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PREFACE

Dear Colleagues

On behalf of the organising committees, we are delighted to welcome you to the 5th
International Conference on Computational Methods (ICCM2014) at Cambridge, UK.

The ICCM2014 is an international conference that provides an international forum for the
exchange of ideas on recent advances in areas related to computational methods, numerical
modelling & simulation, as well as their applications in engineering and science. It will
accommodate presentations on a wide range of topics to facilitate inter-disciplinary exchange
of ideas in science, engineering and related disciplines, and foster various types of academic
collaborations internationally. All papers accepted for publication in the proceedings have
been peer reviewed. Papers may also be selected and invited to be developed into a full
journal paper for publication in special issues of the journals.

The conference series originated in Singapore in 2004 by Professor GR Liu, followed by
ICCM2007 in Hiroshima, Japan, ICCM2010 in Zhangjiajie, China, and ICCM2012 in Golden
Coast, Australia. This year, the ICCM2014 conference programme covers over 270 oral
presentations in 47 technical sessions, including 3 Plenary talks, 9 Thematic Plenary talks, and
a number of Keynote talks in technical sessions. These presentations cover a broad range of
topics related to computational mechanics, including formulation theory, computational
methods and techniques, modelling techniques and procedures, materials, deformation
processing, materials removal processes, processing of new and advanced materials, welding
and joining, surface engineering and other related processes.

We would like to express my gratitude to all the members of the Local Organizing Committee,
International Scientific and Organization Committee, Honorary Chairmen and Co-Chairmen,
who have provided advices and guidance timely in planning and executing this conference.
We also would like to use this opportunity to express my gratitude to the School of
Engineering of the University of Liverpool, and to colleagues for their strong support and
encouragement. Sincere thanks and appreciation go to some 100 international reviewers for
their prompt review reports on the submitted papers. Our appreciation goes also to all the
Mini-Symposium Organizers for their efforts and contributions in the organization. A vote of
thanks also goes to members at the Scientech Publisher, USA for their professional services
and management of the conference website and timely coordination with our participants.

G.R. Liu, University of Cincinnati, USA
Zhongwei Guan, University of Liverpool, UK
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ODE-Solver-Oriented Computational Method for the Structural
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Abstract

The paper is to introduce a computational methodology that is based on ordinary
differential equations (ODE) solver for the structural systems adopted by super tall
buildings in their preliminary design stage so as to facilitate the designers to adjust
the dynamic properties of the adopted structural systems. The construction of the
study is composed by following aspects. The first aspect is the modelling of a
structural system. As a typical example, a mega frame-core-tube structural system
adopted by some famous super tall buildings such as Taipei 101 building, Shanghai
World financial center, is employed to demonstrate the modelling of a computational
model. The second aspect is the establishment of motion equations constituted by a
group of ordinary differential equations for the analyses of free vibration and resonant
response. The solutions of the motion equations (that constitutes the third aspect)
resorted to ODE-solver technique. Finally, some valuable conclusions are
summarized.

Keywords: ODE-solver-oriented computational methodology, tall building
structures, structural dynamic analysis, computational model of a mega frame-core-
tube structural system, free vibration and resonant response, ODE solver

Introduction

Nowadays, we are experiencing an unprecedented level of activity in the design and
construction of super tall buildings because of the limitation of land resources and
advanced construction technology, ad hoc in China [X. zhao et al. (2011)]. The world
architecture history has been rewritten by the multiformity of structural systems, the
complexity of component arrangements and the variation of architectural styles of
current super tall buildings. However, the analytical level for the investigation of
dynamic properties of various structural systems adopted by super tall buildings lags
behind their construction level. Both computational models and numerical methods
for the dynamic analyses proposed hitherto by existing literatures are quite limited in
their ability to model and to determine the three-dimensional motion of the structural
systems.

For instance, Reza Kamgar, Mohammad Mehdi and Saadatpour [Reza et al. (2011)]
developed a simple mathematical model based on Euler-Bernoulli beam theory to
determine the first natural frequency of tall buildings including a framed tube, a shear
core, a belt truss and an outrigger system with multiple jumped discontinuities in the
cross section of the framed tube and shear core. Hong Fan, Q.L. Li, Alex Y. Tuan and
Lihua Xu [Hong Fan et al. (2009)] investigated the seismic analysis of the structural
system of Taipei 101, a mega-frame system with a central braced core connected to
perimeter columns on each building face, by employing a 5-storey frame
computational model composed by 3-D beams, 3-D columns and floor slabs. Wen-
Hae Lee [Lee (2007)] simplified a tube-in-tube tall-building system as an Euler-
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Bernoulli beam with variable cross-sections and then formulated an approximate
solution procedure for the free vibration analysis.

In order to render the computational model of a super tall building system closer to
practical engineering as well as the corresponding numerical method more efficient,
the purpose of this paper is to present an ODE-solver-oriented computational
methodology for the structural systems adopted by super tall buildings in their
preliminary design stage so as to facilitate the designers to adjust the dynamic
properties of the adopted structural systems. The construction of the study is
composed by following aspects. The first aspect is the modelling of a structural
system adopted by a super tall building. As a typical example, a mega frame-core-
tube structural system as showed in Figure 1(a) adopted by some famous super tall
buildings such as Taipei 101 building, Shanghai World financial center, is employed
to demonstrate the modelling of a computational model. The second aspect is the
establishment of motion equations constituted by a group of ordinary differential
equations (ODE) for the analyses of free vibration and resonant response. The
establishment utilized semi-discretization, displacement quantification and motion-
field quantification techniques. The solutions of the motion equations (that constitutes
the third aspect) resorted to an ODE solver technique (Yuan Si [Yuan (1991, 1993)]).
Finally, some valuable conclusions are summarized.

1. Modelling of a super-tall building system

Figure 1(a) shows a mega frame-core-tube system adopted by some famous super tall
buildings such as Taipei 101 building, Shanghai World financial center, etc. On
structural aspects, the space mega frame is composed by two grades of members. The
first grade is mega columns and beams, and the second grade is interiorly
supplementary frames in the mega frame. The mega columns are generally made by
tubes or other mega-substructures, which are jointed by the giant beams in every
several floors. Since the geometric dimension (cross sectional area and inertial
moment, etc.) of the members of the mega frame is very large, comparing with that of
the supplementary ones, the characteristic makes this kind of structure has great load
bearing capacity, strong sidesway stiffness. By analyzing the structural performance
of the mega frame-core-tub system shown in Figure 1(a), we can conduct following
two basic assumptions:

(1) Rigid floor slab assumption, that is, each floor is infinite rigid in its own plane;
(2) Strain state assumption, that is, the axial strain of a mega beam is negligible
comparing with that of a mega column.

)I\z

o(s,2)
o(s,2) *
o |

* (5,2) 7(S, 2)

Figure 1: A mega-frame-core-tube )
system and its computational model ~ Figure 2: Stress state of the tube

Based on the two assumptions, we might simplify a mega frame-core-tube system
shown in Figure 1(a) as a generalized equivalent continuous stiffened thin-walled
tube-in-tubes as shown in Figure 1(b), and conclude that the wall of the thin-walled
tubes is subjected to a plane stress state of longitudinal normal stress and horizontal
as well as vertical shear stress, which are the functions with respect to the curved
coordinate S, along the direction of centerline of the thin-walled tubes, and the
longitudinal coordinate (vertical axis Z ) of the tubes, as showed in Figure 2.

12
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The subgrade or the foundation soil of the structural system is idealized as a semi-
infinite elastic body, whose equivalent stiffness equations in the normal and
tangential direction at the bottom and walls of a foundation pit have been formulated
by employing the displacement equations of Mindlin [Mindlin (1936)] in a semi-
infinite elastic body subject to a concentrated force acting in the interior of the semi-
infinite elastic body. Using the equivalent stiffness equations [Gong (2007)], the
interactions between the foundation and the subgrade (foundation soil) can be readily
taken into considerations quantitatively.

Consequently, the computational model of a mega frame-core-tube system of a super
tall building will be a generalized equivalent continuous tubular shell constituted by
stiffened thin-walled tubes-in-tubes supported on a semi-infinite elastic body as
shown in Figure 1(b).

2. Formulation of motion equations

2.1 Semi-discretization technique and displacement quantification

As shown in Figure 1(b), if we use one-variable functions Vox(z) , Voy(z) and 6(z)
defined on the vertical axis Z of the tubular shell, which are piecewise functions in
most cases, the transverse displacements of the cross section of the tubular shell in the
X and Y directions, and the rotation around the longitudinal axis Z will be

represented as
VOX(Z)
WV, (2)} = {VOy(Z)} : (1)
0(z) | .

Similarly, if we make a semi-discretization along the cross-section central line S by
the vertical lines named nodal lines and employ the one-variable functions wr(z), and
wy(z) , respectively defined on the inner and outer nodal lines, and interpolation
functions ¢;(s,) , and ¢;(s.) between the inner and outer nodal lines, the axial
displacement or longitudinal warping of the tubular shell will be expressed as

_ [go(sin )] {Win (Z)}
tu(s.2)} = {[qo(sex)] {w(z)}}j | )

where j=1,2,---n is the segment number of the nodal lines in the longitudinal
direction Z (1 may represent foundation and 2 to 6 may stand for the first to fifth
floors and so on, for example), and the segment number depending upon the property
variation of the building system up the height is the intersection number between
nodal lines and the curvilinear coordinate (central line of the cross section) S; {VO(Z)}
and {u(s z)} are function sets, constituted by all of the basic unknown functlons
[p(s)] arow vector, and {w(z)} a column vector, respectively.

2.2 Motion-field quantification

For free vibration analysis, the longitudinal and transverse dynamic displacements of
the structural system (the tubular shell) can be respectively written in Galerkin’s form

as
_ | e(s)w, (2)} it
u(s.2.0} = {{[qo(sex)] {wex(z»},. © } ®)
(2.0} ={{w(2)} e }. 4)

For forced vibration steady-state response analysis, if giving an arbitrary vertical
ground-motion of {uy(t)}, an arbitrary horizontal ground-motion of {Ty(t)} in the X
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and Y directions, and the rotation around the longitudinal axis Z, for instance, the
motion field of the computational model can be readily quantified as follow

{u'(s, 2,0} ={u, (0} +{u(s, )} r(t) “
W@} ={T, O+ [T O] @)} |

where r(t) and f(t) are the time functions concluded by means of the time-change
law of u,(t) and Ty(t), respectively.

2.3 Motion equations or governing equations

By employing above motion field, the total kinetic energy as well as the potential
energy of the structural system including the strain energy stored in the subgrade can
be readily estimated. Then, by using a Hamiltonian principle, the governing equations
of the structural system can be derived conveniently, which are the ordinary
differential equations (ODE) and corresponding boundary conditions. For instance,
the motion equations for free vibration will lead to

(R (R} =loh (R +{R =0}

in ex in ex ex ; (6)
{Fsv}l +{F5v}1 +{Fiv}1 +{Fiv}1 _{Frt}l :{0}
{FY }ijn +HF} {0, | (Fep + (R ={0) | -
(R R R R o)

in which,

[F*} = E[AlW'(2)} - G[B]iW(2)} - GIC1(vi ()}, {F'}=me’[Al{w(2)},

{F'}=GIDI1{v{(2)} + GICT W(2)}.{F" | = me’[ D, ] {v(2)},
{(F'} =Cm[E1v(2)} |

Equations (6) and (7) are the motion equations for the foundation and other segments
of the computational model respectively, and their corresponding boundary
conditions at the bottom of the foundation will be

{ETALW(0)} =k [AT(w(0)}}", {ETAHW(0)} = ko [A] (w(0)}}”

[(GID1)" +(6ID,))" 1503 +{(GIeT tw(0)})] C®
+{(GICT w(0)})” ko [STHv, (0} = {0}

The boundary conditions at the top of the computational model become as
{ELALW'(H)}" = {0}, {E[ALW'(H)}}" ={0} ©)
[(GID, D" +(GI[D, D™ J{vy (H)} +{(GICT fw(H)}" + (G[CT {w(H)})* }={0}

Also the displacement consistence and generalized internal force equilibrium
conditions at each connection of the computational model must be

W (HOh = W (HO) b, (W (HO b = {WeX(Hk)}kﬂ} (10)
Vo(H) b = Vo(Hi) b ’
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(ELAIW'(HOM = {E[AIW'(HO})

ex

{E[AW'(HO}, = {E[AW'(HO},,
{[(GID])" +(G[D )™ 1{vi(H)}}, +{GICT {w(H)}}

+HBICT w(HOH = {[(GID )" +(GID D" Tvi(H1,
+{GICT tw(H}, +{GICT {w(H )},

The meaning of the matrices such as [A], [B], etc. can be referred to [Gong (2010)]. It
is observed, in mathematic view, that the problem about the free vibration of a super
tall building system is an eigenvalue problem, and its governing ordinary differential
equations (ODE) can be theoretically solved by an ODE solver such as COLSYS
[Ascher (1981)], a general purpose program developed to solve various ODE
problems. However, the normal ordinary differential equation solver can only solve
the standard ODE problem. Consequently, a computational software package known
as EIGENCOL [Yuan (1991, 1993)] has been developed to solve the eigenvalues and
corresponding modes efficiently [ Yaoqing Gong (2010)].

in
k

(11)

3. ODE-Solver Method

As mentioned previously, the free vibration of a super tall building system is an
eigenvalue problem of a group of ordinary differential equations, which can be
theoretically solved by an ODE solver. However, a normal ordinary differential
equation solver can only solve a standard ODE problem. In order to find the
eigenvalues, a computational software package known as EIGENCOL [Yuan (1991,
1993)] has been developed to solve the eigenvalues and corresponding modes
efficiently. According to the technique proposed in the literatures, before the ordinary
differential equations with eigenvalues are solved, they should be transformed into
the standard ODE forms accepted by COLSYS [Ascher (1981)]. The procedure
includes following steps.

3.1 Coordinate transformation

The solving interval of standard ordinary differential equations must be [0,1]. Thusly,
the coordinate transformation must be performed for a practical problem with the
solving interval of [0,H;], for example. At this point, the transformation technique
will be

3.2 Trivial ODE conversion technique

Because eigenvalues are undetermined constants and also a part of the solution of a
group of ODEs, the determination of the unknown constants become a key point for
the solution of the group of ODEs. Therefore, a trivial ODE is necessary to convert
the ODEs with eigenvalues into a new set of standard ODEs in which an eigenvalue,
say w2, has been made as an unknown function. In view of the derivative of a
constant is zero, the trivial ODE can be thusly established as

A=d(@’)/déE=0. (12)
The addition of equation (12) will lead to one more corresponding boundary

condition. Finding the condition introduces another technique, equivalent ODE
technique.

3.3 Equivalent ODE technique
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If we define a normalized function with respect to the forgoing mentioned basic
unknown functions as

[Tt} AW}, +w O WO}, + v} (v} )ds
H 2

where H is the total height of the structural system. Equation (13) can be recognized
as a generalized inner production of the basic unknown functions, and obviously

R($) = , (13)

&R ((W&)h, (WO, + (W), (WY, + ) (v(©))
1z R©= - . (14)
f H
Also if we set
(1) S LHON (WO, + WO AMOL, + O @ | o

H2

the equation will become a standard normalized condition, and we can find two useful
boundary conditions as follows

R(0)=0 mega frame
R(l)zl}' (16) ga fi

secondary frame

By employing above trivial ODE Y, core tube
conversion and  equivalent =~ ODE T4

techniques, one can transform ordinary =+

differential equations with eigenvalues | 34

into a new group of standard ODEs. For g (84

instance, equations (6), (7), (12) and (14) Tea

constitute a group of standard ODEs, and -+

equations (8), (9), (10), (11) and (16) 8-

become their corresponding boundary 8418 4L84L8 418.4( 8.4
conditions. The group of ordinary tr ot
differential equations can be readily 20.4m

solved by a normal ODE solver such as Figure 3. cross-section of
COLSYS [Ascher (1981)]. a mega frame-core-tube system

4. Example and computational result
analysis

The purpose of the section is to demonstrate the numerical determination of resonant
response for a super tall building system due to a given complex ground motion.

4.1 Example

Figure 3 shows the cross section of a mega frame-core-tube system adopted by a
reinforced concrete super tall building under its structural construction as shown in
Figure 1 (a). The height of the main superstructure is 261.9 meters, and the height of
its foundation structure is 21 meters. The cross-section area of all the mega columns
and beams is 2.4 x 2.4m: ; the cross-section size for all the columns and beams of the
secondary frame in the mega frame is 0.7 x 0.7m2; the distance between two columns
is 8.4m. A box-pile foundation is implemented, and the foundation soil is clayey silt.
The equivalent stiffness of soil at the bottom and side faces of the foundation pit is
respectively utilized as follows.

Kp=0r324x105 KPa/m, Kp=r25.1x105 KPa/m, K, =r25.1x105 KPa/m,
K =132.8x105 KPa/m. ry is a coefficient that depends on the realistic site
conditions ( 1.0 is used in this example); C, is the contact coefficient between the
foundation and the subgrade (takes 0.5 in this example); the materials used in the
structural system are respectively: the thickness of the wall for the foundation tube is
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0.6m, the concrete level is C50, and the concrete level for the mega frame is
C50too; the concrete level executed for the secondary frame is C35, the thickness of
the wall for the inner tube is 0.40m, 0.45m for the outer tube, and the concrete level

for the tubes is C40.

4.2 Computational result analysis

In the following tables and
figures Py, Py, P, and Py
represent a group of natural
periods of the structural
system in the X, Y, Z, and
0 (around axis Z) directions,
respectively. It i1s implied
that if the ground motion
periods coincide with the
group of natural periods of
the structural system, the
resonance of the structural
system will occur. That is, if
2n/ox=P, , 2n/o,=P, ,
2n/w,=P, and 2m/we=P, ,
resonance will occur; vV ,
Voy, 0, Win, and W, stand
for the resonant
displacement amplitudes at
the top of the structural
system in the transvers

directions as well as the
resonant warping at the top
of inner and outer tubes of
the computational model.

5. Conclusions

The structural resonance
will occur when the ground
motion period in one
direction is very close to the

natural period of the
structural system in the
identical  direction. The
characteristic of the

computational result is that
the dynamic response value
is very large (should be
infinite theoretically), as
shown in Figure 4, a step
change is happening.

A designer must pay
attention to the coupling

Table 1. Resonant response of coupling vibration

P P, P Py Vox Voy Win Wex

39 49 42 21 1866.75 52770 342.66 372.85
45 49 42 13 38.66 34.46 13.99 15.07
29 3.1 3.1 3.1 1533.69 11.15 319.34 344.75

Table 2. Influence of dynamic-property
adjustment on resonant response

P Voy Win Wex
7.9 0.45 0.05 0.11
3.5 1.62 0.46 0.28
2.2 33.86 5.05 6.52
1.7 15196  28.95 28.38
1.5 24571  45.16 44.71

Table 3. Influence of structural stiffness on resonant

response
structural v v 3 & &
stiffness O 0y in ex
3.15 3.51 3.25 -0.82 0.45 2.53
3.5 1.69 -0.16 -0.82 0.26 1.22
4.15 334 2624  -0.82 -1.87 -5.25
4.55 997 463.79 -0.82 38.67 107.55

Table 4. Influence of foundation stiffness on resonant

response
foundation v 7 5 & &
stiffness o ke in ox
2.2 3.58 4.60 -0.82 0.58 2.59
32 3.55 4.53 -0.82 0.57 2.56
4.2 3.53 4.49 -0.82 0.57 2.55

natural periods of a structural system as long as the movement of its foundation soil
during an earthquake is very hard to predict or evaluate quantitatively. The
adjustment of a structural system, including the change of its material, arrangement of
its components, etc., will lead to the change of its dynamic property, especially its
coupling natural period that possess many combinations, as listed in table 1. As
shown in Figure 5, when the ground motion period changes to a certain degree, the
structural system might experience a different coupling resonant state. Also as listed
in table 2, they implicitly teach us that the dynamic property improvement of a
structural system just in a single direction could render the structural system to stay in
a potential coupling resonant state.
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The resonant periods or natural periods of a structural system strongly depend on its
global rigidity, as shown in table 3. The reduction of global rigidity of a structural
system will make its natural period become longer, and vice versa.

The influence of the foundation stiffness of a structural system on its resonant periods
or natural periods is not obvious if the superstructure remain unchanged, as shown in
table 4. These computational results tell us that it is not a wise way to improve the
dynamic property of a structural system by means of increasing the size of the
foundation in its aseismic design.

The methodology presented in the paper is helpful for the determination of coupling
frequencies or periods of a complex structural system, which are very hard to find in
the published literatures hitherto and to determine by utilizing other numerical
methods.

Vo /

[ 3.5 4.0 4.5 P.
Px=6.3 P.=1.6
Py=6.3 Py=42
P2=4.2 P.=6.3
Po=6.3 Po—63

3000

13500 .

Figure 4. Figure 5.
variation law between v, and P, the first three coupling resonent modes of v
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Abstract

In this work, a face-based smoothed extended finite element method (FS-XFEM) is
developed for three-dimensional fracture problems. This method combines the
extended finite element method (XFEM) and smoothing technique together. With
XFEM, arbitrary crack geometry can be modeled and crack advance can be simulated
without remeshing. With face-based smoothing technique, the integration of singular
term over the volume around the crack front can be eliminated, thanks to the
transformation of volume integration into area integration. Numerical examples are
presented to test the accuracy and convergence rate of the FS-XFEM. From the
results, it is clear smoothing technique can improve the performance of XFEM for
three-dimensional fracture problems

Keywords: three-dimension, face-based smoothed extended finite element method,
stress intensity factor.

19



ICCM2014, 28th-30th July 2014, Cambridge, England

1. Introduction

The fracture analysis by standard finite element method (FEM) is quite cumbersome
and tedious caused by conforming the crack geometry to element boundary.
Remeshing, which greatly increases the computation time, is always needed to match
the new geometry of the crack surface, when the crack advances. In order to avoid
these two disadvantages of FEM, the extended finite element method (XFEM) has
been proposed to facilitate the modeling of arbitrary crack geometry and its
evolvement [Belytschko et al. (1999); Moes et al. (1999);]. In the XFEM, the
displacement field of the standard FEM is enriched by a discontinuous displacement
function and the asymptotic displacement field around the crack tip based on a local
partition of unity. The most important advantage of XFEM is that it can simulate the
crack without conforming the mesh to the crack geometry and crack propagation
without remeshing. The method can improve the accuracy by incorporating arbitrary
functions into the displacement field of the standard FEM to describe the local
behavior around the singular features such as crack tips, notches or corners and thus
is a flexible and powerful tool in the field of fracture mechanics. Currently, the
XFEM is widely used to simulate two- and three-dimensional elastic and plastic
fracture problems [Elgued] et al. (2006); Bordas et al. (2008); Rabczuk et al. (2007);
Rabczuk et al. (2009)]. Attracted by the advantages of the XFEM, researchers in other
fields of computational physics have also employed it [Chessa et al. (2003); Chopp et
al. (2003); Merle et al. (2002); Ji et al. (2002)].

On the other hand, a generalized gradient smoothing technique was introduced by
[Chen et al. 2001]. More recently, Liu has established a G space theory and
developed weakened weak (W2) formulation which has been the foundation for
smoothed finite element methods (SFEM) [Liu et al. (2009); Liu (2010); Liu et al.
(2010)]. Using different schemes of smoothing domain formation, cell-based
smoothed finite element method (CS-FEM) [Le et al. (2010)], node-based smoothed
finite element method (NS-FEM) [Liu et al. (2010)] and edge-based smoothed finite
element method (ES-FEM) [Chen et al. (2012)] are developed. With the smoothing
technique the domain integration is transformed into boundary integration according
to the divergence theory. The shape function derivative is replaced with the shape
function multiplied by the component of the outward unit vector along the boundary
of the smoothing domain. Thanks to this transformation, the singular term existing in
the derivatives of the shape functions for fracture mechanics is eliminated with
smoothing technique. Smoothed methods have shown several advantages. For
example, NS-FEM can provide upper bound solution [Liu et al. (2010)]. ES-FEM
[Chen et al. (2012)] is proved to be more efficient and more accurate. In the ES-FEM,
the system stiffness matrix is computed using strains smoothed over the smoothing
domains formed based on the edges of the triangles. It is proved that the ES-FEM
possesses the following excellent properties: (1) the ES-FEM model possesses a
close-to-exact stiffness: it is much softer than the ‘overly stiff FEM and much stiffer
than the ‘overly soft' NS-FEM model; (2) the results are often found to be
superconvergent and ultra-accurate: much more accurate than the linear triangular
elements of FEM; (3) the implementation of the method is straightforward and no
penalty parameter is used, and the computational efficiency is better than the FEM
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using the same set of nodes. These properties of the ES-FEM have been confirmed by
many works [[Chen et al. (2012)], Liu et al. (2008); Cui et al. (2011)].

In view of the advantages of XFEM and ES-FEM, an edge-based smoothed XFEM
has been developed to combine the advantages of the two methods for two-
dimensional fracture problems [Jiang et al. (2013); Chen et al. (2012)]. Although the
ES-XFEM has achieved remarkable progress in the simulation of fracture mechanics,
the previous works are confined to two-dimensional fracture problems. In this paper,
for the first time, the face-based smoothing technique is combined into XFEM to
develop three-dimensional face-based smoothed extended finite element method (FS-
XFEM).

[Karihaloo et al. (2003); Karihaloo et al. (2001)] from a simplified variational
function using a truncated asymptotic crack tip displacement, formulated the hybrid
crack element (HCE) for evaluating the SIF but also the coefficients of the higher
order terms of the crack tip. But it has not been extended to three-dimensional
fracture problem. A direct traction boundary integral equation method (TBIEM) for
three-dimensional crack problems is developed in [Xie et al. (2014)]. However, a
singular system of equations is always obtained [Aliabadi (1997); Cruse (1988)].
Special methods [Pan (1997)] has to be employed to tackle this problem. The
proposed FS-XFEM will not have these problems comparing with the above
problems.

This paper is organized as follows: Section 2 provides a brief description of FS-FEM.
Section 3 introduces the formation of face-based smoothed XFEM. Section 4
illustrates the computational procedure for three-dimensional stress intensity factor
(SIF). Section 5 gives two examples to test the newly developed method and compare
the results of FS-XFEM with those of XFEM. The conclusion is made in Section 6.

2. Face-based smoothed FEM (FS-FEM)

2.1. Smoothing domain formation

Due to the excellent features of ES-FEM in two-dimensional problems, the FS-FEM
[Nguyen-Thoi et al. (2009a; 2009b)] for three-dimensional problems is developed. In
the FS-FEM, linear tetrahedral elements, which are feasible for arbitrarily
complicated geometry, are used to mesh the problem domain. Instead of using the
edges of the elements in two-dimensional problems, faces of the elements in the FS-
FEM are used to create smoothing domains. Therefore, it is named face-based
smoothed finite element method. The faces of the elements in three-dimension can be
classified into two types: boundary face and interior face. The boundary face lies on
the boundary of the domain, while the interior face lies inside the domain. The
smoothing domains associated with these two types of faces are formed in different
ways. For the interior face, which is shared by two elements, the smoothing domain is
formed by connecting the three points of the face to the centroids of the two elements
shown in Fig. 1(a). For the boundary face, which belongs to only one element, the
smoothing domain is formed by the face and the centroid of the only element. Four
points (three from the face and one being the centroid of the element) automatically
form a tetrahedral shown in Fig. 1(b).
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(b)

Figure 1. Two types of smoothing domains (a) smoothing domain formed based on
interior face (b) smoothing domain formed based on boundary face

2.2. The formulation of FS-FEM

In the FS-FEM, the problem domain is meshed with 4-node tetrahedral elements.
Based on the above description of smoothing domain formulation, N, smoothing

face

domains in the whole model can be created. Here N is the number of the faces in

face

the whole problem domain Q. The smoothing domains satisfy Q:z:j“Q" and

Q'NQ' =@, i# j. With face-based smoothing technique, the integration of the
derivatives of the shape functions over domain can be transformed into integration of
shape functions multiplied with component of outward unit vector of the boundary
face. The integration result is then divided by the volume of the smoothing domain. In
the setting of FS-FEM, the smoothed strain is obtained as:

e=Bu 1)

Here u=[u, v, w, - u, v, w,.[ is the displacement vector with all the

ns ns

displacement components of the nodes belonging to the smoothing domain. B is the
strain-displacement relationship matrix in three dimension expressed as:

bi(x,) O 0 |
0 by(x,) O
.| 0 0 bu(x) @
biy(x,) bix(X,) 0
0 bi (%) by (%)
bu(x) 0 bu(x,)

with
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B ) = [L OO GOOT D= (x3.2) o)

where T* is the boundary face of the smoothing domain. nf(x) is the h component

of the outward normal vector on the boundary T*. N,(x) is the shape function. V.’ is
the volume of the smoothing domain.

By Gauss quadrature, bi (x,) can be further written as:

k
N face N gau

B () = o D 3 (X, N, (), h=(x,Y,7) 4

k m=ln=l

where N, is the number of the Gauss points and w;, is the weight of the Gauss point.
N k

face

is the number of faces attached to the smoothing domain Q. x_ is the

n

coordinate of the Gauss point on the boundary face. N;(x,) is the ith shape function
of the Gauss point x,. n(x,) is the outward unit normal component.

The set of algebraic equations for FS-FEM can be obtained in the form of matrix:

Kd=f (5)
Here d is the displacement vector of all the nodes in the model, K is the global
stiffness matrix and f is the nodal force.

The entries in sub-matrices of the stiffness matrix K in Eq. (5) can be expressed as:

Nface_
Kij = ZKij,k (6)

k=1

Here the summation means an assembly process, Risj,k is the stiffness matrix
associated with the smoothing domain Q* and can be computed by

—s =T _— =T = .,
Ki,-,k:jgi Bi DB;dQ=Bi DBV, @)

where V. is the volume of the smoothing domain Q*, D is the matrix of material
constants that is defined as follows:
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26+ A A 0 0 0
A 2G+4 A 0 0 0
2 A 26+4 0 0 0
D= ®)
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 Gj

E P VE
2(1+v)’ 1+v)1-2v)
Poisson's ratio.

with G = . Here E is the Young's modulus, and v is the

3. Face-based smoothed XFEM (FS-XFEM)

3.1. The formulation of FS-XFEM

The displacement of XFEM is composed of three parts: the continuous displacement
from standard finite element method, the enrichment part that represents discontinuity
across the crack surface and the enrichment part that describes the singular strain field
around the crack front. Heaviside function is usually employed as enrichment
function for the discontinuity across the crack surface. A set of branch functions,
which are derived from the displacement field around the crack front, are used to
produce the singular strain field around the crack front. Nodal subtraction is used in
FS-XFEM.

ux)= > N;(u;+ > N;(H(x)-H(x;))a,

ieN fs—fem jEN fs—c

+ 3 N OOD (6, (9~ 4, (X by

keN ¢ a=1

(9)

Here N;(x), N;(x) and N, (x) are the shape functions associated with different types
of nodes and u, is nodal displacement in standard FEM. N ® ™" is the node set of the
whole finite element model. x; and x, are the coordinates of the jth and kth nodes
in the element respectively. H(x) is a Heaviside jump function and is set as follows:

(10)

H (x) = 1 |f(x—>f)-n20
—1 otherwise

N 5 is the set of nodes whose support domain is completely cut by the crack surface.
a; is the enriched degree of freedom associated with node set N 5 N ™ js the set

of nodes in the vicinity of the crack front. ¢, (x) are a set of branch functions to
model the asymptotic features of the displacement field around the crack front:
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¢, (X)(a =1-4)
:{\/Fsin(g) \/Fcos(g) \/Fsin(g)sin(e) \/Fcos(g)sin(e)} D

where (r,8) is the local polar coordinate system, which is defined so that the plane
where @ =0 must be tangent to the crack front. b is the ath (of the totally four)
enriched degree of freedom associated with node set N *°.

Caused by different types of enrichment functions, nodes in FS-XFEM can be
categorized into three types. (a) common nodes denoted by N * ™" which are not
enriched by either H(x) or ¢,(x); (b) ¢,(x)enriched nodes denoted by N*°. As
shown in Fig. 2(a), the smoothing domain ABCG,G,. Here ABC is the face, based
on which the smoothing domain is formed. G, and G, are the centroids of the two
elements, which share the face ABC. The crack surface EFMN is in this smoothing
domain. But the crack front MN is also inside the smoothing domain, which means
that the crack surface does not completely cut the smoothing domain but part of the
smoothing domain. ¢,(x) is used to describe the displacement behavior around the
crack front. Therefore, nodes associated with this smoothing domain are enriched by
#,(X) . () H(x) enriched nodes denoted by N"™°. As shown in Fig. 2(b), the
smoothing domain ABCG,G, is constructed in the same way as Fig. 2(a). Here EFD

is the crack surface. This smoothing domain is completely cut by the crack surface.
Therefore, H(x) is used to enrich the nodes associated with the smoothing domain, if

the nodes are not enriched by ¢, (x).

@) O G (b) G1

Figure 2. (a) crack-front element (b) crack-cut element

Employing the strain smoothing operation, the smoothed strain over Q¥ from the
displacement approximation can be written as:
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5(0= YBIx)u+ YBIx)a + Y Bax)d by 12)

iENfS’fem jENfsfc meN fs—e

where B; (x,) 1s the smoothed strain gradient matrix for the standard FS-FEM part,

and §?(Xk), §gq(xk) correspond to the Heaviside function and branch functions
enriched parts respectively. Those matrices can be written as:

bi(x) O 0
0  by(x) O
E'r (Xk) | =r 0 =r 0 b (Xk) (13)
biy(X,) bix(X,) 0
0 bu(x) bi(x,)
_Birz (Xk) 0 6|rx (Xk)_
In the above equation, bin (x,),h=x,y,z and r =u,a,b is computed by:
bin (x,) = i .. mOON, (dr
bin (%) = I N CON; Y(H) -H X )dl (h=X,y,2) (14)

k

bin(x, )——f N, OON; ()(4, (X) - ¢, (x;))dIl

Using Gauss quadrature along the segments of boundary, the above equations can be
written as:

k
N face N gau

Bi(x,) = o D 3 (KN, (%, )W,

k m=l n=l

N face N gau

bin (x,) = Vl 22 MmN OG)(H ) = Hx))w, — (h=x,y,2) (15)

k m=l n=l

N face gau

B (%) = o D% 2 N, (X, )8, (%) =, (<),

k m=1 n=1

Here N, is the number of the boundary faces of the smoothing domain, N__, is the

gau

number of the Gauss points used on the boundary face. x, is the coordinate of the
nth Gauss point on the boundary face.
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The stiffness matrix K is yielded by:

—_— NS —5
Kj :ZKij,k
k=1
—u =u s —u —_ s —u —h, s
| (B)TDBV, (Bi)'DBY, (Bi) DBV, (16)
->'| (B DBV, (B)'DB}V; (BI) DB,
“*|(Bi)' DB}V (Bi)'DB}V; (Bi) DB}V,

Substituting Eq. (16) into Eq. (5) can produce a set of linear equations. In FS-
XFEM, f is composed of three parts: f',f* and f* . These three vectors can be
obtained as follows:

fl o= jgﬁn N, (x)bdQ + jn N, (X)t.dr

im

I,m

for = [ N, (94, (0bdQ+ [ N, ()4, (x)tdr

fa — LE N, (X)H (X)bdQ + jr N, (X)H (x)t.dT" (17)

4. Three-dimensional stress intensity factor calculation

Several numerical techniques, in conjunction with finite-element (FE) analyses,
have been developed to calculate fracture mechanics parameters. Three of these
techniques are: (1) the virtual crack extension (VCE) method [Parks et al. (1974;
1977); Hellen (1975; 1989)], (2) the virtual crack closure technique [Rybicki et al.
(1977); Shivakumar et al.(1988); Raju et al. (1988); Buchholz (1984)], and (3) the J-
integral method [Rice (1968); Cherepanov (1967; 1969); Eshelby (1956); ]. Based on
J-integral method, an interaction energy integral method is used to calculate stress
intensity factor in this work. A cylindrical volume with the radius r, surrounding a

point C located on the crack front is shown in Fig. 3. If the crack surfaces are
traction-free, the domain form of the interaction energy integral 1(s) can be written
as:

- [ [tr(P-Va)+(V-P")-qldv
jL Aa(s)ds

I(s)= (18)

where

P=06:e1-VU™.6-VU ¢~ (19)
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Here the superscript aux stands for auxiliary field. €,u and ¢ are the actual strain,
displacement and stress field respectively.

Figure. 3. A cylindrical volume surrounding a point C

The main difficulty in the calculation of interaction energy integral lies in the
evaluation of the gradients and higher order gradients of the auxiliary fields that
appear in the integrand. As shown in Fig. 4, we define a local orthogonal coordinate

system at a point salong the crack front such that the local x, axis is perpendicular to
the plane of the crack, and the x, and x, axes lie in the plane of the crack and are

normal and tangent respectively to the crack front. To illustrate a convenient
procedure to evaluate these gradients, we consider a point p which lies in the local
X, — X, plane as shown in Fig. 4. The base vectors e,,e, and e, as shown in the

figure are constructed by keeping e, and e, parallel to x, and x, and moving in the
direction of x,. r, @ are local polar coordinates defined in the figure. The auxiliary
fields expressed in this orthogonal curvilinear coordinate system are given as:
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on = L{Kf‘“x cosg{l—singsin 379} - K sin(g){2+cosgcos%ﬂ}

1 ax .. O .6 . 30 ax .0 0 30

Oy :T K, COSE 1+smzsm > +K,, S|n20052cos7
ar
L
N

aux A3 0 0 30 aux 0 - 0 - 30
K,™ sin—cos—cos—+ K" cos—| 1—sin —sin —
2 2 2 2 2 2

2ar (20)
O = K cos—
23 127Z'r 2
we__ K sin 0
13 (2721’

_ aux aux
Oy =0(0y, +05

= ‘/ﬂ K™ (5—8:))cosg—cosg + K (9—80)sing+sin%
G\~ 2 2 2 2
us™ :—,/E K (7—81))sing—sinﬁ - K" (3—80)COSQ+COS% (21)
8G \ 7 2 2 2 2
ug™ :iJﬂKﬁ‘,‘xsinQ
GV~ 2

aux aulaux . LAUX augux 22U 1 aU > Gulaux
11 A, €n T & =
o0&, o0&, 205 04

aux 1 aU aux au ;ux . 1 8U aux au ;ux
&3 = ( ) 183 =4 (
2" 0&; 551 205, 853

Bl

—)
(22)

)iés =0
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>

1

Figure 4. Local orthogonal coordinate system at a point s along the crack front

The weighting function q is defined as follows: A set of elements having at least one
node within a cylindrical volume of radius r, around the crack front are selected. The
value of g, of node associated with the crack tip C is defined:

¢ if xg =0andr® <r,

g =1° : = d (23)
0 otherwise

where £ is a unit vector that is perpendicular to the crack front at the crack tip C and
lies in the local tangent plane to the crack surface.

