank in ship motion 
equation, the sloshing coupled ship motion can be solved.  A model of a LNGC with two partially 
filled tanks is shown on left of Figure 6; the roll motion RAO at zero ship speed in beam seas from 
an analysis with and without tank flow effect is shown in the right of the figure. The ship motion is 
totally different when effect of liquid flow in the two tanks is involved; the roll motion from the 
sloshing coupled model has two peaks instead of one.  In Figure 7, other two lateral motions, sway 
and yaw, in the same condition are presented.  The filling ratio is 50% in both tanks. Red lines with 
name “FDWL” is the results obtained by WAVELOAD-FD, the sloshing coupled BEM model in 
frequency domain; and the blue marks are the experimental results.  The RAO of lateral and vertical 
total force on the fore tank of the model are presented in Figure 8.  The numerical results of the 
forces correlate with experiments well. These example shows that the inviscid linear BEM model 
works well for the global responses, ship motion and total tank force. But this model has a time 
harmonic tank wall pressure prediction and cannot predict the sloshing pressure peaks in a reliable 
accuracy.  A CFD model is then required.  An OpenFOAM based tank sloshing CFD tool, 
Aquarius, has been developed in Global Technology Center of Lloyd’s Register in Southampton. 
The sloshing coupled ship motion will be computed first by WAVELOAD-FD, and the resultant 
ship motion will be used to drive the CFD tank model to simulate the pressure distribution due to 
the sloshing.  In Figure 9, a 3D and 2D flow pattern obtained by Aquarius are presented, and 
pressure time history at different tank wall locations are plotted in Figure 10.  The sharp peak of the 
pressure due to sloshing has been well captured.   
This gives an example of using different level of numerical models in one hydrodynamic 
assessment for industry application. 
 

 
                          
Figure 6. Model of a LNGC with two tanks (top left) and roll RAO without (top right) and with tank 

flow coupling (bottom right); at zero forward speed in beam sea. 
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Figure 7. Sloshing coupled motion: sway (left) and yaw (right) at zero forward speed in beam seas. 

 
Figure 8. RAO of total tank force: lateral (left) and vertical (right) at zero speed in beam sea. 

 

   
Figure 9. Flow by Aquarius CFD tank model 

 

 
 

Figure 10. Time history of pressures at specific locations on tank wall by Aquarius 
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Multi-level Time Domain Approaches for Nonlinear Load Analysis 

Frequency domain BEM model has the best efficiency and is used as the main analysis tool in the 
industry so far.  But the linear character of this model has the limitation of its application for small 
wave and small ship motion.  Vertical bending moment and shearing force are used as the typical 
load in many design and design appraisal works. The critical bending moment and shearing force 
are estimated from analyses in large wave conditions.  Linear BEM model has a basic assumption 
that there is no vertical geometry change of hull surface around water line, therefore the bending 
moment in hogging and sagging condition has same amplitude by linear BEM model.   On the other 
hand, hull geometry does change along vertical at least at bow and stern part.  As a result, the 
amplitude of bending moment in hogging and sagging condition is different in large wave 
conditions.  The time domain model based on database of frequency domain analysis is in general 
required for critical load assessment.  As explained in the stinger force analysis, a reliable time 
domain simulation in a high sea state needs a large number of seeds, which could be as large as 20 
for some cases.  The multi-seed time domain analysis may then be too time consuming and 
becomes unrealistic.  A simplified time domain approach, so called intermittent, has been proposed 
by Lloyd’s Register.  In an intermittent model, ship motion will be kept the same to those obtained 
by a frequency domain model, and the frequency domain results of ship motion and pressure are 
transferred to time domain for a specific regular wave condition or sea state,  hydrodynamic 
pressure on hull surface is then been corrected at each time step.  By intermittent correction, non-
zero pressure will be added on the mean dry hull surface if it is under water surface at that time 
according to the ship position and the height of total waves.  Correction will also be applied on 
mean wetted hull surface to make the total pressure being zero if that part of hull moves out of 
water at the time.  The corrected hydrodynamic response will be used to compute the loads, bending 
moment and shearing force.  An analysis in a 24.1 meters wave height regular wave condition is 
presented in Figure 10 through 12. Pressure distribution by the linear BEM model at a time of 
hogging condition is plotted on left of Figure 10, the one with intermittent correction is plotted on 
the right.  The linear BEM model has negative total pressure around bow and has zero pressure 
above the waterline.  On the other hand, the intermittent model does not have negative pressure and 
has non-zero pressure above the water line around the middle ship.  The pressure around bow has 
significant contribution to vertical wave making bending moment (VWBM), while pressure on 
vertical hull surface will have no contribution to VWBM.  As a result, the linear BEM model will 
over-estimate VWBM due to the negative pressure and its VWBM result would be larger than that 
by intermittent model. 

 
 

Figure 10. Pressure distribution of linear model and intermittent model in a hogging condition 
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Figure 11 shows the pressure distribution of the same vessel in same waves but at a time of sagging 
condition.  At this time the linear BEM model has a portion of negative pressure are on vertical hull 
surface around middle ship area, but the intermittent model got more pressure on bow and stern 
above the waterline.  An increase of VWBM can be expected in the results of intermittent model. 

 

 
 

Figure 11. Pressure distribution of linear model and intermittent model in a sagging condition 
 

The longitudinal distribution of VWBM for hogging and sagging conditions obtained by the linear 
BEM model and nonlinear intermittent model are presented in Figure 12.  The results of linear 
VEM model are in the colour of green, results of intermittent model in colour of black, and the 
correction part from the intermittent are in red.  The hogging results are presented by lines with 
marks and sagging ones by lines only.  The linear BEM model shows a symmetric hogging/sagging 
result, and results of intermittent model are not.  As we expected, intermittent model has a smaller 
VWBM in hogging, up to 15% on some locations; while for sagging condition, intermittent   model 
got a maximum VWBM around 75% larger than that by the linear model for this extreme high wave 

 
Figure 12. Longitudinal distribution of VWBM in a large wave condition 
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condition, H=24.1 meters. The VWBM results obtained by intermittent model is closer to the 
experiments and sea trail data, and could provide a reference load for design and design appraisal.  
Comparing to time domain BEM model, computation time by an intermittent model is ignorable.  

Conclusions 

Applications of different approaches based on linear boundary element method and other nonlinear 
models like CFD, viscous Morrison force and viscous damping, are presented in this work.  A 
simplified nonlinear time domain correction method, intermittent, for design bending moment and 
shearing force has also been presented.  Through these examples, we can see the efforts for 
improving the efficient numerical tool to answer the requirement from the marine and offshore 
industry.  
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Abstract 

The Levitron is a revolutionary toy that continues to astonish beginners and experts of spinning 
tops. Permanent magnets demonstrate experimentally that can levitate practically without any 
dissipative effects in the air, but the complexity of the dynamic equations of this famous and exotic 
toy are relevant. In particular the stability region and the related boundary conditions are surprising 
and a single model shows difficulties to be consistent for all kind of its dynamics. Starting from a 
specific experimental test bench and data processing on movies, the paper presents an unique 
nonlinear magneto-rotordynamic model that allows obtaining the nonlinear equations of motion of 
all rigid body modes of the Levitron, and with which it is possible to describe the complete dynamic 
behaviour of the spinning top and to highlight the presence of stability fields related to its spin 
speed and vertical position of levitation. The advantage of this unique model is also its property to 
describe and to underline the intrinsic linearised and nonlinear dynamics and the capabilities of this 
exotic toy to extend the characteristic of a nonlinear system dependent on large displacements and 
spin speed. By means of the numerical integration of the equations of motion, the spatial trajectories 
of the spinning top have been computed and validated by comparison with the experimental test 
results. 

Keywords:  Levitron, rotordynamics, magnetic levitation, nonlinear dynamics 

Introduction 

The Levitron is a revolutionary toy that continues to astonish beginners and experts of spinning 
tops, as the device seemed to violate the famous Earnshaw’s theorem of magnetic levitation 
instability [Earnshaw (1842)]. Although it is well known that the gyroscopic effect stabilizes the 
rotordynamic behaviour of this magnetic spinning top, consistent analytical models and exhaustive 
explanations about limit conditions on its stability are not completely presented. Permanent magnets 
demonstrate experimentally that can levitate practically without any dissipative effects in the air, 
but the complexity of the dynamic equations of this famous and exotic toy are relevant. In particular 
the stability region and the related boundary conditions are surprising and a single model shows 
difficulties to be consistent for all kind of its dynamics. Dynamic properties such as angular speed 
ranges and geometrical subspace where the stability may be reached, physical masses and magnetic 
limits, need nonlinear models and modal approaches to identify different behaviours. 
 
In 1996 one of the earliest and most cited paper on the Levitron is published by [Berry (1996)] and 
it first expressed a theory based on this type of magnetic levitation. The paper defines the vertical 
stability range for a magnet with a disk-shaped base, the admissible range for the mass of the 
spinning top, the rotational speed range where it is possible to find a stable behaviour, and the 
stability conditions in the horizontal plane. Analogously [Simon et al. (1997)] investigates the 
Levitron dynamic behaviour with a square permanent magnet base and with a circular ring base and 
demonstrates that both the bases work in a similar way. Also [Jones et al. (1997)] propose a simple 
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dipole interaction model to investigate the stable behaviour of the Levitron and analyses different 
assumptions for the orientation of the spinning top for estimating the upper and lower limits of the 
spin speed for a stable equilibrium, neglecting an unique model. 
[Gans et al. (1998)] present a complete, coupled, non-dissipative Hamiltonian system to describe 
the Levitron dynamic behaviour; the paper points out a region of a two-dimensional manifold of 
initial conditions for which levitation is permitted and identifies three distinct failure modes that 
correspond to an insufficient initial spin speed, a too large initial tilt and a too large initial spin 
speed. [Gov et al (1999)] describe the Levitron problem with a more dynamic approach and defines 
the stability field along the vertical axis in terms of spin speed. In [Flanders et al. (1999)] the 
expressions of the minimum speed precession, depending on the transversal and the polar moments 
of inertia of the spinning top, are reported; the papers try to describe the maximum height reached 
by the spinning top with complex physical-magnetic approaches. 
Finally in [Genta et al. (1999)], by means of a nonlinear rotordynamic model and without 
introducing any simplification, the equations of motion of all the rigid body modes of the spinning 
top are obtained. Computing the linerised natural frequencies, thus using the modal approach, that 
characterize the roto-translational vibrations of the rotor in the plane and the precession motion of 
its axis, the spin speed conditions to assure the levitation stability are obtained and some results 
from a numerical integration of the equations of motion are presented. [San Miguel (2005)] arrives 
at results similar to [Genta et al. (1999)]; it shows the results of three different methods to integrate 
the equations of motion obtained using a mechanical approach. 
[Krechetnikov and Marsden (2006)] discuss the instabilities caused by the non-conservative forces 
of dissipative and positional type and uses the results of two classical theorems to interpret the 
Levitron behaviour. It is emphasized that dissipation is fundamental for the stabilization of the 
spinning top, but in the present authors opinion this point of view may not be completely shared. 
All literature papers mentioned so far consider a uniform magnetic induction field or a magnetic 
induction field linearised at the levitation point, and obtain the rotordynamic equations arbitrarily 
uncoupling the behaviour of planar and vertical degrees of freedom. 
In [Bonisoli et al. (2011)] is presented a way to take into account a nonlinear magnetic model based 
on the analogy of the equivalent solenoids [Bonisoli and Vigliani (2006)] applied to the Levitron; 
[Genta et al. (1999)] is revisited presenting a nonlinear and a linearised analyses to describe the 
physical causes for the existence of two spin speed thresholds of stability; some numerical 
simulation are performed to underline the limits of the linearised analysis in the coupling between 
different mode shapes to influence the dynamic behaviour. 
 
In the present paper, the experimental outcomes are initially analysed through a dedicated test 
bench suitable to provide 3D data for the model comparison. With an unique magneto-rotordynamic 
model, the analysis of [Bonisoli et al. (2011)] are completely developed taking into account also the 
air dissipative effects present on the spinning top and the influence on the dynamic behaviour of the 
device is evaluated and compared with experimental results. The model adopted for both nonlinear 
and linearised analyses allows evaluating stability conditions, modal linearised dynamic behaviour 
and nonlinear properties. With respect to the vertical equilibrium position, two different spinning 
top collapse trajectories can be simulated due to a too slow or a too fast spin speed. The possibility 
to compute the solutions by using a time-numerical integration for any point in the space and to 
estimate the magneto-static force intensity by using a nonuniform magnetic model, based on the 
analogy of the equivalent solenoids, allows calculating the spinning top spatial trajectories. The 
spectral analysis of the computed time histories are compared with the experimental measurements 
and the complex nonlinear dynamic nature of the Levitron is discussed. In particular, the transient 
analyses in time-frequency domains allow verifying the natural frequencies of the linearised model 
and can demonstrate the nonlinear coupling between modes. 
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The complete and more detailed comparison between nonlinear and linerised dynamics both 
numerically and experimentally is under evaluation of the submitted paper [Bonisoli and Delprete 
(2014)]. 

Experimental outcomes 

The spinning top is constituted by a disk of rare-earth magnetic material (estimated residual 
magnetization rB = 1.13 T) with vertical magnetization and some paramagnetic/diamagnetic rings 
that are used to calibrate its overall weight and consequently to adjust its floating height over the 
base. The disk diameter is 30 mm, the overall height is 33 mm and the spinning top mass is 29.4 
grams. The larger magnetic base with vertical magnetization and disposed in opposition with 
respect to the spinning top is of toroidal form (external diameter ext = 110 mm, internal hole 
int = 60 mm, height h = 20 mm) and residual magnetic induction rB = 0.254 T experimentally 
measured through Hall effect sensor. 
The experimental investigation of the spinning top trajectories was done through the analysis of the 
trajectories by using a dedicated test bench and a video developed with dedicated programs. 
Considering an arbitrary Cartesian inertial reference system ( zyx ,, ), with centre in the mean 
value of the acquired data, the information about the coordinates as a function of time are recorded 
without synchronizing two digital cameras to the spinning top from two different perspectives, but 
using a set-up with two mirrors that allow to obtain the three coordinates, in function of time, on the 
same frame of a unique and economic digital camera Nikon Coolpix 5200. The sketch of the video 
system is reported in Fig. 1 (left) and one of the frames acquired by the digital video camera is 
visible in Fig. 1 (right). 
 

 

Figure 1.  Experimental test bench (left) and frame acquired  

through the digital video camera (right). 

 
Each frame has a resolution of 320240 pixel and the movie has an image frequency of 25 Hz. Thus 
the acquisition setup has low performance, but for the aim of acquisition, it is sufficient as described 
later. 
For demonstrating the amplitude and the coupling of translation and rotational degree of freedom of 
the spinning top, an example of three frames in perspective are shown in Fig. 2. 
In order to highlight the contours of the spinning top and the evaluation of the barycentre 
displacements, in the top view and in the profile view a visual contrast “black and white”, using 
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high contrast on the movies frames, is adopted to increase the contours definition and to determine 
in each frame the correct position of the centre of gravity of the spinning top. 
An example of the two regions of the spin in the horizontal and vertical plane are shown in Fig. 3. 
Due to the definition of the barycentre, it results: 
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where S are the first moment of area with respect to the reference system and the specific axis and A 
are the relative areas of the two regions front or top. 
 

 
Figure 2.  Three frames in perspective, showing large amplitude dynamics of the spinning top. 

 

 
Figure 3.  Evaluation of the centre of gravity through high contrast vertical (left)  

and planar (right) digital process of the same frame. 

 
During the acquisition the minimum and maximum trajectory increment result in the range 
0.023  0.646 mm, with a mean increment of 0.243 mm. According to the frequency rate of 25 Hz 
of the movie, the measured translational velocities are in the range 0.6  16 mm/s and the mean 
value is 6.085 mm/s. It is worth noting that the minimum spatial resolution obtained is about 10 
m, demonstrating the effective strategy to obtain the experimental trajectory of the spinning top. 
In Fig. 4 the experimental trajectories are reported and in the plane the detected “flower” shape, 
composed of “petals”, is visible. 
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Figure 4.  Experimental trajectories of the spinning top  

in the plane yz  (left) and in three-dimensional trajectory (right). 