Having defined the auxiliary fields, the interaction energy integral 1(s) defined by Eq.
(18) takes the value

21_ 2 aux aux 1 aux
I(S):%[KIKI + K, Kj ]"'EKme (24)

Here K™, Ki™, and K/ are the stress intensity factors associated with the
auxiliary fields and K,, K, and K, are the stress intensity factors associated with

the actual fields. The process of evaluating the actual stress intensity factors involves
making a judicious choice of the auxiliary stress intensity factors, and then evaluating

the interaction energy integral. For example, Substituting K =1 , and
K™ =Ky =0 into Eqg. (24) yields:
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E
Ku(S)ZM 1(s) (25)

Similarly, K, can be obtained by substituting K™ =1 and K/ =K * =0 and K,
by substituting K;* =1 and K" =K/ * =0.

5.  Numerical examples

Two examples are presented in this work to test our method. One is a plate with
a thorough edge crack under tension. The other problem is a cylinder with a penny-
shaped crack under remote tension. Strain energy and SIFs are obtained by FS-XFEM
and compared with those of XFEM.
5.1. A plate with a thorough edge crack under tension

A plate with a thorough edge crack under tension is first analyzed as shown in
Fig. 5. The mesh is plotted in Fig. 6. The dimension of plate is: the height H =2mm
the width W =1mm and the thickness t =0.5mm with the crack length a =0.3mm.
The load o =1MPa is applied on the top surface of the plate. All the degrees of
freedom on the bottom surface are fixed. The material parameters are: Young's
modulus E =1MPa and the Poisson's ratio v =0.3.

Tl ]
/‘I‘I

Figure 5. A plate with a thorough edge crack under tension
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Figure 6. Mesh of the plate with a thorough edge crack

5.1.1 Result

Five types of meshes with linear tetrahedral elements (13x25x4 ,18x35x4 ,
19x37x4, 31x61x4,41x81x4) are used in the model. A sample mesh is shown in
Fig. 6. For comparison, the results are also computed using XFEM. The reference
solution of strain energy is obtained using singular FEM with very fine mesh
(2,179,458 nodes) in this study. The strain energy is defined as:

IR
u=> an DedQ (26)

The results of the strain energy produced by FS-XFEM and XFEM are plotted in Fig.
7. From the figure, it can be seen that the numerical results obtained from FS-XFEM
are closer to the reference solution than those of XFEM using the same mesh. This is
due to integration of face-based smoothing technique into the XFEM.
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Figure 7. Plate with a thorough edge crack under tension: the variation of strain
energy given by XFEM and FS-XFEM with different node numbers

5.1.2 Convergence rate of FS-XFEM

The convergence property of FS-XFEM and XFEM is studied in this section. In order
to investigate quantitatively the numerical results, an error indicator in energy norm is
defined as follows:

|U _Uref|

num

E =

e @)

ref

where U, denotes the strain energy of reference solution and U, stands for the

strain energy of numerical solution. The errors in strain energy norm against h for
this example is plotted in Fig. 8, where h is the average distance between two
adjacent nodes. From the figure, it can be seen that the error of FS-XFEM is smaller
than that of XFEM with the same mesh. At the same time, FS-XFEM has higher
convergence rate than XFEM for this example, which means that FS-XFEM can
converge to the reference solution at a higher rate.
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Fig. 8. Convergence rate of XFEM and ES-XFEM for a plate with a thorough crack
under tension
5.1.3 Condition number

Another important property of numerical methods is the condition number of the
global stiffness matrix, cond(K). The condition number of the global stiffness matrix

can affect the number of iterations needed to obtain a converged solution in the
manner of n,, o ,/cond(K), when an iteration solver is used to solve the algebraic

system equation. The condition number of FS-XFEM and XFEM for thist example
against node numbers is listed in Table 1. As it can be seen, FS-XFEM has bigger
condition number than XFEM with the same mesh. But the difference is not quite big.

Table 1. Condition numbers of FS-XFEM and XFEM for the first example with
different mesh densities

Mesh 13x25x4 18x35x4 31x61x4 41x81x4
XFEM 1.3212e+006 1.8420e+006 1.4312e+007 1.7578e+007
FS-XFEM 1.5427e+006 2.0628e+006 1.7675e+007 2.8165e+007

5.1.4 Efficiency of FS-XFEM

In the assessment of numerical methods, the time cost of different numerical methods
should also be taken into consideration. As shown in Table 2, the time consumption
for FS-XFEM and XFEM with different meshes is compared. From the table, it is
clear that the FS-XFEM takes more time to solve the equation than XFEM for the
same mesh. This is in agreement with the condition number comparison between FS-
XFEM and XFEM. However, after taking the results accuracy into account and

34



ICCM2014, 28th-30th July 2014, Cambridge, England

considering the efficiency, the present FS-XFEM is found to perform much better
than XFEM for the results in energy error norms as shown in Fig. 9. From the figure,
it is clear that within the same computation time, the results of FS-XFEM are more
accurate than XFEM.

Table 2. Time cost of FS-XFEM and XFEM for the first example with different
mesh densities

Mesh 13x25x4 18x35x4 31x61x4 41x81x4
XFEM 0.321761s 1.185841s 12.08005s 29.681937s
FS-XFEM 0.67652s 2.579944s 34.70061s 104.7701s
-0.8

—&—FS-XFEM R=-0.1112
—&— XFEM R=-0.0959

0.5 ) 0.5 1.5 2 2.5

1
log, /(1)

Figure 9. Comparison of computational efficiency of FS-XFEM and XFEM in
terms of energy norm for a plate with a thorough crack under tension

5.2. A cylinder with a penny-shaped crack under remote tension

From the first example, it is seen that the FS-XFEM is powerful to simulate a straight
crack in three-dimension. In order to extend the applicability of the proposed method,
a cylinder with a penny-shaped crack under remote tension is studied. The crack is in
the middle of the cylinder, with the radius (of the penny) a =0.3mm shown in Fig.
10. The remote tension is applied on the top surface of the cylinder. The bottom
surface of the cylinder is fixed. The geometrical details are as follows: H =12 mm
and R=3mm. With the ratio a/R =0.1, this problem can be considered as a crack
in an infinite body. The solution of stress intensity factor is given by [Anderson
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(1995)]: K, =Ea\/ﬁ. This is an axisymmetric problem. Due to the symmetry, only
T

one quarter of the model is simulated with appropriate boundary condition shown in
Fig. 11. In this model, symmetrical boundary condition are prescribed on both of the
two side surfaces of the quarter-cylinder.

Figure 10. A cylinder with a penny-shaped crack under remote tension

il

Crack front

SoEE s = =

Crack surface

==———==-

= ==

\

Figure 11. The mesh used for a cylinder with a penny-shaped crack under remote
tension
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The strain energy for this problem by FS-XFEM and XFEM is plotted in Fig. 12. The
reference solution for strain energy is obtained by singular FEM with very fine mesh
(1,443,082 nodes). It can be seen that FS-XFEM can produce more accurate results
than XFEM with the same mesh. The stress intensity factor (SIF) is also obtained by
FS-XFEM and XFEM. The SIFs with error are tabulated in Table 3. From the table, it
is noticed that numerical solutions of SIFs using FS-XFEM are closer to the reference
solutions than XFEM for the same mesh. This confirms that face-based smoothing
technique has a strong value to integrate to XFEM.
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0.0418
>
o
J] JNES 5
C /e,//
O 0.0417
£
o //
)

0.0416

o I S— —
. —H8
g
/a/ —o— FS-XFEM
0.0415 —— XFEM e
/ — Reference solution
0.0414 ' '
0 2000 4000 6000 8000 10000 12000 14000

Number of nodes

Figure 12. The variation of strain energy with number of nodes for a cylinder
with a penny-shaped crack under remote tension

Table 3. K,(MPa+vmm) (with error) of FS-XFEM and XFEM for a cylinder with
a penny-shaped crack under remote tension with different mesh densities

Mesh 1352 2500 4968 6016 9306
XFEM 0.6097 0.6114 0.6118 0.612 0.6121
(1.34%)  (1.07%) (1%) (0.97%)  (0.95%)
FS-XFEM  0.6121 0.6137 0.6140 0.6143 0.6144

(0.95%)  (0.70%)  (0.65%) (0.6%) (0.58%)
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6. Conclusion

In this work, the face-based smoothing technique is combined into extended finite
element method (XFEM) to develop face-based smoothed extended finite element
method (FS-XFEM) for three-dimensional fracture problems. Two numerical
examples are used to test the accuracy, efficiency and convergence rate of FS-XFEM.
Through the numerical results some conclusions can be drawn as follows:

1. There are no additional parameters involved in the FS-XFEM, hence, the
implementation of FS-XFEM using tetrahedral element that can be generated by
many commercial software is quite straightforward.

2. Due to the properly softening effects provided by the face-based smoothing
technique, the proposed FS-XFEM possesses a close-to-exact stiffness of the
continuous system. Hence, it can provide more accurate results than XFEM using
the same tetrahedron mesh in terms of strain energy and stress intensity factors.

3. The convergence rate and computational efficiency of FS-XFEM have been
improved significantly compared with XFEM. FS-XFEM also possesses some
advantages compared to XFEM. For example, in the calculation of the stiffness
matrix, no singular term appears in the integrand. Mapping, which increases the
complexity of the calculation, is not needed.
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DISCONTINUOUS GALERKIN FINITE VOLUME ELEMENT METHODS
FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

RUCHI SANDILYA * AND SARVESH KUMAR*

ABSTRACT. In this paper, we have discussed a one parameter family of discontinuous Galerkin
finite volume element methods for the approximation of the solution of distributed optimal
control problems governed by a class of second order linear elliptic equations. In order to
approximate the control problem, the method of variational discretization is used. By fol-
lowing the analysis of Kumar et. al. [Numer. Meth. Part. Diff. Eqns. 25 (2009), pp.
1402-1424], optimal order of convergence in L2-norm for state, costate and control variables
are derived. Moreover, optimal order of convergence in broken H!-norm are also derived
for state and costate variables. Several numerical experiments are presented to validate the
theoretical order of convergence.

Keywords: Optimal control; variational discretization; discontinuous Galerkin finite vol-
ume element methods; order of convergence; numerical experiments.

1. INTRODUCTION

This paper is concerned with the discontinuous Galerkin finite volume element (DGFVE)
approximation of the elliptic optimal control problem of the following type : Find y, u such
that

. 2 A 9
Uy 2 ly = vall2 @) + B} [l 20 - (1.1)
subject to
~V.(KVy) = Bu+f inQ, (1.2)

y = 0 onl. (1.3)

where, Q C R? is a convex, bounded and polygonal domain and T is the boundary of Q, A is
a positive number, f, yq € L*(Q) or H'(Q), K = (k;;j(x))2x2 denotes a real valued, symmetric
and uniformly positive definite matrix in €2, i.e., there exists a positive constant g such that

ETKE > apg™¢ VEER?
B is a bounded continuous linear operator and U,q4 is denoted by
Upa = [u € L*(Q) : a < u(z) < b, a.e.inQ, a,b € R].

The numerical solutions of such kind of elliptic problems have been investigated by many re-
searchers, since these problems have lots of applications in mathematical and physical problems.
Finite element methods extensively used for the approximation of the control problems and for
the error analysis of finite element methods (FEM) applied to elliptic control problems, we refer
to [3, 4, 5, 6, 7, 15] and references therein. In most of these papers, the state and costate vari-
ables are discretized by continuous linear elements and control variable by piecewise constant
or piecewise linear polynomials. More recently, Hinze given a new direction for approximat-
ing the control problem in which a new variational discretization approach is introduced for

*Department of Mathematics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695
547, Kerala, India. Email:sarvesh@iist.ac.in and ruchisandilya.12@iist.ac.in.
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linear-quadratic optimal control problems whereas the control set is not discretized explicitly
and obtained improved convergence order for optimal control, for more details, kindly see [8].

Because of local conservative property of the finite volume element (FVE) methods, these
methods are very popular in computational fluid dynamics and (FVE) methods have also been
used to solve fluid optimal control problems. In [12], the author has used the optimize-then-
discretize approach and FVE discretizations to approximate elliptic optimal control problems.

Tt is well known the discontinuous Galerkin (DG) methods which was introduced by Arnold
in [1] does not demand the inter element continuity criteria and has some attractive features
such as: high order accuracy, localizabilty and suitable for parallel computing easily handle the
boundary conditions. Keeping in mind the advantages of FVE methods and DG methods, in
[16], Ye introduced discontinuous Galerkin finite volume element (DGFVE) methods for elliptic
problems. Later Kumar et. al. [9] have discussed a one parameter family of DGFVE methods
for the approximation of the elliptic problem. Recently, Kumar extended the analysis of [9] for
approximation of miscible displacement problems, see [10].

In this paper, in order to obtain an optimal system, first we apply Lagrange multiplier
method to the problem (1.1Introductionequation.1.1)-(1.3Introductionequation.1.2) and obtain
an optimal system. Then we use DGFVE methods to discretize the state and adjoint equation
of the system. For the optimal condition, we use variational discretization approach intro-
duced in [8] to obtain the control.This paper is organized as follows: While the Section 1 is
introductory, Section 2 is devoted to the DGFVE formulation for the optimal control problem.
In Section 3, we discuss the convergence analysis of DGFVE in different norms and finally in
Section 4, we present some numerical experiments to support the theoretical results obtained
in Section 3.

2. DISCONTINUOUS GALERKIN FINITE VOLUME ELEMENT FORMULATION

We assume that our optimal control problem admits a unique control u, since U,q is
bounded, convex and closed. For the subsequent standard existence, uniqueness and first-
order optimality results we refer to [14]. We can then write the first-order optimality condition
in the following form:

A+ B*p,v—u) >0 Yo € Uy, (2.1)
where the function p is called adjoint state (or costate) associated with u and solution of the
adjoint equation

—V.(KVp) = y—yq inQ (2.2)
p = 0, onl. (2.3)
Let 7, be a regular, quasi-uniform triangulation of  into closed triangles T’ with h = ITneaT):(hT),

where hp is the diameter of the triangle T'. The dual partition 7} of 73, is constructed as follows:
divide each triangle T € 7, into three triangles by joining the barycenter B and the vertices of
T as shown in Figure 1A triangular partition and its dualfigure.1. Let 7 consists of all these
triangles 7. We define the finite dimensional Trial (V4,) and test space (W}) associated with
7n, and 7, respectively as follows:

Vi = {Uh S LZ(Q) : Uh|T S P1(T) VT € Th}
Wy, = {wh S LZ(Q) PWh| T+ € Po(T*) vT* € 7';;}

where P,,,(T) or P,,(T*) denotes the space of all polynomials of degree less than or equal to m
defined on T or T*, respectively. Let V(h) =V}, + H?(2) N H} (). To connect the trial space
and test space, we define a transfer operator v : V(h) — W), as:

1
Y| = hi eU

r-ds, T* ey,

42



ICCM2014, 28th-30th July 2014, Cambridge, England

FIGURE 1. A triangular partition and its dual

where e is an edge in T', T* is the dual element in 7;; containing e, and h. is the length of the
edge e.

Multiply (1.2Introductionequation.1.2) and (2.2Discontinuous Galerkin Finite Volume Element
Formulationequation.2.2) by vy, integrate over the control volumes and an application of Gauss
divergence methods leads the following DGFVE formulation: Find (yp, pn,un) € Vi X Vi, X Ugg
such that

Ah(yh,wh) = (Buh + f, 'ywh) Ywp € Vy, (2.4)
An(prsan) = (Yn —Ya,van) Y € Vi, (2.5)
(Aup + B*pp,v —up) >0 Yo € Uy, (2.6)

where the bilnear form Ay (-,-) defined as

Ap(®p, U)) = ZZ / (KV®,n)yWyds 46 / Y] (K VW) ds

TeTh j= 1AJ+1BA eel' s,

—Z/wh (KV®), ds+2/ [®].[¥r]ds Y, U, € V.

ecl' eel' s

Here, the symbols [-] and (-) used for jump and average respectively and 0 € [—1,1], « and 8
are penalty parameters, for more details kindly see [9]. Let yp,(u) and pp(y) be the solutions of

Ap(yn(u),wn) = (Bu+ f,ywp) Vwy, € Vi, (2.7)

and

An(pr(y),an) = (Y — Ya:van)  Van € Vi, (2.8)
respectively. A norm ||.| on V(h) is defined by

T T /
eth

where ‘”E,h =3 |VU|(2),T. Using the coercivity and boundedness of the bilinear form Ap (-, )
TeT,
which is proved in [9, pp. 1410-1413] and noting that y, = yn(up) and pp = pp(yn) we have

the following result.

Lemma 2.1. Let yn(u) and pn(y) be the solutions of (2.7Discontinuous Galerkin Finite Vol-
ume Element Formulationequation.2.7) and (2.8Discontinuous Galerkin Finite Volume Element
Formulationequation.2.8) respectively. Then the following results hold :

Ipn(y) = pall < Clly —ynll and flyn(w) = yall < C llu = unl].
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The result easily follows by using (Theorem 2.3, [9]) and Cauchy-Schwarz inequality.

We emphasis that throughout the article C' is a generic positive constant (also appeared in
Lemma 2.1theorem.2.1) which is independent of the mesh size h but may depend on the bounds
of f,u,y,p and size of the domain 2.

3. CONVERGENCE ANALYSIS

3.1. Convergence in L?-norm.

Theorem 3.1. Assume that K € Wh®(Q) and u, f,yqs € L*(Q). Let (y,p,u) € (H?() N
HY(Q)) x (H*(Q) N HE(Q)) x Uaq be the exact solutions and (yn, ph,un) € Vi X Vi, x Uaq be
the solutions of (2.5Discontinuous Galerkin Finite Volume Element Formulationequation.2.4)-
(2.6Discontinuous Galerkin Finite Volume Element Formulationequation.2.6). Then there ex-
ists an hg > 0 such that for all 0 < h < hg

lu — up]| < Ch. (3.1)

Moreover, if K € W2°°(Q) and u, f,yq € H'(Q), then there exists an hg > 0 such that for all
0<h < h

|lu —up|| < Ch?. (3.2)

The above theorem can be proved by using the variational inequalities (2.1Discontinuous
Galerkin Finite Volume Element Formulationequation.2.1) and (2.6Discontinuous Galerkin Fi-
nite Volume Element Formulationequation.2.6) with the functions u and uy,, using (Lemma 2.4,
Theorem 3.2, [9]) and Lemma 2.1theorem.2.1. For more details, we refer to [11].

Now, using triangle inequality, (Theorem 3.2, [9]), Lemma 2.1theorem.2.1 and Theorem 3.1theorem.3.1,
we have the following theorem.

Theorem 3.2. Assume that K € Wh®(Q) and u, f,yq € L*(Q). Let (y,p,u) € (H2() N
HE () x (H*(Q) N HE(Q)) X Una be the ezact solutions and (yn, pn,un) € Vi X Vi X Uuq be
the solutions of (2.5Discontinuous Galerkin Finite Volume Element Formulationequation.2.4)-
(2.6Discontinuous Galerkin Finite Volume Element Formulationequation.2.6). Then there ex-
ists an hg > 0 such that for all 0 < h < hg

ly —wnll < Ch, |lp—pull < Ch. (3.3)

Moreover, if K € W2°°(Q) and u, f,yq € H'(Q2), then there exists an hg > 0 such that for all
0<h<hg

ly —ynll < Ch%,  |lp—pul < CR®. (3.4)

Following the proof lines of (Theorem 3.1, [9]) and using Theorem 3.1theorem.3.1, The-
orem 3.2theorem.3.2 together with Lemma 2.1theorem.2.1, we can derive the following error
estimates in the H!'-norm. For a detailed proof, we refer to [11].

3.2. Convergence in broken H'-norm.

Theorem 3.3. Assume that K € WH®(Q) and u, f,ys € L*(Q). Let (y,p,u) € (H*(2) N
HYQ)) x (H*(Q) N HE(Q)) x Uaq be the exact solutions and (Y, ph,un) € Vi X Vi X Uaq be
the solutions of (2.5Discontinuous Galerkin Finite Volume Element Formulationequation.2.4)-
(2.6Discontinuous Galerkin Finite Volume Element Formulationequation.2.6). Then there ex-
ists an hg > 0 such that for all 0 < h < hg

ly =yl < Ch, llp = pall < Ch. (3-5)
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4. NUMERICAL EXPERIMENTS

In this section, we present two numerical examples in order to discuss the performance of the
DGFVE for the approximation of the elliptic optimal control problem (1.1Introductionequation.1.1)-
(1.3Introductionequation.1.2). The method holds true for any value of 6 € [—1, 1] but in par-
ticular, for the numerical experiments we take § = -1,0,1, as these values of 0 leads to different
interesting schemes in the context of discontinuous finite element methods, kindly see [13]. We
will investigate the order of convergence of state, costate and control variables in L?-norm and
order of convergence of state and costate variables in the broken norm |.|.

Example 1. We consider the following elliptic control problem with Dirichlet boundary
value condition:

1 2 Lo
Join o lly = yallzao) + 5 [ulza0)
— Ay u  inS,
y = 0 nl,
u > 0,
where Q = [(z1,22) : 0 < 27 < 1,0 < 25 < 1], T denotes the boundary of Q. The exact
state y is sin(mzy)sin(mzs), ya = (47t + 1)sin(rxq)sin(rxs), p = —2n2sin(mww1)sin(mrs) and

u = max(0, —p).

35 T T T T T T 4

logllly-y,lIl
N

loglllp-p, Il
-

151

2 3

2.4 2, 32

.6 28
-log(h)

FIGURE 2. Order of convergence in broken H'-norm for state and costate

variables for Example 1.

ly =yl lp — pll
0=-1 0=0 =1 0=-1 0=0 =1
0.3719918 0.37650518 0.38334068 | 7.21776447 7.24618657 7.29030071
0.2460884 0.24772621 0.25033399 | 4.82156990 4.83286579 4.85124495
0.1839629 0.18473849 0.18600306 | 3.61641018 3.62227458 3.63199956
0.1469065 0.14733895 0.14805334 | 2.89231763 2.89585972 2.90178678
0.1222834 0.12255207 0.12299930 | 2.40948560 2.41184101 2.41580092

TABLE 1. Numerical results of broken H' error for =1, §=-1 and #=0 with
B=1 and a = 10 for Example 1.
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FIGURE 3. Order of convergence in L?-norm for state and costate and control
variables for Example 1.

ly — yall lp — pall
Dof 0=-1 6=0 6—=1 Dof  f=-1 0=0 6—1
384 0.02657497 0.02999063 0.03437191 | 384 0.30726316 0.33952145 0.38187541
864 0.01172431 0.01344455 0.01568472 | 864 0.13500845 0.15109265 0.17258162
1536 0.00654811 0.00756756 0.00890502 | 1536 0.07535372 0.08485681 0.09766827
2400 0.00416848 0.00483938 0.00572336 | 2400 0.04797144 0.05421803 0.06268522
3456  0.00288324 0.00335721 0.00398345 | 3456 0.03318749 0.03759811 0.04359833
[lw — un|

384 0.30968478 0.34176897 0.38392985

864 0.13604558 0.15206116 0.17347429

1536  0.07586822 0.08533866 0.09811434

2400 0.04825989 0.05448858 0.06293629

3456 0.03336438 0.03776417 0.04375267

TABLE 2. Numerical results of L? error for =1, §=-1 and #=0 with 3 = 1
and a = 10 for Example 1.

In the next example we take desired state 34 to be zero and include desired control ug.
Example 2. We consider the following problem

min
u€Uqq

Dl - vl
21/ Yd

1
2
220 + By llu—
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—Ay u+ f inQ,
y = 0 T,
w > 1 inQ.

In this example we have,
Q= [(z1,22) : 0 <27 < 1,0 <y <1], up = 1— sin(rzy/2) — sin(raz/2) + s, ya = 0,

p=Z(z1,72), f = 47*Z — u, where Z = sin(mx1)sin(rry) and

0.5
0.0

|

ifxl—%aa > 1.0
ifI14F1Q S 1.0

. The exact solution of this problem is y = 27227, u = max(ug — p, 1).

0=-1
——8=1

---cn

—logllly-y, Il
-
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26 28
—log(h)
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FIGURE 4. Order of convergence in broken H!-norm for state and costate
variables for Example 2.

lly — ynll lp — pall
Dof 0=-1 0=0 =1 Dof 0=-1 0=0 =1
384  7.21797574 7.24658386 7.29098777 384 0.37204143 0.37657411 0.38343755
864 4.82162819 4.83298774 4.85147100 864 0.24610328 0.24774803 0.25036647
1536 3.61643379 3.62232663 3.63209930 | 1536 0.18396914 0.18474788 0.18601743
2400 2.89232940 2.89588651 2.90183911 | 2400 0.14690967 0.14734380 0.14806087
3456 2.40949230 2.41185655 2.41583166 | 3456 0.12228530 0.12255488 0.12300372

TABLE 3. Numerical results of broken H! error for =1, §=-1 and =0 with
B =1 and a = 10 for Example 2.

The errors in broken H'-norm for the DGFVEM solution of state and costate variables are

presented in Tables 1Numerical results of broken H! error for #=1, #=-1 and #=0 with =1
and o = 10 for Example 1table.1 and 3Numerical results of broken H! error for =1, #=-1 and
#=0 with 8 = 1 and a = 10 for Example 2table.3 for examples 1 and 2, respectively whereas
the errors in L2-norm for the DGFVEM solution of state, costate and control variables for
examples 1 and 2 are presented in Tables 2Numerical results of L? error for =1, §=-1 and =0
with 8 = 1 and o = 10 for Example 1table.2 and 4Numerical results of L? error for =1, §=-1
and =0 with 8 = 1 and o = 10 for Example 2table.4 respectively.
Figures 20rder of convergence in broken H'-norm for state and costate variables for Example
1figure.2, 30rder of convergence in L2-norm for state and costate and control variables for
Example 1figure.3 (for Example 1) and 4Order of convergence in broken H!-norm for state and
costate variables for Example 2figure.4, 50rder of convergence in L2?-norm for state and costate
and control variables for Example 2figure.5 (for Example 2) indicate that the computed orders
of convergence match the theoretical orders of convergence in L?-norm and broken H!-norm.
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FIGURE 5. Order of convergence in L?-norm for state and costate and control
variables for Example 2.

ly = ynll lp — pall
Dof 0=-1 6=0 6=1 Dof 6=-1 6=0 =1
384 0.30825840 0.34069258 0.38326672 384 0.02663156 0.03005540 0.03444685
864 0.13545263 0.15162708 0.17323066 864 0.01174998 0.01347458 0.01572027
1536 0.07560241 0.08515929 0.09803949 | 1536 0.00656257 0.00758466 0.00892548
2400 0.04812983 0.05441189 0.06292457 | 2400 0.00417772 0.00485037 0.00573660
3456  0.03329703 0.03773274 0.04376519 | 3456 0.00288965 0.00336485 0.00399269
[|w — unl
Dof 0=-1 6=0 =1
1.0e — 003 *
384 0.20013750 0.17824991 0.15447196
864 0.06389361 0.05698655 0.04942176
1536 0.02785402 0.02484840 0.02154210
2400 0.01452166 0.01295391 0.01122471
3456 0.00849969 0.00758109 0.00656606

TABLE 4. Numerical results of L? error for =1, §=-1 and #=0 with 3 = 1

and a = 10 for Example 2.
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Abstract

This paper presents POD-based reduction approach for structural optimization design considering
microscopic material nonlinear microstructures. This work introduces Reduced Order Model
(ROM) to alleviate the heavy computational demand of nonlinear nested multiscale procedures,
particularly in an optimization framework which requires multiple loops involving similar
computations. The surrogate model constructed using Proper Orthogonal Decomposition (POD) and
Diffuse Approximation reduces the computational effort for solving the microscopic boundary
value problems. Multiscale analysis model (FE?) is applied to link structure and microstructures in
the two scales. Maximum stiffness design of the macroscopic structure is realized using a discrete
level-set topology optimization model. It is shown by means of numerical tests that the reduced
multiscale model provides reasonable designs as compared to those obtained by the unreduced
model while with a significantly reduced computational effort.

Keywords: Model reduction, Diffuse Approximation, Multiscale analysis, Topology optimization

Introduction

Optimization techniques for structural size, shape, topology designs have been widely developed
and employed in engineering applications. One of its most prominent applications is designing
lightweight structures for aircrafts. An increasing number of optimized structures, parts and
components appear in the latest models of Airbus and Boeing. Most of present optimization
algorithms are developed within frameworks of numerical analysis with the assumption that the
considered structure is constituted by one-scale linear elastic materials. However, due to the fast
development made in the field of material science, advanced fiber-reinforced composites are
increasingly used in both aerospace and military applications. More advanced structural analysis
models are required such that the structural influences from microscopic heterogeneities can be
considered. As a response, multiscale incremental homogenization approaches or the so called FE?
approach have been proposed and largely developed in the last decade [Feyel and Chaboche (2000),
Kouznetsova et al. (2001)]. Generally speaking, this type of approach solves two nested boundary
value problems, one at the macroscopic scale and another at the microscopic scale. The FE?
approach is able to evaluate the macroscopic responses of heterogeneous material with an accurate
account for micro characteristics and evolution of the morphology. The challenges of the FE?
approach are due to high computational effort. Therefore, there is an increasing research demand of
bridging structural optimization models and FE*-type analysis models.

This paper introduces Reduced Order Model (ROM) to perform multiscale topological optimization
design. The multiscale analysis model FE* [Feyel and Chaboche (2000)] is applied to link the
macroscopic structure and the corresponding RVE microstructures in the microscopic level. The
optimization process requires multiple design loops involving similar or even repeated
computations of the RVE which perfectly suits the ROM learning process. In the present work the
considered RVE 1is assumed to be the same for all marcoscopic integration points. Maximum
stiffness design of the macroscopic structure is performed using a discrete level-set topology
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optimization model [Challis (2010)]. The reduction is performed in an adaptive non-intrusive
manner which is an alternative to the intrusive approach [Yvonnet and He (2007)}]. The reduced
basis is extracted using Proper Orthogonal Decomposition (POD) and the surrogate model is
constructed using Diffuse Approximation [Nayroles et al. (1992)}, variant of Moving Least Squares
[Lancaster and Salkauskas (1981)].

The remainder of this paper is organized in the following manner: firstly the FE* approach is briefly
reviewed which links the macroscopic structure and microscopic microstructure RVE; secondly, the
discrete level-set model for structural topology optimization design is presented; thirdly, a bi-level
reduced surrogate model is developed for microscopic RVE solution using POD and Diffuse
Approximation; the presented model is then showcased by one numerical test example; finally, the
paper ends with concluding comments and suggestions for future work.

/\‘ /f"";;f"\b-_
> /.\_/‘{/‘\_\ < 0~
/ —p o= |l= =\ .,’- ® .
. I DEOIHEE) yi* yr
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Figure 1. Illustration of the selection of a typical 2D representative volume element (RVE).

FE? approach

The FE? approach [Feyel and Chaboche (2000)] is chosen here to bridge the macroscopic structure
and the corresponding microscopic RVE to perform structural topology optimization. The key
hypothesis of FE? consists in the separation of macroscopic and microscopic scales. It is assumed
that the microscopic length scale is large enough to be considered in the framework of continuum
mechanics, and at the same time much smaller than the macroscopic length scale considered in
terms of periodically ordered pattern [Kouznetsova et al. (2001)], as illustrated in Fig. 1.

The principal concept of the FE® approach assumes that each macroscopic material point is
attributed with a RVE so that the macroscopic stress and strain for the considered point can be
estimated by averaging the corresponding stress and strain fields of the RVE. Thereafter, there is no
need to specify the macroscopic constitutive behavior and we only need to define the constitutive
behavior for each material phase of the RVE. Let X and y denote the position of a point at the
macroscopic and microscopic scales, respectively. At the macroscopic scale, stress and strain fields
are denoted by X(X) and E(X), which are evaluated as the average of the corresponding
microscopic fields a(X,y) and &(X,y) over the RVE of region Q, corresponding to the material
point x. The FE* performs the following steps:

e cvaluate the macroscopic strain field E(X) with an initially defined elastic tensor Cy;

e define boundary conditions on the RVE at material point $x$ upon the value of E(X);
e evaluate the stress field ¢(X,Yy) through periodic homogenization analysis on the RVE;
e compute the macroscopic stress tensor X'(X) at material point X via averaging (X, Y);
e update the structural displacement field u(X) using iterative Newton-Raphson method;
e repeat above procedures until the macroscopic force equilibrium is achieved.
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Figure 2. Illustration of the implementation of FE? in the framework of FEA.

A schematic view of the FE? algorithm is depicted in Fig. 2, where each Gauss integration point is
attributed with an RVE within the context of finite element analysis (FEA). In case of nonlinear
elasticity, the displacement solution at the macroscopic scale is solved using the iterative Newton-
Raphson method.

Nonlinear structural design using level-set method

In order to avoid defining a pseudo-relationship between the intermediate values and the considered
RVE, we choose to use the discrete version of level-set topology optimization model [Challis
(2010)] to straightforwardly link RVEs to the solid region of the structure. An initial level-set
function y(X,1,) is constructed as a signed distance function upon the discretized initial structural
topology following
{l//(Xe,to)<0 if pe =1 1)
W (Xe,t9) >0 if p. =0
where X. denotes the center of the eth element and p. is its pseudo-density. The initialized level-set
function y(X.,t) is then be updated to y(X.,t) corresponding a new structural topology by solving
the *"Hamilton-Jacobi" evolution equation

oy (x.H)

ot +Vn IV l//(X,t)| =0 (2)

where t is a pseudo-time defined corresponding to different optimization iterations. The normal
velocity field v, determines geometric motion of the boundary of the structure and is chosen based
on the shape derivative of the design objective. Within the context of multiscale analysis, the
optimization objective corresponding to stiffness maximization or compliance minimization can be
written in terms of p(y)

min: c(p(y))="fxu

SL: R(U p(y)) =0 3)

V(p(y)) = Yo, pe =Vieeg
pe=0o0rl,Ve=1...,N,

where p=(p,...,on) 1s the vector of the element pseudo-densities. In the following, we will
denote p(y) by p to alleviate the notation. The objective C(p(y)) is twice of the strain energy.
The macroscopic structural stiffness is maximized in terms of minimizing the global strain energy.
V(p) is the total number of solid elements and V. is the required number of solid elements. U is
the final converged displacement solution. R(u, p) stands for the force residual at the macroscopic
scale
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R(U, p) =fex — i jge BT pe (6(X,Y)) dQe. 4)

An augmented Lagrangian method is applied to convert the original constrained optimization
problem Eq. (3) into an unconstrained problem as presented in [Belytschko et al. (2003)].

Bi-level reduced surrogate model

A bi-level reduced surrogate model is constructed coupling the POD and Diffuse Approximation
procedures. The first level of reduction is achieved by Proper Orthogonal Decomposition (POD),
allowing to expand a displacement field as a linear combination of the truncated modes. Secondly,
the surrogate model based on Diffuse Approximation is built to express the POD projection
coefficients as functions of the average micro strain tensors.

Proper Orthogonal Decomposition of RVE displacement field

We consider a D-dimensional (D = 2 or 3) RVE of N points subjected to a time-dependent loading
E(t) =(¢)(t) during a time interval | =[0,T] discretized by M instants {t;,t, ...,tu}. Let u; e R™
denote the DN -dimensional nodal displacement vector recorded at the instant t; . The reduced
order displacement vector u®(t) e R°M may be written

UR (1) = Uy + zqza (@ 1), (5)

where m < min(M,DN), u,=1/M Z,'\i Ui ¢ € R® are constant vectors and coefficients ;i ((g) (1))
are scalar functions of pseudo-time t. ¢ are the eigenvectors of the eigenvalue problem

Cush = 4idh, (6)
where C, is the covariance matrix

c, =_“_”§(ui Uy )(U; — o) 7

The size of the truncated basis m is chosen in consideration of the projection error e induced by the
POD procedure

ezl—zhi;‘/h <9, )
Z j=1 A
where O is a prescribed tolerance.

Diffuse Approximation of the projection coefficients

The surrogate model of the projection coefficients «;,i=1,...,m, with respect to average stain (¢)
in Eq. (15) is constructed using the method of Diffuse Approximation

a((E)=p'a, (9)

where p =[pi, p»,..]  is the polynomial basis vector. In 2D case, the polynomial basis vector
expressed in terms of the average strain in 2D case is

P=[L{e)-(E)n ()] (10)

53



ICCM2014, 28th-30th July 2014, Cambridge, England

Bi-level reduced Surrogate
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Figure 3. lllustration of the approximation procedure of the surrogate model.

The vector of coefficients a=[a;,a,,..]  are the minimizers of functional defined by

1 M
J(a):§gwk(pTa—a((s)k))2, (11)
in which w are the weights of Euclidean distance defined following [Breitkopf et al. (2004)].

Bi-level reduced model

An illustrative flowchart of the approximation procedure is given in Fig. 3. With a given admissible
value of average micro strain <8>*, the corresponding approximated POD projection coefficients

from a; to an are locally interpolated using Diffuse Approximation. Thereafter, we have the
reduced order solution of the displacement filed

UR =Uo + @a((g) ), (14)
where @ ={@,...,¢n} is the reduced basis obtained through POD of RVE displacement fields.