 
Due to the quasi stationary dynamics, it is possible to analysed acquisition data of some minutes. In 
particular, considering a data movie of 60 seconds, the investigation of the experimental 
measurements in the frequency domain shows important information on the Levitron dynamics. 
It is evident the coupling between various degrees of freedom of the system, which confirms its 
nonlinear behaviour. A Hamming windowing function was used to calculate the frequency response 
of the spinning top. Fig. 5 shows the frequency analysis through the power spectrum density (PSD) 
related to the vertical x  axis. 
With a trial and error approach in Fig. 5 a research of superharmonics and linear combination of the 
picks is shown. Their names are defined according to the model analysis presented in the next 
chapter. 
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Figure 5.  Fourier analyses on experimental vertical x  data. 

 
It is evident how this exotic toy represents an interesting example of a dynamic multi-degree-of-
freedom system where linear and nonlinear effects are evinced; well-known modal approach and 
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nonlinear techniques can be implemented starting from a mechanical-physical model that is 
presented in the following chapter. 

Numerical model 

The numerical model assumes a spinning top with inertial properties according to the experimental 
device. For simplification in the magnetic model, the magnetic base is assumed to be of a prismatic 
shape (308080 mm, residual magnetic induction rB = 1.13 T), as the first devices available on the 
market. Other magnetic bases have been developed with a disk or ring shape, but the magnetic field 
characteristics are similar and the main parameter for the floating properties is a high ratio between 
the surface of the magnetic base and the diameter of the spinning top. 
According to a mobile reference system coincident to the barycentre of the levitating body (see 
Fig. 2), to describe the mechanical system under investigation a Cartesian inertial reference system, 
with centre in the centre of gravity of the magnetic base is used. The magnetic field equations are 
expressed in the main inertial reference system, while the relations expressed according to the 
mobile reference system can be traced back to the main one by means of three successive rotations 
in accordance with the Cardano convention. The translation of the centres of the two reference 
systems is neglected and, for the used Lagrangian approach, only the axes orientations are necessary 
and not their relative distance. To obtain the mobile triad from the inertial triad ( zyx ,, ) a first 
rotation by the angle   around the y axis, a second rotation by the angle   around the new z axis 
and a final rotation by the angle   about the last x axis leads to the final mobile reference system. 
The rotordynamic behaviour of the spinning top can be described by using the Lagrangian approach 
presented in [Genta et al. (1999); Bonisoli et al. (2011)] which produces the following system of n 
differential equations: 

 i
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where the generalized coordinate, velocity and force are respectively indicated as iq , iq  and iQ , 
and the potential energy is related to the magnetic effects (magnetic induction ) through the well-
known equations of the magnetic forces and torques: 

 )( BF  MU     and   BT M  (3) 

where M , B  are respectively the residual magnetization vector and magnetic induction vector. 
They are applied to the spinning top centre of gravity and that the spinning top, assumed point-like, 
feels the effect of a magnetic field strongly nonuniform and three-dimensional. 
If no simplification is made during the mathematical development of the equations of motion (2), 
the following nonlinear system can be obtained: 
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where it is assumed a spinning top mass m = 29,4 g, moments of inertia PI  = 2,346 kg mm2 and 

TI  = 1,292 kg mm2, V is the magnetic volume of the spinning top, M is its magnetization, gl  is the 
distance between centre of gravity and magnetic volume centre of the spinning top and g is the 
constant of gravity. 
Three different causes of nonlinearity are evinced: order of degrees of freedom (i.e.    term), 
trigonometric nonlinearities (i.e. )cos(  and other similar terms), distribution of the magnetic 
induction field (i.e. xBx    constant). 
Dissipative effects, such as the aerodynamic drag torque of the spinning top, is taken into account 
through the linear damping coefficients trc  and rotc  respectively for the translational and rotational 
behaviour. 
The nonlinear magnetic model is based on the analogy of the equivalent solenoids [Bonisoli and 
Vigliani (2006)] and it allows to map the magnetic induction, its derivatives in the entire spatial 
domain of the spinning top. Thus it provides the generalised elastic forces. Fig. 6 shows the 
integration approach on a generic prismatic geometry and the vertical magnetic induction gradient 
in the plane containing the vertical equilibrium point. 
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Figure 6.  Magnetic model as integrating planar contributions (left)  

and vertical magnetic field gradient on plane eqx  = 29,6 mm (right). 

 
Using the polynomial formulation of the magnetic induction field, the equations of motion can be 
linearised with respect to the equilibrium point eqx  = 29,6 mm where the gravity force is equal to 
the magnetic repulsive force of the magnetic base. The marked degrees of freedom are referred to 
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the equilibrium position of the spinning top, e.g. eqxxx  , it is assumed the spin speed  0  
and the linearised system is expressed as: 
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The first and the last equation of system (5) are uncoupled with respect to the other equations, that 
represent the vertical behaviour (in x  direction) and the planar behaviour of the spinning top, and 
they can be studied separately. In particular, the planar behaviour can be studied by using the 
following vector that contains the complex translational and rotational coordinates: 
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where the eigenvalue  is  is respectively composed of the decay rate   and the natural 
frequency  . 
The planar behaviour of the system can then be expressed in the following matrix form: 
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and it is used for the modal analysis to estimate the stability regions with respect to the spin speed 
 . 
Terms 0A , 2A , 0B  and 0D  are the Taylor’s coefficients used in the polynomial formulation of the 
magnetic field, considering the corresponding linearised expressions. The components of the 
magnetic induction field and their corresponding derivatives are respectively approximated as: 
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Comparison and discussion 

The experimental spin speed and stability limits are globally compatible with the model predictions. 
The first comparison is about the predicted limits of stability of the spinning top. 
For the investigated experimental setup and the corresponding numerical configuration, the system 
results stable in the horizontal plane if the spin speed of the spinning top is between the lower limit 
value min = 96,5 rad/s (921 rpm) and the upper limit value max = 239,3 rad/s (2285 rpm). 
Fig. 7 reports the computed Campbell’s diagram and root locus. Referring to the Campbell’s 
diagram (Fig. 7 left), within the stability range [ min , max ] (drawn as two vertical black solid lines) 
four natural frequencies, corresponding to the four eigenvalues of eq. (7), are distinct, while before 
and after the stability range only a couple of natural frequencies exists; the reference stationary spin 
speed of the spinning top, neglecting the dissipative effect, is set at   = 167 rad/s (1595 rpm) and it 
is shown as a vertical dashed green line. In the root locus (Fig. 7 right), the eigenvalues s  form arcs 
of circular orbit in the complex plane; the drawn arrows are useful to show the eigenvalues 
directions when the spin speed increases: when the real part of all the eigenvalues is equal to zero, 
or less than zero if the dissipative effect is taken into account, a stable behaviour is present. 
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Figure 7.  Campbell’s diagram versus spin speed   (left) and root locus (right). 

 
For what the vertical stability is concerned, it is possible to study the first equation of the linearised 
system (5) separately by the others. For the investigated configuration, this equation represents a 
magnet-pendulum system with an oscillatory behaviour around the equilibrium height 

eqx = 29,6 mm and a fundamental harmonic equal to: 
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The sign of the Taylor’s coefficient 2A  is linked to the second derivative of the magnetic induction 
field B ; according to the static equilibrium of an elastic force, the negative slope of the elastic 
characteristic 0 xFx  allows the vertical stability condition. 
The vertical stability of the investigated device configuration is then assured when the Taylor’s 
coefficient 2A  is positive: for a vertical position lower than minx = 24,9 mm 2A  is negative and the 
vertical stability does not exist, for a vertical position higher than minx = 24,9 mm 2A  is positive and 
the vertical stability exists. 
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In Fig. 8 the elastic characteristic of the spinning top in shown; the configuration corresponding to 
the following numerical simulation is represented by the vertical green dashed line where the 
spinning top weight is balanced by the repulsive magnetic force; in this numerical simulation the 

x  value is about 11,24 rad/s that corresponds to a spinning top vertical frequency of 1,79 Hz. The 
vertical frequency of the spinning top is very sensitive to the weight; in particular increasing the 
weight of the spinning top, the frequency decreases to zero where the minx  condition in reached. 
 

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

x [mm]

F
o
rc

e
 [

N
]

 

 

Magnetic base

F
x

F
x
 interpolated

Gravity force

 
Figure 8.  Vertical equilibrium of the spinning top. 

 
The vertical stability has also an upper limit maxx  for which only qualitative expressions are 
proposed in Literature. In the present paper, the upper limit maxx  is also related to the eigenvalue 
analysis: it is determined by analysing the stiffness matrix reported in equation (7), of the linearised 
system. 
If the inertial, viscous and gyroscopic effects are neglected, the static stability of this equivalent 
system, corresponding to the linearised system (7), corresponds to positive eigenvalues of the 
stiffness matrix. By analysing the sign of the two real eigenvalues, the static stability of the system 
can be investigated as reported in Fig. 9 where the eigenvalues trend is sketched in function of the 
spinning top levitation height: the first eigenvalue 1s  varies remaining always negative 
(corresponding to an unstable translational mode that is stabilized through the gyroscopic effect), 
while the second eigenvalue 2s  varies from positive values (corresponding to a stable precession 
mode) to negative values (corresponding to another unstable mode). 
In particular the first static mode, related to 1s  and unstable, has discordant complex displacement 
and rotation. When the spinning top has a dynamic behaviour of this form, for positive 
displacement, i.e. increasing the distance with respect to the x  axis, it has a rotation opposed to the 
magnetic flow field, thus, using the gyroscopic effect to reduce this rotation, a restoring torque is 
acting on the spinning top, it is moved towards the x  axis and the global stability is achieved. The 
second static mode, related to 2s  and stable in the reference configuration, has concordant complex 
displacement and rotation. It is fundamental to have it stable, because it is aligned to the magnetic 
flow field inclination when the spinning top is moving from the x  axis. 
The transition limit of 2s  sign corresponds to the upper limit maxx = 31,4 mm of vertical stability of 
the investigated configuration. Both minx  and maxx  limits are shown with vertical dashed black lines 
in Fig. 8 and Fig. 9, while the reference model is represented by the dashed green lines. 
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Figure 9.  Eigenvalues 1s  and 2s  of the spinning top. 

 
The numerical investigation of the spinning top trajectories was done through the solution of the 
nonlinear equations of motion (4) with a numerical integration procedure involving a variable step 
solver (ode45). Starting from the spinning top initial conditions and the chosen simulation time, 
each numerical simulation provides the trend of the coordinates of the centre of gravity of the 
levitating magnet; by using a representation on a single three-dimensional diagram the spatial 
trajectory of the magnet is so obtained. 
The trajectory of the spinning top, obtained with initial conditions eqxx 0 = 29,6 mm, 

0y  = 10 mm/s and  0  = 167 rad/s and simulation time T  = 10 s, is reported in Fig. 10 (left); 
the spinning top can be thought as fluctuating between one extreme and the other of the drawn 
“flower” shape. The edge effects, with intensity greater than the magnetic force in the middle, 
increase the vertical component ( x  direction) of the centre of gravity when the spinning top is far 
away from the centre of the “flower”, which also corresponds to the centre of the base magnet, and 
it leads to fold up the “petals”. In the linearised model case the behaviour in the plane is uncoupled 
with respect to the vertical axis and, thus, the trajectory is planar and the “petals” are flat. 
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Figure 10.  Numerical trajectories of the spinning top: nonlinear model (blue lines) and 

linearised model (red lines), starting from non-zero initial conditions without vertical 

perturbation (left) and with vertical perturbation (right);  0
  = 167 rad/s. 
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By changing the initial conditions, the trajectory can become more complex than the reported 
“flower” shape and its domain can take a form other than a “bowl”. Fig. 10 (right) shows the 
trajectory corresponding to the initial vertical condition 10  eqxx  mm = 28,6 mm different from 
the equilibrium one, which presents large oscillations in the vertical direction. The increase in the 
amplitude of the oscillations is due to the magneto-static force, which generates the levitation, and 
that is similar to the elastic force of a nonlinear spring [Bonisoli and Vigliani (2007)] and is greater 
than the case of initial condition eqxx 0 . The planar behaviour of the linearised model is the same 
of the previous case, due to the vertical and planar uncoupled dynamics. 
Considering now the aerodynamic drag torque added to both nonlinear and linearised models, the 
transient analyses in time-frequency domains allow verifying the natural frequencies of the 
linearised model and also can demonstrate the nonlinear coupling between modes. In Fig. 11 the 
progressive decreasing spin speed from   = 167 rad/s produces the eigenvalues changes in the time 
domain from the dashed green line to the critical value min  = 96,5 rad/s of Figure 4 (left) in about 
120 s. When natural frequency 2  touches 3  the behaviour becomes unstable and the spinning top 
falls. Theoretical natural frequencies x  in the vertical x  axis, 1 , 2 , 3  and 4  in the plane yz  
are depicted with dashed white curves. The comparison between the two models shows that in the 
vertical behaviour secondary frequencies are  1 x , the superharmonic x2  and the secondary 
frequency  23   . In the planar behaviour the secondary frequencies  x 2 ,  x 3  and 









 12 2

1
  are detectable. Naturally, in the linearised model only the five eigenvalues survive. 

 

 
Figure 11.  Time-frequency analyses of the spinning top transient behaviour on the vertical 

axis x  from   = 167 rad/s of the nonlinear model (left) and linerised model (right). 

 
With respect to the experimental data, due to the fact that the experimental base magnet is of 
toroidal shape and it is devoid of the central hole (unlike the numerical simulations), the magnetic 
field is extended for larger x  (increasing the Levitron levitating effect) and the natural frequencies 
present some differences. In particular it has been evinced that x  is closer to the backward mode 

1 , also because it is deeply related to the spin weight, according to the note about Fig. 8, and it 
decreases, increasing its weight (see the tangent behaviour to the force characteristic of Fig. 8). 
The presence of the couplings between x  and the natural frequencies of the linearised planar 
analysis is another important characteristic of nonlinearity that demonstrates the coupling between 
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the vertical and the planar behaviour of the spinning top, experimentally well visible in Fig. 4 and in 
the three frames of Fig. 2 where the spinning top increases its levitation height when it is far from 
the vertical axis. 

Conclusions 

The Levitron continues to surprise beginners and experts of spinning tops. It represents not only a 
toy, but also a mechanical-physical demonstrator of how nonlinear and linearised dynamics 
approaches can be able to describe reality. In particular the results obtained from the application of 
an unique nonlinear magneto-rotordynamic model can relate stability regions of the spin speed, both 
its vertical limits of levitation and the related boundary conditions through the linearization 
methodology. The nonlinear model demonstrates how this exotic toy merges the linear modes 
together and suggests interesting developments in nonlinear normal mode applications and to 
analyse the planar stability limits and large displacements dynamics, till unknown although the 
simulations can measure the nonlinear effects of the magnet base boundaries. 
Finally, the authors consider the Levitron an interesting example to explain didactically linear and 
nonlinear dynamic properties. 
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Abstract 

This work develops a model to measure the permeability property of the deep lithosphere-
asthenosphere [~ 660 Km] under coupled lithostatic pressure [~ 10 GPa] and temperature [~ 1500 
ºC]. First, the new novel lattice Green function & lattice Boltzmann multi-scale [200 pm ~ 100 µm 
~ 10 cm] flow driven pore-network model is obtained for the first time, and the role of free, 
supercritical [374 °C & 22.1 MPa] and constitutional state water [H+, (OH)-, (H3O)+, 1500 °C & 
1~10 GPa] is analyzed. Then, the permeability property of the deep lithosphere-asthenosphere [~ 
660 Km] is predicted and their dependence on pressure, temperature and chemical composition is 
explored. 

Keywords: Lattice Green function; Lattice Boltzmann method; Flow driven pore-network damage 
theory; Permeability of lithosphere-asthenosphere; Parallel CPU-GPU platform  
1. Introduction 
Permeability of lithosphere-asthenosphere is closely linked to the rheology, viscous-elastic and 
strength properties of the deep earth [0 ~ －660 Km], reflected dehydration-melting and phase-
transition-melting properties of the rock/mineral and their dependence on pressure, temperature and 
chemical composition. Permeability physical property is important to understand the interior 
structure and material convection in the earth [1-4]. Brace et.al [5] studied the permeability of granite 
under 10~400 MPa condition; Chu et.al [6] found that permeability decrease with an increase in 
pressure from 1.5 Mpa to 22 MPa, and Morrow et.al [7] measured permeability under 10~200MPa 
confining pressures; Lockner et.al [8] studied permeability from the 12 Km deep well under 
confining pressure 10~300 MPa, and pore pressure 112-117 MPa; Darot et.al [9] measured 
permeability of granite specimens heated up to 650 °C for various confining pressure10~100 MPa; 
Gorbatsevich et.al [10] investigated permeability of deep-seated rocks under PT-conditions in the 
Kola Super deep Borehole [SG-3, 6~8 Km]; Gleeson et.al [11] used an extensive compilation of 
results from hydrogeologic models [ >5 Km] and provided the first global picture of near-
surface[100 m] permeability; Behnsen and Faulkner [12] measure water permeability of 
phyllosilicate powders at room temperature and varying confining pressure up to 160 MPa with a 
constant pore pressure of 10 MPa; Armitage et.al [13] studied vertical and horizontal permeability 
across a range of effective pressure 0~70 MPa; In-situ measurements of permeability in the Nankai 
accretionary prism were under taken during a recent IODP expedition [14].  
But to the rock/mineral in the deep lithosphere-asthenosphere (~ 660 Km), it is hard to measure 
permeability through lab experiments manner and classical theoretical analysis way and traditional 
numerical method, especially when the water is located at supercritical state (374 °C, 22.1 MPa) 
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and constitutional state (H+, (OH)-, (H3O)+; 1500 °C, 1~10 GPa); In the lab experiment asperity, 
the existing design capacity and manufacturing ability can not provide such high pressure and 
temperature condition for the lab experiment apparatus and device; in the classical theoretical 
analysis asperity, the classical fluid-solid coupled mechanics/physics theory do apply to the ultra 
high temperature and pressure rock/mineral physical-chemical process in the deep earth; In 
traditional numerical method asperity, the traditional computational finite different element method 
and finite element method which based on the continue mechanics/physics can not calculate the 
lowest scale relationship between the molecular-ion scale rock/mineral structure and potential 
energy/force; All these reasons lead the permeability in the deep earth (~ － 660 Km) studies 
remain stagnate stage in the last 40 years. 
In recent years, with the development of lowest level scales (atom-molecular-pico-nano-micro) 
computational porosity fluid flow mechanics/physics theory, especially for quantum lattice 
Boltzmann method[15-22] applied into physical transformation and chemical equilibrium/reactions 
problem, measuring/determining ultralow permeability in the deep lithosphere-asthenosphere 
became possible.  
In this work, based on the quantum physical-chemical theory, the lattice Green function under 
coupled temperature and pressure potential is derived and combined with the previous work on the 
lattice Boltzmann distribution function [23-27], the new novel lattice Green function & lattice 
Boltzmann multi-scale flow driven pore-network model for measuring the permeability of 
rock/mineral in the deep earth is developed for the first time by the authors. Then, the permeability 
of lithosphere-asthenosphere under coupled LS (0~10 GPa), PS (0~600 MPa) and temperature 
(0~1500 ºC) is calculated and their dependence on pressure, temperature and chemical composition 
are analyzed, which can be helpful for understanding the strength weakening of the asthenosphere 
and the interaction between lithosphere-asthenosphere. 
2. The mathematical model  
As we know, when the fluid flow translates through ultralow permeability porous rock/mineral 
(UPPR/M) under ultrahigh pressure-temperature (UHPT), the dynamics viscous of fluid, effects of 
boundary layer and surface diffusion can not be neglected; the classical fluid-solid theory 
established on the continue mechanics do not suit for these complex rock/mineral physical-chemical 
process, and the molecular-ion scale potential energy/force can not be simulated through traditional 
finite different element and finite element method, the lattice green function & lattice Boltzmann 
method had be used to analyzed.   
Put the typical nature core samples from upper-crust (0~20 Km), lower-crust (20~50 Km), upper 
mantle-lithosphere (50~150 Km) and lithosphere and asthenosphere (150~660 Km) into the parallel 
central processing unit & graphics processing unit (CPU&GPU) high performance computational 
system is the first step for the lattice Green function & lattice Boltzmann (LGF-LBM) model; Using 
micro XCT-400 CT system and focused ion beam system, the high resolution crosses-section 
images and micro surface images are obtained, then the 3D virtual digital rock are reestablished, 
and the LGF-LBM model are constructed. The left row (A1~E1), the medium row (A2~E2) and the 
right row (A3~E3) in the fig.1 show the initial CT data, the pretreated CT data (the threshold is 
arrange from 78~100) and the ES&NS model, respectively. In this process, the interior geometry 
architecture on low-level scales is translated from the pix RGB color format into the cell-mesh-grid 
model (cell-lattice green function method; grid-lattice Boltzmann method; mesh-LGF-LBM 
method). 
 

 

Fig.1. LGF-LBM model for typical rocks/mineral of the deep earth. 
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A1~E1: represent center slice of physical object of granite. marble, sand, eclogite and olivine, respectively. A2~E2: 
represent relatively virtual digital models boundary of A1~E1. A3~E3: represent cross section mesh grid (1024×1024) 

for A1~E1. 
Then, the initial/boundary conditions, the physical/chemical parameters of rock/mineral and water, 
and the low level scales geometry pore-solid structure are defined. The diameter and the length of 
the nature core samples are equal to 5cm and 10cm, respectively; the resolution of cross-section and 
the interval between cross-sections are equal to 2~10 µm. The general model was formulated by 
utilizing an automatic local amplification grid technique, and the initial ES&ES physical is equal to 
1024×1024×1024 pixels, which does not include the extended variables (Fig. 2).  

 

Fig.2. The physical objects and corresponding digital virtual physical 3D models 

 A~E: physical core samples of granite, marble, sandstone, eclogite and olivine, respectively; F~J:  relatively digital 

virtual physical 3D models of A~E, respectively. 

There are four different scales for the UPPR/M in the deep earth. First, the pore/void size is located 
at atom-molecular-pico-nano scale level, the fluid viscous (as function of pressure-temperature [P-
T] ), the effects of boundary layer, and the unsteady fluid flow (eddy flow and turbulent flow) can 
not be neglected; Second, when the P-T conditions are high enough, the water role in the 
rock/mineral includes free-supercritical-constitutional state, the fluid flow particles are composed of 
four components [H2O, H+, (OH)-, (H3O)+]. Third, the micro pore is composed of four types 
[multi-grain gap, polycrystalline space, crystal space and crystal internal space[28] and the 
deformation of the micro-structure had to be considered; Last, the fluid flow permeability and 
diffusion include intermolecular collisions and diffusion (Fick’s laws of diffusion), molecular 
collisions with interface (Knudsen diffusion), molecular and interfacial adhesive and viscous flow 
(Darcy and Forchheimer flow). With the scale decrease, the surface stress component became 
domain, the effect of the body stress component reducing, and the classical N-S equation is no 
longer applies (Fig. 3).  

 

Fig.3. Micro fluid flow translate in the ultralow permeability under UHPT 

Olivine, resolution 2 µm, cell-node-grid scale 10243, 1.4 GPa and 600 °C. 

The UPPR/M consists of six constituents, i.e. the particles of solid skeleton (the 1st component), 
bound liquid film (the 2nd component), static pore-liquid (the 3rd component, free state water), and 
dynamic pore-liquid I (the 4th component, free state water), dynamic pore-liquid II (the 5th 
component, supercritical state water) and dynamic pore-liquid III (the 6th component, constitutional 
state water).  
Here summation from 1 to 3(1 to 6) over repeated lowercase (uppercase) subscripts is assumed, and 
a subscript comma denotes the partial differentiation with respect to the coordinates. The dynamic 
governing equations and constitutive relations of UPPR/M under electro-magneto-thermo-force 
(EMTE) field can be expressed as [29, 30]  

ALτij, j
L + BL + Σ iJ,i + fJ = 0                                             (1) 

where the extended porosity, the extended permeability, the extended stress and the extended body 
force of the UPPR/M can be defined as 
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The more detailed explanation to the equation (4) and (5), please refer to the author's previous 
work[31, 32]. The drained porous solid frame and the drained bound liquid film have the same 
displacement and pressure; the static pore-liquid, the dynamic pore-liquid I have the same 
displacement. The pressure of saturated porous solid frame is the sum of static pore-liquid, dynamic 
pore-liquid I, dynamic pore-liquid II and dynamic pore-liquid III components pressure. The elastic 
wave are composed of volume wave, spin wave and deflection wave parts, and can be written as 
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The motion equation of UPPR/M under transient dynamic wave loading can be written as 
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The constitutive relation equation of UPPR/M under transient dynamic wave loading can be written 

as 
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Then the wave displacement in UPPR/M can be defined as 
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If we defined that solid skeleton component and liquid components are parallel and subjected to the 

same strain, the time-dependent rigidity modulus components G
L
of UPPR/M is defined as 
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The permeability tensor can be defined as 
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The more detailed introduction can be found elsewhere in the literature[33-36]. 

The lattices point in !d  can be defined as 
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the lattice Green function on the lattices point can be written as 
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When the resolution between any two grids in the D3Q27 [31] numerical model is high enough to 
reach the quantum physical-chemical scale level (atom-molecular-ion level, around 200 pm), the 
lattice grid in the D3Q27 can be defined as lattice point  !d . The relationship between distribution 
function [31] in the D3Q27 and the structure function in the lattice Green function can be established, 
and the improved D3Q27 lattice Green function & lattice Boltzmann can be used to exploring the 
lattice points extended physical-chemical process, and the permeability in the UPPR/M can be 
calculated. 
3. LGF-LBM model for lithosphere-asthenosphere permeability  
3.1 Mathematical calculations versus AUTOLAB 200C experience system  
Based on the LGF-LBM model, the ultralow permeability of the deep earth under UHPT can be 
measured. We choose a tight sandstone core samples from the Ordos Basin Triassic formation of 
China, the rock depth, the diameter, the length, the density, the confining pressure, the PS, the 
temperature is defined as 862.76~864.36 m, 25.4 mm, 25~30 mm, 2.359~2.426 g/cm3, 0~200 MPa, 
0~10 MPa, 35~45 °C respectively, the more detail parameters of the tight sandstone core sample are 
shown in Tab.1. 

Tab.1. Mineral composition, porosity and matrix density of the tight sandstone samples 

 
The diagonal component of permeability tensor obtained as LGF-LBM model and experimental 
approach are given in the Tab. 2~4. The regular black color values represent the LGF-LBM model 
results, the value with outside border represent experimental results. From the diagonal component 
of permeability in x, y (DC-XYZ), we can see that the LGF-LBM model approach results are 
consisted with fluid pulse experimental results on the Inc AUTOLAB 200C system.  

Tab.2. Diagonal component in x-direction as function of effective pressure and temperature 

 
Tab.3. Diagonal component in y-direction as function of effective pressure and temperature 

 

Tab.4. Diagonal component in z-direction as function of effective pressure and temperature 
3.2 Upper-crust (0~20 Km)  
The P-T conditions are 0~400 °C and 0~1.4 GPa, the water is free-supercritical state, the fluid 
transport in the multi-grain gap and polycrystalline space, the dehydration-creep-consolidation-
enhance process existed, the permeability increases with LS, PS and temperature increasing (LS is 
most important, PS is second and temperature is least important); the permeability of sandstone and 
marble are located at 10~100 uD and 0.1~2 uD respectively, and the PA of marble is more apparent 
than sandstone (Fig.4). 
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Fig.4. Permeability of sandstone (left) and marble (right) as function of lithostatic pressure (0 ~ 1.4 GPa), pore pressure 
(0 ~ 200 MPa) and temperature (0 ~ 400 °C) 

A~C: represnet diagonal element of sandstone in x, y and z direction, respectively; D~F: represent diagonal element of 
marble in x, y and z direction, respctively. 
Sandstone: The diagonal component in x, y and z direction (DC-XYZ) varies 60~155 uD, 30~98 
uD and 10~30 uD respectively; The permeability increases slowly at 0~0.65 GPa, increases sharply 
at 0.65~1 GPa, increases rate slow down again at the range of 1~1.4 GPa; The temperature has little 
influence and can be neglected at 0~0.6 GPa, has positive influence but still not obvious at 0.6~1 
GPa, became obviously when the effective pressure over 1 GPa. 
Marble: The DC-XYZ varies 0.5~2 uD, 0.1~1.8 uD and 0.1~1.3 uD respectively; the effect of LS 
increases fast in x, y and z direction is 0.7~1.1 GPa, 0.5~1.1 GPa and 1.2~1.4 GPa respectively, the 
most positive influence effective stage in x, y and z direction is 1.0~1.4 GPa, 1.3~1.4 GPa and 
1.2~1.4 GPa respectively. 
3.3 Lower-crust (20~50 Km)  
The P-T conditions are 400~900 °C and 0~1.4 GPa, the water is supercritical state and 
constitutional state, the fluid flow transport in the polycrystalline space and crystal space, and the 
dehydration-phase transient process existed, the permeability increases with LS, PS and temperature 
increasing (LS is most important, PS is second and temperature is least important). The 
permeability of marble and granite are located at 0.1~2.0 uD and 0.03~1.6 uD respectively, and the 
PA of granite is greater than marble (Fig.5).  

 

Fig.5. Permeability of marble and granite as function of lithostatic pressure ( ~ 1.4 GPa), pore pressure ( ~ 200 MPa) 
and temperature (400 ~ 900 °C). 

A~C: represnet diagonal element of marble in x, y and z direction, respectively. D~F: represent diagonal element of 
granite in x, y and z direction, respctively. 

 
Marble: The DC-XYZ varies 0.67~2.3 uD, 0.12~1.9 uD and 0.015~1.4 uD respectively. The 
effects of temperature on PA are significant at 400 ~ 900 °C, the PA increased sharply when the 
temperate is higher than 400 °C, which reflects that the water properties over 400 °C is different 
from below 400 °C. 
Granite: The DC-XYZ varies 0.03~1.6 uD, 0.04~1.0 uD and 0.03~0.48 uD respectively. Compare 
with PA in upper-crust zone, the permeability fast-increasing region of granite move from 0.65~1 
GPa to 1~1.4 GPa, which reflected physical properties difference between upper crust and lower-
crust. The effect of temperature to the permeability became highly significant when LS is higher 
than 1.0 GPa, the PA has marked rise at 550°C point, especially for diagonal element in y and z 
direction. 
3.4 Upper mantle-lithosphere (50~150 Km)  
The P-T conditions are 400~900 °C and 1~5 GPa, the water is constitutional state, the fluid flow 
transport in the crystal space and crystal internal clearance. The permeability increases with LS, PS 
and temperature increasing (temperature is most important, LS is second and PS is least important). 
The permeability of granite and olivine are 0.27~4.1 uD and 0.04~0.39 uD, respectively (Fig.6). 

 

Fig.6. Permeability of granite and olivine as function of lithostatic pressure (1 ~ 5 GPa), pore pressure (200 ~500 MPa) 
and temperature (400 ~ 900 °C) 

A~C: represnet diagonal element of granite in x, y and z direction, respectively. D~F: represent diagonal element of 
olivine in x, y and z direction, respctively. 