The surrogate model is applied to replace full FEA in microscopic analysis. Computations during
the first time step of the first optimization iteration are performed using full FEA to initialize the
surrogate model. The surrogate model is then used to replace full FEA in solving the micro problem
in the following computations when there are enough neighboring points to perform the
approximation. When there is no enough points within the local influence zone, the micro problem
is solved using full FEA and the results are used to update the POD basis @ and enrich the
surrogate.

Numerical example

The benchmark cantilever problem is considered with anisotropic material defined at microscopic
scale. As illustrated in Fig. 4, the macroscopic structure is discretized into 32x20 four-node plane
strain elements where each element has four Gauss integration points. Each Gauss point in the
macroscopic structure corresponds to a considered RVE in the microscopic scale. The material
property of the solid phase in the RVE is assumed to be isotropic with a nonlinear elastic
constitutive behavior as shown in Fig. 4. Conventional unreduced FE* approach requires 32x20x4
independent RVE analysis in the microscopic scale for one time evaluation at the macroscopic scale.
For the sake of simplicity, the initial elastic stiffness matrix have been kept during the Newton-
Raphson iterative resolution procedure. In order to perform sensitivity analysis, tangent stiffness
matrix is evaluated using the perturbation method at the converged moment of each design iteration.
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Figure 4. lllustration of the test example.
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Figure 5. Resultant tractions of the first 7 POD modes after the optimization.

The external loading force is set to 1.5 N and the considered volume ratio constraint is set to 32%.
The tolerance error in Eq. (8) is set as in the previous case of & =107. The extracted POD modes
vary adaptively during the optimization procedure and the size of the reduced basis is 6 after the
first iterations and then increase to 7 during the following iterations until the end. The resultant
tractions of the first 7 of the final POD modes are shown in Fig. 5 together with their associated
normalized eigenvalues.

The structural topological evolution in the macroscopic scale is given in Fig. 6. The convergence
histories of the strain energy and the volume ratio are demonstrated in Figs. 7(a) and (b),
respectively. During the loading phase of the first optimization iteration, the periodic
homogenizations of the RVE in the microscopic scale are performed using full FEA. Since the
second optimization iteration, both FEA and the surrogate model are used for the microscopic
analysis. Fig. 7(c) gives the percentage of FEA usage in each optimization iteration. It can be seen
that less than 4% microscopic analysis require full FEA except a jump from 2% in iteration 20 to
17% in iteration 21. It can be seen that a branch of the structure splits in iteration 21. Such a severe
topological variation results in a large variation of the structural physical response and hence the
surrogate built according to the previous calculations is no longer accurate enough. Therefore, an
increased number of full FEA is required to recompute the set of the reduced basis. The surrogate
model is updated thereafter and the usage ratio of FEA drops back below 4% and decreases to 0%
in the following iterations as the structural topology converges, meaning that all computations are
performed with the surrogate.
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Figure 6. Structural topology variations during the optimization process.
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Figure 7. Optimization history: (a) convergence history of the strain energy,
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The same optimization design has also been performed without using the surrogate. The unreduced
FE? approach gives an exactly the same optimization design result as the reduced model where the

relative errors of the objective are less than 107 . Generally speaking, it requires around two hours
of computing for each optimization iteration on a HP Z420 Workstation when using the unreduced
sequential FE*. In contrast, the reduced FE* approach requires only ten minutes of computing on
average for each design iteration apart from the first design iteration. More saving in computation
can be expected using the reduced approach when larger scale problems are considered.

Fig. 8 depicts the equivalent strain distributions in the microscopic scale at selected points where
the nodal displacements are scaled 20 times for the purpose of illustration. One may note that the
existence of the holes in the RVE concentrates much higher strains and hence stresses in the
microscopic scale than the homogenized macroscopic values. The micro strain distributions clearly
manifest the difference of the loading status in different structural branches. The micro strain
distributions at points b and ¢ are quite similar because they are located in the same branch of the
structure. The higher stress concentration may lead to the initial material failure or crack at the
micro scale which cannot be detected when using the conventional one scale fracture analysis.

Conclusions

In this work, we have proposed a reduced multiscale model for macroscopic structural design
considering microscopic material nonlinear microstructures. Several established techniques have
been applied: the structural design is realized using a discrete level-set topology optimization model,
the multiscale analysis is performed using the FE* approach, and the surrogate model is constructed
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using POD and Diffuse Approximation. The surrogate model is constructed in an on-line manner:
initially built during the first optimization design iteration is then updated in the following design
iterations. It has been observed that the surrogate model can significantly reduce the computational
cost, particularly when multiple loops involving similar computations are required. Further
improvement of the proposed model could be the employment of the advanced models of any of the
applied techniques, such as considering nucleation in level-set topology optimization in order to
avoid an artificially defined initial topology, considering the size effect in multiscale analysis, and
other possible strategies to perform model reduction either in an intrusive manner or non-intrusive
manner using different approaches to construct the surrogate.

Figure 8. Equivalent strain distribution at selected points.
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Abstract

Rolling contacts are usual in various technical systems and yield usually non-holonomic constraints. A new regular-
ization method motivated by physical considerations is investigated in the present paper. The convergence of the
spring-damper regularization for the so called principal damping, which is motivated by the critical damping in the
linear case, is proven. The solutions of the DAEs and the corresponding ODEs converge if a certain condition on the
regularization parameters is fulfilled. A rolling disc on the flat plane and a skate on an inclined plane are analyzed as
numerical examples. It is demonstrated firstly that the optimal choice of the regularization parameters corresponds
to the principle damping and secondly that the sufficient convergence condition obtained in the proof is valid for the
numeric simulations.

1. Introduction

In most cases the constraint equations on velocity level enforcing a rolling motion cannot be integrated, yielding nonholo-
nomic constraint equations. Usually the nonholonomic constraints can be incorporated into the equations of motion by the
method of Lagrange multipliers. This formulation leads to index-2 differential algebraic problems. In the present paper
we investigate a new viscoelastic idealization of nonholonomic constraints, that is motivated by physical considerations.
Pure rolling is equal to a sticking state, with a kinematically repositioned contact point. Usually sticking is modeled by
introducing an elasticity in the contact as demonstrated by [Vielsack, 1996]. Here the constraint is enforced by the elastic
and dissipative terms, that help to avoid numerical oscillations in the contact. In an earlier work [Stamm, 2011] applied
this kind of viscoelastic formulation to a tangential contact law, extending the classical laws of friction, like the Coulomb
model, to distributed contacts, in order to circumvent the problem of indeterminacy in the sticking state. However a de-
scription of a contact law by means of viscoelastic forces is sensible only if it approximates the idealized rigid formulation
in case of infinitely stiff chosen viscoelastic parameters. Thus the objective of this work is to show the convergency of the
viscoelastic description to the idealized nonholonomic rigid description in a mathematical sense.

2. Statement of problem

Consider the general multibody system with m nonholonomic constraint equations, as given in definition 1.

Definition 1 (Differential algebraic initial value problem). Let I = [to,t.] be a closed interval. Then the equations of

motion can be described by the following differential algebraic initial value problem
M(q)i = F(g,4,t) — GT(g)A, (1)
0==G(q)q (2)

with the consistent initial conditions q(to) = qo, ¢(to) = ¢o. Furthermore holds M(q) € R™*™ is symmetric and positive
definite. The functions G(q) € R™*"™ and F(q,q,t) € R™ are sufficiently smooth, the matriz G(q) is assumed to have full
rank m.

Usually deformations occur in a contact area due to local deformations of asperities and the elasticity of the bodies
itself. A sensible physical description of a contact should take these effects into account. Thus the constraint forces, that
enforce the constraint equation, are replaced by applied forces in form of a viscoelastic force element, which leads to the
viscoelastic description of the given multibody system as stated in definition 2.

Definition 2 (Viscoelastic description). Let I = [to,t.] be a closed interval. Then fort € I and for a fized €4 € (0, 0]
the equation of motion of the viscoelastic description is given by

M(q)j = F(q,4,t) — GT(q)A, (3)
¢ =Glq)g (4)

along with the initial conditions q(to) = qo, ¢(to) = do and z(tg) = zo, where the Lagrange multiplier A is replaced by
A=z+ s~ z. (5)
The functions G(q) € R™*"™ and F(q,q,t) € R™ are sufficiently smooth, the matriz G(q) is assumed to have full rank m.
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The parameter k is chosen as %7 inspired by the critical dzlircn%Mgz ('1)11141,’h2e81'ilr11_e3a?ﬂcla‘]s%¥y’121961 %gﬁ%ggg§gf%ﬁglgggﬂ1ying
systems are not suitable, in order to obtain an estimate of the distance between the corresponding solutions. However by
applying appropriate transformations, they can be transformed to a standard singular perturbation form. Transforming

the systems given in definition 1 and definition 2 to autonomous systems and introducing the new variable 6 according to

VEA =0+ h(y,A) + S(A), (6)

1 .
where S(A) = A and h(y,A) = ¢(2)T=%(Gy> + GM~'F — GM~'GTA). The equivalent systems in standard singular
perturbation form can be obtained.

y = f(y7 A)7
VEA =0+ h(y,A) + S(A) = g1(y,0,7),
Vel = h(y, A) — (0 + h(y, A) + S(A)) = g2(y, 0, A).

Setting € = 0 leads to the reduced problem in form of differential algebraic equations

y = f(yvA)7
0=0+h(y,A)+S(A) =g1(y,0,7),
0= h(y, A) — §3(0 + h(y, A) + S(A)) = g2(y, 0, A).

with the column matrices A = [A, 0], g = [g1,92] and f(y,\) = [ya, M~1(F — GT)A, 1] the problems can be written
conveniently. The differential algebraic equation can be represented in the following form:

Definition 3 (Differential algebraic equation).

v =f(y, ),
0=g(y, ), (7)
y(0) = yg.

The viscoelastic approximation reads as:

Definition 4 (Viscoelastic description in singular perturbation standard form).

7= fly,N),
\/g)‘ = g(ya )‘)7 (8)
y(0) = 49 + Ve + VE YT + o s A0) = A+ VEX) +VEAS F ...

3. Proof of convergency

In the underlying form, standard singular perturbation approaches can be used in order to obtain an estimate of the
distance of the solution of the problems given in definition 3 and definition 4.

In order to construct a solution of the initial value problem eq. (8) in form of an infinite asymptotic power series expansion
the following theorem by Hairer and Wanner [Hairer and Wanner, 2010] can be applied.

Theorem 1. Let f and g be sufficiently smooth functions. Consider the initial value problem given in eq. (8)

g = fly, ),
\/g)‘ =gy, M),
_,0 0 2.0 _ 0 0 2,0
y(0) = yp +Vey; +Veys + oo, A0) = A0 +VEAN +VE A + .
Introducing the time scale T = % enables the construction of the solutions in form of an infinite asymptotic series

expansion according to

y(t) = S VE () +VEY VE (), A =Y VEN ) + Y VE G, 9)
5=0 3=0

§=0 7=0
The functions n; (1) and ;(7) satisfy the conditions

I (Pl < Kje™™7, (1G] < Crem.
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The proof of this theorem is given in [Hairer and Wannelr?gé\ﬂﬁplfﬁs%gg -%(%t}t]}i]eu%}]ﬂ%%%g ’p%%vrgrb Iélgrggé %}rcl fl%rsl%n, the

truncated power series expansion will be used instead. Special interest is devoted to the series truncated at N = 0
since the resulting zeroth approximation corresponds to the differential algebraic equation. Thus the target is to find an
estimation of the error made when using the truncated series expansion instead of the full series expansion. This question
is answered by the following theorem from Hairer and Wanner [Hairer and Wanner, 2010].

Theorem 2. Let f and g be sufficiently smooth functions. Consider the viscoelastic formulation in form of initial value
problem (8). Suppose that the logarithmic norm p(gx) < —1 holds in an e independent neighborhood of the solution yo(t),
Xo(t) of the differential algebraic equation (7) with the initial condition yo(0) = v, satisfying the constraint equation, on
the interval 0 < t < T. If the initial values yJ and N lie in this neighborhood, then the initial value problem (8) has a
unique solution for € sufficiently small and for 0 <t < T, which is of the form

y(t) =y +O(VE ) =3 VE () +VED V(L) + O(VET T, (10)
=0 j=0

N ) N )
A =)+ OV T =S VEND Y VEG(L) + oK. (11)
J=0

=0

The coefficient functions n;(t) and (1) satisfy ||n;(7)|| < Kje= "7 and ||(;(7)|| < Cje="7. The error between the
solution of the differential algebraic equation (7), which corresponds to the truncated series at N =0, and the viscoelastic
formulation (8) can be estimated above according to

ly —yoll < Mive, ||A—= Aol < Mav/e.

The proof of this theorem is given in Hairer and Wanner [Hairer and Wanner, 2010]. Thus the solution of the viscoelastic
contact formulation is in an O(4/¢) vincinity of the solution of the differential algebraic equation. The request that the
logarithmic norm p(gy) < —1 leads to the following condition on the eigenvalues of the matrix —GM ~!GT:

_ —1~T
IS 3 1
where A-GM'G" denotes the maximum eigenvalue of the matrix —GM ~'GT.

4. Numerical experiments

In order to confirm the theoretical results, numerical experiments were carried out. Therefore a classical mechanical
system of a skate sliding down an inclined plane under the influence of gravity is considered. The model is shown in fig. 1.
Mathematically the constraint equation is given by the demand, that the velocity of the contact point is always parallel

Figure 1: disk rolling on a flat support

to the skid, which can be expressed in the following fashion

v-t=0,
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Figure 2: Deviations of the solutions of differential algebraic equation and viscoelastic formulation in case (12) is fulfilled
(left) and not fulfilled (right), where the deviation grows exponentially fast.

where v denotes the velocity of the contact point and t the vector perpendicular to the skid. This finally results in the
scalar constraint equation

(0}

O:[—singo cos 0] U
G(q) \_ii_/

q

5. Discussion and conclusion

Convergency of the viscoelastic description of contact forces is proven for nonholonomic constraints in general form. The
proof is performed for the principal damping exponent. The solutions of the DAE and the corresponding ODE converge
if the condition

p(GM™'GT) > 2

is fulfilled. Numerical experiments were made to verfiy the statement of the proof. They confirm the optimum performance
for this choice of the viscoelastic parameters. In the future the described approach will enable a consistent modelling of
sticking, sliding and rolling contacts in multibody dynamics.
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In this paper, simulations of low velocity impact characteristics of curvilinear
corrugated-core sandwich structures were presented, which were validated against the
corresponding experimental data. Two different configurations of lightweight
aluminium sandwich panels from Metawell® Company in Germany were tested using
drop-weight impact tower with spherical indenter to evaluate their energy-absorbing
characteristics and to identify the associated failure mechanisms under vary of impact
loading conditions.

Here, two panel configurations were studied based on the finite element analysis by
using commercial finite element code Abaqus/Explicit developing numerical models
to cover the most representative cases. A good degree of correlation was obtained,
which indicates the finite element models developed are capable of predicting the
dynamic behaviour of the curvilinear corrugated-core sandwich structure panels
subjected to low velocity projectile impact.

Keywords: Curvilinear corrugated-core sandwich structures, low velocity impact,
finite element, perforation failure.

Introduction

Sandwich structures are considered as optimal designs for a wide range of
applications such as insulated structures, marine construction, transportation and
aerospace vehicles. A composite sandwich panel is usually made from a lightweight
foam, honeycomb or corrugated core sandwiched between two composite face sheets.
Such a combination offers exceptional specific strength-to-weight ratio or stiffness-
to-weight ratio, buoyancy, dimensional stability, and thermal and acoustical
insulation characteristics. The curvilinear corrugated-core sandwich structure is one
of outstanding sandwich structures offering superior mechanical properties. Many
researches have been study on various types of sandwich structures [Biancolini
(2005) , Nyman and Gustafsson (2000) , Rejab and Cantwell (2013) , Herrmann,
Zahlen (2005) , Kazemahvazi and Zenkert (2009) , Xiong, Ma (2011) , Lin, Liu
(2007) , Zenkert (1995) , Zhang Y (2011) , Yokozeki, Takeda (2006)]. However, it
was found that few of published worked involved in curvilinear corrugated-core
sandwich structures in spite of a versatile applications.

In this paper, the curvilinear corrugated-core sandwich structures from Metawell®
company, which is a patented lightweight construction aluminium panel made by
bonding two cover sheets to the core material, consisting of wave formed sheet metal,
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using a hot melt adhesive in a continuous, process were used and tested in order to
study the influence of low velocity impact attached by the spherical indenter response
to the rigid panels.

Experimental Work

The curvilinear corrugated-core sandwich structures in this study were based on EN
AW-1582 H48 aluminium alloy sheets from fabricated by bonding two cover sheets
into core material, which consists of wave formed sheet metal, using a hot melt
adhesive in a continuous process. There were two panel configurations, which
different fact sheet thicknesses and core sizes were tested. Fig.1 shows a design and
dimension of both panels.

v t; - thickness of top cover sheet
]
) . .
4 tw - thickness of corrugation
! t, - thickness of bottom cover sheet
)
= H - panel height in mm.
Fig.1 shows a design and dimension of both panels.
Table 1. Panel dimensions
Type u b L H | weight Descriptions
(mm) | (mm) | (mm) | (mm) | (kg/m?)
Alu hl 05-02-05 lightweight panel
hl/H6 0.5 0.2 0.5 6.0 3.8 (primer coated)
Alu cc 08-03-05 White coating on one
hI/H10 0.8 0.3 0.5 10.0 5.2 side

Low velocity impact tests on the panels started from 1.93 m/s and increased gradually
until 5.4m/s were conducted by using an Instron CEAST 9350 drop tower machine. A
cylindrical impactor of 5.32 kg with 25.4 mm diameter spherical end was used. The
test specimens had the dimension 155 mm. x 155 mm. The specimens were clamped
by cylindrical ring with inside and outside diameter of 76 and 100 mm. respectively.
The 200 N. of clamp force between both bottom and top rings was applied. Details
about the test configuration are shown in Figure 2.

In order to get the materials properties for the input parameters used in finite element
modelling, the top and bottom face sheets were tested by using Instron 4505 to
conduct the uniaxial tensile test. The result from tensile test is shown as the graph in
Fig. 3.
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25.4 mm

Impactor

/

Top ring

0

L —

Specimen

| — Bottom Ring

Fig.2 (a) Schematic of drop-weight apparatus, using spherical impactor

(b) side view

Finite element modelling

ABAQUS/Explicit [Abaqus6.12-3 (2012)]was used to develop numerical simulations
of the curvilinear corrugated-core sandwich structures under low velocity impact. The
aluminium alloy was modelled as an elasto-plastic material with rate-dependent
behaviour. For a rate-dependent material, the relationship follows the uniaxial flow
rate definition as:

& = h(g,e",0) (1)
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Fig.3 The stress- strain curve of EN AW-1582 H48 from tensile test

Where h is a known strain hardening function, q is the von-Mises equivalent stress,

e Plis the equivalent plastic strain, and 6 1is the temperature. The isotropic
hardening data for the EN AW-1582 H48 aluminium alloy are given in Table 2. The

density of the aluminium was taken as P = 2690 kg/m’. The material properties of
EN AW-1582 H48 can be found in table 3.

Table 2. Isotropic hardening data for the EN AW-1582 H48 aluminium alloy

0.08

Yield stress
(MPa) 153 160 178 203 214 224 231 234 235 232

Plasticstrain 0  4E-4 0.002 0.013 0.020 0.030 0.040 0.050 0.056 0.065

The rate-dependent hardening curves can be expressed as:

5(5_111'5171) = 6y(5pl)R(§pl) )

Where €, and R are the equivalent plastic strain and stress ratio ( = G/ gy )
respectively.
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Damage initiation criteria

Ductile damage criterion is a phenomenological model for predicting the onset of
damage due to nucleation, growth, and coalescence of voids. The model assumes that
the equivalent plastic strain at the onset of damage, Egl, is a function of stress
triaxiality and strain rate:

&' (n, &) (3)

Where n = - p/q and 7 is the stress triaxiality, p is the pressure stress, ( is the Misses
equivalent stress, and é'p ; 1s the equivalent plastic strain rate. The criterion for
damage initiation is met when the following condition is satisfied:

wD=f& 1 (4)

Egl(n,?pz)

Where wp is a state variable that increases monotonically with plastic deformation.
At each increment during the analysis the incremental increase is computed as:

A%y

Awp = | >0 (%)

Egl(n,?pz) N
Shear failure criterion

The shear failure model is based on the value of the equivalent plastic strain at
element integration points; failure is assumed to occur when the damage parameter
exceeds 1. The damage parameter, w, is defined as :

_pl _
_ sop +Y APl
=

er

(6)

ol . .. . . . . .
where £8° is any initial value of the equivalent plastic strain, }; A€P" is an increment

of the equivalent plastic strain, is the strain at failure, and the summation is
performed over all increments in the analysis. The strain at failure, e’}’ l, 1s assumed to

depend on the plastic strain rate, é_p ; ; a dimensionless pressure-deviatoric stress ratio,
p/q (where p is the pressure stress and  is the Mises stress); temperature; and
predefined field variables. However, in this model, the temperature parameter would
be ignored as a small effect to the results.

Element removal

When the shear failure criterion is met at an integration point, all the stress
components will be set to zero and that material point fails. By default, if all of the
material points at any one section of an element fail, the element is removed from the
mesh; it is not necessary for all material points in the element to fail. For example, in
a first-order reduced-integration solid element removal of the element takes place as
soon as its only integration point fails. However, in a shell element all through-the-
thickness integration points must fail before the element is removed from the mesh. In
the case of second-order reduced-integration beam elements, failure of all integration
points through the section at either of the two element integration locations along the
beam axis leads, by default, to element removal[ Abaqus6.12-3 (2012)].
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Geometry and Mesh design

In order to reduce time of processing, only a quarter of modelling was generated. The
Aluminium corrugated core and skin parts were meshed with a uniform mesh
consisting primarily of 8-node linear brick, reduced integration, hourglass control
elements (C3D8R). Core and skins were completely bonded with tie constrain around
the interface areas. A 4-node 3-D bilinear rigid quadrilateral (R3D4) was used to
contribute support rings and spherical end projectile.

Lo
Fig.4 shows the quarter model assembly and mesh design.

Boundary conditions and loading

For the support bottom support ring, it was fixed all of degree of freedom and the -
200 N. of uniform pressure was applied on the top support ring imitating as the
experimental clamp condition. The projectile, which had the inertia of 5.321 kg, was
allowed to translate only in y direction with the required predefined field of initial
velocity.

The general contact, which had the contact domain included surface pairs by all with
self-contact was applied for the whole model. The contact properties had frictionless
tangential behaviour and hard contact for normal behaviour.

Table 3. Materials properties and parameters used in finite element modelling

Properties Values
Young’s modulus (Gpa.) 68
Density (kg/m”) 2650
Strain rate 150
Fracture strain for ductile damage 0.065
Fracture strain for shear damage 0.050
Stress triaxiality 0.33
Fracture energy (kJ/m®) 67
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Fig. 5 and 6 compare typical load-displacement plots for the impact energy from 10 J.
up to 80 J. It could be indicated that the agreement between the experimental results
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Fig. 5 Typical load-displacement plots from Alu hl 05-02-05 hl/H6 panels in ascending

impact energy
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and the numerical predictions is very good for both panels. For Alu hl 05-02-05
hl/H6, the prediction from numerical model slightly offered a higher impact
displacement when 50J. was applied as shown in fig. 5. The results from numerical
model seem be perforated slightly later than the experimental results according to the
Impact curve - 15J
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Fig. 6 Typical load-displacement plots from Alu cc 08-03-05 hl/H10 panels
ascending impact energy
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panel Alu cc 08-03-05 hl/H10 presented in fig. 6. Clearly, the peak load increases
with the velocity. However, it was found that the panel Alu hl 05-02-05 hl/H6, which
has less structures and bottom face sheet thickness, could offer a higher peak load in
the range of velocity since 2.73 m/s to 3.8 m/s. It could be indicated that after 6 m/s,
the bottom face sheet of Alu cc 08-03-05 hl/H10 obviously affected to the peak load
as shown in fig. 7.

Peakload versus Velocity

12.0 -ttt
110 - ——=—— Al cc 08-03-05 HUHID L
: +oe s FE Alcc08-03-05 HUHIO
100 - i Al Hl 05-02-05 HUHS L
o . o+ wess FE Alhl05-02-05 LUHS
= 9.0 A I
T 8.0 - B
=] 7.0 A B
E 6.0 -
5.0 4 B
4.0 A B
3.0 f
2 3 4 6 T

5
Velocity (m/s)

Fig. 7 compares peak load against velocity between panels Alu hl05-02-05 hl/H6 and
Alu cc 08-03-05 hl/H10.

Apparently, the prediction offers correlation of peak load from Alu cc 08-03-05
hI/H10 in the initial state and it seem diverge when the velocity increased. Only in the
range of 3.35 - 3.78 m/s from numerical results had slightly higher than the
experimental results. It could be considered that the maximum perforation load is 9.4
kN. at 90 J. before dropping when increasing of velocity for Alu cc 08-03-05 hl/H10.
Meanwhile, the trend of peak load seems to be constant while the impact velocity is
increasing since 4.71 m/s.

From the finite element model results in fig. 8(c), it could gradually reveal the initial
stress concentration and the propagation of failure on the panel since t = o
millisecond until the panel was fully perforated at t = 6.00 milliseconds. It also could
predict that the stress comes along the longitudinal corrugation direction (Z axis). The
evidence revealed that it could not find the debonding failure mode between the
corrugated-core and both top and bottom face sheets. Therefore, using the tie
constrains between core and skins could be acceptable in the finite element model. It
was found the buckling mode of failure mechanism occurred before the propagation
of fracture would initiate. The initial crack did not propagate from the middle of
impact, but started from the cavity inside the coalescent core then spread along z-
direction as a crescent form.

The influence of projectile on the perforation resistance of the curvilinear corrugated-
core sandwich structures are shown in fig. 8(a) and (b). Surprisingly, the diameter of
penetration were investigated and found in double of the projectile diameter.
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Fig. 8 (@) and (b) Compares central cross-section view of perforation between
experimental and finite element modelling, using Alu hl 05-02-05 hI/H8, ()
Deformation of perforation since t = 0 millisecond until fully perforated at t = 6.00
millisecond.

Conclusions

Agreement between the experimental and predicted data is reasonably good, with the
model tending to follow the experimental data. Only in some regions were observed
not associated in particular the impact displacement, which seem offers slightly
greater than measured data.

Increasing of the core and face sheets thickness enhances the stiffness and impact
energy resistance quite in double of maximum peak load.
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Abstract

A combined approach of boundary element method (BEM) and precise integration method (PIM) is
presented for solving transient heat conduction problems with variable thermal conductivity. The
boundary integral equation is derived by means of the Green's function for the Laplace equation. As
a result, three domain integrals are involved in the integral equation. The radial integration method
is used to transform the domain integrals into the boundary integrals. After discretization the solved
domain by the BEM, a system of ordinary differential equations (ODEs) can be obtained. Adaptive
PIM can solve efficiently ODEs and improve greatly the computational efficiency. Numerical
examples show that the present approach can obtain satisfactory performance even for very large
time step size. In addition, the results are independent of the time step size when the integral of free
term can be analytically integrated, here, the free term is formed by boundary conditions and heat
sources.

Keywords: Adaptive precise integration method, Radial integration method, Boundary element
method, Transient heat conduction

Introduction

It is generally known that the finite difference method (FDM) is used to solve the transient heat
conduction problems. However, the result of FDM is unstable when change the time step size. The
precise integration method (PIM) [Zhong (1994)] can obtain stable and accurate results for different
time step sizes. Particularly, the results are independent of the time step size when the free term can
be divided into the functions of space and time and the time-related integral can be integrated
analytically. Up to now, the PIM in conjunction with the finite element method (FEM) has been
applied to conduct the transient heat transfer analysis [Cheng et al. (2004)], the transient forced
vibration analysis of beams [Tang (2008)] and the sensitivity analysis and optimization problems
[Xu et al. (2011)]. In addition, the method combining the PIM with meshless local Petrov—Galerkin
method has been applied to the transient heat conduction problems [Li et al. (2011)].

Compared with FDM, FEM and the meshless method, BEM is very robust for solving the linear and
homogeneous heat conduction problems [Song and Li (2003)]. However, BEM is still a challenge
for solving nonlinear problems such as variable thermal conductivity problems. The main reason is
that the fundamental solution of the problem obtains extremely difficult. Fortunately, we can use the
fundamental solution of the linear problem to solve the nonlinear problem, whereas domain
integrals are involved in resulting integral equations.

Generally, there are mainly two methods which can transform the domain integrals into the
boundary integrals. The first one is the dual reciprocity method (DRM) [Nardini and Brebbia
(1983)]. The deficiency of the method is that the particular solutions may be difficult to obtain for
some complicated problems. In addition, even for known heat sources term, the method still
requires an approximation of the known function. The second one is the radial integration method
(RIM) [Gao (2002)]. The RIM not only can transform any complicated domain integral into the
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boundary without using particular solution, but also can remove various singularities appearing in
domain integrals. The method combining the RIM with the BEM is called the radial integration
boundary element method (RIBEM).

The RIBEM has been widely applied to many fields including the crack analysis in functionally
graded materials [Zhang (2011)], the heat transfer problems [AL-Jawary and Wrobel (2012); Yu et
al. (2014a; 2014b; 2014c;)] and the viscous flow problems [Peng (2013)]. The RIBEM still exists a
problem, which solved results are sensitive for different time step sizes when the problems are
transient. The RIBEM and the PIM have been combined to solve transient heat conduction
problems [Yu et al. (2014c)].

In this paper, an adaptive technique is introduced in the present method to improve the
computational efficiency without affecting accuracy. First of all, we discretize the space domain by
using the RIBEM to obtain a system of ordinary differential equations (ODEs) with respect to time,
and then solve the ODEs by the PIM. Finally, two numerical examples are presented to validate the
proposed method.

Governing Equation

Considering a two-dimensional bounded domain Q with heat source and a spatially variable heat
conductivity, the governing equation for transient heat conduction problems in isotropic media can

be expressed as
%(k(x)a-ra(:’t)}+ f(x,t):pc(%j XeQ (D

where x=(x,x,), T(xt) is the temperature at point xeQ and at time t, k(x) is the thermal
conductivity, f(x,t) is a known heat source, p is the density and c is the specific heat. The

repeated subscript i denotes the summation through its range which is 2 for two-dimensional
problem.

The initial condition is T (x,0)=T,, where T, is a prescribed function. The boundary conditions are
T(xt)=T(xt) xeT, ()
or
—ka—Xini—q(x,t) xel, 3)
where T'=0Q, I'' UIL,=I", ', n[,=J, n, is the i-th component of the outward normal vector n to
the boundary ', T and @ are prescribed temperature history and heat flux on the boundary,
respectively.

Implementation of RIBEM

Boundary-domain Integral Equation

To derive the boundary integral equation, a weight function G is introduced to Eq. (1) and the
following domain integrals can be written as

QG&(k(x)—]dQ+J' GfdQ = pc_ G—dQ (4)
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Using Gauss’ divergence theorem, the first domain integral can be manipulated as

LG(x,wi(k( )ZT]dQI K0S nar- 1 XV nar )
R e s

If Green’s function (—Inr/27) is acted as the weight function G, the last domain integral in Eq. (5)
can be written as

ko7 2 0 ok ©

where r(x,y) is the distance between the source point y and the field point x . Substituting the
equation into Egs. (4) and (5), it follows that

'I:(y,t):—j. G(xy)q(x.t)dr - j'—’y) T(x.t) dF+J (xy) f(x,H)dQ+

(%,y) aT (x,

(7)
I (%,¥)T (x,t)dQ pcj (%) - )dQ

where q(x,t) = —k(X)aT (x,t)/on, k(x)=Ink(x), f(x,t):k(x)T(x,t),V(x,y)=(aG(x,y)/axi)(aﬁ(x)/axi)
in which q(x,t) is the heat flux, T(x,t) and k(x) are the normalized temperature and thermal

conductivity, respectively. Eq. (7) is valid only for internal points. For boundary points, a similar
integral equation can be obtained by letting y —T" as is done in the conventional BEM such as

c(y)T (y.t)= —j G(x,y)q(x.t)dr —j Mf(x,t)dl‘+ _[QG (xy) f(x,H)d2+

(8)
T
j (%,y)T (x,t)dQ - pCj Xil) g[(t)dQ
where
1 , YyeQ
Moy . ©)
2 y

¢(y) is the interior angle at a point y of the boundary I'. Particularly, c(y)=0.5 if y is a smooth
point on the boundary.
Transformation of Domain Integrals to the Boundary by RIM

In general, the heat source f(x,t) is a known function. In this circumstances, RIM [Gao (2002)]
can be directly used to transform the first domain integral in Eq. (8) into the boundary as follows:

[ 6(xy) f (x.HdQx) :L% T EA(2y,t)dr(2) (10)

(z,y)on

75



ICCM2014, 28th-30th July 2014, Cambridge, England

where the radial integral F* can be expressed as F*(z,y,t)= J.Or(Z"Y)G (xy) f(x,t)éde.

For the last two domain integrals in Eq. (8), the RIM formulation cannot be directly used because T

and 0T /ot are unknown. To solve this problem, T and 6T /ét are approximated by the
combination of the radial basis functions (RBFs) and the polynomials in terms of global coordinates
[Zhang (2011)]. Thus, T and T /ét are respectively expressed as

N
T=Y ad(R)+ax +a,x +a, (11)
i=1

N
S =Y AARI+bx +bx, +b, (12)
i=1
and the following equilibrium conditions have to be satisfied:
X :Zaixz,i =0 (13)

i“i = ,

=1 i=1 i=1

i/)’. :ZN:IBiXLi :ZN:ﬁin,i =0 (14)

i=1 i=l1 i=1

N

where N is the total number of boundary and interior nodes, R=r(x, ;) is the distance from the i-th
application point Xx; =(x ;,X, ;) to the field point x and ¢(R) is the RBF. In this paper, the
compactly supported fourth-order spline RBF is adopted, i.e.,

R 2 R 3 R 4
4(R)= H[a?] *8[d7] ‘3((17] O=R<d (15)

0 d <R

in which d, is radius of the supported region at the i-th point.

The coefficients «,, a, a, and a, in Eq. (11) can be determined by collocating the application
point x; in Eq. (11) at all nodes. A set of algebraic equations can be written in the matrix form as
T,=ga , where a={e,a,, ", ay,8,8,a} , T, ={T,T,, -, T, 0,0, 0}"={{T}",0}" . If no
two nodes share the same coordinates, the matrix ¢ is invertible and thereby & =¢"'T,. According

to T, ={{T}",0}", the matrix ¢ ' can be expressed in the block form as [(;Zl)mmm ,(¢2)(N+M]
Then @ can be rewritten as a=¢,T. Similarly, the coefficients in Eq. (12) can also be simply

expressed as f=¢,T, where B={8, L, f.b.b,,b", T={aT /ét, oT, /ét, -, T, /ot

Substituting Egs. (11) and (12) into the last two domain integrals in Eq. (8), then transforming it
into the boundary integrals by RIM, a pure boundary integral equation can be obtained as follows
[Yuetal. (2014b)]:

c(y)T(y)= —J'FG (%,y)q(x)dr — J‘r%f(x)dl“ + J‘F%S—; FADC+V,T- Cﬁ (16)
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where V, and C, are the boundary integral terms corresponding to the last two domain integrals in
Eq. (8).
System of Differential Equations

Assuming that the boundary T is discretized into N, linear elements and the region is distributed
N, internal nodes, the total number of nodes is N=N,+N, . Eq. (16) can be conveniently expressed
in the following matrix form:

C,T,=G,Q,—H,T, +f, +V,T-CT on T (17)
T-6,Q,-HT +f+VvT-CT in (18)
where
Ca=kdiag{c(y1), c(y,), = (v, )},Qb={—k8T1/an, —kaT, /on, -, —kaTNb/ﬁn}T,'T'ﬁ{fl,'l:z, -~-,'I:ND}T,
T ={'|:”,'|:|2, - Ty }T,sz{fl,fz,~~,be}T,f| ={f|1,f,2,~-,le }T. The matrices G,, H,, G, and H,

correspond to the coefficients of boundary integrals and f,, V,, C,, f, , V, and C, refer to the
coefficients of domain integrals term.

After the application of boundary conditions and elimination the unknown heat flux quantity, a
system of ordinary differential equations is obtained only relation to temperature as follows [Yu et
al. (2014b)]:

T,0=B,T,®+F() (19)
Adaptive Precise Integration Method

The general solution of Eq. (19) can be written as
~ ~ At
T, (b)) =ET,(6) + [ exp(B, (At— £)F (t, +&)dé (20)

where E=exp(B,At) and t, =kAt. The matrix E can be rewritten as E=[exp(B,At/m)]", where m is
an integer. Now, m=2" is selected, where M is an integer. The following truncated Taylor series
expansion can be used:

exp(B,7) ~ 1 +B,n+(B,7)" / 24+ (B,)° / p!=1+E, 21)

where n=At/m, | is the identity matrix. How to compute the matrix E has been detailedly shown
in literature [Zhong (1994)].

The main factor of influence computation efficiency is how to select a optimal M and p. Because
the most of the computational cost of PTI is the times of the matrix multiplications (TMM ), where
TMM=M + p-1. The optimal selection of TMM is shown in literature [Chen et al. (2004)] for

different prescribed error tolerance. In addition, in Eq. (20), the function F(t, + &) is formed by the
known temperature boundary conditions, heat flux boundary conditions or heat sources. In this

article, the term J?t exp(B, (At - &)F(t, +£)dE in Eq. (20) is analytically integrated for all numerical

example.

Finally, true temperature T (x,t) can be computed by using T (x,t) =T (x,t)/k(x).
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Numerical Examples

To check the convergence of the proposed method, the root mean square (RMS) error is given by

N N
RMS = \/z (Tnumerical,i _Texact,i )2 /ZTeiact,i (22)
i=1 i=1

and T are the numerical solution and the exact solution of the i-th node,

exact, i

where T

numerical i
respectively. For comparison, two examples are also computed by using the RIBEM, which use the
finite difference technique to simulate the derivative of temperature with respect to time (it will be
abbreviated to RIBEM-FD) [Yu et al. (2014b)].