Granite: The DC-XYZ varies 0.55~4.0 uD, 0.27~1.57 uD and 0.27~1.18 uD respectively. The 
effect of temperature on the permeability anisotropy (PA) is significant, and increased sharply when 
the temperate is higher than 400 °C. 
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Olivine: When temperate is higher than 400 °C varies 0.08~0.38 uD, 0.06~0.24 uD and 0.04~0.26 
uD, respectively. There are existed two PA properties dramatic changes region at 400 °C and 600 
°C point respectively. 
3.5 Lithosphere and asthenosphere (150~660 Km)  
The P-T conditions are 900~1500 °C and 5~10 GPa, the water is constitutional state, the fluid flow 
transport in the crystal space and crystal internal clearance. The permeability decreases with LS and 
PS increasing, and its increase with temperature increasing, temperature is most important, LS is 
second and PS is least important (Fig.7). 

 
Fig.7. Permeability of olivine and eclogite as function of lithostatic pressure (5 ~ 10 GPa), pore pressure (400 ~800 

MPa) and temperature (900 ~ 1200 °C) 
A~C: represnet diagonal element of olivine in x, y and z direction, respectively. D~F: represent diagonal element of 

eclogite in x, y and z direction, respctively. 
Olivine: The DC-XYZ varies 0.022~0.078 uD, 0.017~0.068 uD and 0.011~0.051 uD respectively. 
There are three-temperature inflection points (1st point is 400 °C, 2nd point is 550~600 °C, 3rd point 
is 900 °C), the PA increase sharply at the first two points.  
Eclogite: The DC-XYZ varies 0.0032~0.048 uD, 0.0029~0.062 uD and 0.0023~0.053 uD 
respectively. The temperature effects manner on olivine PA is similar on eclogite. 
5. Discussion and conclusion 
In this paper, we explored the water (free water, supercritical water and constitutional water) 
transport and dehydration in UPPR/M of the deep earth under UHPT, and analyzed the correlation 
between permeability under UHPT. Combined with high resolution 3D virtual digital technology, 
the multi temporal-spatial scale flow driven pore-network dislocation-crack damage theory, the 
novel new LGF-LBM model for measuring permeability of the deep earth is developed for the first 
time. 
Compared with permeability results of the tight sandstone on the Inc AUTOLAB 200C system 
under coupled LS (0~200 Mpa), PS (0~60 MPa) and temperature (0~180 ºC), the accuracy, 
reliability and advantage of LGF-LBM model is validated. 
The permeability of the deep earth (0~660 Km) under coupled LS (0~10 GPa) and temperature 
(0~1500 ºC) is measured (Tab.5), and its variation as function of pressure, temperature and 
chemical composition is discussed (Fig.8). We provide a new approach to understanding the 
mechanism of rheology and strength variation of asthenosphere and interaction between lithosphere 
and asthenosphere. 

Tab.5. Permeability anisotropy of the deep earth under UHPT from LGF-LBM model 
 

Fig.8. Permeability distribution as LS, PS and temperature of the deep earth from LGF-LBM model 
1A~1C: DC-XYZ of sandston as function of LS (0 ~ 1.4 GPa), PS (0 ~ 200 MPa) and temperature (0 ~ 400 °C), 
respectively; 1D~1F: DC-XYZ of marble as function of LS (0 ~ 1.4 GPa), PS (0 ~ 200 MPa) and temperature (0 ~ 400 
°C), respectively. 
2A~2C: DC-XYZ of marble as function of LS (0 ~ 1.4 GPa), PS (0 ~ 200 MPa) and temperature (400 ~ 900 °C), 
respectively; 2D~2F: DC-XYZ of granite as function of LS (0 ~ 1.4 GPa), PS (0 ~ 200 MPa) and temperature (400 ~ 
900 °C), respectively. 
3A~3C: DC-XYZ of granite as function of LS (1 ~ 5 GPa), PS (200 ~500 MPa) and temperature (400 ~ 900°C), 
respectively; 3D~3F: DC-XYZ of olivine as function of LS (1 ~ 5 GPa), PS (200 ~500 MPa) and temperature (400 ~ 
900°C), respectively. 
4A~4C: DC-XYZ of olivine as function of LS (5 ~ 10 GPa), PS (400 ~ 800 MPa) and temperature (900 ~ 1500°C), 
respectively; 4D~4F: DC-XYZ of eclogite as function of LS (5 ~ 10 GPa), PS (400 ~800 MPa) and temperature (900 ~ 
1500°C), respectively. 
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In this paper, an innovative sustainable semi-rigid beam-to-column composite joint with 
deconstructable bolted shear connectors is modelled by using the general purpose software 
ABAQUS. The structural mechanics of this joint considered in the paper requires careful 
consideration, in order to capture the response accurately using computational techniques as the 
interactions of the various components is complex. Three laboratory test specimens having 
sustainable and deconstructable semi-rigid beam-to-column joints have been tested and the results 
are used for validation of the finite element model. Precast “green concrete” (GC) slabs having 
reduced CO2 emissions during their manufacture were attached compositely to the steel beam via 
pre-tensioned bolted shear connectors, with the composite beam being connected to H-section 
columns using a flush end plate with two rows of bolts. The experimental testing was full-sized, 
with all the components being of the same size as would be met in practice. The numerical model 
simulates the composite beam-to-column connection under hogging moment and includes the non-
linear material properties of all constitutive materials of the composite joint. For validation of the 
computational procedure, the results of the numerical modelling are compared in the paper with the 
experimental results, with good agreement being demonstrated. 

Keywords:  FE modelling, Semi-rigid composite joint, deconstructablility, Precast, Connections 

Introduction 

The traditional flush end plate semi-rigid composite connection is one of the best choices for 
connecting a composite beam to a column. This kind of connection has several advantages such as 
its ease of construction as well as being economical compared to a rigid connection. Apart from 
these benefits, the rigidity in this connection can allow for adequate moment distribution in the 
frames. These composite connections have higher initial stiffness and moment capacity as well as 
rotational capacity compared with steel connections, owing to the contribution of the reinforcing 
bars located in the slab. The induced tensile forces are resisted by the top bolts and the reinforcing 
bars and compressive forces are resisted by the steel beam. The reinforcing bars contribute 
significantly to the strength and stiffness of the connection. 
Traditional composite systems utilise concrete derived from Portland cement, which is one of the 
largest global sources of CO2 emissions. Moreover, the traditional composite floor systems such as 
a solid reinforced concrete slab or profiled metal decking floor systems are common systems in 
composite structures. For typical construction practices for these types of systems, concrete casting, 
profiled steel decking placing and conventional reinforcing detailing are undertaken on-site, which 
is time consuming and labour intensive, and which can increase the cost of construction, and they 
can lead to quality reductions in the construction industry.  
Combining precast GC slabs having reduced emissions during their manufacture with steel elements 
by using a deconstructable shear connection may solve these problems and concerns associated with 
traditional composite structures.  Pre-tensioned high strength bolts installed through holes in precast 
GC slabs into pre-drilled holes in the steel beam produce a composite flooring system that can be 
deconstructed at the end of the life of the structure (Bradford and Pi 2012a,b, 2013; Rowe and 
Bradford 2013; Ataei and Bradford 2013; Lee and Bradford 2013). Marshall et al. (1971) appear to 
be the first researchers to have reported the use of bolted shear connection, but the context of the 
usage is not clear.   Twelve push tests using high strength bolts as shear connectors were carried out 
and reported by Dallam (1968).  In these set of tests, the bolts were embedded in the concrete slab 
and pre-tensioned by the turn-of-nut method after the concrete had aged 28 days.  He pointed out 
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that high strength bolts displayed a higher capacity and ultimate strength than stud shear connectors.  
Six full-scale simply supported composite beams with high-strength bolted shear connectors were 
tested by Dallam and Harpster (1968), but the bolted shear connectors were embedded in the 
concrete slabs.  Based on this, they concluded that pre-tensioned high strength bolts provide a very 
rigid connection between the steel beam and concrete slab at service loads, and a reserve capacity 
sufficient to develop the ultimate moment capacity of the fully composite section is attainable.  A 
series of tests was conducted on three types of 22-mm diameter post-installed shear connectors 
under static and fatigue loading by Kwon et al. (2010).  It was concluded that bolted shear 
connectors exhibited significantly higher fatigue strengths than stud shear connectors.  Five full-
scale non-composite beams were constructed to investigate the retrofitting of the bridge beams by 
Kwon et al. (2011).  The reinforced concrete slabs were attached compositely to the steel girder via 
post-installed connectors in four beams.  It was concluded that the strength and stiffness of the non-
composite bridge girder can be improved significantly.  In the tests conducted by Kwon et al. (2010, 
2011), the bolts were embedded in the concrete or grout.  Lee and Bradford (2013) conducted two 
series of push-out tests to obtain the behaviour of the post-installed pre-tensioned bolted shear 
connectors.  The first and the second series of this experimental study included five and four push-
out specimens, respectively.  All specimens in the first series and two specimens in the second 
series were constructed by using post-installed pre-tensioned bolted shear connectors.  The major 
differences between the first and second series were size of the precast slab, the reinforcement and 
the number of bolts.  These studies did not focus on the testing and modelling of deconstructable 
and sustainable semi-rigid flush end plate composite joints. 
In order to provide a robust and efficient means for modelling sustainable semi-rigid beam-to-
column composite connections with deconstructable bolted shear connectors, the present paper 
presents a three-dimensional modelling using ABAQUS software.  Three specimens having 
sustainable and deconstructable semi-rigid beam-to-column joints have been tested and the results 
are used for validation of the finite element model.  Precast GC slabs are attached compositely to 
the steel beam via pre-tensioned bolted shear connectors and the composite beam is connected to H-
section columns using a flush end plate with two rows of bolts.  The model simulates a composite 
beam-to-column connection under hogging moment and it includes the non-linear material 
properties of all constitutive materials of the composite joint.  Almost all components were 
modelled as being of the same size as in the experimental tests, including the steel beam, steel 
column, flush end plate and bolts in the connection region.  For validation of the model, the results 
of the numerical modelling are compared with the experimental test results and good agreement is 
achieved.  The modelling is shown to provide an efficacious technique for conducting parametric 
studies, so as to develop design guidance in this novel application in composite construction. 

Finite Element Model  

Material modelling 

For the ABAQUS modelling, the actual stress-strain curves for the materials used can be 
determined from the material tests.  Material tests for the bolts, steel beam and column, reinforcing 
bars, reinforced concrete and bolted shear connectors were conducted and the results were used for 
the FE model. Von Mises’ plasticity was used to model the all the structural steel parts as an elastic-
plastic material with hardening in both tension and in compression. The relationship of the strain 
and stress for all structural steel parts adapted in the model is illustrated in Fig. 1 (a). The load-slip 
relationship and the points defining the relationship between the load and slip of the bolted shear 
connectors adopted in the FE modelling are shown in Fig. 1 (b). 
Concrete in compression and tension was represented using the damaged plasticity model in 
ABAQUS. For concrete under uniaxial compression, the formulation of Carreira and Chu (1985) 
that is commonly used in numerical modelling was adopted (Fig. 2(a)) as 
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where 0020 c ,  

  551432/ 3
 cf                              (2) 

is a factor which controls the curvature of the stress-strain relationship and fc is the mean 
compressive cylinder strength of the concrete in units of MPa. 
In order to model the concrete in tension, the tensile stress was assumed to increase linearly to 01 
of its compressive strength.  After cracking the concrete, the stress declines to zero at strain of about 
10 times the failure strain, as can be seen in Fig. 2(b). 
 
 

  

               (a)                                                                      (b) 

Fig. 1. Stress-strain relationship adapted in FE modelling; (a) Reinforcing bars, bolts and steel beam 
and column, (b) Axial connectors 

 

         

              (a)                                                                           (b) 

Fig. 2 Outline of the normalised uniaxial stress-strain relationship for concrete under (a) 
compression (Carreira and Chu, 1985) (b) tension. 
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Element Type and modelling strategy 

The type and size of elements sometimes have a significant effect on the results, and so the 
determination of the element type and size is one of the important issues in FEM. A finer mesh 
leads to a better result.  However, the finer mesh may leads to computational time problems.  
Three-dimensional solid elements were used to model the bare and composite connections.  Except 
for the reinforcing bars, all components are modelled by 8-node solid elements (C3D8R) with a 
reduced integration scheme which prevents shear locking, reduces computational time, and provides 
the required accuracy (Bursi and Jaspart 1998; Bathe 1996; Cook et al. 2002).  For modelling the 
steel reinforcement, a two-node linear truss element (T3D2) is used.  The reinforcement was 
embedded into the slab, with the slab being the host region and the bars being an embedded region.  
This technique connects these two different components and prevents slip between them. A typical 
FE model of a composite joint is shown in Fig. 3.  

 

(a) 

 

(b) 
 

Fig. 3. Finite element model of a composite joint; (a) with showing concrete slab (b) without 
showing concrete slab 

 
 Contact Modelling 

There are various components in composite connections that interact with each other, and the 
results of the FE analysis depend on the accurate modelling of the contact interaction between these 
components.  Experimental results show that there is no separation between the head of the bolt and 
the flush end-plate, nor between the nut of the bolt and the inner face of the steel column.  
Therefore, the ‘TIE’ option was used for connecting these components which provides full 
interaction between the bolts, nut and bolt head.  The ‘TIE’ option was also used for connecting the 
steel beam to the flush end-plate, because these two components are welded together.  In order to 
simulate the interaction between the top flange of the steel beam and the lower part of the precast 
concrete slab, surface-to-surface contact interaction using a penalty method with a coefficient of 

 

ICCM2014, 28th-30th July 2014, Cambridge, England

872



 

friction of 025 was adopted, in which the top flange and the concrete slab were considered as 
master and slave surfaces, respectively.  
 
Bolted shear connector model 

Modelling the interface between the concrete slab and shear connectors is one of the main issues in 
the FE modelling of the composite beam and joint.  In this research, the strength and the stiffness 
characteristics of the pre-tensioned bolted shear connectors determined from the push tests 
conducted by authors (Fig. 1(b)) are used for modelling of the connection between the concrete slab 
nodes and steel flange nodes, and so an axial connector model was used to model the interface slip. 
These connectors were located at the same positions where bolts were placed on the specimen.  A 
schematic diagram of the axial connector model is shown in Fig. 4. The fracture of the bolter shear 
connectors was assumed to occur at the ultimate slip (15 mm) obtained from the push-out tests. 

 

Figure 4:  Axial connector model for Composite Joint 1 
 

Load Application and boundary conditions 

The loading was applied in two steps.  First, the pretension was applied to the bolts located in 
connection and the joints were then loaded, at which state the bolts were subjected to the pretension 
as can be seen in Fig. 5.  Mirza and Uy (2011) have pointed out that Riks’ technique is needed to 
capture any unloading in the non-linear analysis, and so the GENERAL method and modified RIKS 
method were used for the first step and second step respectively. A static concentrated load was 
applied at the centre of the steel column, as was done in the tests. The initial increment plays a vital 
role in the convergence of the modelling which is why this parameter will be adjusted if a 
convergence problem occurs during the modelling.  

            
                                     (a)                                                                         (b) 

Fig. 5.  Stress distribution at the first step of loadings (a) Bolt (b) Flush end plate. 
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In FE modelling, correct representations of the boundary conditions are essential since slightly 
different boundary conditions can produce significantly different results. For the simulation in this 
paper, the boundary conditions were taken as being exactly the same as in the tests, with the column 
being allowed to move in the vertical direction and with the flanking ends of the beams having 
roller supports. 

Experimental study 

Three beam-to-column joints were designed and constructed in a cruciform arrangement to simulate 
the internal joint in a semi rigid frame.  The details of beam-to-column joint specimens are 
summarised in Table 1. A navel methodology of shear connection was adopted by using pre-
tensioned bolted shear connectors to attach the precast concrete slabs to the top flange of steel 
beams.  Specimens 1 and 2 were designed as a composite joint (CJ) and Specimen 3, which is a 
non-composite joint, was designed as a control test specimen to compare against the composite joint 
tests.  All beam-to-column joint specimens consist of a steel beam of 460 UB 821 and steel column 
of 250 UC 895.  A 12 mm flush end plate welded at the end of steel beam used and connected to 
the flange of the column by using 4 M24 grade 88 bolts.  Stiffener plates were welded to the 
column web at the level of the bottom and top flanges of beam to prevent bending of the column 
flanges in tension and failure of the column web in compression.  The geometric and design details 
for Composite Joints are presented in Fig. 6. 

Table 1: The details of beam-to-column joint specimens. 

Specimen Beam    Column   Tep  

(mm) 

Bd 

(mm)      

R      Nc     Bs  

(mm) 

Ts 

(Mpa) 

Ns 

CJ1 460 UB 82.1 250 UC 89.5 12 M24 6N16 6M20 525 120 1 
CJ2 460 UB 82.1 250 UC 89.5 12 M24 6N16 6M20 525 

 

120 1 
SJ3  460 UB 82.1 250 UC 89.5 12 M24 6N16 6M20 N.A. N.A. N.A. 

Notes: Tep=end plate thickness; Bd=bolt diameter in connection region; R=Reinforcing; Nc= no. of bolts 
as shear connectors per beam; Bs= shear connector spacing; Ts=slab thickness; Ns=No. of slab units. 
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(b) 

Figure 6: Details of joints: (a) CJ1; (b) CJ2.  

Validation of the FEM  

The results of the ABAQUS-based FE modelling are compared herein with the experimental results 
obtained from experimental study to investigate the accuracy and reliability of the FEM, as well as 
to validate the FEM. Three beam-to-column joint specimens were tested in the Heavy Structures 
Research Laboratory at the University of New South Wales and the results were used for validation 
of the FE model. These full-scale semi-rigid flush end plate beam-to-column composite joint tests 
with deconstructable bolted shear connectors were conducted under symmetrical loading to evaluate 
the structural characteristics of these new composite joints. 
In this comparison, the load versus deflection response was modelled, and the results are given in 
Figs. 7(a) to 7(b) for the two composite connections tested and in Fig. 7(c) for the connection with a 
bare steel beam. Table 2 shows the comparison of the FE modelling results and experimental tests. 
It can be seen that the FE model can predict the ultimate load and deflection of all specimens 
accurately. 
CJ1 consists of one unit of the precast concrete panels attached to the top flanges of steel beam by 
using pre-tensioned bolted connectors.  The longitudinal reinforcement ratio for this slab was 09%. 
Six effective longitudinal N16 reinforcing bars were distributed and placed in the top layer of the 
precast concrete slab.  A maximum load of about 505 kN at the deflection of about 55 mm was 
recorded for this composite joint and the specimen behaved non-linearly before failure.  The load 
versus deflection response was modelled, and the results are given in Fig. 7(a) for CJ1. It can be 
seen that the agreement is very good.  
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                                        (a)                                                                   (b) 

 

                                                                            (c) 

Fig. 7. Comparison of FE model and tests for load-deflection response; (a) CJ1, (b) CJ2, (c) SJ3 
 

Table 2: Comparison of FE model and tests. 

 Pult Dult 

 Test FEM Test     FEM 
CJ1    505  549 55       48.5 

CJ2 498 490 54        56 

SJ3  205 217.5 52       53.8 
Notes: Pult= ultimate load, Dult= ultimate deflection 

 
CJ2 was similar to CJ1 except that CJ2 consisted of two separated precast concrete panels attached 
to the top flanges of steel beam.  N16 Longitudinal reinforcing bars were not placed in the top layer 
of the slabs before concrete casting.  In order to connect two precast concrete panel together a pre-
tensioning procedure was used. The N16 reinforcing bars were placed into the prepared holes by 
using plastic tube and then stressed to about 10% of their axial load capacity before testing.  A 
maximum load of about 498 kN at the deflection of about 54 mm was recorded for this composite 
joint and the specimen behaved non-linearly before failure.  The load versus deflection response 
was modelled, and the results are given in Fig. 7(b) for CJ2.  It can be seen that the agreement is 
very good.  
SJ3 was designed as the reference and control test specimen. The steel joint (SJ3) is similar to the 
two composite joints except that SJ3 is non-composite and precast concrete slab was not attached 
on the top flange of the steel beam. A maximum load of about 205 kN at the deflection of about 52 
mm was recorded for this specimen and it behaved non-linearly before the failure. The load versus 
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deflection response was modelled, and the results are given in Fig. 7(c) for SJ3. It can be seen that 
the agreement is very good.  

Failure modes 

All specimens failed by fracture of the M24 bolts due to the resulting tension forces. The FE model 
can predict accurately the failure mode of the composite connection.  Fig. 8 shows the strain 
distribution for the bolt in the mode of failure for CJ1.  As can be seen in Fig. 8, the maximum 
strains in the shank of the bolt are almost same as the strain capacity of the bolt obtained from the 
tensile test on the bolts. Table 3 shows a comparison of the failure modes between the FE modelling 
and experimental testing. It can be seen that the FE model can predict the failure mode of all 
specimens accurately.  The FEM can also predict accurately the plastic deformation and bending of 
the flush end plate, as illustrated in Fig. 9.  
 

                   

(a)                                                                             (b) 

Fig. 8.  Bolt failure at the failure mode; (a) Test (CJ1) , (b) FEM 

                           
                         Test (CJ 1 )                                                                      FEM 

Fig. 9. Deformation and bending of the end plate; (a) Test (CJ1), (b) FEM (in Pa) 

Table 3: Comparison of the failure mode. 

 CJ1 CJ2 SJ3 
Test BF BF BF 

FE Model  BF BF BF 
                                                       Note: BF: Bolt failure 

Conclusions 

This paper has described a numerical modelling of semi-rigid flush end plate beam-to-column 
composite joint tests with deconstructable bolted shear connectors. Three specimens with 
sustainable and deconstructable semi-rigid beam-to-column joints have been tested and the results 
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were used for validation of the finite element model. Precast GC slabs were attached compositely to 
the steel beam via pre-tensioned bolted shear connectors and the composite beam was connected to 
H-section columns using flush end plates with two rows of bolts.  The model simulates a composite 
beam-to-column connection under hogging moment and includes non-linear material properties of 
all constitutive materials of the composite joint.  For validation of the model, the results of the 
numerical modelling were compared with experimental test results and good agreement was 
achieved.  The modelling was shown to provide an efficacious technique for conducting parametric 
studies, so as to develop design guidance in this novel application in composite construction. 
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Abstract  
Three-dimensional (3D) meso-scale finite element models of concrete in compression based on in-
situ X-ray Computed Tomography (XCT) images are developed and validated in this study. The 
micro-scale images from a Brazilian-like in-situ XCT test are first compressed and then transformed 
into manageable meso-scale 3D meshes using a voxel hexahedron meshing technique with a 
stacking algorithm. The concrete damaged plasticity model in ABAQUS is used to simulate 
complicated damage and fracture behaviour of concrete. Excellent qualitative agreement is found 
between the simulations and the XCT test in terms of damage evolution and fracture process on 
both the surface and interior of the specimen. The effects of internal heterogeneous meso-structures 
on the macro-scale loading-carrying capacities and failure patterns are quantitatively and 
qualitatively evaluated by modelling different uniaxial loading directions.  

Keywords: Concrete in compression, In-situ X-ray computed tomography, Voxel hexahedron 
meshing, 3D Image based modelling, Concrete damage plasticity model, Finite element method 

1. Introduction 

Traditional concrete fracture models assuming homogeneous material properties often predict 
unrealistically smooth or wrong crack paths and load-carrying capacity of unknown reliability due 
to its multi-phase, heterogeneous internal structures at micro/meso-scales [Yang and Xu (2008)]. It 
is highly necessary to conduct micro/meso-scale modelling for accurate understanding of complex 
damage initiation and evolution until failure, and the relationships between physical properties of 
multi-phases and the macro-scale mechanical responses [López et al. (2008)]. 
 
As to meso-scale modelling, the meso-structures can be directly represented by different phases 
artificially generated and randomly distributed in space [Caballero et al. (2006); López et al. (2008) 
Yin et al. (2013)], or be indirectly modelled by random fields satisfying certain correlation 
functions describing heterogeneous material properties [Yang and Xu (2008); Yang et al. (2009); Su 
et al. (2010)]. However, most of these studies use assumed meso-scale morphologies or random 
fields that are not the same as the real internal structures so that the numerical models cannot be 
directly validated. In addition, most of the existing studies are in 2D and cannot predict non-planar 
3D fracture surfaces in reality. Consequently, the simulated results may be neither representative 
nor fully verifiable. This has led to development of numerical models that are converted from 
images captured by digital cameras and microscopes etc [Young et al. (2008)]. In this way, more 
accurate micro/meso-structures can be directly simulated.  
 
Recently, the X-ray Computed Tomography (XCT) technique with non-destructive multi-length 
scale capabilities becomes increasingly popular, mostly to acquire micro/meso-scale internal 
structures of concrete [Wang et al. (2003)], and occasionally, to observe damage evolution and 
fracture process using in-situ XCT tests [Yang et al. (2013)]. The XCT-images have been converted 
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using commercial packages AVIZO and Simpleware to finite element (FE) meshes by the second 
author’s group, for 2D and 3D cohesive fracture modelling with limited success [Ren et al. (2013; 
2014)] and 3D homogenization of elastic properties [Sharma et al. (2014)]. However, in the 
commercial packages, 3D surface contours are extracted from image datasets and then discretised in 
mesh generation [Canton and Gilchrist (2010)], which often results in many distorted FE elements 
when large element sizes are used, or otherwise millions of elements that are beyond the power of 
conventional computers. 
 
In this study we develop a novel 3D XCT-image based meso-scale FE fracture modelling method 
for concrete under compression, and attempt to validate 3D damage initiation and evolution until 
failure predicted by the models for the first time. The voxel hexahedron meshing method [Keyak  et 
al. (1993); Hollister et al. (1994); Crawford et al. (2003)] is augmented with image compression and 
slice stacking algorithms to efficiently generate 3D FE meshes. It avoids the problem of commercial 
packages and is able to control the mesh density while maintaining the original 3D morphology. 
The concrete damage plasticity (CDP) model in ABAQUS is used to simulate complicated damage 
initiation and evolution in concrete under compression. The in-situ XCT test of a concrete cube 
under Brazilian-like compression [Yang et al. (2013)] is modelled to validate the developed method, 
followed by detailed investigation of traditional uniaxial compressive tests. 

2. XCT-image based hexahedron mesh generation 

Most of the existing image-based 3D FE models based on voxel hexahedron meshing are 
constructed by direct conversion of voxels in digital images to the same-sized cubic finite elements 
[Hollister et al. (1994)]. They cannot readily adjust element size while faithfully maintaining the 
original morphology. In this study, a bottom-up algorithm with the following steps is proposed and 
fully automated in a MATLAB code:   

2.1 2D image processing 

For each slice of images from the in-situ XCT test [Yang et al. (2013)], there are 372 pixels of 
0.1mm in both directions (Figure 1a). The grey value of pixels ranges from 0 to 255 and drastically 
fluctuates near the phase interfaces. Segmentation is conducted on each slice using proper 
thresholds, resulting in ternary images with 1 for aggregates, 2 for mortar and 3 for voids (Figure 1a, 
refer to [Ren et al. (2013)]). To build lower resolution models, the segmented images are 
compressed by re-building connectivity of aggregate pixels. Adjustment of grey value of a small 
number of pixels is then carried out to maintain the morphological details. Figure 1b and 1c show 
the compressed image with 0.2mm and 0.4 mm pixels, respectively.  
 

   
(a) 372×372 pixels (0.1mm) (b) 186×186 pixels (0.2mm) (c) 93×93 pixels (0.4mm) 

Figure 1. Image compression 
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2.2 Slice stacking 

The 2D image slices are then stacked to generate voxels. The stacking algorithm widely used 
[Terada et al. (1997); Huang and Li (2013)] is adopted here and illustrated in Figure 2. The resultant 
voxels can be converted into eight-noded hexahedral elements and directly used for modelling 
inclusions of simple shapes, as in the above existing studies, but not for modelling complicated 
aggregates and voids in concrete of this study. To maintain the true internal morphology, further 
operations on the voxels are carried out to avoid cases such as contact between aggregates, mortar 
inside aggregates etc. Figure 3a and 3b show the resultant morphology of aggregates and mortar, 
respectively. The initial cracks and voids are shown in Figure 3c.  
 

 
Figure 2. Slice stacking 

 

   
(a) Aggregate (b) Mortar (c) Initial voids and cracks 

Figure 3. 3D meso-scale morphology after slice stacking  
 

2.3 Identification of interfacial transition zone (ITZ) 

In this step, the mortar voxels connected with aggregate voxels are identified and used to model the 
weaker aggregate-mortar interfaces, namely the interfacial transition zone (ITZ). Figure 4 shows a 
small part of the full model with the ITZs displayed in red as an example. The ITZ thickness is 0.4 
mm for the coarsest model and 0.1mm for the finest model, respectively.  
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Figure 4. Identification of materials with ITZs 

 

2.4 Generation of 3D FE meshes 

After the material labels of all the voxels are determined, the FE meshes are generated by 
converting each voxel into an eight-noded hexahedral cubic element. Figure 5b shows the final 
model with ITZ highlighted (the mesh is too dense to be seen clearly), compared with the original 
XCT image in Figure 5a.  
 
To investigate the effect of image compression and slice stacking, the volume fractions of different 
phases are calculated. It is 45.755% for aggregates and 1.068% for voids respectively for 0.4mm 
size model, compared closely with 48.212% and 0.912% respectively for the original 0.1mm size 
specimen. This suggests that the proposed method is able to maintain the original internal 
morphology even with 64-time compression of voxel number and thus a nearly 64-time reduction in 
3D cubic finite elements. 
 

 
 

(a) XCT specimen (b)  Numerical model  
Figure 5. Comparison of morphology 

3. Numerical Simulations and Validation 

3.1 In-situ XCT Test 

The in-situ XCT test [Yang et al. (2013)] of a concrete cube is modelled first. The tested concrete 
cube is 40mm (see Figure 6 below). The compressive loading is applied on a central area of 17.5 

Stacking Direction 
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mm×17.5 mm on the top face; the bottom face is fixed in the same area. This loading condition is 
similar to typical Brazilian tests. The voxel resolution in the XCT scans is 37.2 μm.  
 
The uneven surfaces of the 40mm cube are removed to build the 37.2 mm FE model shown in 
Figure 5b with uniform element size 0.4mm. The model consists of 795,764 cube elements and 
837,371 nodes. The loading is applied by uniformly distributed displacements on the loaded area 
with the maximum displacement 0.186mm or strain 0.005. The ABAQUS/Explicit solver is 
employed with total time 0.01s to ensure the quasi-static loading condition.  

3.2 Material model and parameters 

The CDP model in ABAQUS, which has proved very powerful for modelling concrete damage and 
fracture [Lubliner et al. (1989); Lee and Fenves (1998); Chen et al. (2012); Mahmud et al. (2013)], 
is used to model mortar and ITZs, and the aggregates are assumed elastic. The compressive strength 
is 35MPa and 27MPa for mortar and ITZs, respectively. The corresponding tensile strength is 
4.5MPa and 3.5MPa, respectively. The stress-strain curves in the 2010 Chinese Code for Design of 
Concrete Structures are used to model compression and tension. The tensile behaviour is defined by 
an equivalent stress-displacement curve to ensure mesh independence of results. The Young’s 
modulus is 50GPa, 20GPa and 15GPa for aggregates, mortar and ITZs, respectively. Default values 
in ABAQUS are used for other parameters of the CDP model. 

3.3 Validation of final crack pattern  

As the material parameters are not from the in-situ XCT test, only the predicted final crack pattern 
is validated against the XCT test. Figure 6 compares the failed specimen in the test with predicted 
macroscopic crack pattern represented by the maximum principal strain on the surface. The crack 
pattern resembles typical ones in Brazilian tests [Lopez et al. (2008)]. Figure 7 compares the crack 
paths with respect to the aggregates on the surface in a different view from Figure 6. Figure 8 
compares the internal voids and cracks under zero and peak loading from the XCT test and the 
simulation. A very high level of similarity can be seen in the crack patterns, both on the surface and 
the interior, indicating the capability of the developed image-based model in predicting the 
phenomenological damage and fracture processes qualitatively.  
 