Example 1: In this example, a square plate Q=[1,2]" is considered with k(x)=x, +x,, p=1 and
c=1. The initial condition and the heat source are T,=x’+x; and f(x,t)=—-6(x, +X,)+10cos(10t),
respectively. The boundary conditions are given by T(x,1,t)=x +1+sin(10t)
T(2,%,t) =4+ X +sin(10t) , T(X,,2,t) =X +4+sin(10t) , T(1,X,,t) =1+ +sin(10t) . The exact
solution of the problem is T(X,t) = X” + X; +sin(10t) . The plate is discretized into 20 equally space
linear boundary elements and distributed uniformly 16 internal nodes.

Table 1. The value of TMM for different &,

T™MM T™M T™MM T™MM T™MM TMM T™MM T™MM
At g,=10" £ =10"° g =107 g =10" g =107 ¢,=101" & =10" g =107"
0.2 15 15 16 16 16 16 17 18
5 19 19 20 20 20 20 21 22

Table 1 shows the optimal value of TMM for different time step sizes and computational error
tolerance. Comparison with the general selection TMM=23, the adaptive PTI improves the
computational efficiency greatly. For different time step size, it can be seen from Figure 1 that the
RMS errors of the PIBEM are highly coincident, but the errors of the RIBEM-FD emerge a big
fluctuation.

[ —3— PIBEM (At=0.5)
—%— PIBEM (At=2)
—A— RIBEM-FD (At=0.01)

—&— RIBEM-FD (At=0.1)

RMS error of temperature

Figure 1. RMS error of temperature with ¢, =10~ for example 1.
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Example 2: In this example, we consider a concave geometry with k(x)=exp(x,), p=c=1 and
0<t<1. The initial temperature and the heat source are T, =0 and f(x,t)=10, respectively. The
time-dependent temperature condition is T(0,y,t)=60t for the left boundary and the other

boundaries are insulated. The geometry and computational model of the BEM can be seen in Figure
2 with 36 boundary elements and 13 internal nodes. The problem is also computed using the FEM
software ANSYS, which the results are considered as the reference solutions T, in Eq. (22). The
solved domain is uniformly discretized into 832 4-noded elements. Table 2 shows the optimal value
of TMM for different time step sizes and computational error tolerance. It can be seen from Figure
3 that the solutions of PIBEM are very stable and accurate than the solutions of RIBEM-FD for the
different time step size.

Table 2. The value of TMM for different &,

TMM TMM TMM TMM TMM TMM TMM TMM
At £,=10" £ =10" £, =107 ¢£,=10" ¢ =107 £,=101" & =10" ¢ =107"
0.001 9 9 10 10 10 10 11 12
0.2 17 17 18 18 18 18 19 20
7=0
0.6 —6—6—6—6—06—6—6—6—96—9
O ® 1) ®(44) e O
) ® (40) ® (43) ®48) ¢
l?() (39 ®(42) ®(47) ()J'I\TI
By =
o ®(38) EG—o—e—e—9 ®46) @
() e37) O 0] 45 O
0 6——o——=0013 7= 076—e—o—2010

Figure 2. Computational model of the BEM for example 2.

RMS error of temperature

[ —8— PIBEM (At=0.2)
—3¢— PIBEM (At=0.001)
—&— RIBEM-FD (At=0.01)

—&— RIBEM-FD (At=0.001)

02 03 04 0‘5 08 07 08 0.9 1
Time

Figure 3. RMS error of temperature with ¢ =10~ for example 2.
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Conclusions

In this paper, the adaptive PIM is introduced into the RIBEM for solving the transient heat
conduction problems with variable thermal conductivity. For the RIBEM-FD, the sensitive results
are caused by the finite difference method to solve the derivative of temperature with respect to
time. The PIBEM can perfectly solve the problem. Numerical examples show the PIBEM with
adaptive technique can obtain the stable and accurate results for a big time step size and improve
efficiency, whereas only in the case of a small time step the RIBEM-FD can obtain accurate results.
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Abstract

The DualSPHysics code is proposed as a numerical tool for the simulation of liquid sloshing
phenomena. A particular type of sloshing motion can occur during the core meltdown of a liquid
metal cooled reactor (LMR) and can lead to a compaction of the fuel in the center of the core
possibly resulting in energetic nuclear power excursions. This phenomenon was studied in series of
"centralized sloshing" experiments with a central water column collapsing inside the surrounding
cylindrical tank. These experiments provide data for a benchmark exercise for accident analysis
codes. To simulate "centralized sloshing" phenomena, a numerical method should be capable to
predict the motion of the free surface of a liquid, wave propagation and reflection from the walls.
The DualSPHysics code based on the smoothed particle hydrodynamics method was applied to the
simulation of "centralized sloshing" experiments. Simulation results are compared with the
experimental results. In a series of numerical calculations it is shown that overall motion of the
liquid is in a good agreement with experimental observations. Dependence on the initial and
geometrical symmetry is studied and compared with experimental data.

Keywords: ICCM2014, Computational method, Sloshing Experiment, Smoothed Particle
Hydrodynamics

Introduction

The problem of safety in nuclear reactors has been intensively studied from the time of the
development of the first reactor designs. Over time, several severe accidents occurred at nuclear
reactors, but without dangerous consequences for the environment, until the accident at Chernobyl
Nuclear Power Plant (NPP) occurred in 1986 and massive severe accident at Fukushima NPP
(2011), where four units were seriously damaged by a tsunami wave. Today it is clear that further
successful development of the nuclear energy industry is impossible without deeper knowledge of
severe accidents and without the provision of safety guarantees to the public, based on
comprehensive analyses of nuclear reactor safety.

One of the current problems in severe accident analysis is the problem of molten corium motion,
which could possibly result in a recriticality event. The movement of the corium during an accident
involving melting of the reactor core may be initiator of a recriticality event with dangerous high
power excursions.

Simulation with Eulerian methods is difficult, since special treatments are required for capturing the
indicated phenomena. To be more specific, the treatments required are the Volume Of Fluid (VOF)
method, combined with mesh refinement, for tracking the free-surface, and sliding meshes, for the
connection between the moving and stationary meshes. The above treatments increase the
computational cost and requirements of the simulation considerably. An alternative way of
simulating the flow is the Smoothed Particle Hydrodynamics (SPH) method which will be used in
the present work for the simulations.

The SPH method was initially developed by [Lucy (1977)], [Gingold & Monaghan (1977)] and has
been used for modeling astrophysical problems. The application of SPH to a wide range of
scientific areas has led to significant extensions and improvements of the original method
[Monaghan (2005)], [Liu(2003)]. SPH is a Lagrangian, particle, mesh-less method and has the
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advantages of tracing and resolving the free-surface without any special treatment and describing
moving/deforming boundaries easily.

The DualSPHysics code [Gomez-Gesteira et al. (2012a, 2012b)] is proposed as a numerical tool for
the simulation of liquid sloshing phenomena. A particular type of sloshing motion can occur during
the core meltdown of a liquid metal cooled reactor (LMR) and can lead to a compaction of the fuel
in the center of the core possibly resulting in energetic nuclear power excursions. This phenomenon
was studied in series of "centralized sloshing" experiments [Maschek et al. (1992a, 1992b)] with a
central water column collapsing inside the surrounding cylindrical tank. These experiments provide
data for a benchmark exercise for accident analysis codes. To simulate "centralized sloshing"
phenomena, a numerical method should be capable to predict the motion of the free surface of a
liquid, wave propagation and reflection from the walls.

Standart SPH formalism

The SPH formalism relies on the use of kernel approximation of field functions for the calculation
of the operators appearing in the discretization of the flow equations, instead of using a
computational grid. In this way it is able to approximate derivatives or functions from unconnected
and randomly scattered computation points. The basis of the SPH approximations originates from
the following identity:

f(x):j f(X)S(X — X")dx’ (1)

where f(x) is a function of three dithensional position vector X, 5(x — x') is the Dirac delta
distibution and Q is the volume of the integral that contains X. The above relation can be
approximated using a smoothing kernel function W (x — x', h):

<f(x)>=—j f (X)W (x — x', h)dx' (2)
Q
A similar equation can be derived for the gradient of a function:

(Vi (x)>=—j f(X'") VW (x = x', h)dx' 3)

In order the above approximations to be valid;’the kernel function W (x—x',h) has to fulfill certain
requirements, such

as:

+Unity or normalization condition : LW (x=x',h)dx =1

«Dirac distribution property : limW (¥ —x',h) =5(x—x")

-Compact condition : W(x—x";#)=0, for [x—X|>k-h , where k- h is the kernel’s support domain
+Also the kernel function has to be even, positive and monotonically decreasing function.

There are many types of kernel functions. In the present work the quintic kernel is used [Monaghan
(2005)]

16z0° U 2
where q=|r|/h, with |r| the distance between two computational points and h a characteristic
smoothing length.

21 ¢
W (q) = (1—q] (2q+1) 0<qg<2 4)

In the SPH method the entire system is represented with a finite number of particles that carry
individual mass, occupy individual space and the characteristic quantities of the flow (e.g. velocity,
density, pressure etc.). Thus the continuous integral relations can be written in the following form of
discretized particle approximation:

(100 =3 L oW, )

-1 Pj
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(VE(x))= Zﬁf (X)VW; (6)

i=1 Pj

In the above equations W; =W (x; —x;,h), m; is the j particle’s mass and p; is the j particle’s
density.

Using the above approximations for a function and the derivative of a function, one can derive the
SPH flow equations [Monaghan (2005)]:

Momentum equation:

@ P,
av, =y m| —5+—L+I1; (W, ,+9 (7)
dt j P Pj
Continuity equation:
dp, m;
—=p 2 WV =V )W, ®)
dt ZJ: p] ( J ) )

where g - gravity acceleration, IT; is the viscosity term suggested by [Monaghan (2005)], V;* is
velocity, P is pressure, latin indexes denotes particles number, greek index denote coordinate
direction.

oW,
e W ®)

Pressure is calculated from an equation of state, thus the method is weakly compressible. The Tait
equation of state is commonly used .
2 e
_ PoCo_ [IoJ -1 (10)
e Po

In the above equation y=7, py is the reference density and cy is an artificial speed of sound, since
the real speed of sound would require a very small time step. In order to keep density variations less
than 1%, the value of ¢ is chosen ~10 V.« , according to [Monaghan (2005)].

The dynamic boundary conditions described in [Crespo et al., (2007)] are used in this work. The
boundary particles satisfy the same continuity equation as the fluid particles, therefore, their density
and pressure also evolve. Hence, when a fluid particle approaches a boundary particle, and they are
at the interaction distance defined by the kernel range, the density of the boundary particles
increases giving rise to an increase distance of the pressure and the force exerted on the fluid
particle also increases due to the pressure term in the momentum equation creating a repulsive
mechanism between fluid and boundary.

Implenmentation details

The SPH scheme presented in the previous section is implemented in the DualSPHysics code. The
code is implemented using both the C++ and CUDA programming languages. The code can then be
executed either on the CPU or on the GPU since all computations have been implemented both in
C++ for CPU simulations and in CUDA for the GPU simulations. The philosophy underlying the
development of DualSPHysics is that most of the source code is common to CPU and GPU which
makes debugging straightforward as well as the code maintenance and new extensions. This allows
the code to be run on workstations without a CUDA-enabled GPU, using only the CPU
implementation. On the other hand, the resulting codes should be necessarily different since code
developers have considered efficient approaches for every processing unit.
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Computational runtime increases dramatically with the number of particles in the SPH simulations.
Hence, parallelisation methods are essential to run simulations with a huge number of particles in a
reasonable execution time. GPUs constitute a suitable hardware for scientific tasks where
mathematical calculations are carried out using large sets of data.

Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamic
method [Gomez-Gesteira et al. (2012a, 2012b)] introduced the framework to implement SPH codes
using the best techniques and performance optimizations on GPU. That work focused on identifying
suitable algorithms for efficient parallelization since a proper and full use of all the capabilities of
the GPU architecture is not straightforward. As an initial step, the implementation focused on
solving the particle interactions on a GPU using CUDA and the next step was the implementation of
the neighbour list and the time integration in order to develop an entire GPU-SPH model.

Experiment description

The DualSPHysics code described in the previous sections, has been applied to the numerical
simulation of the three-dimensional sloshing liquid motion problems. These problems has been
experimentally studied in KfK (presently KIT) in the framework of the safety analysis of fast
nuclear reactors [Maschek (1992a)].

The sloshing experiments had two main objectives. The first was to obtain a better understanding of
centralized sloshing phenomenon. In a hypothetical severe accident of a fast nuclear reactor, a
possible recriticality may occur following core melting and relocation of the fissile materials.

The second purpose of the sloshing liquid motion experiments was to provide data for a benchmark
exercise for reactor accident analysis codes [Maschek(1992b)]. These data were subsequently used
to verify and validate the SIMMER-III/IV reactor safety analysis code [Shirakawa (2008)],
[Yamano et. Al (2008)].

Experiments were performed with water under normal conditions. The experimental installation
consists of a cylindrical container separated by a membrane into two coaxial parts. The container
was opened, so that the environment is air under atmospheric pressure. At the initial moment, the
membrane is quickly moved up, resulting in the water column collapsing under the force of gravity.

d Membrane Do d

/ |l [ - -l

Rc

- - - -lEEEEEEEEmeEeEeee

b
a
Fig. 1 Central sloshing experiment geometry.

In Fig.1 (a) and Fig.1 (b), the different experimental configurations at the beginning of the
experiments are presented:

(a) a fully symmetrical configuration with no obstacles in the flow
(b) an asymmetrical configuration with no obstacles
(c) a symmetrical configuration with a rod bank installed around the liquid column.
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For the asymmetrical case, the same experimental and computational domain geometry is used, but
the position of the water column is shifted by an offset of 8.25 cm from the container center.

The parameters of the numerical model used in the calculations for the symmetrical geometry are:
container diameter D = 0.44 m,3diameter of water column d = 0.11 m, height of water column h =
0.2 m, water density 1000 kg/m”.

The geometry of the numerical model for the test cases with rod imitators is the same as for the
experimental series without rods. The difference is the presence of twelve vertical rods equidistantly
positioned around the water column. Their distance from the center is R, = 17.6 cm . The rod
diameter (d;,q) in the experiments was 2 cm, to simulate a blockage ratio similar to that in a real
reactor pool. The same value for the rod diameter has been used in the numerical model. An
overview and sketch of the experimental setup, with geometrical sizes, for these test series are given
in Fig. 1 (b).

The initial velocity field in water is zero. The initial pressure field is hydrostatic:
p=pgh (11)

Experiment and numerical results

In this section the results of the simulation of the centralized sloshing experiment in the
symmetrical geometry, the asymmetrical geometry and experiment geometry with 12 rod bank are
presented.

The main quantitative parameters for the symmetrical case are the arrival time of the liquid at the
wall, the time and height of the maximal wave at the wall, and the time and height of the central
peak. The central peak height is the most important of these for the recriticality analysis, and, as has
been found, the peak height is difficult to reproduce in the numerical simulation.

1=0.00 zec t=0.01 sec

t=0.230 sec

= 0.60 sec

t=0.87 san
Figure 2. Experiment and simulation result for symmetrical case.
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Furthermore, a correct definition and measurement of the central peak height is not very obvious. In
the applied experimental technique, large drops on top of the peak moving with the same velocity as

the bulk flow were included in the height measurement (see the more detailed discussion of the
definition of the central peak value in the following subsection).

T= 0.3 pz
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Figure 3. Experiment and simulation result for asymmetrical case.
T=0 sec, T=0.25 sec, T=0,47 sec, T=0.75 sec

For the asymmetrical case, only the timing of the maximum height at the walls and the height of the
maxima were measured in the experiments.

Fig. 2-4 shows a visualization of the results of the simulation in comparison with the experimental
observations of the liquid sloshing motion.

Figure 4. Experiment and simulation results with 12 rod bank.
T=0 sec, T=0.21 sec, T=0.36 sec, T=0.86 sec.
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The results are summarized in Table 1-3. Most of the quantitative simulation results are in a good
agreement with both experimental data and the numerical results predicted by the reactor safety
analysis code SIMMER-IV, although some deviations in the central peak value are observed. Also,
for the asymmetrical case, a lower value of the height of the right-hand slosh is predicted. A similar
value was obtained using the SIMMER-IV code. For the asymmetrical geometry, the lower values
may be due to the relatively low resolution of the numerical model.

Table 1. 3D Central Sloshing: Symmetrical Case

Slosh at outer container wall Slosh at pool center
Symmetrical | Arrival time Time of Maximum Time of Maximum
case at wall [s] maximum heights [cm] maximum height [cm]
heights [s] height [s]
Experiment 0.20+0.02 0.42+0.02 16+1.0 0.88+0.04 40+5
SPH result 2.8
M particles 0.21 0.39 14 0.88 0.33
SIMMER-IV
(coarse mesh - 0.20 0.40 17.25 0.88 36
44x44x100)
SIMMER-IV 50
(fine mesh - 0.20 0.38 18.75 - (overestimated)
92x92x100) v
Table 2. 3D Central Sloshing: Asymmetrical Case
Slosh at pool center Slosh at right wall
Asymmetrical Case - - - - - -
Time of maximum Maximum Time of maximum Maximum
height [s] height [cm] height [s] height [cm]
Experiment 0.36+0.02 14.0£2.0 0.48+0.02 24+2.0
SPH result 2.8 M 0.36 14.5 0.48 21.5
particles
SIMMER-IV 0.36 17.25 0.48 21

Table 3. 3D Central Sloshing: Symmetrical Case. Vertical Rod Bank

Vertical Rod Slosh at outer wall Slosh at pool center
Bank Arrival time Time of Maximum Time of Maximum
at wall [s] maximum height [cm] maximum height [cm]
heights [s] height [s]
Experiment 0.20+0.02 0.42+0.02 15£1.0 0.88+0.04 1543
SPH result 2.8
M particles 0.21 0.39 16 0.86 0.12

The comparative snapshots from the experiment and numerical simulation for the test cases with 12
rod bank are presented in Fig. 4.
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Conclusion

The DualSPHysics computer code based on the SPH method has been applied to the numerical
simulation of the three-dimensional sloshing liquid motion problem. A number of numerical models
have been created to reflect different configurations of the experimental installations. These are as
follows:

e Fully symmetrical configuration: the liquid column is symmetrically located at the container
center.

e Asymmetrical configuration: the liquid column is located with an offset from the container
center.

e Symmetrical configuration with obstacles: rod imitators are installed around the liquid
column.

The quantitative parameters of the flows predicted by the numerical algorithm have been compared
with the available results of the simulations performed with the SIMMER-III/IV reactor safety
analysis code and with experimental data. These measured flow quantities, such as the heights of
the wall sloshes and the central peak, and the timings of these events, are accurately predicted with
high resolution simulations. At the same time, the present algorithm based on the SPH method is
capable of resolving the high central peak in the fully symetrical case, which was an issue for the
SIMMER code.

A sensitivity study for the value of the central peak height in the symmetrical configuration has also
been performed. The study showed the convergence of the central peak height value with an
increase in the number of particles used for modeling.

In analyzing for a possible recriticality event, the height values of the central peak calculated for the
different experimental configurations and different resolutions of the numerical model were
compared. The highest peak, corresponding to the maximal volume of the fissile materials
compacted in the center of the pool, is observed in calculations of the fully symmetrical
configuration with the fine numerical resolution. Thus conclusion demonstrates the experimentally
observed sensitivity of the liquid flow to the geometrical asymmetries of the vessel.
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Abstract

This paper is to present an extended shape preserving topology optimization formulation aiming at
preserving specific local structural domain configuration. By introducing Artificial Week Elements
(AWE) established with respect to shape preserving control points, we constrain its elastic strain
energy to suppress the warping deformation. Compared with the existing global compliance
topology optimization, this formulation acts as a control of local compliance of the structure.
Numerical results have shown how the strain energy constraint related to AWE influences the
optimized solution, especially the effect of the upper limit of the constraint. Comparative studies
have evidently shown that the effect of shape preserving can be successfully achieved. Possible
structural distortions are also illustrated in order to have an in-depth understanding of the design
mechanism.

Keywords: Topology Optimization, Shape Preserving, Artificial Weak Elements, Warping
Deformation, Local Strain Energy

Introduction

Topology optimization method has been developed as one of the most effective techniques in
saving structural weight and improving multidisciplinary performances. Recent advances of
topology optimization techniques have been summarized by excellent literature surveys such as
Guo and Cheng (2010), Sigmund and Maute (2013), Deaton and Grandhi (2014).

Meanwhile, different topology optimization formulations were also presented to obtain required
structural deformation patterns. In these literatures, constraints on a single or multiple nodal
displacements were normally issued. For example, in the works of Liu et al. (2008), warping
deformation of beam cross-section was considered in a new anisotropic beam theory as well as in
topology optimization. Rong and Y1 (2010) designed the multi-points displacements using a newly
developed phase transferring method. Typically, in the works of Qiao and Liu (2012), a geometric
average displacement function integrating the deformation field, which was similar to a P-norm
scheme, was proposed to minimize the structural maximum deformation. In this way, the
magnitudes of different nodal displacements were controlled to form a better deformation. Other
displacement designs can be found mostly in topology optimization of compliant mechanisms (see
e.g. Wang et al. 2005, Stanford et al. 2012 and 2013).

However, constraints on the magnitudes of nodal displacements might not appropriate in many
complicated engineering cases searching better structural deformation behaviors. For example,
challenges of suppressing structural local warping deformation to maintain structural coordinative
displacements are always faced during the aircraft structure design, manufacturing and assembling
(Niu 1988, Barrett 1992, Wang 2000), which are considered as shape preserving design. Key
difficulties lies in that the popularly used global compliance and nodal displacements in topology
optimization cannot effectively describe and suppress the local warping deformation.

Therefore, this paper proposes to implement multi-point shape preserving constraints in an extended
topology optimization formulations by introducing strain energy based quantitative approach
describing warping deformation magnitudes in shape preserving domain.
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Figure 1. An illustrative structure system for shape-preserving design problem (Dashed lines

indicates probable deformation for the loaded structure)
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Multi-Point Shape Preserving Design

Local domains are concerned for shape preserving as shown in Figure 1. They may be void (e.g. a
structural opening for process, feature or maintenance) or solid (e.g. a structural branch or a
component), or even hybrid (e.g. parts or equipment). When it comes to situations like structural
installing, connecting and assembling problems mostly based on the point locations, it is essential to
have proper design of multi-point shape preserving i.e. coordinative displacement of control points.
Therefore, we propose to define Artificial Week Elements (AWE) established with respect to the
above mentioned control points. The local strain energies related to AWE are considered as
additional constraints to suppressing the warping deformation.

Structural Deformation

The nodal displacement vector U, of the local domain Qis composed by two components of rigid

displacement vector Uy, and warping deformation vector Uy, , 1.€.
uQ =UQR +UQW (1)

To achieve the structural shape preserving design necessitates suppression of the warping
deformation. As a result, local strain energy is used to describe and constrain warping deformation
quantitatively here. It is expressed as

C, =%U£T2KguQ (2)

where K, is the local domain stiffness matrix.
Since no strain energy produced by rigid displacement, the above expression can be written as

1
CQ :EUZZWKQUQW (3)

Theoretically, there would be no elastic warping deformation but only rigid body movement under a
perfect shape preserving design where the local strain energy is 0. But practically the perfect effect
is unobtainable. The constraint is given by a minor upper bound above zero, i.e. &. The shape
preserving design achieves a fairly well effect in permissible tolerance when the strain energy value
satisfies

C,<¢ 4
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Artificial Week Elements

However, the shape preserving design will degenerate into an all-domain shape preserving when the
elastic strain energy of the local domain is directly defined as a constraint function, which is an over
constraint issue compared with multi-point shape preserving design. In this paper, Artificial Weak
Elements (AWE) is proposed and established with respect to the shape preserving control points.
The AWE nodal Degrees of Freedom (DOFs) are coupled to those of the control points. By
calculating the AWE strain energy, the warping deformation of these multiple points can be
measured.

Besides, to ensure the precision of structural analysis, the stiffness of additional AWE should be
weak enough not to influence the structural mechanical properties. In this paper, the Poisson’s ratio
is set to a general value 0.3, and the elastic modulus is set to 1 Pa, which is much smaller than
regular material.

A FE elements and nodes of AWE
/\ Void domain and its control points

A.. Solid domain and its control points

Figure 2. The definition of AWE

For the shape preserving design illustrated in Figure 1, AWE can be established as shown in
Figure 2. The outline boundaries contain 11 control points, i.e. points A to L. Then 6 additional
weak elements are created with the 11 points respectively. When the total structure is loaded, the
AWE deform along with the control points. At this point, the shape preserving constraint can be
defined as AWE strain energy constraint, i.e.

Cuowe <€ (5)
Therefore, the topology optimization with shape preserving design is formulated as

find:  7=(7,1sees Tl )
min: C:%UTKU (6)

st:. f=Ku;V<V;Cr<¢

In the above formulations, # is the vector of pseudo-density design variables, whose items’ values

vary from 0 to 1 describing material distribution in design domain. SIMP interpolation model (see
Bendsege and Sigmund 1999, Rozvany 2001) is used here with the penalty factor equals to 3. The
global strain energy C is minimized as the object function. K is the global stiffness matrix. V is
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the material volume and V, is its upper bound. ¢ is a given minor upper bound, whose value is
relevant to specific structure and problem.

Sensitivity Analyses on Shape Preserving Constraint

The design sensitivity of the object function, i.e. the global strain energy with respect to the pseudo-
densities is easily obtained and can be found in many references dealing with the topology
optimization problems (e.g. Sigmund 2001), which will not be provided here.

We mainly concern the sensitivity of the constrained AWE strain energy. It can be expressed as
1
C A K AWE (7)

EUAWE
U,w: 1s the displacement vector of control points, 1.e. nodes of AWE. K, . is the stiffness matrix
of AWE

u

AWE — AWE

Derivative of the AWE strain energy is written as

oC 1 oK ou
AR =~ uTAWE AWE Uuwe UXWEKAWE AR
on, 2 on, on; )
ou
= UZWE KAWE 6AWE

i
where the stiffness matrix of AWE is independent from topology design variables 7, .
Here we define U, =T,,sU, where T,,. is a constant matrix which converts the global

displacement vector U to the local one U,y . Following the derivative of the equilibrium equation,
we further have

OU \wr ou 4 of oK
—A =T c—=T —_— 9

ani AWE 877' AWE Lanl a?]l ( )

Substituting the above equation into equation (8), it turns into

oC 4 of oK
ﬂ:L&WEKAWETAWEK | =—-—u

on, on,  on,

(10)
= (}\,*)T K71 ﬁ _%u
on;  on,

where we formulated a new vector A" calculated from the AWE displacements vector, stiffness
matrix and the constant matrix, i.e. A" = U : K e Tawe -

It is informed that A" is a column vector whose dimension is equal to total DOFs. After one

additional finite element analysis by applying A" as an artificial load vector on the structure, we
have

A =Ku
() K= () "
Then the derivative of local elastic strain energy can be expressed as
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The derivatives of the load vector and the stiffness matrix with respect to the pseudo-densities are
easily obtained according to the SIMP interpolation model used in this paper. Typically, in the case

of design independent loads, the derivative of the load vector will be zero, i.e. ;—f =0.
77;

Numerical Examples of Shape Preserving Design
L-shape Beam

Here we optimize an L-shape beam aimed at preserving the cutout configuration as shown in
Figure 3. The top boundary is fixed and a single-point force of 100N is applied on the right corner.
A frame with a particular non-design width is assigned around the cutout. Shape preserving control
points are the four corners of the frame and the corresponding AWE is one quadrangle weak
element linked to the control points A to D. Under the constraint of 40% material volume fraction,
standard topology optimization design merely maximizing the overall structural stiffness is shown
in Figure 4(a). Afterwards, without any other conditions changed, shape preserving design is shown
in Figure 4(b), where ¢ equal to 2x1071°J. The optimized strain energies of global structure, shape
preserving frame domain and the AWE are listed in Table 1. The strain energy of AWE is decreased
from 8.58x10715J to 2.00x10°1°J under the effect of shape preserving constraint, while the loss of
global structure stiffness is less than 6%.

To have an obvious view of the shape preserving effect, a comparison of enlarged deformation of

the frame is presented in Figure 5. The standard design generates a large warping deformation. On

the contrary, the shape preserving design achieves a better deformation behavior where the frame

corners’ displacements was coordinated.
7 -

60mm
:U
@

Design
domain C f

100mm

"~
40mm

Non-design
domain

100mm (a) (b)
(a) Standard topology optimization
(b) Shape preserving design
Figure 4. Comparison of the L-shape beam designs

Figure 3. An L-shape beam with a
guadrate cutout and its AWE

Table 1. Comparisons of strain energies of the optimized L-shape beam

Strain Energy Global structure Frame around the cutout AWE
Standard topology optimization 1.17x10™4] 8.57x10°J 8.58x1071°]
Shape preserving design 1.24x104] 4.21x10°%) 2.00x10°1%J
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1"~ Original outline of the frame
Standard topology optimization

Shape preserving design

Figure 5. Comparison of enlarged deformations of the frame around the hole in optimized
designs (Amplification factor 1.5x107)

Furthermore, the optimized results with different material volume are presented in Figure 6. C and
C,we represent the optimized strain energy of global structure and AWE in standard topology

design. C* and C,,,, represent the optimized strain energy of global structure and AWE in shape
preserving design.

For the standard topology optimization, the structure material is always distributed on the optimal
load carrying path as a result of seeking maximum stiffness of global structure. Consequently, the
standard design results always have smaller global strain energies. In shape preserving design, the
local strain energy of AWE is much lower than the standard one with a little sacrifice on its global
stiffness to satisfy local shape preserving constraint. This paradox between shape preserving
constraint and global strain energy indicates that the final optimized design will be a compromise

between global stiffness and local deformation.
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\ - " “r C

-
>

o
-

w
=N
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Strain energy of AWE(C* ,y5,Cawg)/ 107151

Strain energy of global structure(C*,C)/10-3J
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Figure 6. Optimized designs versus different volume fraction and their strain energy
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Distortion of Load Carrying Path

For in-depth understanding of the paradox, further discussions on the upper bound of shape
preserving constraint and its influence on the structural optimization design are discussed here.

Taking the L-shape beam design for example, we obtain optimized design in Figure 7 in turn via
changing the value of ¢ with the rest conditions keeping identical. The optimized configurations
change gradually as the value of & decreases. When the shape preserving constraint is so strong, the
structural load carrying path will be distortional (e.g. 11" and 12 result) with unsatisfied large
sacrifice of global stiffness. In these cases, regular structural design cannot meet the requirement of
shape preserving constraints. The topology optimization is forced to separate the shape preserving
domain from the load carrying path to obtain an approximate rigid deformation. Such result is
mathematically reasonable but loses actual physical significance and engineering value in
optimization design.

40 F 12

b sSH
| MSL&
| gybé_w@yl&y

—0 0

1.0 L L L L L L L L L L L L L L L TR
0 1 2 3 4 5 6 7 8

The upper value of shape-preserving constraint &/10-13J
Figure 7. The global strain energy and corresponding optimized design results versus
different constraint values of &
Accordingly, the upper bound of shape preserving constraint should be appropriately chosen to
avoid phenomena of load carrying path distortion. Meanwhile, researchers are not only to solve a
mathematical model but also to account for more practical problems into consideration, which is
one of the key difficulties in optimization design for engineering structures.

20 F

The ultimate global strain energy/104J

Shape Preserving Design for Windshields

Consider now an airframe shown in Figure 8. The front fuselage is connected to the center one at
its rear side. The whole fuselage bears aerodynamic loads. Warping deformations of windshields
need to be avoided not to cause the glasses fracture. Here, AWE is defined as illustrated in Figure 8.
The control points of each windshield contain four corners and four midpoints of the boundaries as
well. With the airframe’s layout as topology optimization design subject, two material distribution
results of skin reinforcement from standard design and shape preserving design are presented in
Figure 9. The value of the shape preserving constraint & is set as 0.02].
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Fuselage Skin

(a) Standard topology optimization design
(b) Shape preserving design
Figure 9. Comparison of material distributions of skin

reinforcement

Figure 8. lllustration of shape
preserving design of
windshields

Referring to the optimized designs with the same volume fractions in Figure 9, we can distinguish
that the material distributed around the windshields increases in the shape preserving design.
Therefore, the prescribed local domain is strengthened and the warping deformation is suppressed.
Additionally in the weak loaded area between windshields and center fuselage, the shape preserving
design modifies the load carrying path to offset the warping deformation in the windshields. The
detailed data of shape preserving design and standard stiffness design is listed and compared in
Table 2. Although there is a 5% sacrifice on the stiffness of global structure, the shape preserving
design has improved the effect of shape preserving for 4 times better than the standard one. Thus,
the effectiveness of shape preserving topology optimization design is further demonstrated, which
possesses a good perspective in practical structure design applications.

Table 2. Comparisons of strain energies of optimized designs

Strain ener The whole The AWE of
&Y fuselage windshields
Standard optimization design 6893 ] 0.092J
Shape-preserving optimization 7963 J 0.020 1

design

Conclusions

We proposed an extended structural topology optimization method with multi-point shape
preserving constraint in this paper. The shape preserving constraint of local domain is constructed
by the strain energy of Artificial Weak Elements (AWE). Compared with the standard topology
optimization design maximizing structural stiffness, this formulation have evidently shown that the
coordination of multi-point displacements and the effect of shape preserving can be successfully
achieved. Further numerical results are analyzed to show the influence of shape preserving
constraint on the optimized design pattern and the entire performance of structure. Besides, the
design distortion due to improper definition of the shape preserving constraint is revealed and
studied in this paper.
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Abstract

Foam-metal composites are being increasingly used in a variety of applications. One important
aspect in the structural integrity of foam-metal interface is the ability to resist failure around the
interface whilst ensuring required load bearing capacity. This study investigated the mechanical and
failure behaviour at the interface region at micro scale. The foam-metal composite consisted of
polyurethane foam directly adhered to a galvanised steel face sheet. Optical, scanning electron and
atomic force microscopy were used to examine the interface geometry and to obtain a realistic
surface profile for use in a finite element (FE) model. Finite element analysis (FEA) was used to
study the effects of different interfacial roughness profiles on mechanical interlocking and modes of
failure, which are directly related to interfacial strength. A set of finite element models of idealised
surface pairs of different geometries and dimensions were developed based on the microscopic
observations at the foam-metal interface. The finite element modelling results show that the micro-
scale roughness profile at the foam-metal interface causes mechanical interlocking and affects the
stress field at the scale of the interface surface roughness, which consequently governs the specific
failure mode and the relative proportion of the cohesive to adhesive failure in the interface region
for a given foam-metal interface. It was found that the aspect ratio (relative width and height) and
width ratio (relative spacing) of roughness elements have a significant effect on the stresses and
d?ff()f?ations produced at the interface and consequently control the modes (cohesive or adhesive)
of failure.

Keywords: Numerical modelling, foam, interface, fracture, cohesive fracture, adhesive fracture.

Introduction

Sandwich composites consisting of polymer foam and metal face sheets have many advantages for
structural applications. The notable benefits are light weight, high bending stiffness and strength
[Grujicic et al. (2008)]. The bond between the foam and metal must remain intact to ensure the
structural integrity of the composite. So optimising the adhesion strength of the interface is crucial
to the performance of the composite. To effectively achieve this, it is essential to understand the
mechanisms of adhesion and the effects of these on the strength of the adhesive bond [Kim et al.
(2010)].

Characteristics of the interface of a solid polymer and metal have been extensively investigated.
The main factors affecting the interfacial strength are chemical/physico-chemical (e.g. ionic or
covalent bonds or van der Walls force) and physical (e.g. mechanical interlocking) interactions
[Buehler (2008)]. Chemical interactions are related to the primary and secondary bond formations
[Ho (1989); Grujicic et al. (2009)]. Mechanical interlocking is the interaction between the two
material surfaces due to geometric effects [Noijen et al. (2009)] and plays a dominant role in
interface bonding. A typical interlocking feature originates from the surface roughness of the
interface and generally occurs at the microscopic scale. Specifically in the case of a polymer
adhered directly to a metal surface, mechanical interlocking and absorption are the most significant
mechanisms that contribute to the strength of the interface [Kim (2003); Grujicic et al. (2009); Kim
et al. (2010); Ochoa-Putman and Vaidya (2011)]. The friction at the polymer-metal interface along
with the polymer stiffness also contributes to the mechanical behaviour of the interface [Ochoa-
Putman and Vaidya (2011)].

The effect of altering the surface roughness of steel at a micro-scale along with chemical treatment
of the steel surface on the behaviour and strength of a steel-polymer interface [Ochoa-Putman and
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Vaidya (2011)] showed that the strength of the steel-polymer interface increased as the surface
roughness increased. It is suggested that the polymer-metal interfaces usually fail due to a
combination of both interfacial adhesive failure between the polymer and the metal and cohesive
failure of the polymer due to cracking [Yao and Qu (2002); Kim et al. (2010); Ochoa-Putman and
Vaidya (2011)]. The relative strengths against cohesive and adhesive failures determine the
resultant interfacial strength. For some material systems, cohesive failure typically requires more
energy than that of adhesive failure; therefore interfacial strength could be improved by increasing
the proportion of cohesive failure compared to adhesive one, as studied [Yao and Qu (2002)].
Altering surface roughness has been shown to result in an increase in cohesive failure and a
reduction in adhesive failure [Yao and Qu (2002)], thus can increase the interfacial strength. A
relationship exists between adhesive failure and the non-dimensional roughness R /4, where R is the
mean half-depth of the roughness and A is the mean distance from peak to trough of the roughness
(Figure 1).

a : - Polymer

Figure 1. Idealised profile representing surface roughness of polymer-metal interface
(adapted from [Yao and Qu (2002)])

Kim et al. [Kim et al. (2010)] also showed via a similar study that increasing the ratio of cohesive to
adhesive failure along the interface is an effective way to improve the interfacial strength of a
metal-polymer composite. They roughened the surface of steel with micro-line patterns and
investigated the effect of varying the roughness dimensions; depth R, widths w; and w, and width
ratio W1/W, (shown in Figure 1). However, changing the roughness depth R was found to have no
effect on the interfacial fracture toughness. Increasing the ratio wyW, resulted in a smaller fraction
of area failing purely due to adhesive failure along the interface and a larger fraction of area failing
due to cohesive failure of the polymer. Hence, increasing the ratio of cohesive to adhesive failure
can increase the interfacial strength of several metal-polymer composites.

Numerical modelling has been successfully used to characterise polymer-metal interfaces [Yao and
Qu (2002); Noijen et al. (2009)]. The finite element method (FEM) was used by Yao and Qu [Yao
and Qu (2002)] to predict the energy release rate (ERR) of adhesive and cohesive cracks at different
positions along a typical surface roughness profile of a metal-polymer interface. They observed that
a crack along the interface propagated into the polyurethane (PU) foam when the ratio of adhesive
to cohesive energy release rates (Gr) reached a critical value.

In the numerical study by Noijen et al. [Noijen et al. (2009)], the crack was assumed to be first
formed on the flat surface of the metal due to low adhesive strength, and propagated along the
interface until the ERR condition along the interface and through the polymer (affected by the
roughness geometry at the interface) were met, which changed the direction of crack propagation
deflecting into the polymer. This was however unable to account for the relative dominance
between the adhesive and cohesive failure, so an improved numerical model was deemed necessary.
This work indicated that the numerical modelling can predict the location at the polymer-metal
interface where the crack propagation will deviate from the interface into the polymer, which in turn
enables determination of the ratio of cohesive to adhesive failure [Noijen et al. (2009)].

In this paper, we extend the previous studies on polymer-metal interface to the material system of
foam-metal sandwich composite interface, namely galvanised (zinc coated) steel and polyurethane
foam composite interface. It is known that polymers can adhere well to zinc coatings [Kim (2003)].
However, the key difference of foam-metal interface from that of a homogenous polymer-metal
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interface is the porous and cellular structure of the foam, which affects the localised adhesive and
cohesive failure mechanisms and the resulting fracture behaviour. Moreover, variability, such as
temperature, polymer distribution, and poor wetting during the casting of polyurethane foam onto
zinc coated steel can result in different adhesive strengths in different regions of the foam-metal
interface [Kim (2003)].

Most importantly, the bulk failure behaviour at the interfacial region is manifested by micro-scale
deformation and fracture patterns. To address this, the present work investigated the interface of the
specific foam-metal sandwich composite made of polyurethane foam and galvanised steel face
sheets at microscopic scale using experimental observations and finite element (FE) analysis. The
focus was to understand how the geometry of micro-scale surface roughness influences the nature
of failure at the interfacial region of the foam-metal composite. The stress-strain distributions in the
micro-scale roughness profile were analysed. In the FE analyses, idealised geometries of the
interface representing different surface roughness profiles were created, and the failure modes were
predicted under the tensile and shear loading conditions. In the experimental study, the foam-metal
sandwich samples were fabricated without using any adhesive for bonding so as to avoid any
chemical effect of external adhesives. The metal-foam interface was imaged using optical and
scanning electron microscopes. The surface roughness was characterised using an atomic force
microscope. Subsequently, the effect of changing surface roughness parameters (i.e. aspect ratio and
width ratio) on the crack propagation patterns and failure modes, and the resulting interaction
between adhesive and cohesive failures were investigated using finite element analysis.

Materials and Methods

Material Systems

Polyurethane foam is porous, and has a cellular structure with voids. The properties of the foam can
vary greatly depending on the type and proportion of the reactants used. The polyurethane foam
used 1in this study was produced by mixing Endurathane GP38 polyol blend with Endurathane 5005
isocyanate, supplied by New Zealand Polymer Group Ltd. The stress-strain curves of the foam in
tension and compression are shown in Figure 2.

0,8
0,7 -

Compression

=== Tension

0,6

0 20 40 60 80 100
Strain %

Figure 2. Polyurethane foam stress strain curves showing the difference in behaviour when
subjected to tension and compression

A commercially available G550 galvanised high strength structural steel was used for the
composite. It had a thickness of 0.75 mm. The material properties are given in Table 1. The steel
surface is covered by a zinc rich layer as a result of the galvanisation. The foam contact is therefore
with this zinc layer, and not with the steel. The zinc layer is significantly stiffer and stronger than
the polyurethane foam (Table 1).
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Table 1. Material properties of the constituents of the foam-metal composite

Material Modul_u_s of Yield Poissqn’s
Elasticity Strength Ratio
Polyurethane foam
[Randall and Lee 7.5 GPa 0.34 MPa 0.40
(2002)]
Zinc [Davis (2014)] 83 GPa 160 MPa 0.25
G550 steel [Davis
(2014)] 200 GPa 550 MPa 0.3

Sample Preparation

Polyurethane foam-G550 steel sandwich composite was fabricated in a controlled laboratory
condition. Composite samples that were subjected to compression tests were failed by local
buckling, and foam and metal were delaminated along the interface. The foam-metal specimens
were cut into approximately 10 X 10 mm sections from the failed region of the samples to observe
the interface failure. These specimens were used for surface roughness analysis and imaging foam
cell sections. The foam-metal specimens were then moulded in an epoxy resin without causing any
damage to the delaminated interface and foam (see Figure 3a). The section of each specimen was
then ground and polished to obtain a smooth surface for microscopic examination. Sections of 10 x
10 mm specimens were also mounted flat using double-sided carbon tape (Figure 3b) to observe the
top and bottom surfaces of the failed composite.

(b)

Figure 3. (a) Specimen cross-section of foam-metal interface prepared for microscopic
examination, (b) Specimens showing the top and bottom surfaces of foam-metal composite
where it has failed along the interface (top specimen shows failure surface, and the bottom

specimen is used as the control)

@

Microscopic Examination

An Olympus MX6B microscope was used to examine the prepared specimens. Dark field lighting
was used, as it provides a clearer image than that of bright field lighting. The entire length of the
interface was examined at 100, 200 and 500 magnification levels. Images were taken at regular
intervals along the interface. Surface roughness of zinc coating was analysed using an Atomic Force
Microscope.

The cross-section of the foam-metal interface, the failed surface, and the surface of steel (without
foam) were observed using a Scanning Electron Microscope (SEM) at a range of magnification
from 100x to 24000%. The specimens were coated with a thin platinum layer to avoid surface
charge accumulation and to improve the image quality. Both the back scatter electron detector (for
improved materials distinction) and secondary electron detector (for improved topography) were
used to observe the specimens. Figure 4 shows a typical optical microscope image of the foam-
metal interface.
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Figure 4. A typical optical microscope image of the foam-metal interface (using Dark field and
100x total magnification) showing steel (black), zinc (silver), and polyurethane foam

Steel Mace sheels

Poburethame
foam core

20 grme
@ () it (o) Wi

Figure 5. Division of the foam-metal composite into individual roughness elements: (a) Foam-

metal sandwich composite, micro-scale view of the foam-metal interface, and zoomed view of

a typical roughness profile, (b) jagged profile, (c) triangular profile, (d) semi-circular profile,
(e) Filleted triangular profile

Finite Element Modelling of the Interface

The foam-metal interface was modelled using FEM to understand the failure mechanisms and
investigate how different roughness parameters affect the deformation behaviour and failure modes.
An idealised surface roughness profile is an accurate assumption for modelling an induced
roughness, especially if the technique used to induce the roughness is accurate and consistent. Even
for modelling a random surface roughness (i.e. a naturally rough surface) an idealised surface
roughness profile can be an accurate assumption provided it is based upon average dimensions and
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a profile similar to that of the actual roughness. Idealised micro-scale surface roughness profile was
modelled by dividing the foam-metal interface into individual repeating elements (RE), as shown in
Figure 5. Each RE represented a roughness profile with a part of the metal and foam.

Materials Modelling

A two dimensional FE model of RE was developed and analysed using the software ABAQUS
[ABAQUS (2014)]. The polyurethane foam was modelled as a homogenous and isotropic solid
material, as it was 1dentified through optical microscopy that the material at the interface region was
solid polyurethane rather than cellular foam (Figure 5a). The thickness of the solid film varied
between 5-50 um. The failed interface showed that the thin solid film perfectly adhered to the metal
surface (see Figure 4). Four different idealised surface roughness profiles were modelled. These are
referred to as the jagged, triangular, filleted triangular and semi-circular profiles, as shown in Figure
Sb-e, respectively.

Both zinc and steel are considerably stiffer and stronger than polyurethane so that it is unlikely that
either will fail before polyurethane does. Hence the metal component of the interface has been
modelled as analytically rigid. To simplify the analysis we have chosen to model polyurethane as
behaving the same in compression as it does in tension. This is a reasonable assumption as at the
micro scale solid polyurethane attached to the zinc coating is unaffected by voids that are
responsible for the difference in behaviour in tension and compression at the macro scale. Figure 6
shows stress-strain curve of the polyurethane foam used in the FEA analysis.

0.4
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0.3 -
0.25 -
0.2 -
0.15 -
0.1 -
0.05 -
0 . . . . .

0 0.01 0.02 0.03 0.04 0.05 0.06

Strain (mm/mm)

Stress (MPa)

Figure 6. Polyurethane stress-strain curve used in FEA

Loading and Boundary Conditions

The foam metal interface was analysed under two loading conditions, tension and shear loadings.
So each surface roughness profile was modelled under both tensile and shear loading. The boundary
conditions imposed for the tensile and shear load cases are shown in Figure 7. Both the boundary
conditions included specified displacement and symmetry conditions. Each roughness element was
symmetric about the vertical axis (Figure 7a). Hence, a half of the single element was modelled
applying the symmetric boundary condition about the vertical axis (red lines in Figure 7b) for
tensile load case. Since the foam was perfectly adhered to the zinc layer of the galvanised steel, all
degrees of freedom were constrained at the foam-zinc interface in the finite element model for both
load cases. This is highlighted in yellow in Figure 7b.
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Figure 7. Tensile boundary conditions: (a) A typical foam-metal interface model showing
loads and boundary conditions for tensile loading, (b) Different boundary conditions: yellow -
fixed, red - vertical (y) symmetry, blue - specified vertical displacement

For the tensile loading, a specified displacement boundary condition of 0.5 um was applied to the
top surface of the roughness element in the vertical direction (y-direction), which is highlighted by
the blue line in Figure 7b. The direction of shear load was parallel to the horizontal interface, and as
a result asymmetric loading was generated across the roughness element, implying that the
symmetry boundary condition could no longer be used. Moreover, the stresses and strains generated
due to shear loading were not symmetrical between adjacent roughness elements. So symmetry
boundary conditions could not be used at the edge of the roughness element to compensate for the
edge of the roughness element not being at a free end of the interface (see Figure 8). To account for
this, the geometry used in the FE model for shear loading was a section of the metal foam interface
consisting of three roughness elements, and the behaviour of the middle roughness element was
evaluated. The top surface of the roughness element is displaced in the horizontal (x) direction by

1.5 pm.

(b)

Figure 8. Shear boundary conditions: (a) A typical foam-metal interface model consisting of
three roughness elements showing loads and boundary conditions for shear loading, (b)
Different boundary conditions: yellow - fixed, red - specified horizontal (x) displacement
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Meshing and Failure Modelling

Linear 3-node triangular plain strain elements were used for all the models. The mesh was biased
and was locally refined to generate fine meshes at the metal-foam interface and around the corners
of the profiles in order to capture the sharp stress variation along the interface and around the
corners. A finite element mesh convergence study was performed to ensure that the mesh used in
the models was of sufficient resolution so as to accurately predict the stress, strain and damage
evolution in the interface region.

A continuum damage model was used to model crack propagation, adopted from [Neilsen et al.
(1995)]. Each element had a scalar ‘damage’ parameter D that measures its load carrying capacity.
The scalar damage parameter D is used to characterise the volume-averaged micro-fracture of the
volume of material represented by each element. The damage parameter is calculated based on the
principal stresses of the elements. It is used to inhibit the transmission of tensile stress between
elements. The damage parameter lies between 0 and 1. Material with D = 0 is undamaged and is
able to transmit the full tensile load, whereas material with D = 1 is fully damaged and cannot
transmit any tensile load, thus creating a partial macro crack. Connected macro-cracks or
contiguous cracked material across a body leads to fracture. A failure criterion was used, and a
material stiffness degradation model was implemented. If an element met the failure criterion, its
stiffness was reduced by scaling with (1-D).

Microscopic Characterisation of the Interface

Figure 9 shows a surface roughness image obtained from the surface area of zinc using AFM.
Figure 10 shows the cellular structure of polyurethane foam obtained from optical microscopy. At a
magnification of 500, the features, such as foam pores, contact between polyurethane and zinc at the
interface, distinct regions of steel, zinc and polyurethane as well as the irregularities in the zinc
galvanising layer, can be observed. Figure 11 shows the solid polyurethane film (top grey) that
covers the majority of the metal surface at a magnification of 8000 from SEM. The film thickness
generally varies between 5-50 pm although there are a few locations along the surface which are not
covered by the film.

Figure 9. Roughness profile of zinc surface of the galvanised steel
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Figure 10. Cellular structure of polyurethane foam obtained from optical microscope

Figure 11. SEM image showing solid polyurethane (without pores/voids) layer covering the
majority of the metal surface (observed using 8000 x total magnification)

The observations suggested that the foam-metal composite did not predominantly fail along the
interface adhesively, and rather it failed near the interface by cohesive manner. The top surface
specimens failed much closer to the interface than the cross-sectional specimens, i.e. in the cell
walls of the cells in the vicinity of the metal surface. The stresses in the cellular area of the
polyurethane foam where voids are present are considerably higher than those in the solid foam
present at the foam-metal interface. This leads to the trend in cohesive failure predominantly in the
cell wall as opposed to solid polyurethane .As a result of this, crack propagation due to cohesive
failure would not be in the immediate vicinity of the interface. A transition from cohesive failure to
adhesive failure would be unlikely due to the small area of the cell walls compared to the solid layer
of polyurethane attached to the metal layer. This explains the large areas of continuous cohesive and
adhesive failure zones. As a result, when the adhesive strength of the interface exceeds the cohesive
strength of the polyurethane foam at a macroscopic scale (including the effect of cellular structure),
the mode of failure would be exclusively cohesive in the cell walls immediately next to the
interface. This limits the strength of the interface to the cohesive strength of the macroscopic
polyurethane foam. If the cohesive strength of the foam on a macroscopic scale exceeds the
adhesive strength of the interface, the strength of the interface would then be limited to the strength
of adhesion. This study focuses on the failure that is essentially confined to the ‘interface region’ —
the region from the metal surface up to the top of the solid polyurethane foam layer. Hence for the
purpose of studying the failure modes within this interface zone, the cellular structure of the foam
can be ignored.

106



ICCM2014, 28th-30th July 2014, Cambridge, England

Stress Analysis using FEM

As we focused on the solid polyurethane foam near the interface, the bulk properties of the foam
was used for finite element analysis. Increasing the aspect ratio (ratio of width to height) roughness
elements decreases stress concentration and reduces the likelihood of cohesive failure. Shear of the
interface generally results in more adhesive failure than compared to tension (this may vary
depending on material properties and adhesive strength). Typical maximum principle stress and
strain distributions in a roughness element are provided in Figure 12.
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Figure 12. (a) Maximum principle strain distribution in polyurethane foam at point of yield,
(b) distribution of maximum in plane stress in polyurethane at point of yield (MPa)

Failure is initiated at points of stress concentration. The stress distribution determines the location,
where polyurethane foam will first yield initiating cohesive failure. The distribution and
concentration of strains at the interface between polyurethane and metal determines where adhesive
failure will occur. The characteristic shape of a roughness element determines the distribution and
concentration of stress and strain at the interface between the polyurethane foam and the metal.
Figure 13 shows that stress distribution for roughness profiles of different shapes and how it
influences the stress field and concentrations. We discuss below how a typical roughness element
behaves under tensile and shear loading prior to damage or crack initiation.

(b)
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Figure 13. von Mises Stress distribution (MPa) in the roughness profiles at point of failure for
various shapes of the roughness elements; (a) Jagged, (b) Semi-circular, (c) Triangular, (d)
Filleted triangular

Effect of Roughness Parameters on the Failure Mode

Failure is initiated at points of stress concentration. Failures which propagate along the
polyurethane-steel interface will be adhesive failure and failures which propagate through the
polyurethane foam will be cohesive failure. The relative magnitudes of the cohesive strength of
foams and the adhesive strength of an interface govern the failure mode for a given geometry of a
roughness profile and loading conditions. However, these strength values depend on the foam type,
structure, processing conditions, and method of adherence to the substrate; so the exact relative
proportion of cohesive and adhesive failures will depend on the specific material system. For many
cases, when the adhesive strength of the interface is generally weaker than the cohesive strengths of
the materials which comprise that interface, adhesive failures typically may occur before cohesive
failures for foam-metal composites as cohesive failures require more energy than adhesive failures.
In this case the purpose of inducing surface roughness at the foam-metal interface will be to cause
cohesive failures, as a greater ratio of cohesive failure to adhesive failure will result in a stronger
interface. In this study, the adhesive strength of the polyurethane steel interface and the cohesive
strength of polyurethane foam were assumed to be equal, as the objective was to analysis how the
geometry of the roughness profile affects the failure mechanics under different loading conditions
for an interfacial region with equal strengths.

It has been identified that modifying certain roughness parameters (e.g. aspect ratio and width ratio)
can improve interfacial strength by increasing the ratio of cohesive to adhesive failure around the
interface ([Kim (2003); Kim et al. (2010)]). In this study we explore the effect of aspect ratio, width
ratio and shape of the roughness profile on the strength and failure mechanism of foam-metal
interfaces. The aspect ratio 1s defined as the ratio of roughness width (W) to roughness depth (d) as
shown Figure 14a, and the width ratio is defined as the ratio of widths w; to w, as shown in Figure
14b. Both of these parameters have been shown to affect the strength of polymer-metal interfaces.
Next the failure mechanics of roughness profiles for a range of different aspect ratios (1:1 to 4:1)
and width ratios (1:1 to 8:1) will be evaluated using FEA in order to determine how they affect the
interfacial failure mode.
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Polyurethane Polyurethane

(a) Aspect ratio, w:d (b) Width ratio, w;:w;
Figure 14. Definition of aspect ratio (left) and width ratio (right)
Effect of Aspect Ratio

A key parameter of micro-scale roughness is the ratio of the width to the depth of the roughness
elements. Increasing the aspect ratio in general reduces stress concentrations within the foam
making cohesive failure less likely. Path of crack propagation is indicated by the completely
damaged material, as shown by red lines in Figure 15, Figure 16, and Figure 17. Elements in red
indicate where the failure criterion was satisfied, and the stiffness of corresponding elements was
degraded.

Tensile loading

We considered ‘jagged’ roughness profiles of three different aspect ratios, viz: 1:1, 2:1, and 4:1, and
analysed the crack propagation and failure modes in each case under tension (Flgure 15) The crack
initiated at the corners of the base of the roughness element for all the aspect ratios considered. For
the 1:1 aspect ratio profile, the crack propagated exclusively through the polyurethane material
between the two base corners, indicating a pure cohesive failure as shown in Figure 15a.

An increased aspect ratio of 2:1 resulted in a combination of mixed adhesive and cohesive failures
(Figure 15b). The crack propagated adhesively along the interface before a cohesive failure is
initiated which propagated into the polyurethane foam. For this 2:1 aspect ratio roughness profile,
the cracks propagated approximately half-way down the left side of the interface of the roughness
element, and then traversed across it horizontally through the polyurethane foam up to the centre,
where the cracks from both the sides met. This crack pathway resulted in a failure mode which was
about 50% cohesive.

For the 4:1 aspect ratio profile, the crack propagated a small distance down the interface of the
roughness element, and then traversed horizontally across it through the polyurethane foam
cohesively (Figure 15¢). Some secondary cracking was also noticed. A second crack formed from
the corner of the base of the roughness element and extended vertically into the polyurethane foam
for a short distance. Two similar short cracks originated from the middle of the base and propagated
upwards following slightly inclined paths. So a higher aspect ratio again leads to predominant
cohesive failure with localised secondary fracture.
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Figure 15. Jagged roughness profile in tension, showing fracture paths for different aspect

ratios

Shear loading

We considered roughness profiles of the same aspect ratios as before, and analysed the crack
propagation and failure mode in each case under shear. The cracks paths are shown in Figure 16.
Under shear loading for all of the aspect ratios considered, the crack propagation initiated from the
left corner of the roughness element. For the 1:1 aspect ratio case, two crack paths were formed
(Figure 16a). The main crack propagated from the left side of the roughness element to the other
side causing fracture. This caused a nearly pure cohesive failure. A secondary crack was also
created from the left corner and propagated a short distance down the roughness profile nearly
parallel to the interface of the roughness element. For the case with an aspect ratio of 2:1, the failure
mode changed to partly adhesive and partly cohesive (Figure 16b). Only one crack path was present
in this case. This crack path extended nearly three quarters of the way down the left face of the
roughness element interface causing adhesive failure. Then the crack traversed across the roughness
element, moving diagonally up to the top of the roughness element and across to the right corner
causing cohesive fracture. The crack path for the 4:1 aspect ratio profile was similar to that of the
2:1 aspect ratio profile with a larger adhesive failure component (Figure 16¢). The crack propagated
downwards along the left surface of the roughness element up to approximately 90 percent of the
left interface. Then it turned upwards and traversed through the polyurethane foam, but remained
close to the right interface, before reaching the upper right corner. This shows a combination of
adhesive and cohesive failures in the left and right interfaces for the roughness profile with a high
aspect ratio. Overall, as the aspect ratio of the roughness profile increases, the proportion of
adhesive failure increases under shear. This study was repeated for the triangular profile and similar
trends in the transition in behaviour from cohesive to adhesive failure was noticed, as shown in
Figure 17.

(b)
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|
(C) 10 pim
Figure 16. Jagged roughness profile in shear, showing fracture paths for different aspect
ratios

H
(b) 10 ypm
Figure 17. Triangular roughness profile in shear, showing fracture paths for different aspect

ratios
Effect of Width Ratio

One characteristic feature of surface roughness is the relative spacing between adjacent roughness
elements. We studied the effect of this by investigating the effect of width ratio on the fracture
pattern. In this case, we considered a semi-circular roughness profile so as to be different from that
considered in the aspect ratio case.

Tensile loading

For this study, we considered three width ratios, 1:1, 3:1, and 8:1, for the semi-circular roughness
profile. The fracture paths for the primary (major) cracks of the semi-circular roughness profile in
tension are nearly the same for all width ratios (Figure 18). For all three width ratios modelled
under tensile load, the primary cracks are initiated from the two corners of the base of each
roughness element, where the stress concentrations occur. From each corner, two primary cracks are
initiated and propagated in the reverse direction. One of them propagated along the flat part of the
interface first adhesively, and another one propagated cohesively into the polyurethane foam. The
two cohesive cracks met at the centre of each roughness element.

However, secondary cracks and local level of damage for the three width ratios are somewhat
different. For the 1:1 width ratio roughness profile, the two cohesive cracks met at the centre, and
then extended upward into the body of the polyurethane (Figure 18a). The cracks generated in the
3:1 width ratio roughness profile caused larger damage as it propagated across the base of the
roughness element (Figure 18b). The localised cracks from the centre are smaller in length and
damage at the middle of the base is large. The 8:1 width ratio roughness profile showed a crack path
similar to that of the 3:1 width ratio model (Figure 18c); however, the crack paths was thinner, and
it produced less damage as it propagated across the base of the semi-circular roughness element.

A roughness profile of 1:1 width ratio results in approximately 50% cohesive failure, a 3:1 width
ratio in 75% cohesive failure, and a 8:1 width ratio in 89% cohesive failure. From the width ratios
considered, the 8:1 width ratio produces the largest cohesive failure due to it having the smallest
width ‘wy’.
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Broadly, within a roughness element, the width ratio does not significantly affect the mode of
failure. Adhesive failure in the flat portion and cohesive failure within the roughness elements are
observed in general with some difference in crack paths, due to the loading direction and the
presence of stress raisers (corners). However, width ratio has a direct effect on the strength of an
interface by altering the proportion of cohesive and adhesive failure. As noticed in the semi-circular
surface profile under tension, when the width ratio decreases the proportion of the horizontal flat
surface at the interface decreases, given the length of the roughness element base remains constant.
The crack propagated across the base of the roughness elements for all of the width ratios; so
decreasing the width ratio reduced the area where adhesive failure could occur, thus increasing the
proportion of the cohesive failure zone.

(b)

—
(C) 10 pm
Figure 18. Semi-circular profile in tension showing failure paths for width ratios of 1:1, 3:1,
and 8:1.

Shear loading

Next we study the effect of the width ratio on the failure mode under shear by considering a semi-
circular roughness profile. Three different width ratios from low to high values, 1:1, 4:1 and 8:1,
were adopted. Figure 19 shows the fracture pattern under shear loading for various width ratios of
the roughness profile. For all of the width ratios modelled, the crack initiated from the left side and
first propagated along the flat interface, thus causing adhesive failure. Upon reaching the left corner
where the semi-circular profile met the flat face, the crack behaviour depended on the width ratio of
the roughness profile.

Figure 19 shows the fracture pattern for the 1:1 width ratio profile. When the tip of the crack
reached the left corner of the roughness element, the crack divided into branches to produce two
cracks. Both the cracks subsequently traversed cohesively within the foam. The first crack
propagated downwards across the roughness element in an inclined direction. Before reaching the
interface, it turned about 45° to move in the upward direction to reach the right corner of the
roughness element. The second crack initiated from the left corner, propagated into the body of the
polyurethane foam in an inclined upward direction (approximately 45°) up to about 10 pm, and then
bent towards right to traverse horizontally for a short length.

The crack path for the 4:1 width ratio profile had some features similar to that of the 1:1 width ratio
profile (Figure 19b). The key differences are that the first crack propagated along the interface
following the circular boundary, causing adhesive failure of the interface that continued up to nearly
the bottom point of the roughness element. The crack then diverted upwards into the foam, and
propagated across the roughness element in a curved path to reach the right corner. Another crack
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branched out from this ‘first’ crack just before reaching the right corner. A second crack also
originated from the left corner for this case. This crack propagated upwards in a curved path,
causing cohesive failure of the polyurethane foam, similar to the 1:1 width ratio case. For the 8:1
width ratio roughness profile, the crack path followed the left hand semi-circular interface of the
roughness element up to the bottom point (Figure 19c). This crack produced a fracture that
primarily occurred along the interface in the roughness element, signifying a pure adhesive failure.

Hence for the 1:1 width ratio profile, the polyurethane foam fails cohesively within the semi-
circular roughness elements, although the failure follows a path closer to the interface. For the
roughness profiles with 4:1 and 8:1 width ratios, the failure progressively changes from cohesive to
adhesive, with partial adhesive failure for the 4:1 width ratio profile and complete adhesive failure
for the 8:1 width ratio profile.

(b)

—
(©) 10 pm

Figure 19. Semi-circular profile in shear showing failure paths for width ratios of 1:1, 4:1, and
8:1

Conclusions

In this study, the interface of a polyurethane foam and galvanised steel composite was examined
using optical microscopy, SEM, and AFM. A micro-scale finite element model was subsequently
developed to analyse the effect of interface roughness on the mode of failure under tension and
shear. It was found that whilst the macroscopic properties of polyurethane foam are affected by
voids, the microscopic properties of polyurethane at the foam-metal interface are not affected
considerably, because a thin film of solid (void-less) polyurethane effectively covers the majority of
the surface of the galvanised steel. Thus, the macroscopic properties of polyurethane foam
including the effect of voids are not good representation of the micro-scale properties of
polyurethane at the foam-metal interface.

Both the relative width to depth of roughness elements and the spacing between roughness
elements, as characterised by the aspect ratio and width ratio, respectively, were found to have a
profound influence on the mode of failure and interfacial strength. Cohesive failure was the
dominant mode of failure in the roughness profiles under tensile load irrespective of the aspect ratio
as anticipated. It was found that under tension the roughness profiles with a lower aspect ratio
would fail with a large proportion in a cohesive manner when compared to the higher aspect ratios
of the same roughness profile. Based on the results of the present analysis, the jagged roughness
profile with a 1:1 aspect ratio leads to almost pure cohesive failure. With a moderate aspect ratio of
2:1, the failure mode changes to a combination of partly adhesive and partly cohesive modes, whilst
a further increase in the aspect ratio (4:1) leads to predominant cohesive failure mode again. Failure
mode under shear strongly depends on the aspect ratio of the roughness profile. For low aspect ratio
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roughness, the failure is primarily cohesive, which then transitions to a combination of adhesive and
cohesive failures with an increase in the aspect ratio.

Under tensile loading, adhesive failure in the horizontal flat portion and cohesive failure within the
roughness elements are observed, in general, for all width ratios with some local differences in the
crack paths. This is due to the direction of loading combined with the stress concentration generated
at the corner of the roughness element.

When a roughness profile is subjected to shear (for the semi-circular shape in this case), the
cohesive failure mainly occurs when the width ratio is low. However, for higher width ratios, the
failure no longer propagates cohesively in the polyurethane, but instead propagates partially or
completely adhesively along the interface. For example, for a width ratio of 8:1, a pure adhesive
failure of the interface occurs.

Controlling interface roughness can change the relative proportion of cohesive and adhesive failures
at a foam-metal interface, which in turn can improve the interfacial strength of a foam-metal
composite based on the difference between the cohesive strength of the foam and the adhesive
strength of the interface. For example, if the cohesive strength is greater than the adhesive strength,
then the jagged surface roughness profile with a 1:1 aspect ratio is the optimum surface roughness
profile as it results in approximately pure cohesive failure when loaded either in tension or in shear.

The approach adopted in this paper to evaluate the effect of roughness parameters on the failure
mode around the interfacial region can be extended to other polymer-metal composites. Future work
will be undertaken to determine micro-scale adhesive strength of polyurethane and galvanised steel
for specified foam-metal composites to provide accurate model input. It appears that the key aspect
to improve the strength of a foam-metal composite interfacial region is to enable preferred failure
modes (cohesive/adhesive) by inducing controlled micro-scale roughness profiles accurately and
consistently on the surface of the metal substrate [Kim et al. (2010)], which can be accomplished
using mechanical (micro machining) and/or chemical (photochemical machining) methods.
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Abstract

An optimization approach is presented for form-finding of tensegrity structures. It is shown that
various equilibrium shapes can be easily found by solving a forced-deformation analysis problem
formulated as a minimization problem of the total strain energy. The self-equilibrium forces can be
found from the optimality conditions of the nonlinear programming problem, and the stability is
always guaranteed owing to local convexity of the strain energy. The equilibrium shape and self-
equilibrium forces can be modified by assigning fictitious material properties of cables. The
proposed approach is successfully applied to form-finding of a tensegrity tower.

Keywords: Tensegrity, Form-finding, Optimization, Stability

Introduction

Tensegrity structure consists of cables and struts that carry tensile and compressive forces,
respectively. Self-equilibrium forces, or prestresses, are introduced to stabilize the structure. Since
the shape of the structure defined by nodal coordinates at self-equilibrium state depends on the
member forces, it is difficult to obtain a desired shape. Therefore, several analytical and numerical
approaches have been developed for form-finding of tensegrity structures (Zhang and Ohsaki, 2006).

Miki and Kawaguchi (2010) proposed an approach to form-finding by solving an optimization
problem. Gaspani et al. (2011) carried out form-finding analysis using nonlinear programming
approach. Chen et al. (2012) used an ant-colony method for form-finding.

In this study, we present a method for form-finding of tensegrity structures using a nonlinear
programming approach. Various equilibrium shapes are found by utilizing fictitious material
properties. Stability of the self-equilibrium state is also discussed.

Basic Equations

Let N, (i=1,...,m) denote the axial force of member i of a tensegrity structure consisting of m
members in the 3-dimensional space. The vector consisting of coordinates of all n nodes is denoted
by X e R™. The unstressed length L) of member i is given. Then, the length L,(X) of ith

member satisfying compatibility (connectivity) conditions at nodes is a function of X, and its
gradient VL, (X) consists of directional cosines of members. If we neglect the self-weight, the

equilibrium equation is written as

Zm:NiVLi(X):0 (1)

i=1

Although the material of tensegrity structure is usually linear elastic, we use a fictitious material in
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the process of form-finding. For the given unstressed member lengths, the strain energy of member
i is regarded as a function of L,(X), which is denoted by S,(L;(X)). Then the total strain energy

S(X) is obtained as

S(X) = Y8, (L (X)) @

The self-equilibrium shape is found by solving an optimization problem. The variables are nodal
coordinates X, and the objective function is the total strain energy S(X). When no constraint is

given, the stationary condition of S(X) is given as

aS(X> S GS(L(X»VLi(X):o, (i=1,...,3n) 3)

At the optimal solution satisfying Eq. (3), the equilibrium equation (1) is satisfied by regarding
0S, /0L, as the axial force N, of member i.

This optimization problem is a standard analysis problem with forced deformation for satisfying the
compatibility at nodes for specified unstressed member lengths. Furthermore, the total potential
energy is equal to the total strain energy, because no external load is applied at the self-equilibrium
state. Therefore, the principle of minimum total potential energy ensures stability of the equilibrium
shape obtained by minimizing the strain energy; however, we use a fictitious material, rather than
the true material, in this process of form-finding.

After obtaining X as the solution of the optimization problem, we assign the properties of the true
material, and compute the true axial force N, (X) from the member lengths L, (X) at equilibrium

nx3n

and the unstressed length L. Then, the tangent stiffness matrix K~ € R*™" using the true material

is defined as the sum of the linear stiffness matrix K, € R*™" and the geometrical stiffness matrix
K(*} ERSHXSH as

K =K. +K, 4)

The tangent stiffness matrix using fictitious material is denoted by K € R*™" . Let A_. denote the

lowest (7th) eigenvalue of K excluding six zero eigenvalues corresponding to rigid-body motions.
The principle of minimum total potential energy ensures that A >0 at the equilibrium state. Let

K e R*™" denote the increment of K from K ; i.c.,

K =K+K (5)
Define the nodal displacement vector d € R™ as a linear combination of the eigenvectors @, € R™
(i=17,...,3n) excluding rigid-body motions as

d= iaidii (6)

where o, (1=7,...,3n) are arbitrary coefficients that are not equal to 0 simultaneously. Since the

equilibrium state using the fictitious material is stable, d" Kd > 0 holds. Therefore, the equilibrium
state using the true material is stable if the following condition is satisfied:

117



ICCM2014, 28th-30th July 2014, Cambridge, England

d"Kd >0 (7)

When the fictitious material is defined using a bilinear stress-strain relation with degrading stiffness,
and the true material has constant stiffness that is equal to the initial stiffness of the fictitious

material, then K is positive semi-definite, and the condition (7) is satisfied. Note that this condition
1s a sufficient but not a necessary condition as demonstrated in the numerical examples.

We can also formulate a constrained optimization problem with upper bound Llji for cable J,
(i=1,...,p) as
LJi(X)—L‘jISO, (i=1...,p) (8)

The optimality condition for the minimization problem of S(X) under constraint (8) is written as

aS(X) ias(L(X))VLi(XHfi.VLJi(XF”a (i=1,...,3n) ©)

i i=1 i=1

Hence, the axial force of cable J;, should be equal to 0S; /0L, + 4 to satisfy the equilibrium
equation (1). Since L;(X) is not a convex function of X, stability of the equilibrium shape using
the fictitious material is not guaranteed, when constraints on member length are given.

Optimization is carried out using SNOPT Ver.7 (Gill et al., 2002) that is based on sequential
quadratic programming (SQP). The sensitivity coefficients are computed analytically. When the
approximate Hessian of Lagrangian is singular at a step of SQP, SNOPT stabilizes the QP
subproblem by assigning small positive values on the diagonals of the Hessian, which leads to a
penalty term of the quadratic norm of the increment of variables. Therefore, for the analysis
problem of a free-standing tensegrity structure, the rigid-body motions are successfully excluded,
and the nearest solution from the initial solution is obtained.

The algorithm of form-finding is summarized as follows:

1. Assign initial shape, unstressed lengths of members, and properties of fictitious material.

2. Solve the optimization problem to obtain the nodal coordinates at equilibrium.

3. Assign the properties of true material, and compute the axial forces at equilibrium and
unstressed length using the true material.

4. Evaluate stability of the equilibrium shape.

Example of Tensegrity Tower

The proposed approach is applied to form-finding of a tensegrity tower that consists of struts,
vertical cables, saddle cables, diagonal cables, and horizontal cables (Zhang and Ohsaki, 2008). An
example of three-layer tower is shown in Fig. 1. Form-finding is carried out for a 20-layer
tensegrity tower as shown in Fig. 2(a). The tower has three struts in each layer, and the radius and
height of each layer are 1.0 m and 2.25 m, respectively. The units are omitted, in the following, for
simple presentation of the results.
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Figure 2. Initial and self-equilibrium shapes of a 20-layer tensegrity tower.

The unstressed lengths of cables and struts are assumed to be 80% and 100%, respectively, of the
lengths of the members in the initial shape in Fig. 2(a). Let A and E, denote the cross-sectional
area and Young’s modulus, respectively, of member i. The values of AE; for the fictitious material

are 100000 for struts and 1000 for cables. Note that the unstressed lengths of cables should be
sufficiently smaller than the initial lengths in Fig. 2(a) to obtain a stable equilibrium shape, and to
find various shapes that are not close to the initial shape.
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Case 1:

The equilibrium shape obtained by solving the unconstrained optimization problem is shown in Fig.
2(b). The maximum axial force among all cables is 362.9. In Case 1, the stiffness of the true
material is the same as that of the fictitious material. The axial forces are divided by 100 so that the
absolute values of axial forces are in the order of 1/1000 of AE,. Eigenvalue analysis is carried out

for K* to find that the 6th and 7th smallest eigenvalues as listed in Table 1. Since the 7th
eigenvalue is sufficiently larger than the 6th eigenvalue that is approximately equal to 0, the
equilibrium state is stable with six zero eigenvalues corresponding to rigid-body motions.

A

Stress

\ 4

Strain
Figure 3. Bilinear stress-strain relations.