  
Figure 6. Crack patterns: XCT test (left) and numerical results (right) 
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Figure 7. Crack paths: XCT test (left) and numerical results (right) 

 
 

  

  
Figure 8. Voids and cracks at zero load stage (top) and peak load (bottom): XCT 

test (left) and numerical results (right) 
 
More detailed comparison can be made for each slice/cross-section inside the specimen. An 
example of the middle slice vertical to the loading direction (z) at peak load is given in Figure 9. 
Figure 9a shows the original XCT image and Figure 9b highlights the crack pattern identified by 
comparing Figure 9a with the image at zero load. Figure 9c and 9d show the predicted maximum 
principal strain contours from this study and a digital volume correlation (DVC) analysis [Yang et 
al. (2013)]. A sound resemblance in the crack patterns can be observed. 
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                    (a) XCT image (b) Highlighted cracks 

  
                  (c) Present simulation (d) DVC results [Yang et al, (2013)] 

Figure 9. Crack patterns on a slice vertical to the loading at peak load: XCT 
images (top), numerical results (bottom left) and DVC results (bottom right)  

 

3.4 Further uniaxial compression tests 

The same FE model in Figure 5b is used to simulate the uniaxial compression tests, with one entire 
surface loaded and the opposite fixed vertically without lateral friction. Loading in three directions 
(x, y and z) is modelled to investigate the effects of multiphase distribution. The predicted stress-
strain curves are shown in Figure 10, with key points (A-E) marked. The stress-volumetric strain 
curves are presented in Figure 11. The different stages in these curves agree well with the typical 
behaviour of concrete under uniaxial compression [Van Mier (2012)]. The predicted strength is 
31.0MPa, 29.0MPa and 28.2MPa for x-load, y-load and z-load respectively, with 9% maximum 
difference. This together with different post-peak curves indicates the multi-phase distribution at 
meso-scale affects the macro-scale structural responses. The volumetric strain (Figure 11) decreases 
first and then increases, reflecting that the specimen becomes more compact under compression first 
and then expanded after cracks initiate and propagate at late stage. This is also confirmed by the 
variation of void and crack volume fractions in the XCT test [Yang et al. (2013)]. 
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Figure 10. Simulated stress-strain curves  
for uniaxial compression 

Figure 11. Simulated stress-volumetric strain 
curves for uniaxial compression 

 
Figure 12 shows the initiation and evolution of compressive damage index (DAMAGEC in 
ABAQUS) on the surfaces in the front and rear views. The simulated failure pattern with inclined 
cracks (displayed in red with high damage index) shows similar features to 2D numerical results 
[Song and Lu (2012)] and typical tests with low friction [Van Mier and Vonk (1991)]. The very 
different pictures on the front and rear views reflect the heterogeneous mechanical properties 
caused by random distribution of phases. 
  

A B C D E 

 
Figure 12. Damage initiation and evolution under z-load at loading points A-E: front view 

(top) and rear view (bottom) 
 
The internal damage initiation and evolution in a 3D cut-off view (Figure 13) of the model is shown 
in Figure 14. The view cut is selected to show how the voids and aggregates affect initiation and 
propagation of damage. From Figure 12 and Figure 14, it can be seen that the damage initiates 
mostly around the voids. The damage bands tend to propagate towards nearby voids to form a 
connected 3D damage network with complicated crack bridging and branching. In some cases, the 
propagation of damage bands is slowed down or hindered by big aggregates (refer to the red arrow 
in Figure 13) on the way. It can also be noted that the damage and fracture appears to propagate 
from the surfaces to the interior.  

A 

B 
C 

D 
E 
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Figure 13. A cut-off view showing main voids 

 
 

A B C D E 

 
Figure 14. Damage initiation and evolution under z-load at loading points A-E 

 
Figure 15 compares the damage patterns externally and internally at loading point E (Figure 10) 
from different loading directions. The very different pictures demonstrate that the loading direction, 
or equivalently, the distribution of phases, can make significant differences to the failure pattern as 
well as the load-carrying capacities.  
 

   

   
(a) x-load (b) y-load (c) z-load 

Figure 15. Failure patterns under different loading directions 
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4. Conclusions 

3D meso-scale FE models based on XCT images have been developed for accurate understanding 
of damage initiation and evolution until structural failure of concrete under compression, using the 
voxel hexahedron meshing method and the concrete damage plasticity model. An attempt to 
validate the developed models has been made against an in-situ XCT test for the first time, although 
still phenomenologically and qualitatively in terms of 3D damage and fracture processes.  
 
The numerical results clearly show that the intrinsic heterogeneity of meso-structures caused by 
random spatial distribution of multi-phases can significantly affect macroscopic responses of 
concrete, e.g., crack patterns and load-carrying capacities. Moreover, the image-based 3D models 
are very powerful and promising in elucidating the fundamental mechanism of very complicated 
damage initiation and propagation behaviour that 2D studies are incapable of modelling.  
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Abstract 

This paper presents active control of parametrically excited systems. Parametrically excited systems 
can exhibit complex dynamic behavior such as inherent instability. Active control can be used to 
first stabilize and then increase the stability regions of such systems, using velocity feedback. A 
beam subject to an axial load is considered, representing a parametrically excited system with 
periodic time-varying stiffness. For amplitudes that are well below the critical buckling load and for 
axial load excitation at twice the first natural frequency of the beam, the system becomes 
parametrically unstable. It is demonstrated, how the system can be stabilized using active control. 
Alternatively, parametric excitation can be exploited for energy harvesting. When the system is 
close to the transition curves or instability regions, due to the high amplitude level of vibrations, 
parametrically excited systems can harvest much more energy compared to the time-invariant 
systems. 

Keywords:  Parametrically excited systems, Active control 

Introduction 

Parametrically excited systems include a parameter(s) in their dynamic equations, which varies 
periodically in time. Parametric resonance is a dynamic instability associated with such systems. It 
involves interaction between the parametric excitation frequency and the natural frequency of the 
system, leading to negatively damped modes and unstable oscillations.  When the parametric 
excitation frequency is at about twice the natural frequency, the system exhibits instability, leading 
to large oscillations and potentially fatigue or failure. One example of parametrically excited 
systems is cable-stayed bridges, in which the tension of the cables can vary periodically due to the 
vibration of the deck, resulting in parametric resonance and instability [Reynolds et al. (2006)].  
Other examples of such systems are flexible risers or ships, in which the wave motion can be the 
source of parametric excitation [Ahmed et al. (2010)].  
Parametrically excited systems have been the subject of research investigation for decades 
[Cartmell (1990), Nayfeh and Mook (1995)]. The most simple and widely used equation of 
parametric excitation is the well-known Mathieu equation with linear, periodic, time varying 
stiffness coefficient. This rather simple single degree-of-freedom (DOF) mechanical system 
exhibits complex unstable behaviour but also interesting stability regions, as known from the 
inverted pendulum problem, depending on the amplitude and frequency parameters of the time 
periodic (harmonic) term. Parametrically excited systems exhibit combination resonances of 
summed or difference types. When subjected to an external forcing frequency, a periodically time-
varying system will be resonant when the external frequency equals the combination of natural 
frequency and parametric excitation frequency.  
Recent research emphasizes the potential for deliberately introducing parametric excitation to 
increase the capability of a system to suppress vibrations [Ecker (2010), Dohnal and Mace (2008)]. 
Parametric excitation can also be exploited for energy harvesting. Daqaq et al. [Daqaq et al. (2009)] 
investigated the problem of energy harvesting using a parametrically excited cantilever beam. The 
cantilever beam was excited vertically, perpendicular to the direction of the oscillatory 
displacement, at twice of its fundamental frequency. In 2011, the same parametrically excited 
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harvesting beam configuration was considered including higher modes and nonlinear effects of the 
piezoelectric patch [Abdelkefi et al. (2012)].  
This paper describes both active control of parametrically excited systems and their potential 
exploitation for energy harvesting. In active control, the problem is to suppress large amplitude of 
vibration or to extend the stability boundaries using velocity feedback control. A beam under axial 
load is considered, representing a parametrically excited system. For certain amplitudes and 
frequencies of the axial load, the system can exhibit parametric instability. Active control is used to 
stabilise the system. In addition, an investigation is carried out to determine the amount of energy 
that can be harvested from the beam with and without parametric excitation. It is shown that when 
the system is parametrically excited, it can harvest much more energy. 

Parametrically Excited Systems 

 
A vertical cantilever steel beam subjected to an axial time-harmonic load ( )P t  associated with the 
base acceleration is shown in Figure 1. A static compressive load is expected to reduce the first 
natural frequency. When the amplitude of the axial load reaches the critical buckling load, the beam 
can experience buckling instability and zero stiffness. If the axial load is harmonic, 
i.e. ( ) cosP t P t   , the bending stiffness of the beam varies periodically. For a specific amplitude 
of parametric excitation 0P  at a frequency   almost twice the first bending natural frequency 1 , 
the system becomes parametrically unstable. 
 

 
Figure 1: A parametrically excited system- a beam subject to a harmonic axial load 

 
Vibration of an axially loaded cantilever at its first mode can be described using a single degree-of-
freedom equation with the time-varying natural frequency. We add a damping term to obtain: 
 

 0 )(1 2 2
00 










 q

P

tP
qq

cr

   (1) 

This is the well-known damped Mathieu Equation with a periodic time-varying stiffness.  
The cantilever beam considered in this paper is mounted vertically, therefore, accounting for the 
effect of gravity, the forcing term takes the following form: 
 
           0 1, cosΩ cosΩP x t P x P x t m x g m x a t     (1) 
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where 0P  represents the weight of the beam and   1P t  is the force resulting from the acceleration 
of the base. We note that the load is not uniform over the length of the beam since the mass is 
distributed, thus the space average of the mass distribution is used: 
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The final form of the governing equation can be written as, 
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Stability Analysis 

We approximate the response with three terms in the Fourier series: 
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Taking derivatives, substituting into Eq. (1), and partitioning the sin
2

n t 
 
 

 and cos
2

n t 
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 terms, 

leads to a set of equations in terms of the coefficients nA   and nB . The transition curves (stability 
curves) are obtained from solving the determinant of the coefficient matrices.  
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which results in the two transition curves separating the stable from the  unstable regions, 
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Transition curves were computed for a steel cantilever beam which dimensions and properties are 
listed in  

Table 1. The natural frequency associated with the first bending mode accounting for the weight of 
the beam was found to be / 2 3.18P Pf     Hz, whereas the critical buckling load diminished by 
the average weight of the beam was calculated as '  2.91crP   N. 

 

Table 1: Beam dimensions and material properties 
 
property b , m d , m L , m E , GPa  , kg/m3  1  

value 0.0105 0.00144 0.583 186 7850 0.002 

 
The two transition curves are plotted using the analytical approximation in Figure 2. It can be seen 
that parametric instability occurs when the parametric excitation frequency is twice the first natural 
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frequency ( 2 )P  .  The effect of damping is to move the transition curves upwards, hence 
increasing the stable region, when comparing a damped system (black solid line) with an undamped 
system (grey dashed line). Considering higher order terms in the Fourier series, other transition 
curves can be obtained. 

 

Figure 2: Transition curves for the beam subject to axial load, where the area above the curve 

is unstable. The transition curves are shown with no damping and for a damping ratio of 

0.1%. 

 
For the beam example, the parametric amplitude is found analytically to be 0.0275 N, which is well 
below the critical buckling load 2.91N. For lower level of damping, a small axial perturbation can 
make the system unstable.  Numerical simulation using ode45 in Matlab also validates the 
analytical results. The time response for different amplitudes 1P   is shown in Figure 3 for 

1 0.1%  . The system is stable for amplitudes below 0.0275 N, Figure 3(a), and unstable above 
this amplitude, Figure 3(c). The response of the system exhibits a limit cycle oscillation, Figure 3 
(b), when excited at 0.0275N. In this case, the system is on the transition curve. 

 
  

(a) 1 0.01 NP   (b) 1 0.0275 NP   (c) 1 0.1 NP   

Figure 3: Time-response of the parametrically excited beam with 0.1% damping when excited 

at twice its natural frequency with different parametric amplitudes. 

 

Experiments 

In order to illustrate the described phenomenon a simple physical model was build. A steel 
cantilever beam was vertically mounted on the shaker table in a way that emulates a clamped 
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boundary condition. The shaker provided an axial excitation to the beam which was indirectly 
measured by placing an accelerometer on the shaker table. Transverse vibrations of the cantilever 
were recorded using a laser vibrometer. 

 

            
 

Figure 4: Schematic diagram of the experimental set-up 

 
Firstly, the natural frequency associated with the first bending mode of the vertically mounted 
cantilever was determined via an impact hammer test. Based on this result, the parameters of the 
beam were identified (Table 1). 
The transition curves were experimentally determined by sweeping through excitation frequencies 
close to the natural frequency associated with the first bending mode at different levels of the axial 
load and analysing the shape of the time histories of transverse vibrations. The system was qualified 
as stable if its response decayed exponentially with time and as unstable if the response was 
growing and experiencing a limit cycle oscillation. In order to ensure that all useful information is 
captured a very long time window was used (5 min) given the structure being very lightly damped. 
The experimental results compared to theoretical transition curves as derived in the previous section 
are presented in Figure 5. Both are in a good agreement confirming the validity of the theoretical 
approach adopted. In Figure 6 we present chosen velocity response time histories and their Fourier 
transforms for the stable and the unstable case. The influence of nonlinearities is evident in the 
response at the unstable state since the response growth is limited.  
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Figure 5: Transition curves – comparison between the experiment and the theory 

 

 

 
Figure 6: Response time histories and their Fourier transforms: (a) stable; (b) unstable 

Active control  

To stabilize the parametric instability as well as to increase the stability region, a velocity feedback 
and pole placement is considered. The system with control has the following form in state-space, 
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where ( )u t is the control force and is a single-input.  
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Simulation: Velocity feedback 

The amplitude of axial load is chosen to be 1 0.075P  N and 2 P   .  The open-loop response is 
7unstable as shown with the blue-dashed line in Figure 5.  The control law is considered to be: 
 ( ) ( )u t hx t   (9)  
where h is the velocity feedback gain.  The system is stabilized using the velocity feedback gain of 

1h   as shown with the red solid line in Figure . 

 
Figure 7 – Simulation: Time response - velocity feedback control; open-loop: grey dashed 

line, closed-loop: black solid line 

Experiment: Velocity feedback 

Experiment is carried out to implement the velocity feedback control and stabilize the system. The 
parameters of the axial load are chosen so that the open-loop system has parametric instability. A 
piezoelectric actuator is attached to the beam. The velocity of the beam at the other end is measured 
using LMS data acquisition and the velocity is fed back to the amplifier of the piezo with a 
feedback gain of 100.  
The open-loop and closed-loop time responses are measured as shown in Figure 7. When the 
controller is switched on, the response decays due to the increase of the damping. This clearly 
demonstrates that using active control, the system is stabilized.  
 

 
Figure 7 : Experiments: Active control of a parametrically excited beam  
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Exploitation: Energy Harvesting 

Parametric resonance can be exploited in parametrically excited systems to harvest more vibration 
energy due to large amplitudes of vibrations compared to linear time-invariant systems.  A 
piezoelectric is attached to the parametrically excited beam, as shown in Figure 8, which is shunted 
to a resistor for energy harvesting. The “electrical damping”, used to harvest energy is assumed to 
be 0.1 Ns/m .  

 
Figure 8 : Energy harvesting from a parametrically excited beam 

 
 
Numerical simulation is carried out to investigate the amount of energy that can be harvested when 
the beam is subjected to the axial load with an amplitude, close to the parametric instability, for 
example 1 0.0272P  N and 12  . The harvested energy is calculated using Eq. (10) for the 
duration of 80 s with an initial displacement of 0.01m.   
 

                       
80

2

0

0.1 ( ) 3.4E q t dt  J     (10) 

 
Figure 9(a) shows that the harvested energy is maximum when the excitation frequency is almost 
twice the first bending frequency. In addition, the amount of energy increases when the excitation 
amplitude increases as shown in Figure 8(b) when 12   . The amount of harvested energy from 
the parametrically excited beam with 1 0.0272P  N  is 3.4E  J, while the harvested energy from 
the time-invariant system is 1.78E  J. This dynamic behaviour can be exploited for the design of 
energy harvesters. 
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(a) (b) 

Figure 9 : Harvested energy-(a) for different frequency ratio when 0272.01 P N (b) for 

different parametric amplitude when 12  
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Conclusions 

In this paper, control and exploitation of parametrically excited systems was presented. A beam 
subject to axial load was considered as a parametrically excited system. For an amplitude well 
below the critical buckling load, the beam experienced parametric resonance. Parametric instability 
was controlled using active vibration control. Velocity feedback control was considered to stabilize 
the system and assign stable poles. In addition, it was demonstrated that parametric excitation could 
be exploited to increase the amount of harvested energy.  Practical implementation of the energy 
harvesting will be considered as part of future work.  
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Abstract 
A coupling analysis of thermal convection problems is performed in this work. By approximating 
the material derivative along the trajectory of fluid particle, the characteristic curve (CC) method 
can be considered. The most attractive advantage of this method is the symmetry of the linear 
system, which enables some classic symmetric linear iterative solvers, like the conjugate gradient 
(CG) method or the minimal residual method (MINRES), to be used to solve the interface problem 
of the domain decomposition system.  Applications to industrial problems are demonstrated to show 
the effectiveness of our approach. 

Keywords:  The characteristic curve method, Symmetric linear solvers, Finite element method, 
Domain decomposition method, Vending machines 

1 Introduction  

It is well known that the Galerkin approach for Navier-Stokes equations faces the problem caused 
by the nonlinear convective term, which yields the difficulty to obtain a numerical solution, and that 
the difficulty even increases with the Reynolds number. A lot of researchers contributed to solve 
this; the stiffness matrix was generally non-symmetric and some product-type methods[1] such as 
GPBi-CG, Bi-CGSTAB, Bi-CGSTAB2 were utilized as the iterative solver for non-symmetric 
linear systems, like ADV_sFlow 0.5, which was one of our previous works.[2]-[4] In this research, 
based on the approximation of the material derivative along the trajectory of fluid particle, a 
characteristic curve (CC) method[5],[6] is employed to approximate the material derivate terms. The 
method is natural from the viewpoint of the simulation of physical phenomena; it is also 
advantageous as it renders the matrix of the linear system symmetric. When solving the interface 
problem of the Schur complement system, which is generated by the domain decomposition method 
(DDM), the symmetry enables the conjugate gradient (CG) method or the minimal residual method 
(MINRES) to be employed instead of product-type iteration solvers. Despite the fact that there is no 
sufficient theoretical proof to assure this convergence currently, the CG or MINRES method does 
show good convergence even in cooperation with several kinds of preconditioners[7] including the 
balancing domain decomposition (BDD) preconditioner[2],[5] in this research. 

For thermal convection problems, some research[8] has been shown in references. A number of 
researches[9]-[12] about the CC method were done in the case of a single processor. However, rare 
research is done on the implementation of this scheme in the domain decomposition system, in 
which better computation results can be expected as the computation capability is extended. The 
purpose of our work is to apply the CC method to the Navier-Stokes equations and the convection-
diffusion equation, and to enable the coupling analysis of these two kinds of applications.  

A new parallel coupling thermal convection solver[6] has been developed. Based on a CC method, 
the scheme can provide solvability for non-stationary thermal convection problems. The new solver 
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can reduce memory consumption compared with solvers of product-types. The computation speed 
is also improved, as is expected. The reliability and accuracy of numerical results have successfully 
been validated by comparing with the exact solution.[6] Comparisons of our numerical results with 
results of other recognized solvers or available benchmarks also convince us that the application of 
the characteristic curve method to thermal convection problems has been a success. Accompanied 
with several new features, the new solver is speedy and worthy to be expected. As one member of 
the ADVENTURE system (http://adventure.sys.t.u-tokyo.ac.jp/), it will be published as an updated 
version of ADV_sFlow on the homepage after the in-house testing.  

Finally, some practical applications are demonstrated for a vending machine[13]. Non-stationary 
thermal convection problems are solved to show the effectiveness of the above approach. 
In recent years, energy conservation has become an important topic in Japan. One focus of current 

research is the use of numerical analysis techniques to control cooling and heating systems in 
vending machines to improve their efficiencies and reduce their electric power consumptions. In 
this study, we report results of analyses using the ADVENTURE_sFlow parallel solver to study 
problems of thermal convection in mechanical components inside a vending machine. 

The rest of this paper is organized into several sections. In Section 2,  formulations related to 
thermal convection problems are introduced; the characteristic curve method, as well as the related 
finite element scheme is also demonstrated in this section. Models and various settings including 
boundary settings are described in Section 3 and Section 4, respectively. Section 5 shows numerical 
results obtained by using various models and boundary settings. Conclusions that can be drawn 
from current results are presented in Section 6.  

2 Formulations 

2.1 The thermal convection problem 
Let be a three-dimensional polyhedral domain with the boundary  Using the Boussinesq 

approximation to couple the Navier–Stokes equations to the convection–diffusion equation, the 
conservation equations of momentum and mass are as follows; 
 
                                                                                                                                             (1) 
 

 
Also, the thermal convection equation is given as 
                                                                                                                                             (2) 
 

In Eqs. (1) and (2), is the velocity [m/s]; is time [s]; is the kinematic viscosity 
coefficient [m2/s]; is the gauge pressure normalized by the density [m2/s2] (hereafter is shortly 
called pressure); is the gravity [m/s2]; is the thermal expansion coefficient [1/K];
is the temperature [K]; is the thermal diffusion coefficient [m2/s]; is the source term [K/s]; and

is the rate of strain tensor [1/s] defined by  
  
 
 
Though initial and boundary settings are described in details for different problems in Section 4, 
they are here written as follows; 
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(5) 

 
(6) 

 
(7) 

where 
 
with the Kronecker delta     and n is the unit normal vector.    is the total time [s];     is the initial 
velocity [m/s];     is the initial temperature [K];     is the boundary velocity [m/s]; and       is the 
boundary temperature [K].  and    are the velocity specified boundary and the temperature 
specified boundary, respectively. 

As the weak form, the following system is considered; 

(8) 

(9) 

(10) 

                          

Here,           denotes the space of square summable functions in,      and             is the space of 
functions in           with derivatives up to the first order. 

 

(11) 

(12) 

(13) 

 

where           denotes the     -  inner product over     . 

2.2 The characteristic curve method 

 
Figure1. Trajectory of a fluid particle 

 
Let be a function of position and be the time increment. With the definitions of 

, it is assumed that  and the fluid field velocity  A fluid 
particle’s position at can be approximated by 

                           (14) 
where is an approximation of the position function ( t=tn-1 ) used by 
the Euler scheme[12] (see Fig. 1). With this approximation, the material derivative term can be 
written as 
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Here, the notation  designates the composition of functions, denotes the velocity at , and
is a known value, which denotes the velocity at . 

2.3 Finite element scheme  

Let and be the piecewise linear finite element spaces for test functions of the 
convection-diffusion equation and Navier-Stokes equations, respectively, and represents a 
triangulation (  is the diameter). With the following bilinear forms; 

                   (16) 

the scheme for coupling analysis can be written as  

   
STEP 1: Find      by 

                (17.a) 

STEP 2: Find               by 

           (17.b) 

Here, is a parameter of the stabilization term, which is used to smooth away the potential 
oscillation caused by P1/P1 elements. (・,・)K denotes the element wise inner product. In each non-
stationary loop, STEP 1 and STEP 2 are performed. It keeps running until the maximum non-
stationary loop number is reached. 

3 Computational Models   
In this study, we consider a simplified model for a vending machine depicted in from Fig. 2 to Fig. 4. 

Here, we have omitted the portions containing the cooling and heating systems and have retained only the 
columnar racks of canned beverages, the thermal barrier walls surrounding these racks, and the tilted ramp 
along which the cans slide inside the machine. The left panel of Fig. 2 depicts a side view of the model, 
while the right panel depicts a front view of the cross-sectional area indicated by the red line in the left 
panel. Below, we refer to components 1, 2, and 3 as x, y, and z, respectively.  

The model used in the present analysis is a trapezoidal box with a height of 0.9 [m], a depth of 0.5676 
[m], and a width of 0.1461 [m]. Air flows in from the slanted lower surface of the box and flows out 
through the upper surface. The cans that constitute the merchandise are 0.064 [m] in diameter and 0.114 
[m] high. The separation between the cans and the thermal barrier walls is 0.01 [m] in the x direction. The 
cans and the intermediate board are separated from the thermal barrier walls by 0.014 [m] in the y 
direction. However, the number of cans depends on each model, and Fig. 2 and Fig. 4 are representative 
examples. Fig. 4(a), Fig. 4(b), and Fig.4(c) are models that have different number of cans. 
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Figure 2. A side view of the model      Figure 3. A front view of the model 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Side views of models which have different number of cans  (a)full; (b)stairs; (c)stairs 

4 Computational Conditions  

4.1 Material properties 
Table 1 lists the material properties used in the present analysis. In the winter case (Win.), an 

eddy viscosity constant is used for the first trial. 
 

Table 1. Material properties 
S[K/s] ν[m2/s] Tr [K] β[1/K] [m2/s] 

0 

1.05×10-3 

(Win.) 
1.583×10-5 

(Sum.) 

300.15(Win.) 
278.15(Sum.) 0. 0034 2. 207×10-5 

 

4.2 Initial conditions and boundary conditions 
The initial conditions are a uniform velocity of 0 [m/s] and a uniform temperature of 5[°C]. The 

boundary conditions have two types, which are  Winter Condition 1 and Summer Condition 2. In 
Winter Condition 1, the airflow entry surface (the lower surface) is set as follows; 

ux = uy = 0, uz = 0. 1 [m/s], 
 

T = 55 +273.15 [K]. 
 
At the airflow exit, 

 [m2/s2], 

a

∑
=

=
3

1
0

j
jijnσ
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 [m·K/s]. 

 
At wall surfaces, the cans and the partitions within the machine, 
 

ux = uy = uz = 0 [m/s], 
 

 [m·K/s]. 

On the other hand, Summer Condition 2 are different from Winter Condition 1 in terms of 
temperature profile of entering air flow; 

T = -2~4.5 [℃]. 
 
In Summer Condition 2, we vary the temperature of the air flowing into the machine over the range 
–2 to 4.5 [°C]. This is because, in actual vending machines, the cooling system is calibrated over 
time to reduce power consumption. The temperature profile used in this analysis is plotted in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Temperature profile of entering airflow 

4.3 Other parameters 
Numbers of elements, numbers of nodal points and degrees of freedom are 598,916, 148,757 and 
743, 785, respectively in the winter case. On the hand, they are, respectively, 744,585, 176,105 and 
1,114,655 in the summer case. The time increment, numbers of time steps and the total time are 0.1 
[s], 2,000 and 200 [s] in the winter case. They are, respectively, 0.1 [s], 24,000  and 2,400 [s] in the 
summer case. As the solver for (17.b), the CG method with the BDD preconditioner was used for 
the interface problem in the summer case, while the CG method with the Jacobi preconditioner was 
used for (17.a) and for (17.b) in the winter case. Using Core i7 920 (2.66 [GHz]) with 4 cores, it 
took about 5 hours by 5 PCs in the winter case and about 88 hours by 3 PCs in the summer case.  
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5 Results  

5.1 Results of Winter Condition 1 
Figures 6(a) and 6(b) depict the temperature distributions after 10 and 100 [s ] predicted by the 

model in Fig.2. Figures 7(a) and 7(b) plot the corresponding velocity vectors. 
 

        
                 
 
 
 
 
 
 
 

 
 
(a) after 10 [s];                                 (b) after 100 [s]; 

Figure 6. Temperature distribution 
 
 

 
         

                 
 
 
 
 
 
 
 
 

 
 
(a) after 10 [s];                                 (b) after 100 [s]; 

Figure 7. Velocity vectors 
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Figure 8 plots the temporal evolution of the temperature at the three points indicated in Fig. 8(a). 
Table 2 lists the coordinates of these three points. 

   
         
 
 
 
 
   
 
 
 
 
 
 
 

(a) points;                            (b) variation; 
Figure 8. Temporal temperature variation 

 
 

Table 2. Coordinates of points plotted in Figure 8 
 x[m] y[m] z[m] 

Can 1 0.1960 0.0738 0.4158 
Can 2 0.1960 0.0738 0.4801 
Can 3 0.1960 0.0738 0.5397 

Upper space 0.1960 0.0738 0.8580 
 
The computational results reveal that the temperature in the lower portion of the machine begins 

to rise first with the temperature in the upper portion of the machine gradually following. The flow 
achieves steady-state conditions at a surprisingly early time of 25 [s] because of the eddy viscosity 
constant, for which further study is required.  

5.2 Results of Summer Condition 2 
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) after 30 [s];                              (b) after 390 [s]; 
Figure 9. Temperature distribution  
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Table 3. Coordinates of three points for the temporal temperature variation 
 x [m] y [m] z [m] 
Point 1 0.136 0.073 0.321 
Point 2 0.368 0.073 0.341 
Point 3 0.524 0.073 0.361 

 
 

 
 
 
 
 
 
 
 
 
 
       

(a) monitored;                            (b) streamline diagram; 
Figure 10. Three points for the temporal temperature variation   

 
 

 
 

 
 
 
 
 
 

 
 
Figure 11. Temporal temperature variation at the three points depicted in Figure10(a) 
 
Figure 11 indicates that the temperature variation inside the vending machine follows that of the 

airflow into the machine. The airflow appears to be poor only in the region on the right side of the 
machine. To investigate this, we consider the streamline diagram of Fig. 10 (b), which indicates a 
counter flow along the surfaces of the cans in this region. The question of why such a counter flow 
arises entails many uncertainties and requires further study. 
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5.3 Summer case results of another models 
 

   
                 
 
 
 
 
 
 
 
 
 

(a) full;                         (b) stairs;                            (c) stairs; 
                         Figure 12. Temperature distribution after 100 [s] 

 
 

   
                
 
 
 
 
 
 
 
  

(a) full;                            (b) stairs;                         (c) stairs; 
Figure 13. The temporal velocity variation of stream diagram after 100 [s]  
 

Here, we consider another summer cases. Namely, different number of cans are considered for 
each column. Case (a) is a fully occupied case and Case (b) and Case (c) consider stairs. In all 
cases, many cans produce high temperature because cans become obstacles of the air flow. It is 
specially noted that Case (b) relatively shows high temperature, compared with Case  (c).  

6 Conclusions 
A coupling analysis of thermal convection problems is performed in this work. By approximating the 

material derivative along the trajectory of fluid particle, the characteristic curve (CC) method can be 
considered. The most attractive advantage of this method is the symmetry of the linear system, which 
enables some classic symmetric linear iterative solvers, like the conjugate gradient (CG) method or the 
minimal residual method (MINRES), to be used to solve the interface problem of the domain 
decomposition system.  Applications to industrial problems are demonstrated to show the effectiveness of 
our approach. 
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Abstract 
The relations between the Poynting effect, in which a cylinder elongates or contracts 
axially under torsion, and the axial force-twist effect, in which the twist of a 
torsionally loaded cylinder is affected by the axial loading, are investigated using 
second-order elasticity for an elastic homogeneous cylinder. The explicit expressions 
for the two effects and their relations are presented. The relations show that under 
tension: (a) negative Poynting effect implies negative axial force-twist effect, (b) 
positive axial force-twist effect implies positive Poynting effect, whereas (c) the 
converse statements are not true. Further results show that (a) the Poisson ratio 
captures the difference between the two effects, and (b) reduced elastic coefficients, 
which uniquely characterize the effects, lead to universal relations between the effects 
and the applied loading. Both effects also exhibit a strong inverse power law 
dependence on the radius.  