Case 2:

We next consider a fictitious material with bilinear stress-strain relation. The 60 vertical cables are
classified into six groups connecting the nodes with the same Xy-coordinates in the horizontal plane
of the initial shape. Ten cables in one of six groups are selected to have the bilinear stress-strain
relation as indicated as Case 2 in Fig. 3. The strain at the stiffness transition point is 0.1, and the
value of AE; of the second part is 100 AE;. The equilibrium shape obtained by optimization is
shown in Fig. 2(c). The minimum and maximum values of strains among the members with bilinear
stress-strain relation are 0.1028 and 0.1030, which are close to 0.1. This way, a curved shape has
been generated by assigning large stiffnesses for the cables that are vertically aligned at the initial
shape.

We multiply 1/100 to axial forces of all members and carry out eigenvalue analysis of tangent
stiffness matrix using the true material with constant stiffness AE, for all cables. The 6th and 7th

eigenvalues are listed in Table 1, which shows that the structure is stable, although the true material
has smaller stiffness than the fictitious material, and the sufficient condition (7) for stability is not

satisfied. If we set the maximum member length 1.1L) and solve the constrained optimization

problem, the same equilibrium shape as shown in Fig. 2(c) is obtained. The axial forces of the
constrained members in layers 1, 3, and 5 are listed in Table 2, which confirms that the axial forces
at equilibrium can be obtained as the sum of the differential coefficient oS, /ol and the Lagrange

multiplier 4, .

Table 1. Eigenvalues of tangent stiffness matrix using true material.

Case 6th 7th
1 6.135x108 0.06125
2 —-1.094x108 0.02594
3 1.861x107° 0.02171
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Table 2. Axial forces at equilibrium of constrained members in layers 1, 3, and 5.

Constrained optimization

Layer  Bilinear model (A) Differential coefficient (B) Lagrange (A)+(B)
of strain energy multiplier
1 397.6 100.0 300.1 400.0
3 380.2 100.0 282.6 382.6
5 380.8 100.0 283.2 383.2
Case 3:

Fictitious material property is given in the same vertical cables as Case 2. However, we decrease the
value of AE; of the second part of the vertical cables to AE; /100 as indicated by Case 3 in Fig. 3.

The equilibrium shape obtained by solving the unconstrained optimization problem is shown in Fig.
2(d). As seen from Figs. 2(c) and (d), the tower can be bent to opposite directions by increasing and
decreasing the value of AE,; of the vertical cables in the specified group. The axial forces of the

vertical cables with bilinear stress-strain relation are between 103 and 104, which are close to the
specified value 0.1AE,. We multiply 1/100 to axial forces of all members and carry out eigenvalue

analysis of tangent stiffness matrix. The 6th and 7th lowest eigenvalues are listed in Table 1, which
confirms the stability of structure. Since the stiffness of the fictitious material is smaller than that of
the true material, the equilibrium shape with the true material is stable, if the shape with fictitious
material is stable.

Conclusions

The following conclusions have been obtained in this study:

1. Various equilibrium shapes can be obtained using the fictitios material with bilinear stress-
strain relations. The equilibrium shape can be successfully found by solving an unconstrained
optimization problem of minimizing the total strain energy.

2. A curved tensegrity tower can be generated by assigning fictitios materials for a group of
vertically aligned vertical cables. It has been shown that the optimization problem with bilinear
stress strain relation is equivalent to a constrained optimization problem with upper bound for
the member lengths.

3. The equilibrium shape of the tensegrity structure is stable, if the stable equilibrium is found
using a fictitious material with degrading bilinear stress-strain relation, and the true material
has the constant stiffness that is equal to the initial stiffness of the fictitious material.

4. The rigid-body motions need not be constrained when solving the optimization problem using
an SQP method, because the quadratic programming subproblem is automatically stabilized by
assigning small positive values in the diagonals of the approximate Hessian of the Larangian.
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Abstract

Complicated domain topologies and moving boundaries in acoustic simulation are difficult to be
described with mesh based methods. On the contrary, the meshfree SPH (Smoothed Particle
Hydrodynamics) method does not have much trouble in dealing with these problems. Therefore, the
present paper aims to simulate sound propagation and interference in time domain with the SPH
method by solving linearized acoustic wave equations. Firstly, linearized acoustic wave equations
are represented in the form of particle approximation. After that, a standard SPH numerical method
for simulating sound waves in time domain is built by adding the leapfrog integration and the
nearest neighbor particle searching method. Finally, both one dimensional sound propagation and
interference models are simulated with the SPH method and results are validated and compared
with theoretical data. Numerical results show that the SPH method can simulate acoustic waves
accurately.

Keywords: SPH, sound propagation, sound interference, acoustic wave, time domain

Introduction

Mesh-based methods are widely used in modeling acoustic waves and these methods include some
classic numerical methods such as the Finite Element Method (FEM) [Ihlenburg (1998)] and the
Boundary Element Method (BEM) [Kythe (1995)]. However, these method is not perfect in solving
problems with moving or deformable boundaries or interfaces due to its mesh-based properties.

Meshfree methods can handle these problems with a set of arbitrarily distributed nodes instead of
mesh and many methods have been used in solving acoustic problems. As a meshfree, Lagrangian
method, the SPH method not only has almost all advantages that meshfree methods have, but it is
also suitable for solving problems with large ranges of density and object separation as shown in
recent reviews by Springel [Springel (2010)], Liu and Liu [Liu and Liu (2010)] and Monaghan
[Monaghan (2012)] due to its Lagrangian property. Introducing this method to acoustic simulation
would also bring its advantages to some specific fields like combustion noise, bubble acoustic,
sound propagation in multiphase flow et al. Therefore, this paper focuses on the application of SPH
in the simulation of acoustic waves.

The SPH method was first pioneered independently by Lucy [Lucy (1977)] and Gingold and
Monaghan [Gingold and Monaghan (1977)] in 1977 to solve astrophysical problems. It computes
with a set of particles which possess individual material properties. Owing to its properties that have
mentioned, the SPH method has been used in the fields of astrophysics, structure deformation, fluid
dynamics etc. [Springel (2010); Liu and Liu (2010); Monaghan (2012)]. However, no literature is
found about solving linearized acoustic equations with SPH, except for few researches [Wolfe and
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Semwal (2007); Hahn and Negrut (2009)] discussed solving fluid dynamic equations to obtain
sound waves.

Solving the fluid dynamic equations can model acoustic problems, but it is not the only way. Since
there are large differences in the length scale between the values and variations of velocity and
density, solving the linearized acoustic equations requires lower computational resource compared
with solving the fluid dynamic equations and it has been widely used in modeling engineering
problems [Bruneau (2010)]. However, no literature was found to use the SPH method to solve the
linearized acoustic equations.

The paper is organized as follows. In section 2, the linearized acoustic equations are solved with the
standard SPH theory and then the acoustic modeling method is built by adding the time integration
and neighbor particles searching method. In section 3 and 4, one-dimensional sound propagation
and interference model are simulated with the standard SPH method and the results are validated
and compared with the theoretical solution.

SPH Formulations of Sound Waves

The linearized continuity and momentum equations governing sound waves can be written as

ﬂgﬁ=—pVU (1)
ou 1
= —;Vp (2)

The linearized state equation for ideal air is
p=Ccdp 3)

where dp is the change of density, p is the density, u is the velocity vector, t is the time, p is the
sound pressure, c0 is the sound speed. The particle approximation equation of the continuity of
acoustic waves is written as

a(§:0i) _ pl)z

U VW 4
ot (o+&w M
The momentum equation in SPH method is obtained as
i P VW, (5)
2 i

= (%+&) (py +3p;)
Particle approximation of the equation of state is
P = Cgé‘pi (6)

The second order leap-frog integration [Kelager (2006)] is used in the paper. All-pair search
approach [Liu and Liu (2003)], as a direct and simple algorithm, is used to realize the neighbor
particles searching in acoustic waves simulation.
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Sound Propagation
Sound Propagation Model

A one-dimensional sound propagation in a pipe with uniform cross section is used. The sound
propagation model is shown in Figure 1.

50 - .
40 K EE

30.- ' \ ' \
20 k ' , \
10- '
o] .

-10- '

] \
201 ! ' / Sound Wave
-30 ! \ ! -
40 , \ f" 340 m/s
T \

_50_- ~ 7 ~7

Sound Pressure (Pa)

Figure 1 One-dimensional sound propagation model

The sound pressure of the acoustic wave transmitted in Figure 1 is
p(t,x < 0) = p, sin(wt —kx) 0

where t is the time (propagation starts when t = 0), x is the geometric position, pA is the amplitude
of the acoustic wave (in this section, pA = 50 Pa), w is the circular frequency of wave (in this
section, w = 50 rad/s), k = w/c0, the sound speed c0 is 340 m/s and the density of the propagation
medium is 1.0 kg/m3.

The sound propagates from x < 0 to x > 0 and the computational domain is from -10 m to 80 m. The
simulation results at the time t = 0.2 s are used to compare with the theoretical resolution.

SPH Simulation

The simulation results of sound pressure at the time t = 0.2 s are shown in Figure 2 (a) while the
theoretical solution is also plot in the figure. It can be seen from the line graph that there are two
peaks appear in the propagation and one of them is shown in Figure 2 (b). At the same time, a detail
view of the start of the sound is also given in Figure 2 (c).
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Figure 2 Sound pressure comparison between the SPH and the theoretical resultsatt=0.2 s

As can be seen from the figure, the SPH simulation results have almost the same trend compared
with the theoretical solution. Values of the sound pressure can also be obtained accurately by using
the SPH method. However, Figure 2 (b) and (c) show the effects of unphysical oscillations and it
mainly appears at the place with large changes of sound pressure.

Sound Interference

Sound Interference Model

An interference model of two different sound waves is used as shown in Figure 3.
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Figure 3 One-dimensional model of sound interference between two different sound waves

A sound wave with 40 Pa sound pressure and 50 rad/s circular frequency transmits from the left
side while another sound wave with 60 Pa and 50 rad/s comes from the right side. After 0.3 s, the
sound pressure along the x axis is shown in dash line in Figure 3.

SPH Simulation

The simulation results and theoretical solution of sound pressure at the time t = 0.3 s are shown in
Figure 4 (a). Two detail views of a peak and a valley are given in Figure 4 (b) and (c).
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Considering the computational time is 0.3 s, the interference happens at 48 < x < 102 m. It can be
seen from the line figure that the SPH simulation results agree well with the theoretical solution. As
shown in the detail views, the standard SPH method can compute sound pressure accurate
comparing with the theoretical results.

Conclusions

Linearized acoustic equations are solved with the standard SPH theory and the simulation method is
built by adding the time integration and neighbor particles searching method. One dimensional
sound propagation and interference models are simulated with the SPH method and computational
results are compared with theoretical data. Sound pressure results show that the standard SPH
method can achieve accurate solution, although unphysical oscillations cannot be ignored.
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Abstract

Non-linear analysis of cable structures is computationally expensive due to large deformation
against external loads. The Isogeometric Analysis method (IGA) initially developed by T.J.R.
Hughes is considered to be more efficient than the existing numerical methods for large-
deformation analysis of cable structures. Moreover, Isogeometric Analysis is well suited for the
structures with curved configurations, because the same mathematical descriptions for the geometry
in the design (CAD) and the modeling in the analysis (FEA) are used. In this paper, we consider the
self-equilibrium analysis of catenary cables as well as parabolic cables by using Isogeometric
Analysis. The results demonstrate effectiveness and accuracy of Isogeometric Analysis for large
deformation analysis of unstable structures, compared to the existing analysis methods.

Keywords: Cable structures, Finite element analysis, Isogeometric analysis, B-spline curve, Self-
equilibrium analysis, Singular value decomposition

Introduction

There is a big gap between (computer aided) design (CAD) and analysis in conventional finite
element analysis (FEA). This comes from the fact that they are using different mathematical
descriptions for the geometry. The gap becomes critical for curved structures, such as shells and
cable structures, because their geometries are much complex. To solve the gap by using the same
mathematical description for both design and analysis, Hughes et al. (2005; 2009) and thereafter
many other researchers developed a new analysis tool, called Isogeometric Analysis method (IGA).
Furthermore, smoothness in the curved structures can also be guaranteed in IGA.

The Isogeometric Analysis has been extensively applied for the studies on shell and plate structures,
see for example those by Stefan et al. (2011) and Benson et al. (2010). However, there are only a
limited number of studies on cables by using IGA. In this paper, we will apply IGA for self-
equilibrium analysis of cables under gravity, and investigate its efficiency as well as accuracy by
comparison with conventional FEA.

B-spline curve

IGA and conventional FEA share almost the same analysis procedure, except that they use different
shape functions. The same mathematical descriptions in (CAD) design, for example B-spline or
NURBS curves (surfaces), are used as shape functions in IGA. In the following, we adopt B-spline
curves as shape functions, which are constructed by taking a linear combination of B-spline basis
functions. The vector-valued coefficients of the basis functions are referred to as control points. A
piecewise-polynomial B-spline curve is given by

CE=2N,, B, (1)
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where 7 is the number of control points, p is the polynomial order, & is the local coordinate of the i™
knot, and B; is the (global) coordinates of the i control point. Moreover, the basis functions Nip(©)
are defined as follows:

_ 1 if 5i£§<§i+1
Nio &)= { 0 otherwise
2)
5 - f §i+p+l - 5 (
Nip( ):—lNip—l( )+—Ni+l,pfl( )
’ 5 §i+p - é ’ 5 5i+p+1 - §i+l 5

Eq. (2) is referred to as the Cox-de Boor recursion formula (Cox, 1971; de Boor, 1972). Piecewise
linear interpolation of the control points gives the so-called control polygon.

4
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Figure 1. B-spline curve with control points,  Figure 2. Quadratic B-spline basis function
control polygon, and knots

An example B-spline curve is shown in Figure 1 with eight control points and p = 2; the resulting
control polygon is shown in Figurel, and the B-spline basis functions are shown in Figure 2. Note
that the curve is interpolatory at the first and last control points, due to the fact that the knot vector
is open, and also at the sixth control point, due to the fact that the multiplicity of the knot £ = 4 is
equal to the polynomial order. Note also that the curve is tangent to the control polygon at the first,
last and sixth control points. The curve is C?"'-continuous everywhere except at the location of the
repeated knot, & = 4, where it is C” 2 =C 0)-continuous.

To describe a two-dimensional B-spline, it is convenient to summarize the basis functions and their
first-order derivative in a matrix form as follows:

N N, O N, O -+ N, O = N_ 0 o)
O N, O N, - 0 ., - 0 N,
dN,, dN,, 0 . dN,, 0 . dN, 0
wo| dE dE d& @
Bl dN dN dN, dN
0 Lp 2,p 0 i,p 0 n,p
dé dé dé dé

where the components in N are given as
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d
¢

lp(é) = i,p—l(é)_ Ni+1,p—l(§) @)

_r
§l+[7 - 5[ §i+p+l - §i+l

Formulations in large deformation

The tangent stiffness matrix K is the sum of the linear stiffness matrix Kg and the geometrical
stiffness matrix Kg:

K=K, +K, (6)

The B-spline curves are used as shape functions for analysis of cable structures, thus, the
formulations for Kg and the geometrical stiffness matrix Kg are given as [Bathe (1995)]

EAL, T
K, = 5 B Bdf (7)
AL, &
G~ > BT By dS (8)
B- 2 X"™N'N 9
== )
2.
BNL:zN (10)
4 Ta1T
~—EE = E— ~X"N"NU (11)
U=X-X" (12)
XT:[Xl,yl,---’xi,yl.,"',xn,yn] (13)
T
(Xo) =[xf),yf),"‘,xf’,y?,' ’ n’yn] (14)

Where E is Young’s Modulus, A4 is the initial cross-sectional area, Ly is the initial element length
before deformation, L is the current length after deformation, & is the axial stress in small
deformation, £ is the axial strain in small deformation x;, y; are the current coordinates of the
specified nodes of the element, and x/,y’ are the initial coordinates of the specified nodes of the
element. For large deformation problems, the true axial strain has to be calculated from the
extension of the cables, which is given as

e CIRCO RS EIRC R

Structural analysis by singular value decomposition

Tangent stiffness matrix K of an unstable structure is not invertible, because it is singular. To
proceed the analysis for unstable structures ruling out the mechanisms as well as rigid-body motions,
which cause singularity of K, singular value composition of K turns out to be convenient for
formulations as well as computations [Kawaguchi (2011)]. By using a unitary matrix ¥, a
(symmetric) tangent stiffness matrix K is rewritten as follows:
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K=" ’ P (16)

)’ dof

where O is a zero matrix, 4; is the i singular value of K, dof is the number of degrees of freedom of
the system. The pseudo-inverse matrix K- of the tangent stiffness matrix K is obtained as follows

/2
0

e /4, pr 17
K = V2 (17)

i+1

1/ 24

if A, =0 then 1/4,=0

Subjected to the external load F, the displacements of control points of a (unstable) cable structure
can be calculated by using the K- defined in Eq. (17) as follows:

U=KF (18)

Accuracy evaluation and initial settings for analysis

In this paper, we analyze the self-equilibrium shapes of the cable structures subjected to gravity,
and verify the accuracy of the analyses, which is evaluated by the mean square error (MSE) defined
as

m

132525 4100 [%] (19)
3*7)

m i=1

RSE =

where m is the number of evaluation points, y;, ¥, are respectively the i y-coordinate calculated by
analysis and by theory, and f'is sag of the cable.
In this paper, two cable structures with different initial shapes. Each of them are analyzed by
different models:

9 two-node isoparametric elements with 10 nodes,

30 two-node isoparametric elements with 31 nodes,

9 four-node isoparametric elements with 10 (external) nodes,

30 four-node isoparametric elements with 31 (external) nodes,

a single cubic B-spline curve with 10 control points, and

a single cubic B-spline curve with 31 control points.
Two-node isoparametric elements are interpolated by straight lines, and four-node isoparametric
elements are interpolated by cubic curves. To have the same (cubic) order for geometry description,
the isogeometric elements are interpolated by the same polynomial order as four-node isoparametric
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elements. Young’s Modulus E is 205[GPa], the initial cross-sectional area 4 is 0.0001[m?], spatial
span is 30[m], the weight of the cable per unit length u for catenary cables is 7.85[N/m], the vertical
distributed load wy for parabolic cables is 7.85[N/m], and the number of evaluation points of mean
square error is 3000 points. CPU is 2.8 GHz Intel Core 17, the memory of the CPU is 12GB, and
analysis software is MATLAB R2007b provided by MathWorks Corporation.

Self-equilibrium analysis of catenary cable

The self-equilibrium shape of a single cable against its own weight becomes a catenary [Japan
Society of Civil Engineers (2001)]. In this section, a catenary is used as the exact solution. The
formulation of symmetric catenary cable is give as

T,
y= ;0 cosh (%j (20)

0

where x, y is x-coordinate and y-coordinate respectively, 7) is the horizontal tension.

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 3. Initial catenary cable of object 1 with 10 nodes

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 4. Final catenary cable of object 1 with 10 nodes

N N o

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 5. Initial catenary cable of object 2 with 10 nodes

R N N

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 6. Final catenary cable of object 2 with 10 nodes

°—°°°°°0oooooo°o°oooooooo°°°°°°—° W Gee 000
(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 7. Initial catenary cable of object 1 with 31 nodes
(a) two-node elements (b) four-node elements (¢) cubic B-spline elements

Figure 8. Final catenary cable of object 1 with 31 nodes
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WW

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 9. Initial catenary cable of object 2 with 31 nodes

SN

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 10. Final catenary cable of object 2 with 31 nodes

Table 1. Identified results of catenary cable

Tl(l)ef Eggg;er Object Element g?iet;g%lgg MSE[%] Analysis time [s]
two-node 14 times 1.0620 0.2274
1 four-node 27 times 0.0206 0.1843
B-spline 26 times 0.0070 0.1247
10 nodes ;
two-node 20 times 0.9425 0.3150
2 four-node 93 times 0.5024 0.6957
B-spline 37 times 0.2553 0.1767
two-node 21 times 0.0992 0.8055
1 four-node 27 times 0.0023 1.1661
B-spline 46 times 0.0019 2.0281
31 nodes
two-node 79 times 0.0897 2.5160
2 four-node 45 times 0.0165 1.9095
B-spline 76 times 0.0052 3.2307

The initial shapes from which the large deformation analysis for different modeling are shown in
Figures 3, 5, 7, and 9, and their corresponding final shapes due to gravity are respectively shown in
Figures 4, 6, 8, and 10. Note that in (a) and (b) in these figures, O refers to element boundary node,
e refers to element internal node; and moreover, in (¢) in these figures, O refers to control point.
Performances of the analyses using conventional FEA as well as IGA with different number of
elements are summarized in Table 1. It was clear that IGA is more accurate compared to
conventional FEA when the structure is modeled by using the same (external) nodes (or control
points for IGA). On the other hand, convergence performance of IGA is not superior to that of
conventional FEA.

Self-equilibrium analysis of parabolic cable

The self-equilibrium shape of cable with large vertical distributed load compared to its own weight
becomes a parabolic cable. Parabolic cables are widely used in design of suspension bridges. In the
analysis, the weight of the cable is regarded as zero and vertical distributed loads like floor slabs of
the bridge are treated as loads applied to the nodes. The formulation of a symmetric parabolic cable
is given as

Wo

=05’ 21
y o (21)
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The initial shapes from which the large deformation analysis for different modeling are shown in
Figures 11, 13, 15, and 17, and their corresponding final shapes due to gravity are respectively
shown in Figures 12, 14, 16, and 18. Note that in (a) and (b) in these figures, O refers to element
boundary node, e refers to element internal node; and moreover, in (c) in these figures, O refers to
control point.

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 11. Initial parabolic cable of object 1 with 10 nodes

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 12. Final parabolic cable of object 1 with 10 nodes

N N

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 13. Initial parabolic cable of object 2 with 10 nodes

S N NS

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 14. Final parabolic cable of object 2 with 10 nodes
0—00000000000000000000000000000-0 W Gee 000

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements

Figure 15. Initial parabolic cable of object 1 with 31 nodes

WW%M

(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 16. Final parabolic cable of object 1 with 31 nodes
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(a) two-node elements (b) four-node elements (¢) cubic B-spline elements
Figure 17. Initial parabolic cable of object 2 with 31 nodes

S N

(a) two-node elements (b) four-node elements (c¢) cubic B-spline elements
Figure 18. Final parabolic cable of object 2 with 31 nodes
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Table 2. Identified results of parabolic cable

Tl(l)% Egrdlét;er Object  Element Fglfl?tgﬁ,ﬁggrs MSE[%] Analysis time [s]
two-node 14 times 1.0521 0.2424
1 four-node 26 times 0.6397 0.1984
B-spline 25 times 0.3134 0.3075
10 nodes
two-node 23 times 0.8808 0.3816
2 four-node 85 times 0.6589 0.6553
B-spline 42 times 0.1681 0.2186
two-node 21 times 0.0979 0.9618
1 four-node 31 times 0.0856 0.7811
B-spline 36 times 0.0838 1.4093
31 nodes
two-node 325 times 0.0949 14.3975
2 four-node 53 times 0.0873 1.2747
B-spline 84 times 0.0860 3.2134

Performances of the analyses using conventional FEA as well as IGA with different number of
elements are summarized in Table 2. It was clear that IGA performs better than conventional FEA
in accuracy in all cases. However, the superiority of IGA in computation costs is not clear.

Conclusions

In this paper, we applied Isogeometric Analysis for self-equilibrium analysis of unstable cable
structures and investigated its performances in accuracy as well as in efficiency. For all analysis
cases in this paper both for catenary cables and parabolic cables, IGA is more accurate than
conventional FEA. However, its performance on computational costs is not as clear as accuracy.
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This paper focuses on parameter identification of Fluid Viscous Dampers, comparing different
existing literature models, with the aim to recognize ability of these models to match experimental
loops under different test specimens. Identification scheme is developed evaluating the
experimental and the analytical values of the forces experienced by the device under investigation.
The experimental force is recorded during the dynamic test, while the analytical one is obtained by
applying a displacement time history to the candidate mechanical law.

Identification procedure furnishes device mechanical parameters by minimizing a suitable objective
function, which represents a measure of difference between analytical and experimental forces. To
solve optimization problem, the Particle Swarm Optimization is adopted, and the results obtained
under various test conditions are shown. Some considerations about the agreement of different
models with experimental data are furnished, and the sensitivity of identified parameters of
analyzed models against frequency excitation is evaluated and discussed..

Keywords: Fluid Viscous Damper, parameters identification, Kelvin-Voigt model, Particle Swarm

Optimization

Introduction

In recent years, several devices have been proposed to reduce the effects of dynamic loads in civil
structures and infrastructures. In this paper, the attention is focused on Fluid Viscous Dampers
(FVD), generally viewed as passive dissipation elements [1], widely adopted in many civil
engineering applications to reduce the vibration level and to increase structural protection level
against wind and earthquake forces (see for instance [2],[3]). Among the most interesting features
of viscous dampers, one should mention low maintenance costs, usability for several earthquakes
without damage and viscous forces out-of-phase with the elastic ones.

Viscous dampers utilized in civil structures to control seismic, wind induced and thermal expansion
motions, are usually arranged in one of the following configurations: a diagonal or chevron bracing
element within a steel or concrete frame, as a part of the cable stays of long-span bridges, as a part
of tuned mass dampers, as a part of a base isolation system to increase the energy dissipation and as
a device to allow free thermal movements [4]. Viscous dampers can be efficiently used in the
construction of new buildings or in retrofitting existing structures. The importance of viscous
dampers in vibration control has increased thanks to their energy dissipation capability and wide
range of applications.

A viscous fluid damper typically consists [1] of a piston within a damper housing, filled with a
compound of silicone or similar type of oil. The fluid passes through several small orifices from one
side of the piston to the other; therefore, the energy is dissipated through the concept of fluid
orificing. The fluid damper produces a force that is not always proportional to velocity [5],
depending on the type of orifice used. The orifice utilizes a series of passages to alter flow
characteristics with fluid speed. The “fluid control orifice” provides forces proportional to , where
a is a coefficient varying in the range [0.5 = 1]. When o=1, the behavior of FVD is linear and in
earthquake engineering applications this is the most desired circumstance. Actually, FVDs contain
valves instead of the piston within orifices. These valves are opened once the transmitted force
exceeds a certain design limit. However, the force produced by FVD is not proportional to velocity,
and also in this case the valves provide forces proportional to .

Since the applications of viscous dampers are growing very fast, the exact recognition of their
mechanical behavior is of primary importance to provide a reliable support to design an efficient
seismic protection strategy. Current identification techniques for viscous dampers are mostly based
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on parametric models. Although parametric identification techniques have been successfully used to
identify viscous dampers, non-parametric identification techniques are more suitable in structural
health monitoring, because the system characteristics may continuously vary over time, both
quantitatively as well as qualitatively.

Several identification approaches, both parametric and nonparametric, are compared in [4], by using
real data carried out from full-scale nonlinear viscous dampers, commonly used in large flexible
bridges. About the parametric techniques, the capability of the Adaptive Random Search is explored
in [4]: the authors solved an optimization problem in which the numerical values of the unknown
model parameters were estimated by minimizing an objective function based on the normalized
mean square error between the measured and identified damper responses, evaluated as
displacement/velocity, and obtained integrating dynamic equilibrium equations of FVD constitutive
law, under experimental applied force history.

In this field, also soft-computing techniques, fuzzy inference systems and neural networks have
been applied to model a Magneto Rheological Fluid Damper [6][7]. Evolutionary computation
methods, e.g., Genetic Algorithms (GA) [8][9], have been widely applied in parameter
identification applications and many others. Among different nonlinear models, especially the
Bouc-Wen has been identified thanks to its versatility. In [10], the GA was employed to identify a
mechatronic system of unknown structure. In this framework, a real-coded GA has been recently
adopted in [11] to identify a piezoelectric actuator, whose hysteretic behavior has been modeled by
the Bouc-Wen nonlinear law. A magneto-rheological fluid damper behavior has been recognized by
[12], with reference to a non-symmetric version of the original Bouc-Wen model and by using a
real coded GA. The final algorithm is very similar to the GA, but its efficiency has been improved
in virtue of a selection procedure embedded into crossover and mutation genetic operators. The GA
has been widely adopted to fit the Bouc—Wen model to hysteresis loops experimentally obtained for
composite materials [13], non-linear degrading structures [14], magneto-rheological fluid dampers
[15][16][17] or bolted-welded connections [18]. In [19], a new method based on GA is developed to
identify the Bouc—Wen model parameters from experimental hysteretic loops, obtained from
periodic loading tests.

Among evolutive algorithms, the Particle Swarm Optimization (PSO) [20] has been recognized as a
promising candidate in parameter identification. The PSO is based on the multi-agent or population
based philosophy (the particles) which mimics the social interaction in bird flocks or schools of
fish, by incorporating the search experience of individual agents. Moreover, the PSO is effective in
exploring the solution space in a relatively small number of iterations. PSO has been used in the
design of PID controllers [21] and electro-magnetic [22]. The PSO convergence characteristic was
analyzed in [23], where algorithm control settings were also proposed. In [24], a PSO algorithm is
employed using experimental force—velocity data, obtained from various operating conditions, to
identify the model parameters of a magneto rheologlcal fluid damper.

In [25] a parameter identification for basic and generalized Kelvin—Voigt and Maxwell models for
FVD is carried out. The identification procedure developed by means of particle swarm
optimization gives the best mechanical parameters by minimizing a suitable objective function that
represents a measure of difference between analytical and experimental applied forces. Results are
obtained under various test conditions, comparing the agreement of various models with
experimental data.

This paper focuses on parameter identification of FVD: the identification process is developed
comparing the experimental and the analytical values of the forces experienced by the device under
investigation. The experimental value of the force is recorded during the dynamic test, while the
analytical one is obtained by applying the time history of displacements to the candidate mechanical
law. In this way, a measure of the “distance” between experimental and analytical results is
introduced, as the integral of the difference along the whole experiment. The optimal parameter set
is thus derived by minimizing this distance using an evolutionary algorithm. For the parametric
identification of FVD, the authors adopt an evolutive algorithm, the Particle Swarm Optimization.
Different analytical models, characterized by increasing complexity, are considered and then are
identified. The sensitivity against test conditions is also assessed.

The next of the paper is organized as follows: in section 2 there is a selection of models adopted in
this study for FVD modeling; in section 3, the identification scheme is posed and in section 4, some
remarks of PSO algorithm are given. Moreover, in section 5 some specifications of experimental
tests are furnished; section 6 reports the results of identified parameters, which are discussed in
section 7. Some conclusions are finally given in section 8.

137



ICCM2014, 28th-30th July 2014, Cambridge, England

MECHANICAL MODELS FOR FLUID-VISCOUS DAMPERS

System identification involves creating a model for a system that, with the same input as the
original system, the model will produce an output that matches the original system output with a
certain degree of accuracy. The input or excitation of the system and model, and their
corresponding outputs, are used to create and tune the model until a satisfactory degree of accuracy
is reached.

The application of non-classical methods for the parametric identification of viscous dampers
requires: (i) the definition of an appropriate single-degree-of-freedom mechanical model and (ii) the
formalization of the objective (or cost) function to be minimized. This section deals with the first
aspect.

Generally, the system to be identified could be modeled by physical laws that reflect the dynamics
of the system. A model created by laws, which reflect the physical properties of the system is called
a white-box model. However, creating a white box model for real-world (complex) systems is a
challenging task.

In structural applications, the selection of a proper model for FVD plays a central role to predict the
real structural response after the identification. Generally, the description of FVD requires a suitable
mechanical model, made of a set of springs and dashpots appropriately connected each other. In this
study, different classical and generalized mechanical models are selected to identify a viscous
device using experimental data. The main difference between classical and generalized models is
that the generalized one incorporates a nonlinearity in spring and viscous elements; in addition, the
resistant forces of generalized models have fractional exponential coefficients.

Linear viscous model

The simplest way to model a velocity dependent mechanical law is by means of the standard linear
viscous model. The equation of the motion of a FVD modeled in this way and subject to a time-
varying force p is:

my +Cy = p (1)

This basic model has the main advantage to be extremely simple, but sometimes it is too poor for a
reasonable representation of real mechanical behavior. For this reason, it has been updated by the
non-linear viscous model that depends on a fractional exponent of the velocity instead of a simple
linear relationship. Generalized non-linear viscous model is described below:

Generalized viscous model
It is a two parameters model proposed by Constantinou [26], [27] whose law is:

my +Csgn(y)|y|" = p (2)

where a is the damping term exponent, whose value lies between 0 and 1. Various mechanical
behaviors are associated to different values of a. For instance, if a = 1 the linear viscous damping
law corresponds; if o = 0 the dry friction appears (consequently, the force increases quickly for
small velocity values, and becomes almost constant for large velocity values). This damping law
has been widely adopted by various authors thanks to its ability in structural behavior modeling. For
example, Lin and Chopra [28] make use of this constitutive law in the investigation of the
earthquake induced response. In addition, this law is adopted in many structural computer codes.

However, experimental studies demonstrated that the resistance force of viscous dampers depends
not only on damper velocity, but also on damper deformation. This mechanical property may be
mathematically modeled connecting a spring element and a viscous element, respectively. If these
two elements are connected in parallel, the family of Kelvin-Voigt models is obtained. For example,
if a linear spring is connected in parallel with the simple linear dashpot, the basic Kelvin-Voigt
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model is derived. When non-linear springs are connected with generalized non-linear viscous
models, other behaviors are obtained. In [29] Terenzi investigated linear and parabolic models for
the elastic force ye:

Ve =K G)
v, =Ky +Ky+K, (4)

where K is the elastic stiffness, K, and K, are two constants. In [29], the authors stated that the
parabolic function reproduces better the shape of the test cycles, but the linear function may be
preferable, because it is simpler and yields a comparable energy balance.

Generalized viscous — linear elastic model
By combining Eq.(2) and Eq.(3), the equation of motion of a generalized Kelvin-Voigt model,
subjected to a time-varying force p is derived:

my +Csgn(Y)|y|" +Ky=p (5)

Generalized viscous — quadratic elastic model
In this model, the parabolic form in Eq.(4) is considered without the constant Ko:

my +Csgn(y)|y| + K y+K,y* = p (6)

IDENTIFICATION: OPTIMIZATION PROBLEM

The second step of parameter identification requires the formalization of a suitable objective
function to be minimized.

The model parameters X of the viscous damper are identified by solving the following single-
objective optimization problem:

min{ f (X)}
s.t.x' <x<x"
where X = {Xj,....Xj,...,Xn} 1S a set of real parameters (in this case X collects the mechanical model

parameters), X = {X;,....x,... )"} and x" = {x;",....x" ... x,"} are lower and upper bounds of X,
respectively. The solution that minimizes the objective function (OF) f(X) is x*.
The following integral is assumed as measure to define the OF in the identification problem:

f(x)=

1 tend

[ (pn—p. (X))t (7)

start

O_prn (tend - tstart ) t

where tsart and teng are the start and end time records, pm(t) is the force measured, while pe(t) is the
force estimated. This is obtained by numerical differentiation of experimental displacement time
history with a 3 order algorithm to limit numerical noise. One should point out that the evaluation
of this OF is extremely computational cheap if compared with alternative approaches, in which the
duality of starting from an experimental force leads to the theoretical displacement, obtained by
integration as a solution of the differential equation. The optimization problem is solved by Particle
Swarm Optimization (PSO).
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Experimental studies

Test apparatus

The 750 kN viscous damper was tested at SISMALB srl laboratory in Taranto, Italy. The test setup
(Figure 1) consists of a high resistance steel frame to withstand loads of tension and compression of
2200 KN. The device is anchored to the structure by means of a pin, and is stilled to the servant
cylinder by means of a threaded connection. The movements are generated by a servant cylinder of
1400 KN, controlled in force and/or displacement. Between the servant cylinder and the device a
load cell of 2500 KN is located, which acquires the forces applied to the device during the entire
duration of the experiment. In a displacement imposed test, the device movements are controlled by
a transducer mounted on the device. The control and data acquisition system is able to generate a
real time analysis of device displacements, by instantaneously variation of applied forces by the
servant cylinder by means of a computer automatic control hydraulic pressure system. The
displacement time history can be imposed with different laws, from sinusoidal, triangular, or
through a generator step of generic ones. This system is able to control applied forces in real time
according to the imposed displacement or force imposed test. Acquiring system has 30 channels and
can command 2 actuators at the same time.

Table 1 shows the design characteristics of the tested FVD.

Figure 1. View of the viscous test machine and fluid viscous damper

trasducer position for servocilinder 2200 kN : Cell Force i
servocilinder controller stroke +-260mm test machine +-2500 KN ﬁs::;l[:rasd
/ mag2200 kN / e

J
i S
ﬁ_— |—|_!=';_=—.;_. i1

Figure 2. A photo of the test apparatus with the fluid viscous damper

Table 1 Fluid Viscous Damper Design Condition

F [kN] Stroke [mm] C [kN/(mm/s)] V [mm/s] a

750 + 100 406.24 460 0.1
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Test cases

Four experiments were performed to obtain dynamic response of the viscous damper. The
experiments were designed to determine the dynamic characteristics of the damper at varying
velocities and to evaluate the effective energy dissipation of the device. The damper was subjected
to multiple sets of monotonic sinusoidal excitations, at peak velocities of 92 mm/s, 230 mm/s, 460
mm/s ( % refers to design velocity 460 mm/s) The first three tests have a 3-cycle excitation period,
while the fourth test (energy dissipation test) has a 10-cycle period. The test specifications are
summarized in Table 2.

Table 2. Fluid viscous damper test condition

Load Test stroke | Velocity
No. | Test Type (kN) (£mm) (mm/s) Cycle
1 750 20 92 (20%) 3
2 Constitutive law test 750 20 230 (50%) 3
3 750 20 460 (100%) |3
4 Damping efficiency test | 750 17 460 (100%) | 10

Parametric identification

For the evaluation of optimal values of the unknown parameters in Equations (1), (2), (5), (6) the
parametric identification performed by PSO, was applied with a population size N=50 and
maximum number of iterations L=100. The parametric identification has been performed by solving
the single-objective optimization problem, whose objective function is given by Equation (7). The
algorithms have been performed fifty times, and the best solution has been carried out as the final
identification result.