Keywords: Axial force-twist effect, Poynting effect, torsion-axial loading, 
second-order elasticity 

 
Introduction 
Soft materials may exhibit complex nonlinear behavior such as the Poynting effect, in 
which a cylinder elongates or contracts axially under torsion. Poynting (1909) 
experimentally found that some metals exhibited the positive effect, i.e., they 
elongated axially under torsion. Recently, Janmey et al. (2007) found that networks of 
semiflexible biopolymers such as actin, collagen, fibrin and neurofilaments, exhibited 
the negative Poynting effect. 
 
Wang and Wu (2014) showed that in contrast to the Poynting effect, an axial 
force-twist effect may also exist. It refers to their theoretical result that the twist of a 
cylinder under combined torsion and axial loading can be affected by the axial 
loading. The axial force-twist effect can also be positive or negative. The former 
means that both the twists produced by the axial loading and torsion are in the same 
direction, while the latter means that the twists produced by them are in the opposite 
directions. Though Wang and Wu (2014) presented the solutions for the Poynting and 
axial force-twist effect, the relations between them were not investigated.  
 
This paper focuses on these relations, from which some fundamental conclusions can 
be drawn. The dependence of the two effects on the linear and nonlinear elastic 
constants is also studied. The organization of the paper is as follows. The derivation of 
the relations is first presented, followed by numerical results, a further discussion, and 
a set of conclusions. 
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Relations between the Poynting effect and the axial force-twist effect 
 
Figure 1 shows a cylinder of length L and radius R under combined axial loading P 
and torsion T. Here P represents either a tensile or compressive stress. The materials 
are nonlinear elastic, isotropic and homogeneous. The initial coordinates of a particle 
of the cylinder are chosen as (r, θ, z). The strain energy density of Murnaghan (1951) 
is adopted, i.e.: 
 

                2 3
1 2 1 1 2 3

2 22 2
2 3

l mW J J J mJ J nJλ m m+ +
= − + − + , (1) 

 
where λ and m are the second-order and l, m, n the third-order elastic constants, 
respectively, and J1, J2, and J3 are the strain invariants of the Lagrangian strain E. The 
detailed solutions of the stress and displacement fields are given in Wang and Wu 
(2014). For the purpose of deriving the relations between the effects, the results on the 
axial and circumferential displacements from the earlier paper are given below.  
 
The axial displacement uz under pure torsion loading can be written as: 
 

                                zu Dz= , (2) 

 
where D is the Poynting effect coefficient given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A homogeneous elastic cylinder with radius R and length L under 
combined torsion T and axial loading P. 

R 

L 

P 

P 

T 

T 

ICCM2014, 28th-30th July 2014, Cambridge, England

911



                 
2 2

2 6 3

4 4 8,      
4 (3 2 )D D

T n mD C C
R

λ m λm m
π m λ m

+ + +
= − =

+
. (3) 

 
Note that a change in the direction of T does not change the sign of D. The parameter 
CD is a reduced coefficient of the four elastic constants. It uniquely characterizes the 
quadratic relation between the Poynting effect and T. If a modified Poynting effect 

coefficient / DD D C=  is defined, then a universal relation between D  and T can 

be obtained: 
 

                           
2

2 6 .    
4

TD
Rπ

= −  (4) 

 
Furthermore, the circumferential displacement under combined axial loading P and 
torsion T is: 
 

                             L NLu u uθ θ θ= + , (5) 

where Luθ  represents the linear twist due to torsion T: 

                           4

2L T rzu
Rθ π µ

= , (6) 

and NLuθ  represents the nonlinear twist associated with the axial force-twist effect: 

                     
2

4 3

( 4 6 8 ) .
2 (3 2 )

NLu PT n m rz
Rθ

λ m λm m
π m λ m

+
+

=
+ +

−  (7) 

The axial force-twist effect coefficient can be defined as: 

                
4

NL

HL

u CH
u

Pθ

θ

−= = ,   
2

2

4 6 8
(3 2 )HC n mλ m λm m

m λ m
+ + +

+
= . (8) 

CH is a reduced coefficient which characterizes the relation between H and P. It is 
similar in form to CD. By defining the modified axial force-twist effect coefficient

/ HH H C= , a universal linear relation between H  and P can be obtained: 
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                               .
4
PH = −   (9) 

It can be seen from Eq. (7) that the axial force-twist effect only exists under combined 
axial loading and torsion, i.e., 0P ≠  and 0T ≠ . Eq. (8) implies that if H is positive, 

NLuθ  has the same direction as Luθ  and the axial force twist effect is positive; 

otherwise, it's negative. Because H depends on P and not T, two further observations 
can be made from Eq. (8): 
 
(1) Change of the direction of T does not change the sign of H.  
(2) Change of the sign of P changes the sign of H. 
 
Eqs. (3) and (8) show that materials with different elastic constants can have the same 
Poynting effect or the axial force-twist effect, provided the reduced coefficients of 
these materials are the same. Another observation of Eq. (3) is that for a particular m, if 

m and n are chosen in a way that makes ( 4 ) / 3 (4 8 ) / 2,n mm m+ = +  or 

8 6 0m nm + − = , then λ has no influence on the Poynting effect. A similar conclusion 

can be made for H on the basis of Eq. (8).  If m and n are chosen such that 

( 6 ) / 3 (4 8 ) / 2n mm m+ = + , or 6 6 0m nm + − = , then λ has no influence on the axial 

force-twist effect. 
 
The relation between H and D in dimensionless form can be obtained easily from Eqs. 
(3) and (8): 
 

                      2 2 6 2

2
/ 4 / 4 3 2
H D

P T R
λ

µ π µ λ µ
= −

+
. (10) 

Since / (2 2 )ν λ λ µ= + , the above equation can be rewritten as: 

                       2 2 6 2

2
/ 4 / 4 1
H D

P T R
ν

µ π µ ν
= −

+
.  (11) 

 
The term on the left-hand side represents the axial force-twist effect coefficient 
normalized by the axial loading, while the first term on the right-hand side represents 
the Poynting effect normalized by the torsion. An explicit relationship between the 
axial force-twist effect and the Poynting effect is thus established.  
 
Since ν is positive generally, several conclusions can be drawn from Eq. (11), 
assuming that the axial loading P is tensile: 
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(a) If D < 0, then necessarily H < 0,  
(b) If H > 0, then necessarily D > 0. 
(c) If H and D have different signs, then necessarily H < 0 and D > 0. 
 
It should be emphasized that the converses of (a) and (b) are not true, i.e., H < 0 does 
not necessarily imply D < 0, and D > 0 does not necessarily imply H > 0. A further 
observation is that the sign of H will change if the sign of P changes. Thus for the 
case of compressive axial loading, the above three conclusions should be changed to: 
 
(d) If D < 0, then necessarily H > 0,  
(e) If H < 0, then necessarily D > 0. 
(f) If H and D have the same sign, then necessarily H > 0 and D > 0. 
 
The Poisson ratio plays a key role since the difference between the normalized H and 
the normalized D is the term 2ν/(1+ν). This difference reaches its maximum when 
ν = 0.5, i.e., the material is incompressible. 
 
Finally, the size dependence of the Poynting effect can be judged from Eq. (3) to be 
inversely proportional to the sixth power of the cylinder radius. For the axial 
force-twist effect, Eq. (7) shows that the maximum circumferential displacement (r = 
R) is inversely proportional to the third power of the cylinder radius. Hence, the 
Poynting effect is relatively more important than the axial force-twist effect for small 
cylinders, and the reverse holds for large cylinders. 
 
Numerical results 
 
This section focuses on the influence of the elastic constants on the Poynting effect 
and the axial force-twist effect. The elastic constants of the soft materials were 
adapted from Wang and Wu (2013, 2014) for poly(acrylic acid) (PAA) gels and 
capillary muscles, respectively, and Catheline et al. (2003) for an agar-gelatin. The 
geometry of the cylinder is fixed as R = 0.002 m and L = 0.01 m. The applied axial 
loading and torsion may vary for different figures. 
 
Fig. 2 plots the H = 0 and D = 0 contours in the m−ν space, for m = −2420 kPa and n 
= −2350 kPa. The axial loading P is chosen as positive. It can be seen that the m−ν 
space is partitioned into three regions: Region I with H > 0 and D > 0, Region II with 
H < 0 and D < 0 and Region III with H < 0 and D > 0. 
 
Several interesting phenomena can be observed, in agreement with the conclusions (a) 
to (c) stated above. First, negative Poynting effect (D < 0) implies negative axial 
force-twist effect (H < 0) as shown in Region II. However, the converse is not true, 
i.e., negative axial force-twist effect (H < 0) does not imply negative Poynting effect 
(D < 0) necessarily, as shown in the small Region III. Secondly, positive axial 
force-twist effect implies positive Poynting effect (i.e., H > 0 means D > 0, as shown  

ICCM2014, 28th-30th July 2014, Cambridge, England

914



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Contours of the Poynting effect coefficient D = 0 (dashed line) and axial 
force-twist effect coefficient H = 0 (solid line) in m−ν space for a homogeneous 
elastic cylinder. The contours partition the space into three regions.  
 
 
in Region I). However, the converse is not true. Positive Poynting effect does not 
imply positive axial force-twist effect (i.e., D > 0 does not necessarily imply H > 0 as 
shown in region III). Moreover, when the two effects differ in sign, the Poynting 
effect must be positive and the axial force-twist effect must be negative (as shown in 
Region III). Region III, where the two effects have different signs, is generally small, 
suggesting that only careful choices in the material parameters can lead to different 
signs for the two effects.  
 
Fig. 3 plots H and D against the Poisson ratio ν. The material parameters are based on 
those of polymers with m = 10.3 kPa, m = −24.2 kPa and n = −23.5 kPa. The loadings 
are P = 10 kPa and T = 300 kPa·m3. It can be seen that when ν increases, both H and 
D decrease from positive to negative monotonically. Thus, the Poisson ratio can be an 
important parameter in controlling the two effects. Secondly, the magnitudes of H and 
D are of the order of 10-1, suggesting that the nonlinear effects can be significant. 
Note that ν1 and ν2 are the particular Poisson ratios which make H = 0 and D = 0, 
respectively. This figure further shows that (a) if H > 0, then D > 0, as shown when 
ν < ν1, (b) if D < 0, then H < 0, as shown when ν > ν2, and (c) if H and D have 
different signs, then H < 0 and D > 0, as shown when ν1 < ν < ν2.  
 
Fig. 4 shows how the linear elastic constants m and ν affect the Poynting effect and 
the axial force-twist effect. The parameters are m = −360 kPa, n = 20 kPa, P = 10 kPa 
and T = 1000 kPa·m3. It can be seen that there exists a m1 for which H is independent 
of ν. Similarly, there exists a m2 for which D is independent of ν. As mentioned above,  
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Figure 3. Dependence of H and D on the Poisson ratio ν, with m = 10.3 kPa, m = 
−24.2 kPa, and n = −23.5 kPa. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Dependence of H and D on the shear modulus m for different Poisson 
ratiosν =0.1, 0.3, 0.4 and 0.49, with m = −360 kPa and n = 20 kPa. 
 
 

m1 and m2 can be determined from the equations 1 1( 6 ) / 3 (4 8 ) / 2n mm m+ = +  and

2 2( 4 ) / 3 (4 8 ) / 2n mm m+ = + , respectively, yielding m1 = 363.3 kPa and m2 = 272.5 

kPa. A further observation is that the negative H and D values appear to have upper 
bounds, while the positive values are unbounded. More generally, however, D or H 
may either have a positive or negative bound, depending on the values of m and n.    
 
Fig. 5 shows how the nonlinear elastic constant m can significantly influence both 

effects. Here H and D are plotted against m for 62 10 ,m = ± ×  610±  and 0 kPa. The 

other elastic parameters are λ = 60 kPa and n = −23.5 kPa. The loadings are P = 0.01 
kPa and T = 10 kPa·m3. For this set of parameters, increasing m will decrease the 
magnitudes of the coefficients. Secondly, both effects are positive for negative m and 
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negative for positive m. Changing the sign of m will change the sign of both H and D. 
Thirdly, decreasing the magnitude of m will also decrease the magnitudes of H and D. 
The magnitudes can reach the order of 10-2 to 10-1 when m is small; thus the nonlinear 
behavior can be significant when the material is very soft with a small m.  
 

Fig. 6 plots H and D versus m for the same sets of m, with λ = 35700 kPa and n 
= −23500 kPa. The loadings are P = 0.01 kPa and T = 10 kPa·m3. The nonlinear 
effects are different from those shown in Fig. 5. For m positive, both H and D 
decrease to a negative maximum and subsequently decrease slowly to zero with 
increasing m. However, for m negative, they decrease monotonically to zero with m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Dependence of H and D on the shear modulus m for m = −2×106, −106, 0, 
106, 2×106 kPa, with λ = 60 kPa and n = −23.5 kPa. The loadings P = 0.01 kPa 
and T = 10 kPa·m3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Dependence of H and D on the shear modulus m for m = −2×106, −106, 0, 
106, 2×106 kPa, with λ = 35700 kPa and n = −23500 kPa. The loadings P = 0.01 
kPa and T = 10 kPa·m3. 
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Discussion 
 
Many biological materials, from soft to hard, are subjected to complex loading in their 
physiological environment. A few examples are described here. Arterial walls 
associated with human brain aneurysms were subjected to combined extension, 
torsion and inflation in finite element studies, in order to mimic the real physiological 
conditions (Tóth et al., 2005). The behavior of lumbar spinal units under torsion, 
compression and flexion/extension were also experimentally studied (Haberl et al., 
2004). It is also well-known that articular cartilage is subjected to combined 
compression and shear during normal activities (Mansour, 2003). Fatigue tests were 
conducted on cylindrical bovine cortical bone specimens under axial, torsional and 
combined axial-torsional loadings (Vashishth et al., 2001). Finite extension and 
torsion were applied on capillary muscles in order to characterize their behavior under 
physiological conditions (Criscione et al., 1999).  
 
Because of the prevalence of combined loadings, the Poynting effect and the axial 
force-twist effect may be highly relevant. In particular, large stresses may be 
generated by both effects if the specimen is confined in one way or another, i.e., the 
additional axial and rotational displacements are restrained. These large stresses can, 
for instance, alter the overall force balance and the cytoskeleton structure of cells, or 
the movement of a human red blood cell through narrow capillaries. The diameter of a 
human red blood cell is 7.0-8.5 mm, while that of narrow capillaries is smaller than 3 
mm (Bao and Suresh, 2003).  
 
The effects can also be utilized in the design of devices such as actuators and sensors. 
One can imagine a bio-inspired polymer actuator based on the axial force-twist effect, 
i.e., a torsionally loaded cylinder may generate an additional output twist, if subjected 
to an input axial force. By carefully selecting the elastic parameters of the materials 
and the structural dimensions, the amount of twist can be increased significantly and 
the desired output can be achieved. 
 
Conclusions 
 
Explicitly expressions for the Poynting effect, the axial force-twist effect and their 
relation are presented in this paper. The dependence of the relation on elastic 
constants is investigated.  
 
The results show that under a tensile stress P, (a) negative Poynting effect implies 
negative axial force-twist effect, (b) positive axial force-twist effect implies positive 
Poynting effect, and (c) if the two effects differ in sign, the Poynting effect must be 
positive and the axial force-twist effect negative. The loadings P and T' are such that 
(d) changing the direction of T will not change the sign of both effects, and (e) 
changing the direction of P will change the direction of the axial force-twist effect. 
Moreover, the Poynting and axial force-twist effects exhibit a very significant size 
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dependence, respectively of the inverse sixth and third power of the cylinder radius.  
 
Reduced elastic coefficients characterize universal relations between the effects and 
the applied loadings. The elastic constants m, ν and m have significant influence on 
the magnitude and direction of the Poynting and axial force-twist effects. For certain 
combinations of elastic constants, changing the sign of m can directly change the sign 
of the two effects. The two effects may have a positive or negative bound, depending 
on the elastic constants. From the perspective of material design, the elastic constants 
are thus of vital importance.  
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