Identification results

This subsection shows the identified parameter values that best fit the test results for the four
analyzed models. Table 3, Table 4, Table 5 and Table 6 show the best (Min), worst (Max), mean
and standard deviation (Std) values of the OF obtained under different numerical tests, for the four
analyzed models. Data are represented also in Figure 3.

Table 3. Objective Function results obtained from the PSOA using the linear viscous mechanical
model for four different experimental tests

Mechanical Model: Linear viscous
Test Mean Max Min Std
Test 1 0.324322 0.324322 0.324322 0
Test 2 0.363997 0.363997 0.363997 2.8E-16
Test 3 0.272685 0.272685 0.272685 1.68E-16
Test 4 0.297829 0.297829 0.297829 1.68E-16
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Table 4 Objective Function results obtained from the PSOA using the Generalized viscous mechanical
model for four different experimental tests

Mechanical Model: Generalized viscous

Test Mean Max Min Std

Test 1 0.254494 0.254494 0.254494 4.26E-14
Test 2 0.332256 0.332257 0.332256 1.39E-07
Test 3 0.264244 0.26426 0.264243 2.99E-06
Test 4 0.28234 0.28234 0.28234 2.45E-09

Table 5 Objective Function results obtained from the PSOA using the Generalized viscous — linear
elastic mechanical model for four different experimental tests

Mechanical Model: Generalized viscous- linear elastic

Test Mean Max Min Std

Test 1 0.162356 0.163188 0.162077 0.000298
Test 2 0.203976 0.204116 0.203949 3.45E-05
Test 3 0.153384 0.153388 0.153384 7.23E-07
Test 4 0.127699 0.127699 0.127699 1.41E-12

Table 6. Objective Function results obtained from the PSOA using the Generalized viscous — quadratic
elastic mechanical model for four different experimental tests

Mechanical Model: Generalized viscous- quadratic elastic

Test Mean Max Min Std

Test 1 0.173636 0.254494 0.158448 0.022962
Test 2 0.208454 021712 0.203949 0.006284
Test 3 0.160706 0.26426 0.153025 0.026845
Test 4 0.12752 0.127699 0.126207 0.00049

Tables 7-10 show the values of identified parameters obtained for each mechanical model, where
mean, max, min and std indicate the values which correspond to mean, max, min and std of OF in
previous tables. Results of identification are represented also in Figures 4-7.

Table 7. Values of mechanical parameters obtained in four different test types, using the linear viscous
mechanical model of FVD

Mechanical Model: Linear viscous

Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4

Parameters
v=92mm/s v=230mm/s v=460mm/s v=460mm/s

M(mean) - [kg] 0 0 0 0
M(max) - [kg] 0 0 0 0
M(min) - [kg] 0 0 0 0
C(mean) - [KN/(mm/s)] 6.308518 9.955068 2.950677 3.599261
C(max) - [kN/(mm/s)] 6.308518234 9.955068455 2.95067697 3.599260974
C(min) - [kN/(mm/s)] 6.308518234 9.955068455 2.95067697 3.599260974
C(std)-[kKN/(mm/s)] 3.32E-14 0 1.93E-15 3.15E-14
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viscous mechanical model of FVD

Mechanical Model: Fractional viscous

Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4
Parameters

v=92mm/s v=230mm/s v=460mm/s v=460mm/s
M(mean) - [kg] 1.75E-14 1.45E-11 0 0
M(max) - [kg] 8.74059E-13 7.26404E-10 0 0
M(min) - [kg] 0 0 0 0
M(std) - [kg] 1.24E-13 1.03E-10 0 0
C(mean) - [kN/(mm/s) " a] 321.4664 101.8108 20.93332 60.02495
C(max) - [kN/(mm/s) " a] 321.4663828 102.5398101 22.44238445 60.02544199
C(min) - [kN/(mm/s) " o] 321.4663828 101.058709 20.75427774 60.01439848
C(std) - [kN/(mm/s)" a ] 1.05E-10 0.254748 0.284589 0.001661
a(mean) 0.121515 0.456479 0.647184 0.472998
a(max) 0.121514934 0.458176548 0.648755563 0.473033897
a(min) 0.121514934 0.454813372 0.634798957 0.472996579
a(std) 6.82E-14 0.00058 0.002352 5.61E-06

Table 9. Values of mechanical parameters obtained in four different test types, using the fractional
viscous —linear elastic mechanical model of FVD

Mechanical Model: Fractional viscous- linear elastic

Parameters Test Type N.1  |Test Type N.2  [Test Type N.3 [Test Type N.4
v=92mm/s v=230mm/s v=460mm/s v=460mm/s

M(mean) - [ke] 2.034798 1.820115 0.000221 4.88E-12
M(max) - [ke] 2.198171813 1.904731018 0.004116766 2.43898E-10
M(min) - [ke] 1.810732517 1.602184231 0 0

M(std) -[ke] 0.089231 0.077191 0.000761 3.45E-11
C(mean) - [kN/(mm/s) * a] |52.61233 24.70355 2.924908 3.575181
C(max) - [KN/(mm/s) ~a] [|58.98786914 24.94752828 2.925077333 3.575181353
C(min) - [KN/(mm/s) ~a] [48.52647178 24.41265785 2.924898421 3.575181353
C(std) - [kN/(mm/s) “ o] |3 512028 0.125295 3.31E-05 8.73E-11
a(mean) 0.510677 0.768888 1 1

a(max) 0.52834009 0.772247572 1 1

o(min) 0.484805623 0.766278406 1 1

o(std) 0.014462 0.001346 0 0

Ko(mean) - [kN/mm] 70.59402 41.37259 9.3253 13.89884
Ko(max) - [kN/mm] 75.50983233 42.59740601 10.00317587 13.89884259
Ko (min) - [kN/mm] 63.74648345 38.15868057 9.286881568 13.89884253
Ko(std) - [kN/mm] 2.749654 1.129993 0.132487 0.43E-09
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Table 10. Values of mechanical parameters obtained in four different test types, using the fractional
viscous — quadratic elastic mechanical model of FVD

Mechanical Model: Fractional viscous- quadratic elastic

arameters Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4
v=92mm/s v=230mm/s v=460mm/s v=460mm/s

M(mean) - [ke] 1.528561 1.22022 0.007768 1.00E-15
M(max) - [kg] 2.180005282 1.921826379 0.189771629 4.99811E-14
M(min) - [kg] 0 0 0 0
M(std) -[ke] 0.861915 0.886947 0.032415 7.07E-15
C(mean) - [kN/(mm/s) “a]  |67.00402 25.31663 4.324775 3.574265
C(max) - [KN/(mm/s) * o] 321.4663828 26.52458809 22.43076879 3.57518146
C(min) - [KN/(mm/s) * o] 48.53968825 24.39242143 2.924898421 3.567545202
C(std) - [kN/(mm/s) " o] 52.75564 0.696476 4.821501 0.002507
o(mean) 0.480449 0.764121 0.972133 1
0(max) 0.527975613 0.771759295 1 1
0(min) 0.121514934 0.753137579 0.634903225 0.999999994
o(std) 0.077104 0.005187 0.095558 7.80E-10
K (mean) - [kN/mm] 55.07667 32.25728 10.0696 13.94087
K (max) - [kN/mm] 74.9994301 42.88675282 42.85875522 14.24910384
K (min) - [kN/mm] 0 13.76515596 0 13.89884243
K (std) - [kN/mm] 26.29288 13.44016 6.269791 0.114977
Ko(mean) - [kN/mm”2] 0.007748 0 0.002121 0.010372
Ko(max) - [kN/mm”2] 0.082770673 0 0036533794 [0.086436416
K,(min) - [kKN/mm~2] 0 0 0 o
2 (std) - [kN/mm"2] 0.023509 0 0.008492 0.028374

COMPARISON OF HYSTERESIS LOOPS PREDICTED BY VARIOUS MODELS

In figures 3-6 the experimental hysteresis loops of the damper under investigation are compared
with those simulated by the selected models previous described, for load application velocities Vi,
V,, V3 and V4. More precisely, in figures 3 and 4, the relationships between displacement and
forces are shown, whereas figures 5 and 6 illustrate the relationships between force and velocity.
The dotted lines represent the experimental loops, while the solid lines are the theoretical loops
obtained by using the identified parameters for each assessed model.

From these plots one can notice that the experimental and theoretical loops have exactly the same
relative displacement (and velocity), whereas the damper force of the theoretical loop is computed
according to each model. The experiment loops in Figures 3 and 4 show that, under harmonic
excitation, the hysteresis loop of the damper changes when load application velocity increases. The
comparison between theoretical and simulated loops points out that the simulated results obtained
by the generalized viscous — linear elastic model ((b) in figure 3) match well with the experimental
loops under all the excitation frequencies. The agreement of this model with experimental loop is
better with respect to the linear viscous elastic one ((a) in figure 3). On the other hand, the other
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analyzed models lead to elliptic hysteresis loops. For this reason, these cannot match well with the
experimental loops for all the frequencies, because the loop changes its shape from low to high
frequencies. For example, the linear viscous model underestimates the force for all frequencies and
especially at low frequency.

With reference to generalized viscous — linear elastic ((c) in figure 4) and generalized viscous —
quadratic elastic ((d) in figure 4) models, one can observe a good match with experimental loops
for all velocities of the load application. The third and the fourth models predict well the force; in
effect, one should consider another aspect, i.e. the area of the loop, which represents the amount of
dissipated energy in the cycle. The plots point out that the generalized viscous — linear elastic
model overestimates the amount of dissipated energy for all velocities of load application. On the
contrary, the generalized viscous — quadratic elastic predicts fine the dissipated energy, especially
for high load application velocity. The same observation can be pointed out with reference to
generalized viscous — quadratic elastic model.
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relationship: a) Linear viscous model, b) Generalized viscous model.
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In figures 5 and 6 the relationships between the force and the velocity are shown. The first and the
second model don't predict absolutely the experimental force -velocity experimental loop, wearers
the third and the fourth model match satisfactorily the experimental loop, especially for high
excitation frequency.

Because the matching of the identified model with the experimental ones depends on the excitation
frequency, it is interesting to evaluate the sensitivity of identified parameters against the frequency
excitation. For this purpose, for each model, the mean value p of each identified parameter p,

evaluated from the four tests is extrapolated; the range of variation Ap=p__— P . and the ratio

max min

Ap/ P are furnished (table 11-14) to quantity the variability of mentioned parameters with respect
to the test conditions. From numerical data in tables 11-14, one can deduce that, except for the
linear viscous model, the parameter C exhibits the highest variability against the velocity of the
external excitation application. Anyway, all analyzed models present almost a comparable
variability of involved parameters.
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Table 11. Parameters sensitivity of Linear viscous mechanical model

M [kg] 0

AM 0

AM /M 0
C [KN/(mm/s)] 5,703381
AC 7,004391
AC/C 1,228112

147




ICCM2014, 28th-30th July 2014, Cambridge, England

Vi Vi
....... ] =
—— theorks —— theoric
100
v, v,
! ! Sied o axpertmantal
| —— thaoric
4o Ca. V 7~ amf
ol ), , ml
g 7 ;
* 200 - = 20
400 - > it 400 -
600 [ o0 - s
800 - 800 |
p i
1% = “0 20 [) 20 ) 6 80 100 *Hoo 20 -0 -0 20 2 e [ 100
v (mmisec) v (mimised)
A Vs
00|
20|
g o
200
00
800
800
-100g 1600
<00 200 100 o 100 0 0 <00 00 100 200 30
v (mmisec) ¥ (mmisec)
vy Va
‘ -+ axperimental
— thoc ool
s e
e e
e / -
! < o s
2 ™ a7 5 sy 2
P / e o / /
200 y’ e 200 % - g
00 |- v g 400 . o
i ~ 7 P
600 00 % >
s 2
o
oy i—b—/ g -
250 20 150 100 =0 3 50 10 150 200 250 250 200 150 100 o 100 180 20 250
v (mmisac) v (mmisec)

(©)

(d)

Table 12. Parameters sensitivity of generalized viscous mechanical model

Figure 6. Comparison between theoretical and experimental force- velocity relationship: c)
Generalized viscous- linear elastic, d) Generalized viscous- quadratic elastic.

C - [KN/(mm/s) " a]

126,0589

AC

300,5331

AC/C

2,384069

0,424544

o
Aa 0,525669
Aa/a 1,238197
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Table 13: Parameters sensitivity of Generalized viscous- linear elastic mechanical model

M [kg] 0,963784
AM 2,03E+00
AM /M 2,11E+00
C [KN/(mm/s)) " ] 20,95399
AC 49,68742
AC/C 2,371263

a 0,819891

A 0,489323

AT | & 0,596815
K, - [kN/mm] 33,79769
AK, 61,26872
AK, /K, 1,812808

Table 14: Parameters sensitivity of Generalized viscous- quadratic elastic
mechanical model

M [kg] 0,689137
AM 1,53E+00

AM /M 2,22E+00
C [KN/(mm/s) " a] 25,05492
AC 63,42976
AC/C 2,531628

a 0,804176

AG 0,519551

AG @ 0,646066

K, - [kN/mm] 27,83611
AK 45,00707

AK, /K, 1,616859

K, - [kN/mm?] 0,00506
AK, 0,010372
AK, /K, 2,049701
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Conclusions

This study concentrates on classical and generalized mechanical models for FVD. The focal
difference between classical and generalized models is that the generalized ones incorporate
nonlinearity in spring and viscous elements; in addition, the resistant forces in generalized models
have fractional exponential coefficients. To evaluate the effectiveness of diverse models to catch the
hysteretic behavior of real FVDs, diverse analytical models have been identified on the basis of
experimental tests. The identification procedure is performed comparing the experimental and the
analytical values of the forces experienced by the device under investigation. The experimental
forces have been recorded during the dynamic test and the analytical ones have been evaluated by
imposing the time history of displacement to the candidate mechanical law. The parametric
identification of a real FVD has been developed by Particle Swarm Optimization. The identification
process furnishes the best mechanical parameters by minimizing the difference between analytical
and experimental applied forces. Four experiments have been performed to obtain the dynamic
response of the viscous damper under investigation, varying the velocity of the load application.

The results show that the analytical results obtained by the generalized viscous — linear elastic
model match well the experimental loops, under all the excitation frequencies, better with respect
the linear viscous elastic one. Moreover, with reference to generalized viscous — linear elastic and
generalized viscous — quadratic elastic it has been observed a good match with experimental loops
for all velocities of the load application. The generalized viscous — linear elastic model and the
generalized viscous — quadratic elastic model one predict well the force, but the generalized
viscous — linear elastic overestimates the amount of dissipated energy for all velocities of the load
application. On the contrary, the generalized viscous — quadratic elastic predicts well the energy
dissipated, especially for high velocity of load application. The same observation can be made with
reference to generalized viscous — quadratic elastic model. Moreover, the sensitivity of identified
parameters against the frequency excitation has been investigated. Results showed that, except for
the linear viscous model, the parameter C exhibits the highest variability against the velocity of the
external excitation application. Anyway, all analyzed models present almost a comparable
variability of involved parameters.
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Abstract

Elastic-plastic stress analysis of a Zener-Stroh crack paralleling to the interface of a
coating-substrate system has been carried out in this work. The sum of the Burgers
vectors of the climb and the glide dislocations along the crack line account for the
stress field around its blunt tip where dislocation enters, and the sharp tip where crack
propagates. Firstly, Gauss-Chebyshev quadrature technique is applied to solve the
governing equation of dislocation density functions constrained by load-free crack
faces. When taking plasticity into account at both crack tips where stresses are high,
the generalized Irwin plastic zone correction is recommended. Plastic zone size (PZS)
for both tips and crack tip opening displacement (CTOD) for the sharp tip are then
obtained. The effects of coating thickness, crack depth, material mismatch and
displacement loads ratio onto PZSs and CTOD have been analyzed in detail.

Keywords: Zener-Stroh crack, bi-material coating-substrate composite, singular
integral equations, Gauss-Chebyshev quadrature technique, PZS, CTOD.

Introduction

Apart from the well-known Griffith crack, there is another mechanism of cracking as
a result of edge dislocations in solids, firstly realized by Zener and Stroh [Stroh
(1954); Zener (1948)] in literature. They proposed that the edge dislocations of a pile-
up that are stopped at an obstacle, such as a grain boundary (GB), could coalesce into
a crack nucleus (Fig. 1). Some situations in which massive Zener-Stroh cracks are
coalesced have been recognized: Noticing solids with smaller grain size will possess
more GBs, as well as less amount of possible pile up of dislocations at each
boundary. More GBs lead to frequent occurrences of dislocation pile-up and more
potential sources of crack nucleuses; while less pile up of dislocations accumulated at
each location make it harder for dislocations
to be repelled and overcome the energetic Grain Boundary
barrier for diffusion across a GB. That’s why Lo 1L ~ |
GBs are major sinks of dislocations as well. v
Therefore, knowing more about Zener-Stroh
cracks’ behaviors in micro- or nano-scale
structures is of much significance.

Figure 1. Zener-Stroh crack initiation

Many attractive features of nanocrystalline (nc) and microcrystalline (mc) metals,
such as high strength and hardness, and improved resistance to wear and corrosion
damage compared to conventional metals have been fully discovered by researchers
[Kumar et al. (2003); Zhang et al. (2005)]. However, due to the presence of high-
density ensembles of GBs as stoppers for lattice dislocations, nc becomes quite easy
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to break, especially those super-refined into ultrasmall grain sizes [Pozdnyakov
(2003)]. High stress concentration at GBs will facilitate crack nucleation and growing
process, degrading the fracture toughness of the material. Moreover, bulk
nanostructured materials usually have disappointingly low ductility. They exhibit a
very low uniform elongation due to low work-hardening rate. Localized deformation
(necking) under tensile stress often occurs very abruptly because of nc’s low
dislocation accumulation capability [Zhao et al. (2006)]. In order to enhance both
toughness and ductility of nc and mc, without sacrificing their high yield strengths,
numerous methodologies and techniques have been suggested [Kuntz et al. (2004);
Wang et al. (2002)]. No matter how different they look like, people do believe that
fabrication of micro- or nano-composites is the best solution up to now in fulfilling
practical needs where both strength and toughness are highlighted.

Although literatures commence to study on the effects of nanocomposites onto
fracture toughness as a whole body, the localized behavior, such as how certain types
of microcrack are initiated and propagating through the composite is lack of
information, especially with plastic zone correction at crack tips. Therefore we
manage to start with the investigation of a Zener-Stroh crack lying in a semi-infinite
substrate covered by a coating with finite thickness, and check around its crack tips to
see how certain properties are improved from single-phase structures. To our best
knowledge, most of the time, ductility of nanocomposites, though enhanced, still
remains limited compared to their corresponding values of traditional coarse-grained
materials. That’s why for most cases, the size of the process zone and the plastic
region around the crack tip is sufficiently small, so the small-scale yielding
assumption is applicable to account for crack tip plasticity [Koch (2007)]. With the
additional concern of more complicated configuration and stress field, we proposed a
generalized Irwin model in dealing with mode I and mode II stress intensity factors
simultaneously. The advantage of this model is that the model itself is intuitive and
the procedure can be easily adopted by engineers. Results include the plastic zone
size, the crack tip opening displacement, and effective stress intensity factors of mode
I and mode II in different scenarios.

The generalized Irwin model of a sub-interface Zener-Stroh crack
The plastic zone size

Current physical problem is depicted in Fig. 2a. Stress fields ahead of the crack tips
along x axis can be expressed as [Anderson (2005)]

0 Plane stress

K K
) = 6;_1”) — ,Gg:n) — ,O-ffn,) =v, (02”) +O'(t_"’)) — szszm) m=12. (1)
T A2mr 2y » —=—L—  Plane strain

2mr

Here (¢,), (¢,) stands for the blunt and sharp crack tips, respectively. The subscript 2
refers to the substrate material. v, represents its Poisson’s ratio. Due to the Von Mises
yield criterion, yielding will occur if the equivalent stress o, reaches the yielding
stress of material 2, o,
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The equivalent stress intensity factors X, are then obtained by

\/ (K" +3(K) Plane stress
K" = 2 3)

\/(1—2\/2) (K" +3(K ) Plane strain

From Eq. (2), the first order estimation of PZS can be expressed with respectto o,

K(t’”) 2
po &) (4)

y 2710;

Due to stress relaxation around crack tips, it is clear that the actual plastic strain will
be extended to a larger zone. See from Fig. 2b, the 2" order estimation of PZS,
known as plastic zone correction, has the following form:

(Kélm))2
i = e (5)
o,

Crack tip opening displacement

The crack tip opening displacement of a Zener-Stroh crack under the generalized
Irwin model is shown in Fig. 2¢. Although we can see faces are completely open
throughout the crack, propagation will be initiated only at the sharp tip due to the
existence of tensile stress, not at the blunt tip that has been compressed and stabilized.
As a result, only CTOD at the sharp tip will be discussed hereafter. CTOD at the
sharp tip § is given in literature as [Anderson (2005)]

"
K, +1 X, | ©6)
2 r

o=

3-v,

u, is the shear modulus. x, = for plane stress, and k, =3—4v, for plane
2

strain. Substitute Eq. (4) into (6), with the universal relation £, / 21, =1+v,, we have

b b
5- 2 K& (1)
TE,' ©
s
in which E,'=E, for plane stress, Ez':l—z2 for plane strain. E, is the elastic
-V

2
modulus of the substrate.
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(2)

T = and

o Elastic Figure 2. The current problem: (a)
! A Zener-Stroh crack in a coating-
N Flastic-Plastic substrate system subjected to a

combined displacement load; (b)
Generalized Irwin plastic zone
correction: plastic zone sizes r,

and r, ahead of two tips; (c) The

crack tip opening displacement J
at the sharp tip.

(b)

The effective stress intensity factor

Let’s begin with the Zener-Stroh crack of length 2a without plastic zone correction.
Concentrated climb and glide edge dislocations at the blunt tip would lead to an array
of dislocations emitted along the crack line. Due to traction free condition on the
crack faces, governing equation of combined distributed dislocation density B(§)

turns out to be

0, (x)+io, (x 2JB(§)d§+JB £)F (x- )d§+jB VE,(x=OdE=0,  |x{<a  (8)

—a

where 6 denotes the complex conjugate. The kernels F,(x—¢&) and F,(x—&) are
given in the literature [Lu and Lardner (1992)]. The boundary conditions are

JB(r:) S e i j (§)dg = (HK)bf ©)

in which B (&) and B, (&) are the glide and climb dislocation densities, respectively.

b’ and byT are the corresponding total sum of Burgers vector in the x and y

directions.
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Since the dislocation density tends to go inﬁnity in a square root singular manner, B,

¢.(s) and ¢, (s) are unknown regular functions. Substituting B, and B, into Egs. (8)

and B can be rewritten into B, (s)= ¢ (s) and B (s)= ¢ (s), where

and (9), four singular integral equations with Cauchy kernels are obtained. Gauss-
Chebyshev quadrature technique is then implemented to solve them numerically, thus
B, and B can be obtained [Zhuang et al. (2013)]. Mode I and mode II stress

intensity factors at each crack tip can be derived in the following form [Weertman
(1996)]

K" =-2nmag,(-1), K =2nmag,(+1),

10
KW = 2nmag (-1), KP =2nmag, (+1). (10)

Here ¢, (£1) and ¢ (£1) are values of regular functions at blunt (-1) and sharp (+1)

crack tips after the half-crack length « has been normalized to 1.

When we improve our analysis to investigate the elastic-plastic fracture behaviors of
the Zener-Stroh crack, plastic zone correction needs to be imposed at both crack tips.
The elongated, effective half-crack length is given

(1)
eff

(K™Y

2
2no

a :a+ry(t'"):a+

&y

Remember that a Zener-Stroh crack can only propagate from the sharp tip, let’s focus
on investigation of effective stress intensity factors at that tip. Hence, we get

K" =2m\mape, +), K =2mmale, '+,  (12)

where ¢, '(+1) and ¢,'(+1) are values of regular functions at the sharp tip after the

effective half-crack length aé;%) has been normalized to 1.

Numerical examples and discussion

Some numerical examples and discussions for the plastic zone size, the crack tip
opening displacement and effective stress intensity factors of a Zener-Stroh crack of
length 2a are given. The crack is embedded in a coating-substrate without external

loading. The total sum of the Burgers vector throughout the crack byT +ib! ensures
faces are fully open. For the ease of assessment, PZS and CTOD are normalized by:
2,b; X0~ 241,b7 e VK +3(K)) Plane stress

0

) /. ) e )
(+ i, Wra (+ K, W7a JA=20,) (K0)? +3(K5)? Plane strain ({3
KO 2 4K0K0
ro — ( 62) , 60 — I e ,
7o, 7E,'o,
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0 0 0
where K, K, K,

factors, PZS and CTOD respectively for the same Zener crack that is embedded in a
homogeneous infinite plate of material ‘2’. The dependence of the normalized plastic

1, and &, are the mode I, mode II, equivalent stress intensity

zone size r]f’m) / 1, , normalized crack tip opening displacement &/3, , and normalized

effective stress intensity factors K& /K> and K /K’ on the normalized coating
thickness %4 /a, normalized crack depth d/a, the Dundurs’ parameter «, as well as
displacement loads ratio b; /b; are shown in Tables 1-2.

Normalized PZS and normalized CTOD

In Table 1, normalized PZS at the sharp (7, /7)) and blunt tip (7, /7)), and
normalized CTOD (6/¢, ) at the sharp tip of the Zener crack are depicted in

different scenarios. For the case of b7 =0, we may find the same « leads to a pair of

identical plastic zones around two tips. In the most special situation & =0, if coating
thickness # is very large compared to half-crack length a (2=10a), it is verified
from second column that values of r, and 0 converge to their corresponding values

r, and o, (they are called “reference values” in the context), no matter how far the
crack is located beneath the interface.

Comparing figures in second and third columns, we observe that with a decreasing
coating thickness, PZS at both tips, and CTOD at the sharp tip will be decreased. And
the trend becomes more significant in plane stress than plane strain condition. This
observation tells us a fact that increasing the volume fraction of added material (the
coating) will enhance the ductility of the original structure (the substrate) in manner
of magnifying the plastic deformation region around the crack tips.

Effects of the crack depth d can be viewed from third column (4 =2a), where
different material mismatches have different reactions from a decreased crack depth.
Softer coatings (o <0 ) shrink PZS and CTOD values lower than the reference while
stiffer coatings (o >0) result in higher-than-reference plasticity quantities. This
indicates a fact that when the crack gets nearer to the interface, it becomes easier to
propagate with a softer coating covered on top, but stabilized under the protection of
a stiffer coating.

Last two columns show continuous influence of displacement loads ratio b} / b; onto

PZS and CTOD. Supposing that crack depth d can be either 0.5a or 5a. If x—dir

displacement load gradually increases from 0.1><byT to b, , normalized r, and 0

will be increased without exceptions. As long as the crack is far away from the
interface (for example d/a=35), crack tip parameters become converge even within
different material mismatches. But when the crack locates nearer, a thorough

examination at different material mismatches tells that: a larger & always results in
higher sensitivities of normalized », and 0 along with the changing 5 / byT . Besides,

this effect onto plane strain cases is more significant than it does on plane stress
cases.
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The effective stress intensity factors K and K

Due to the inclusion of the 1% order plastic zone size, we can see from Table 2,
generally speaking, K& /K, and K7 /K, are lower than 1. However the scale of
decrement depends on material mismatches, crack depths and many more. One can
see that K7 /K, and K /K, deduce more when the coating is stiffer (oc>0),
meaning that the correction of K, and K, is more necessary if the substrate is coated
with stiffer material.

Moreover, when o <0, crack with greater depth shows smaller values of K /K,
and K/ / K, . Similar trends can be seen when o >0 and crack gets closer to the

interface. This illustrates that cases of shallower crack under stiffer coating, or deeper
crack under softer coating, are in greater need of correction in terms of stress intensity

factors. It is also not difficult to find K{¥ and K of the sharp tip of a Zener crack
under plane stress differ more from K, and K, respectively than the results shown
for plane strain condition.

Table 2. Effective stress intensity factors K;’ and K", with 8=0, h=2a,
BT /B =0.5

d/a 0.1 0.2 0.3 0.4 0.5 0.6

Kleff Plane stress | 0.99827 | 0.99822 | 0.99818 | 0.99815 | 0.99812 | 0.99808

a=-04 K[ Plane strain | 0.99857 | 0.99853 | 0.99851 | 0.99850 | 0.99848 | 0.99847

K;ﬁ Plane stress | 0.99783 | 0.99777 | 0.99772 | 0.99767 | 0.99763 | 0.99758

K11 Plane strain | 0.99820 | 0.99816 | 0.99813 | 0.99811 | 0.99809 | 0.99807

Kleff Plane stress | 0.99682 | 0.99694 | 0.99704 | 0.99713 | 0.99720 | 0.99727

0.4 K[ Plane strain | 0.99791 | 0.99802 [ 0.99810 | 0.99818 | 0.99824 | 0.99830
o=0. :
Kle-lff Plane stress | 0.99625 | 0.99631 | 0.99637 [ 0.99642 | 0.99648 | 0.99653

K11 Plane strain | 0.99753 | 0.99761 [ 0.99767 | 0.99773 | 0.99779 | 0.99784

Conclusions

In the present work, plastic zone size, crack tip opening displacement and effective
stress intensity factors for a sub-interface Zener-Stroh crack in a coating-substrate
system under combined displacement load b" =b] +ib; are investigated by a

generalized Irwin model. In the numerical examples, we specifically describe the
dependence of normalized plastic zone size for sharp tip r,, /r,, for blunt tip , /1,

normalized crack tip opening displacement for sharp tip 6 /6,, as well as normalized

effective stress intensity factors for sharp tip K’ /K,, K’ / K, on normalized crack
depth d/a, normalized coating thickness #/a , Dundurs’ parameter o , and
displacement loads ratio b, /b; . According to the results obtained and discussed,
following conclusions can be made:

1. Either the Zener-Stroh crack exists in an infinite bi-material composite
without mismatches (o = =0, or it locates far from the interface (d/a>5)
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in a coating-substrate system with mismatches (arbitrary ¢ and f3), the

current physical problem reduces to the corresponding problem of the same
crack in a homogeneous material.

2. Normalized PZS and normalized CTOD will be increased with the increasing
coating thickness. When coating thickness is fixed, a Zener crack moves
nearer to the interface will experience higher PZS and CTOD values if the
substrate is coated with stiffer material, but lower PZS and CTOD if it has a
softer coating instead.

3. These are the circumstances shall we need to produce the effective stress
intensity factors: 1) if the coating is softer than the substrate and the crack is
relatively deep beneath the interface; 2) if the coating is stiffer than the
substrate and the crack locates near the interface; 3) choose substrate with
stiffer-coating system to evaluate when the other conditions are the same; 4)
choose plane stress structure to evaluate when the other conditions are the
same.

4. When the coating thickness and crack depth are fixed, with the increasing

displacement loads ratio b! / b; , normalized PZS and normalized CTOD

grows more rapidly and around higher values if the substrate is coated with
stiffer materials, especially in plane strain condition.
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Abstract

In the present work, based on the computational model of the eigenstrain boundary integral
equations (BIE) as an inverse problem, the algorithm is investigated to determine the circular weld
bead induced residual stresses, where the eigenstrain is considered to be the origin of residual
stresses in structures. In order to reduce the number of unknowns and to consider the stability of
inverse problem, the eigenstrains are approximated in terms of low-order polynomials in the local
area, which is divided by cells, around welded zones according to the features of welding. The
corresponding domain integrals with polynomial eigenstrains in each cell are transformed into the
boundary integrals to preserve the favorable features of the boundary-only discretization in the
numerical solutions. The sensitivity matrix in the inverse approach for evaluating the eigenstrain
fields represented by the coefficients of polynomials is constructed with the aid of measured
stresses in the domain after welding over a few selected measuring points. In the numerical
examples, the residual stresses of circular weld beads in both the finite and infinite plates are
evaluated with the proposed procedure, verifying the feasibility and effectiveness of the present
algorithm.

Keywords: residual stress, circular weld bead, eigenstrain, boundary integral equation, inverse
approach

Introduction

The circular weld beads are used quite frequently in the welded structures as well as in the repair
weld and in the test pieces for evaluating the effects of stress corrosion cracks, so that the residual
stress fields such formed become one of the primary concerns of engineers and researchers in this
field. As the residual stresses have a significant influence on the performance of related components
in service [Masubuchi (1980)], when such a component is in service, the associated residual stresses
may superimpose on the applied stress to influence the deformation behavior of components, which
induce distortion during further machining and cause unexpected failure or reduce the service time
of components. Since the nature of residual stress is in self-equilibrium, however, its determination
is not an easy task, especially with the mechanical techniques [Prime (1999)].

There are a great number of techniques to detect the residual stresses in a solid which can be
classified as three major groups: physical, mechanical and numerical techniques. In the physical
techniques, for example, the variation of inter-crystal distances can be detected by X-ray diffraction
[Korsunsky et al (2006)] or by sound speed changes in acoustoelasticity or by magnetic techniques,
most of them depending on certain material properties. In contrast, in the mechanical techniques,
since the direct detection is impossible, parts of the material have to be removed from the solid to
disturb the stress balance while the response of the specimen is measured in terms of either strains
or shape changes at some other locations on the surface of the body. The blind-hole drilling may be
the most commonly used residual stress measuring method in practice and consists essentially of
drilling a small blind-hole on the surface of solid and measuring the strain field induced by material
removal, usually by means of electrical resistance strain gauges. In addition to the use of strain
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gauges, the strain fields can also be measured by photo means such as the electronic speckle pattern
interferometer [Suterio et al (2006)] or the digital image correlation in recent advances. In addition
to the cost of mechanical methods, all of them are more or less destructive to the measured
component by material removals due to the nature of self-balancing. It is evident that the
mechanical techniques always provide a limited level of detail, due to the finite number of discrete
data points that restricts the possibility of reconstructing full-field stress distributions.

Numerical methods present a supplementary but effective means for determining the residual
stresses. However, the detailed modeling of the process of residual stress generation requires the
knowledge of numerical models for analyzing sophisticated coupled microstructural and thermo-
mechanical behaviors, which rely deeply on the understanding of constitutive laws and material
parameters. As is widely accepted, residual stresses in components at service are caused by
incompatible internal permanent strains, named originally as the inherent strains [Ueda et al (1986);
Ma et al (1998a)] and lately as the eigenstrains [Jun et al (2010)], induced by any inhomogeneous
inelastic deformation, temperature gradients or phase transformations during manufacturing and
processing of the components. By making use of the information observed from the experiment at a
number of selected points, the unknown eigenstrain distributions can be retrieved using the finite
element method (FEM) [Lee et al] or the boundary element method (BEM) [Cao et al (2002)],
following the mathematical framework of the inverse problem of eigenstrain theory to obtain the
whole field of residual stresses.

In spite of the inelastic origin of eigenstrains, the inherent state of residual stress fields falls really
into elastic regime so that the BEM would be the most efficient numerical means to deal with the
residual stress problems [Qian et al (2004; 2005)]. Based on the concept of eigenstrain, a
straightforward computational model as an inverse approach was proposed with the eigenstrain
formulations of boundary integral equations to determine the welding residual stresses [Ma et al
(2012)]. In the present work, the eigenstrains are approximately expressed in terms of low-order
polynomials in the local area around the heat affected zones of circular weld beads, which is
divided by cells, according to the features of welding. The corresponding domain integrals with
polynomial eigenstrains are transformed into the boundary integrals [Ma et al (1998b)] so that the
attractive features of the boundary-only discretization are reserved in the process of numerical
solutions using the boundary point method (BPM) [Ma et al (2010)]. The sensitivity matrix in the
inverse approach for evaluating the eigenstrain fields represented by the coefficients of polynomials
is constructed with the aid of measured stresses in the domain after welding over a few selected
measuring points. In the numerical examples, the residual stresses of circular weld beads in both the
finite and infinite plates are evaluated with the proposed procedure, verifying the feasibility and
effectiveness of the present algorithm.

Computational Model

Eigenstrain Boundary Integral Equations

The displacements and the stresses of a weld plate, Q, in the static state without body force can be
described by the eigenstrain boundary integral equations as follows [Ma et al (2012)]:

Cu,(p)+ [ u, ()7 (p.9)dT(q) = [ 7,(a)u; (p.q)dT (q) +[,, €} (4) T}, (p.q)dR(q) (1)

o, (p) =] 7 (a)u; (p.9)dT(q) =] u (@) 7 (P.q)dT (q)

+QI_Q£81(€)I (q)d;kl(p,q)dQ(q)+8,g (p)Oij*‘kl (2)

where Q; (Q;€ Q) represents the local area having unknown eigenstrains, 80,-]-, around the weld bead
in Q, since it is generally true that the positign of the lpcal area is known a priori in welding. p and
q are the source and field points, u 4, 7, and g reprgsent the fundamental solutions for
displacement, traction and stress, respectively. u ji, T and o jx are the related derivatives. C is the
conventional boundary shape coefficient, C=1/2 if p is on the smooth boundary I'. Q. is a small
region of radius ¢ around point p when p €€, and O ;i 1s the corresponding free term resulted from
the domain integral in (2) which can be derived using the conventional limiting techniques with a
small ¢ region since the kernel of this domain integral 1s strong singular. A square plate 2wx2w with
a circular weld bead is shown in Fig. 1a.
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(a) (b) (c)
(a) The weld bead and the eigenstrain zone €;; (b) One of the cells and the local coordinate for
the eigenstrain zone; (¢) The position of measuring points

Figure 1. The plate with a circular weld bead

Eigenstrain Representation

It is obvious from (1) and (2) that once the distributions of the eigenstrains &%, in the domain
integrals are known, the unknown boundary displacements can be solved using (/l) and the total
fields of stresses can be computed using (2). Considering the features of thermal cycles of welding,
the distributions of eigenstrains can be approximately expressed in terms of low-order polynomials
in the local area Q;:

m+n=M

= 2 a"x'(9)x(q) (3)
m=0,n=0

where M is the number of terms of polynom1als and o;;"" the coefficients to be identified. m and n
are integers. In fusion welding, the eigenstrain distributions can be expected to be smooth since the
temperature field in welding can be expressed by smooth functions especially during the cooling
stage. Owing to the similar reason, the eiegenstrain can be assumed to be zero at the boundary of
the eiegenstrain domain. The polynomial representations (3) for eigenstrain are inherently smooth,
giving a smooth constraint on the eigenstrain field. The domain integrals with polynomial
eigenstrains in (1) and (2) can be transformed into the boundary integrals by introducing the two-
point variables

x,=x,(q)-x,(p) 4)
With this definition, the domain integrals with certain term of polynomials in (1) and (2),
respectively, can be expressed in the form of the two-point polynomials as follows:

o {f X ( o;jde}

a{z il ()] [ ()], xioae] B

010 (m—s)ls!(n—1)'r!

*

@i {[ o, 3 (0)% ()04 57 ()5 (£) O}

= {ii ! [xl (p)]m—s [xz (p)]n—t XJQ,—Qg xi?xzdl/kldg +x)" (p)xz ( ) ykl} (6)

oizo (m—s)s!(n—1)'t!

where m, n, s and ¢ are all integers. x;, x;(p) and x{q) are defined in (4). Then the domain integrals at
the right hand sides in (5) and (6) with eigenstrains in the form of two-point polynomials can be
transformed into the boundary integrals [Ma et al (1998b)], respectively. In this way, the favorable
features of the boundary-only discretization are reserved. However, considering the difficulty of
representing eigenstrains with low-order polynomials in a ring area formed by the circular weld
bead as shown in Fig. 1a and for the purpose of reducing the number of unknown coefficients, the
eigenstrain zone is divided into cells in the present work, one of them being shown in Fig. 1b. The
low-order polynomials in each cell Q are represented using the local polar coordinates so that all
of the polynomials in the cells are the same. That is, the polynomials in each cell have the same
number of terms with the same coefficients owing to the circular weld bead. The domain integrals
in (1) and (2) become
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o, €10, dQ = Z o, €10,:d2 (7)

ijk

o, -0, €40 dQ = 1;1 o, €00 dQ (8)

respectively, where NV, is the number of cells divided and the eigenstrains and the kernels in each Qg
are also computed in the local polar coordinates.

Inverse Approach

In the inverse approach the information from experiments is required to identify the unknown
coefficients a;" ()3) the stresses measured after welding in the domain at a number of selected
measuring points, x'

o, (x")=a", Weq, k=12,..., Ms )
where g;”" is the measured stresses and Ms the number of measuring points of stresses. Since the
residual stresses of weld plates have three components, ° 11, 0 12 and @ 7, at one point for the two-
dimensional problem, the number of known information from experiments is 3Ms. By employing
the BPM [Ma et al (2010)] and noticed the traction-free boundary conditions in the residual stress
problem, the displacement equation (1) combined with (7) can be written after discretization in
matrix from as

NI
Hu=Ba, B=)T'‘B* (10)
K=l
where u is the vector of displacements at all the N nodal points on the boundary I', a the vector of
unknown coefficients, and H and B the corresponding coefficient matrices. Similarly, the discrete
stress equation (2) combined with (8) can be used to compute the stresses at selected points as
follows

Nl
c=Fu+Da=(FH'B+D)a=Sa, D=} T D (11)
K=1

where S is the so-called sensitivity matrix, F and D the corresponding coefficient matrices. The
transformation matrices in (10) and (11) are defined respectively as

9 10 cos” By —2c0s b sin b sin” G
cos —sin
T = [ © ® TX =] cosf, sin@,  cos® O, —sin® O,  —cosb, sin 6 (12)
sin@,  cosby 7 k=TT K K S
sin? G 2c0s G sin b cos’ By

B* and D* are formed from the kernels of domain integrals in (7) and (8), respectively, which are
computed by line integrals after the transformations using (5) and (6). The unknown coefficients of
eigenstrains a can be obtained using the least square method by minimizing the object function, @,
defined as follows

o =_Jsa-o'| (13)

where 6" represents the vector of measured stresses. The unknown eigenstrain coefficients can be
computed by the minimizing condition of (13) as S’ (Sa-¢ =0 so that to obtain

=(s" s) STg’ (14)

Numerical Examples

Conditions of Computation

Both the finite and infinite plates with circular weld bead are considered in the numerical examples,
corresponding to the cases of test pieces and repair welds, respectively. The finite plate is shown in
Fig. 1a with the width of localized area €, being set as w;=0.3w expressed in dashed lines where the
eigenstrains are distributed. This width is somewhat wider than that of the heat affected zone (HAZ)
according to the parameters of the material and welding, since the HAZ refers as to the narrow band
with changes in microstructures of the material near fusion line while the eigenstrain domain
corresponds to the zone undergoing plastic tensions in cooling stage following compressive
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deformations in heating stage in the welding thermal cycle. The boundary I is discretized by N=100
nodes and the eigenstrain zone €, is divided equally by N=40 cells, one of them as shown in Fig.
1b, in the application of the BPM.

Only the normal components of eigenstrains in each cell are considered in the analysis and are
approximately expressed in terms of low-order polynomials in the polar coordinate as follows

e (r)/ &g =—4+0.78 (15)

ey (r)/ &g =—1+0.447 (16)

where &g stands for the material constant, or the yield strain, defined as the strain when the Von
Mises stress reaches the yield strength, os, of the material. The eigenstrains given in (15) and (16)
satisfy approximately both the zero condition at the border and the maximum value at the center of
Q; following the features of welding, which are used to compute the control values of stresses such
as the measured stresses. The positions for the stress measuring points are shown in Fig. lc, where
the idealized measuring stresses are computed using the BPM with the values of eigenstrains in (15)
and (16). With these idealized data, the residual stress can be reconstructed after solving the
eigenstrains using the inverse approach stated above. However, as there are always errors in the
experimental measurements, 10% random noises are introduced into the idealized data as follows

o). =(1£0.1ran)c’ (17)

where ran represents the random function varying between 0 and 1. With these noisy data, the
residual stress can also be reconstructed after solving the eigenstrains using the inverse approach.
For the infinite plates, the solution procedure and all parameters are as the same with those of the
finite plates except that there is no outer boundary I' so that the boundary integrals in (1) and (2)
vanish.

Computed Results

In all of the following figures, the stress distributions are shown along the x; axis. The computed
stresses with the inverse approaches are computed using noisy data of three measuring points. The
computed results of the infinite and the finite plates are presented in Figs. 2 and 3, respectively,
showing the feasibility and effectiveness of the present algorithm.
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Figure 2. The residual stress distributions in infinite plates
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Figure 3. The residual stress distributions in finite plates
It can be seen from Figs. 2 and 3 that there are equally biaxial stress fields (o);=022) inside the

circular weld beads. The values of these biaxial stresses decrease with the increase of the radius
ro/w, formed by the constrained shrinkages of the welding plastic zone during cooling stages in both
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the transverse and the longitudinal directions, or radius and circular directions respectively in the
case of circular weld beads. In general, the transverse shrinkage plays the principal role since the
gratitude of it is greater than that of the longitudinal shrinkage so that there are generally the equally
tensile biaxial stresses inside the circular weld beads. However, the opposite situation can occur as
shown in Fig. 3c that the equally compress biaxial stresses exist when ry/w is relatively large in the
finite plate, since the stress field is formed primarily by the longitudinal shrinkage just like an iron
hoop fasten the plate owing to almost the null outer constraint in this case. The longitudinal stresses
(022) reach the peak values at the weld beads owing to the longitudinal shrinkage.
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Figure 4. The errors in infinite plates
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Figure 5. The errors in finite plates

The errors using the idealized and the noise introduced data for the infinite and the finite plates are
given in Figs. 4 and 5, respectively, showing that the inverse approach is not too sensitive to the
noises in the stress measurement. The residual stress fields can be reconstructed with the proposed
approach by using only a small number of selected measuring points, for example, three pointes 1, 2,
and 3 as shown in Fig. lc, with which the computed stresses are drawn in Fig. 2. The computed
results verify the feasibility and effectiveness of the present algorithm.

Conclusions

Using the computational model based on the eigenstrain boundary integral equations (BIE), an
algorithm of inverse problem is investigated to determine the circular weld bead induced residual
stresses, where the eigenstrain is considered to be the origin of residual stresses in structures. In
order to reduce the number of unknowns and to consider the stability of inverse problem, the
eigenstrains are approximated by low-order polynomials in the local area, divided into cells, around
welded zones according to the features of welding. The sensitivity matrix in the inverse approach
for evaluating the eigenstrain fields represented by the coefficients of polynomials is constructed
with the aid of measured stresses in the domain after welding over a few selected measuring points.
The residual stresses of circular weld beads in both the finite and infinite plates are evaluated in the
numerical examples, showing that the proposed inverse approach is not too sensitive to the noises in
the stress measurement, verifying the feasibility and effectiveness of the proposed approach.

Acknowledgement: The work was supported by National Natural Science Foundation of China
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Abstract

In order to assure structural integrity for operating welded structures, it is necessary to evaluate
crack growth rate and crack propagation direction for each observed crack nondestructively. Here,
three dimensional welding residual stresses must be evaluated to predict crack propagation. Today,
X-ray diffraction is used and the ultrasonic method has been proposed as nondestructive method to
measure residual stresses. However, it is impossible to determine residual stress distributions in the
thickness direction. Although residual stresses through a depth of several tens of millimeters can be
evaluated nondestructively by neutron diffraction, it cannot be used as an on-site measurement
technique. It is because neutron diffraction is available only in special irradiation facilities. Author
pays attention to the bead flush method based on the eigen-strain methodology. In this method,
three-dimensional welding residual stresses are calculated by an elastic FEM (Finite Element
Method) analysis from eigen-strains which are evaluated by an inverse analysis from released
strains by strain gauges in removal of reinforcement of weld. Here, the removal of the excess metal
can be regarded as nondestructive treatment essentially because toe of weld which may become
crack starters can be eliminated. The effectiveness of the method has been proved for welded plates
and pipes even with relatively lower bead height. In actual measurements, stress evaluation
accuracy becomes poorer because measured values of strain gauges are affected by processing
strains on the machined surface. In the previous studies, the author has developed the bead flush
method that is free from the influence of the affecting strains by using residual strains on surface by
X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively
poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation
accuracy of residual stresses in this method is formulated, and it is shown numerically that inner
welding residual stresses can be estimated accurately from the measured residual strains by X-ray
diffraction.

Keywords: Eigenstrain, Weld, Residual stress, X-ray diffraction, Bead flush method, Three-
dimensional evaluation,

Introduction

In order to assess structural integrity for operating welded structures, it is important to evaluate
three-dimensional welding residual stresses non-destructively to predict crack propagating for
observed cracks in in-service inspection. Today, there are some techniques to estimate three-
dimensional residual stresses such as neutron diffraction methods [Suzuki and Akita (2009)],
welding simulation via thermal elastic-plastic FEM analysis [Yaghi et al. (2013)] and techniques
based on the eigen-strain methodology [Mura (1978)]. However, neutron diffraction is unavailable
to use as an on-site measurement application because it can be used only in special irradiation
facilities. Furthermore, measured stresses from diffraction methods including X-ray diffraction and
high energy X-ray diffraction techniques cannot be input into the FEM model that has been used in
assessment of structural integrity at the time of the design. It is because all the 6 stress components
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that satisfy the self-equilibrium condition cannot be measured. Also, it is difficult to predict crack
propagation via FEM [Kikuchi et al. (2009)] from estimated residual stresses by diffraction methods.
Although welding residual stresses can be estimated non-destructively by using welding simulation,
estimation accuracy may be poorer due to the difficulty of determining the parameters depended on
temperature. To make matters worse, piece-to-piece variations have to be neglected in qualitative
evaluation via thermal elastic-plastic FEM analysis. On the other hand, three-dimensional residual
stress distribution can be estimated quantitatively by FEM analysis by using the eigen-strain
methodology. For example, the cutting method [Ueda et al. (1975); Ueda et al. (1979)] based on the
eigen-strain methodology has been proposed. In this method, residual stresses are determined by an
elastic FEM analysis from eigen-strains which are calculated by an inverse analysis [Kubo (1992)]
from released strains through sectioning. Here, eigen-strains are defined as a sum of inelastic strains
[Mura (1978)] and can be regarded as the cause of residual stresses and elastic strains. Note that
they are not always equal to inherent strains which are a total of physical inelastic strains such as
thermal, plastic and transformation strains [Masuda and Nakamura (2010a; 2010b)]. Although
structures have to be wasted by the cutting method, welding residual stresses can be evaluated non-
destructively by the bead flush method [Nakamura et al. (1995)]. In this method, eigen-strains are
estimated from released strains in removal of reinforcement of weld. Since toe of weld may become
crack starters, the removal of the excess weld metal can be regarded as a preferable treatment. The
effectiveness of this method has been proved numerically for welded plates [Kumagai et al. (2000)].
In addition, statistical range of residual stress distributions has been accumulated successfully for
welded pipes even with lower bead height [Ogawa and Nakamura (2011a; 2011b)]. In actual
measurement, however, processing strains are created after machining the reinforcement of the weld.
In this case, stress evaluation accuracy becomes poorer because measured values of strain gauges
are affected by the processing strains. In order to solve the difficulties, the bead flush method has
been developed to be free from the influence of the affecting strains [Ogawa (2013)]. In this method,
not only welding eigen-strains but also processing strains are estimated non-destructively from
residual strains on surface by X-ray diffraction instead of released strains by strain gauges (Fig. 1).
However, estimation accuracy in this method is not higher due to relatively poor measurement
accuracy of X-ray diffraction.

In this study, numerical formula to be able to use the measured residual strains on the weld metal
after the removal as additional source of information is shown. And, numerical simulation is carried
out to prove the effectiveness in this method.

1. X-ray measurement 3. X-ray measurement

Weld metal
=
2. Machining

Before removal After removal
Figure 1. Procedures in the advanced bead flush method
Analytical Procedures

Formulation of the Bead Flush Method

In general, the elastic strains {&} of the concerned elements and the eigen-strains {é‘e*} can be
related as:

{e.) =[R.]{e} (1)

169



ICCM2014, 28th-30th July 2014, Cambridge, England

where [R.] is an elastic response matrix. And, the i-th column of it can be obtained by imposing an
unit eigen-strain vector to an i-th component of {ee*} as shown below:

{uic € i =10, 85 =1--,0}" 2

Therefore, elastic strains before and after removals of excess metal can be described as follows:
(e} =[R, lew} 3)
(et =[R, Hes ) 4

where the subscripts b and a denote the before and after removals, respectively. Since it is based on
the assumption that eigen-strains are constant through machining, the released strain vectors {4&}
are given by the following equations:

e} =160} ~ {8}
= ([RI-[R, D&}
= [R]{e"} )

where [R]=[R.]-[Rs] and {€}={& }={& }. In actual measurements, measured released stains by
strain gauges include measurement errors {A4&.}. In this case, measured released strain vector
{A&n} 1s written as follows:

{de,,} =[Rl{e"} + {de.} (6)

The most probable values of estimated eigen-strain vector {& } is described by the least square
method as follows:

{ee) =[RI"{4e,,,} (7

where [R]" is the Moore and Penrose generalized inverse matrix [Kubo (1992)] of [R], and it is
written as:

[R]" =[RI'[RI(RI'[RI[RI"[RD[R]" (8)
Improvement of the Bead Flush Method

In the conventional bead flush method, excess metal has to be eliminated without affecting strains.
Once processing strains {6;,*} are created on a sample, measurement accuracy of release stains is
worsened as shown below:

{4e,,} =[R]{e"} + {de. ) +[R 1ie, ) )

In order to improve this problem, the author has proposed the following equations instead of Eq. (7)
[Ogawa (2013)].

{£:st8:763t}T = [Rab]+ {8ebm8eam}T (10)
rR,1=| > © 11
Re=| &' g an

where {&pm} and {&a.m} are measured residual strains before and after removals, respectively. And,
these two residual strains can be measured non-destructively by X-ray diffraction. Therefore, it is
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possible to obtain estimated values of both welding eigen-strains { €est*} and processing strains
{ﬁ)iest*} non-destructively by using Egs. (10) and (11).

Additionally, in this study, measured strains on the weld metal after machined {&am} are added to
Egs. (10) and (11) to increase measurement information as shown below:

{8:st8;765t }T = [ Rabw ]+ {gebmgeamgwam }T ( 1 2)
R, O

[Rabw] = Ra Ra (13)
Ra Ra

Note that residual strains on surface can be obtained non-destructively by the EBSD (electron
backscatter diffraction patterns) method [Wilkinson (1996)] instead of X-ray diffraction.

Numerical Simulation

In this study, numerical simulation in the bead flush method based on the eigen-strain method is
conducted to show the effectiveness of this method.

FEM Model

As shown in Fig. 2, a half of a butt-welded plate without geometrical restrictions at both ends was
used as FEM model. The plate length, thickness and width are 120mm, 10mm and 60mm,
respectively. The bead width is 8mm and its height is 0.3mm. Solid element that has 8 nodes and 3
degrees of freedom were applied. The total nodes and elements of the model are 3349 and 2544,
respectively. Young's modulus and Poisson's ratio were set at 200GPa and 0.265, respectively. A
commercial software, ANSYS (CYBERNET SYSTEMS CO., LTD., Japan), was used here.

120

60

10

& Processing strains

Removal of _._
reinforcement

=>

Figure 2. FEM model[Ogawa (2013)]
Exact Distribution

Exact eigen-strain distributions assumed in this simulation were quoted from the research report by
Kumagai et al. [Kumagai et al. (1999)] in which eigen-strains were determined on the basis of the
experimental results in the cutting method (Fig. 3). Here, the exact eigen-strains are distributed
uniformly in the welding and thickness directions. Three dimensional exact residual stress
distributions can be calculated from exact eigen-strains by elastic FEM analysis. For example, exact
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stresses at the middle in the welding line on the bottom surface (x=30mm and z=0mm) are seen in
Fig. 4. Here, X, y and z directions are the welding, perpendicular the welding and thickness
directions, respectively.
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Figure 3. Exact eigen-strain distributions Figure 4. Exact residual stress distributions
[Ogawa (2013)] (x=30mm on the bottom surface) [Ogawa (2013)]

Procedure to Evaluate Estimation Accuracy

First, exact residual strain distributions for the whole structure are calculated by inputting exact
eigen-strains in the FEM model as initial strains. Second, measured residual strains in the X and y
directions at measurement points are obtained by adding measurement errors to exact residual
strains. Here, measurement points on the top surface (z=10mm) on the base metal and weld metal
are shown in Fig. 5 and Fig. 6, respectively. Third, estimated eigen-strains were computed by an
inverse analysis. And, residual stresses on the bottom surface (z=0mm) are calculated to compare
exact residual stresses. In this analysis, -500p eigen-strains in the X direction were added evenly on
the machined surface as processing strains. It is based on the assumption that micro cutter was used
to remove the reinforcement of the weld [Chen et al. (1996)].

Weld line,  Measurement points
AN

| | X =56.25

Measurement points m—m—m | x=4875
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Weld metal
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| | X =26.25
- .. x=18.75
== - x=11.25

Welded plate X
m—m—m | x=375

y y=10 y=12 y=14 Unit: [mm]
Figure 5. Measurement points on the base metal
Sabilization of Solution in Inverse Analysis

In order to reduce unknown parameters in this inverse analysis, welding eigen-strain distributions in
each direction were expressed by the four logistic functions [Kumagai et al. (1999)] as:
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Measurement points on the weld metal
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Figure 6. Measurement points on the weld metal

ey =Yl (14)
° o L+exp(p+qy)
p=-5.0, g =0.60, g, =0.40, g, =0.30, g, =0.25 (15)

where the subscript S denotes X, y and z directions, respectively. Constant values p and ¢ were
determined in consideration of that welding eigen-strains were distributed less than 40mm in the y
direction [Ueda et al. (1993)]. {ag} is a vector of unknown parameters. In addition, it was assumed
that eigen-strains were constant in the welding and the thickness directions. Therefore, total number
of unknown parameters of welding eigen-strains becomes twelve (4 functions x 3 directions).
Furthermore, processing strains on the machined surface were considered as constant in the welding
direction. The total number of unknown parameter becomes fifteen (5 points in each direction).

In order to stabilize solutions, the artificial noise method was used [Ogawa and Nakamura (2011b)].
When [Rypy] in Eq. (12) is an NxM matrix with rank n, it can be decomposed as follows:

[Rp " =[UIBT V] (16)
1/ u, 0
[B]‘:{B”_ 0},[Bn]‘: Ve ez 20 (a7
0 O .
0 1/ u,

where [U], [B] and [V]" are NxN, NxM and MxM matrixes, respectively. The values of 4 (1=j=n)
are termed as singular values of [B]. Solutions become sensitive if singular values are smaller.
In the artificial noise method, [Bn] ~ matrix is replaced by [By, ,] ~ as shown below:

[B,,]” =(BI +/I DB (18)
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h 0
Wty
H,
- [ty (19)
0 Hy
Mty

where [1] is unit matrix. Solutions can be stabilized by increasing the real parameter .

Results and Discussion

Figure 7 shows estimation accuracy of welding residual stresses on the bottom surface from residual
strains on the base metal (Fig. 5) and on the base and weld metals (Figs. 5 and 6). In this analysis, it
was assumed that observation error follows the normal distribution whose average was 0 and
standard deviation was set as 500 because measurement accuracy of X-ray diffraction for welded
joints was about +100MPa [Kurimura and Akiniwa (2009)]. As we can see in Fig. 7, welding
residual stresses cannot be estimated accurately from residual strains just on base metal. On the
other hand, stress evaluation accuracy can be improved successfully when measured strains on the
weld metal are used as additional source of information. Here, the L-curve method [Hansen (1992)]
was used to determine the value of the artificial noise.
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(a) Residual stresses in the X direction (b) Residual stresses in the y direction

Figure 7. Estimated residual stresses on the bottom surface after the removal.
The dotted and chain lines are estimated results from residual strains
on the base metal and on the base and weld metals, respectively.

Conclusions

In the previous study, the author developed the bead flush method that is free from the influence of
processing strains in machining. However, stress evaluation accuracy is relatively poor especially in
the vicinity of the weld line when measurement errors by X-ray diffraction are considered. In this
study, mathematical expressions to be able to use measured strains on weld metal as additional
source of information was shown. And, numerical simulation for butt welded plate was carried out
to prove the effectiveness of this method. It was clarified that estimation accuracy of residual
stresses especially near the weld line could be improved successfully by using this method.
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Abstract

The smoothed finite element method (S-FEM) developed recently shows great efficiency in solving
solid mechanics. This paper extends an edge-based smoothed finite element method for static and
free vibration analyses of plates. The edge-based strain smoothing technique is combined with the
three-node Mindlin plate element (MIN3) to give a so-called the edge-based smoothed MIN3(ES-
MIN3). The system stiffness matrix is calculated by using the edge-based strain smoothing
technique over the smoothing domains associated with the edges of elements. In each element the
stabilized MIN3 is performed to avoid the transverse shear locking. Typical numerical examples
demonstrate that the present ES-MIN3 is free of shear locking and can achieve the high accuracy
compared to the exact solutions and others existing plate elements.

Keywords: Shear locking, Finite element method (FEM), Edge-based smoothed three-node
Mindlin plate element (ES-MIN3), Strain smoothing technique

Introduction

Nowsdays, the plate structures have been used widely in many branches of structural engineering
problems. Owing to limitations of the analytical methods, many different numerical methods, such
as finite difference method, finite element method, boundary element method, meshfree method etc,
have been proposed to analyze the plate structures. Among them the finite element method (FEM)
is one of the most popular numerical methods to simulate the behaviors of plate structures. In the
practical application, many plate elements based on the Reissner-Mindlin theory using the first-
order shear deformation are preferred due to its simplicity and efficiency[Henry and Saigal
(2000);Reddy (2006)]. These Reissner-Mindlin plate elements usually possess high accuracy and
fast convergence speed for displacement, however, they also suffer from the ‘shear locking’
phenomenon which has the root of incorrect transverse forces under bending and induces over-
stiffness as the plate become progressively thinner.

In order to eliminate shear locking and to increase the accuracy and stability of the solution, many

new numerical techniques and effective modifications have been proposed, such as the mixed

176



ICCM2014, 28th-30th July 2014, Cambridge, England

formulation/hybrid elements[Lee and Wong (1982); Zienkiewicz and Lefebvre (1988); Miranda and
Ubertini (2006); Auricchio and Taylor(1994); Lovadina (1998)] proposed by Lee et al and Miranda
et al; the enhanced assumed strain method (EAS) [Simo and Rifai (1990); Simo et al. (1989);]
proposed by Simo et al and the assumed natural strain (ANS) method[Tessler and Hughes (1985);
Bathe and Dvorkin (1985); Batoz and Lardeur (1989)] proposed by Hughes et al. Recently.
Bletcinger et al proposed the discrete shear gap method [Bletzinger et al. (2000)] to avoid transverse
shear locking and to improve the accuracy of the present formulation. In fact, the DSG also can be
classified as an ANS element. It is similar to the ANS methods in the terms of modifying the course
of certain strains within the element, but is different in the aspect of removing of collocation points.
The DSG can work well for different elements.

Also based on the ANS method, a three-node Mindlin plate element (MIN3), which avoids shear
locking, was proposed by Tessler and Hhghes. In MIN3, a complete quadratic deflection field is
constrained by continuous shear edge constraints. The numerical examples demonstrated that the
MIN3 is free of shear locking and can achieve convergent solutions.

Recently, Liu et al have proposed a series of smoothed finite element method (S-FEM) by
incorporating the strain smoothing technique[Chen et al. (2001)] of meshfree methods into the
standard finite element method. In these S-FEM models, the compatible strain fields are smoothed
based on the smoothing domains created from the entities of the element mesh such as cells (CS-
FEM)[ Liu et al. (2001); Nguyen (2008; 2012; 2013a;2013b); Wu and Wang (2013)], or nodes (NS-
FEM) [Liu et al. (2009a; 2009b); Nguyen (2011)], or edges (ES-FEM)[ Liu et al. (2009c); Nguyen
(2009); Li et al. (2012; 2013)],0r faces (FS-FEM)[ Feng et al. (2013)], then the smoothed Galerkin
weak forms are evaluated based on these smoothing domains. The S-FEM models can improve
significantly the accuracy of solid mechanics owing to the strain smoothing technique on the
smoothing domains.

In this paper, the edge-based strain smoothing technique is incorporated with the well-known three
node Mindlin plate (MIN3) to give a so-called edge-based smoothed MIN3 (ES-MIN3). In the ES-
MIN3 models, the calculation of the system stiffness matrix is performed using strain smoothing
technique over the smoothing domains associated with the edges of elements. The numerical results
show that present method is immune from shear locking and can achieve high accurate solutions in

static and vibration analysis of the Reissner-Mindlin plate.

Governing equations and weak form for the Reissner-Mindlin plate

Consider a plate under bending deformation as shown in Figure.l. The middle (neutral) surface of

plate oxy is chosen as the reference plane that occupies a domain Q — R*. Letw be the deflection of

177



ICCM2014, 28th-30th July 2014, Cambridge, England

the plate and ' =(A,, B,) be the rotations of the normal to the middle surface of the plate around y-
axis and x-axis, respectively. Then the unknown vector of three independent field variables at any

point in the problem domain of the Reissner-Mindlin plates can be written as:

u'=w B B (1)

:

B S g
L X

R,

L LIRS
SRR
.
Hsln it

iy
o / \jv[ _)’,V/
idsurface o
Z,W
/B ZW
X

Figure.1. positive directions of displacementu,v,w and two rotation 3, , 3, for Reissner-
Mindlin plate

Here we assume that the material is homogeneous and isotropic with Young’s modulus E and
Poisson’s ratiov. The governing differential equations of the static Reissner-Mindlin plate can be

expressed as:

V-D,k(B)+CGkty =0 in Q2 2)
GktV-y+p=0 in Q2 3)
W=W, Bp=p on I =00 4)

in which t is the plate thickness and p= p(x,y) is a distributed load per an area unit, G and
k=5/6 are shear modulus and shear correction factor, respectively, D, is the bending stiffness

constitutive, k and 7y are the bending and shear strains, respectively, defined by

k=L, y=Vw+p (5)

where V =(0/0X,0/0y) is the gradient vector and L, denotes a matrix of differential operators:

T

XX
X
Ly = P P (6)
0o = =
oy OX

The standard Galerkin weakform of the static equilibrium equations for the Reissner-Mindlin plate

is given by

JQ&(T DbKdQ+J05’YT Dsde=JQ5Wpd_Q (7)
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where the bending stiffness constitutive coefficients D, and the transverse shear stiffness

constitutive coefficients D, are defined as

£ 1 v 0 1 0
Db :—2 \" 1 0 N DS :ktG |:O 1:| (8)
12(1-v) 15 1-v/2

For the free vibration analysis of Reissner-Mindlin plates, the standard Galerkin weak form of the

dynamic equilibrium can be written as

jQ&J D,kd.Q2+ jgayT D,ydQ+ jgauTmUdQ =0 (9)

where m is the mass matrix of Reissner-Mindlin plate

t 0 0
3
m=p|0 ;—2 0 (10)
3
0 0 L
L 12 ]

where p denotes the mass density of the material.

General FEM formulation for Reissner-Mindlin plate elements

In the process of the FEM formulation of the plate, the problem domain Q is discretized into
N, finite elements such that QUQ, U, =02 and N2, =D ,i# j,where N, is the
number of total elements. Then the finite element solution u :|_W B, ﬁyJ of a displacement

model for the Reissner-Mindlin plate can be expressed as

W [NCO 0 0
u=>| 0 N 0 ( (11)
o 0 N,(X

where N_ is the number of total nodes of problem domain, N, (X) is the shape function at node |,
d = [W, Ba By ]T is the nodal displacement vector associated to node I.

Then the bending and shear strains can be expressed as
K= Z, By d,
|

VB, (11)

where
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0 ON,/ox 0
By, =| 0 0 6Nl/ay (12)
0 ON,/oy N, /ox

_{8N,/8x N, o}

“[oN /ey 0 N, (13)

sl

The discretized system stiffness matrix, K can be expressed in terms of its bending, K, ,and
transverse shear, K, ,components as
K=K, +K, = JQ B! DbBbd_QJrJQBIDSBSd_Q

N, N, (14)
=>. BiD,B,d2+> [ BID,B,d2
i=1 i=1 "

For static analysis, the discretized system equations of the Reissner-Mindlin plate can be expressed

as

Kd=F (15)

where F is the load vector and has the form of

Ne
F:IQNT pd_(2+fb=;jqe N pd2+ f, (16)

in which f relates to the prescribed boundary loads.

For the free vibration, the force form vanishes and we shall have

(K-&’M)d=0 (17)
where @ is the natural frequency of the free vibration and M is the global mass matrix

NE
M:IQNTmNd_Q=;IQie N"mNd .2 (18)

Formulation of the MIN3

The main assumption of MIN3 is that the rotations are linear through the rotational DOFs at three
nodes of the elements and deflection is quadratic through the deflection DOFs at six nodes (three
nodes of the elements and three mid-edge points). The deflection DOFs at three mid-edge points
can be removed by enforcing continuous shear constraints at every element edge, and then the
deflection is approximated only by vertex DOFs at three nodes of the elements. Numerical
examples demonstrated that the MIN3 element can overcome shear-locking-free and produces

convergent solutions [Tessler and Hughes (1985)].
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As shown in Figure.2, using the three-node triangular element mesh, the linear rotations S, and S,

can be expressed as

B =2 N ()8, =NB,

3 (19)
ﬂy = Z NI (X)ﬂyl = Nﬁy
1=1
x,u
@ @&—-— = C e
__________ B
Midsurface
Y
/s
Figure. 2 Three-node triangular element
And the initial quadratic deflection W can be expressed as
6
W= Z Rw, = Rw; (20)

1=1

where N =[N](X) N, (X) N3(X)] are the linear shape  functions at node
| . By =[By Bo BolandB,=|p, B, B, |are the rotational DOFs at three nodes of the
element; Wi; =[W, W, W, W, W, w]isthe deflection DOFs at six nodes (three nodes of the
elements and three mid-edge points as shown in Table. 1), and R is the row vector of quadratic

shape functions given by
R =N,2N,-1), R, =4N,N, (i=12,3;k=2,3,1) (21)

Table 1 Nodal configuration for initial (unconstrained) and constrained displacement

. Continuous shear edge
Shape functions Initial nodal constraints Constrained nodal
configuration configuration
W ﬁx’ﬂy gu (\N,s +18n),s edgeszo gu
A L3
) . /N Three edge constraints
Quadratic Linear P
AR I E—— \

Equations (19) and (20) can be directly used in formulating element matrices. However, it may be

advantageous from the standpoint of nodal simplicity to condense out the mid-edge deflection
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DOFs,w, ,w, and w,in W. This can be accomplished by enforcing continuous shear constraints at

every element edge as given by the following differential relation

(\N,s + ﬂn ),s

where s denotes the edge coordinate and f, is the tangential edge rotation as shown in Figure.2.

edges = O (2 2 )

The enforcement of constraint (21) at three element edges yields

1 1
Wi 3 :E(\Ni +Wj)+§|:bk(ﬂxi - B +a (B _:Byi)]
(i =1,2,3;]=2,3,1;k :3,1,2)

(23)

where @, =X, —X,,a, =X, =X, & =X, —X,,b, =Y, —y;,b, =Yy, —V,,b, =Yy, -y, as shown in Figure.3.

By substituting (23) into (20), there results a constrained deflection field exclusively in terms of
vertex DOFs.

W:iNIW|+iH|ﬂxl+Z3:LUBy| :NW+LBX+HBy (24)

where W' =[w, w, w],H=[H, H, H,],L=[L, L, L;]are the vectors of shape functions,
with, | =1,2,3,given by

H, :%(a2N3Nl—a3N1N2)

H, :%(a3N1N2—a1N2N3)

H, =%(a1N2N3—a2N3N1)

2
1 (25)
L = (NN, 5NN

L, :%(blNzN;bSNlNz)

L, :%(bZNSNI—bINzNQ

Then the element stiffness matrix can be finally obtained and written in the following form:

M — jge BID,B,d2+ jge B'D.B.d.n (26)

where

0 oN,/ox 0
B,=|0 0  oN,/oy 27)
0 oN,/dy oN,/ox
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_|ON,/ox oL /ox OH, /ox+N, 28)
*|oN, /oy oL /ax+N,  &H, /oy
a;z a
) L “
.aj_—‘x_g =X HLb=X;-X3 dA3=X>-X;
b1:y2 -3 b2=y3 -V b3=y1 -2
Figure.3 Three-node triangular element coordinate description
In order to further improve the accuracy of approximate solutions and to stabilize shear force
oscillations. It was suggested that D, in (8) should be replaced by If)s
~ Gkt
D =——_ 29
ot +ah’ @9

In which h, is the longest length of the edges of the element and « 1is a positive constant [Lyly and
Stenberg (1993)].

Formulation of ES-MIN3

In this section, a new triangular element named an edge-based smoothed triangular element is
established by combining the edge-based strain smoothing technique with the MIN3 (ES-MIN3). In
this work, we incorporate the ES-FEM with the MIN3 to give a so-called ES-MIN3 for the plate
elements. In the ES-MIN3, we do not use the compatible strain fields as in (11) but the smoothed
strain fields over local smoothing domains associated with the edges of elements. Naturally the
numerical integrations in (14) for the stiffness matrix are no longer based on elements as in standard
FEM but on the edge-based smoothing domain €2, (k=1,2,---,N ), where N is the total number of
edges in the 2D problem domains, for triangular elements, the smoothing domain for edge k is
created by sequentially connecting two end points of the edge and centroids of its surrounding
elements. As shown in Figure.4, for interior edges, the smoothing domain (2, for edge k is formed
by assembling two sub-domains of two neighboring elements; while for global boundary edge, the
smoothing domain (2, of edge K is a single sub-domain, in this case, the strain and stain matrix can
be calculated as same as those in FEM.

In the present method, smoothing operation is applied over each smoothing domain, so the

smoothed bending strain ¥ and smoothed shear stain 7 can be calculated by
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K, :JgeldN(X)d.Q

) (30)
7.= [ M (xde
where W (X) is a given smoothing function that satisfies at least unity property
jQ W, (x)dQ =1 (31)

Field nodes

Centroid nodes
Smoothing domain
Eage of triangle

Boundary of Q.

Global boundary

Figure. 4. Edge-based smoothing domains in 2D problem created by sequentially connecting
the centroids of the adjacent triangles with the end-points of the edge.

In this study, the following simplest form of the smoothing function is used

W, (x) = 1I/A xeQ, (32)
Tl 00 xeQ,
where A, is the area of the smoothing domain of the kth edge and is computed by
A= dgzlim 33)
Q 34 !

where n; is the number of elements around the edge k (n; =1for the boundary edges and n; =2
for inner edges, as shown in Figure. 4 ), AJ? is the area of the ] th element around the edge K .
By using the edge-based strain smoothing operation, the smoothed strain of the smoothed strain of

the smoothing domain Q; in (30) can be expressed as follows

_ 1 1 &
Ky ZEJ‘ inQ:_szAkq Kia

1 1 ::l @9
2 =_3st 7dQ=_szA<,q Tka

A( k q=l1
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where A, denotes the area of the sub-smoothing domain associated with inner edge
k,x, 4and y, , are bending strain and shear strain of the gth sub-smoothing domain, respectively.
With the above formulation, the smoothed strains for the smoothing domain of edge k can be

expressed in the following forms:

= (35)

where M, is the total number of nodes in the influence domain of edge k, B, (X )and B, (X, )are
termed as the smoothed strain matrix that can be calculated as
IES

Eb,l (Xk ) :E;%ABM (Xk)

| M (36)
Es,l (Xk):EiZﬂ:EAiBsi(xk)

Therefore the global stiffness matrices of the ES-MIN3 element can be assembled by
K=Y K, (37)
i=l

where K, is the smoothed element stiffness matrix given by

Kk = J-Qk Bg DbBbdQ+J-Qk EZ DsésdQ = EZ DbEbA< + BI DSESA( (38)

The procedure of assembling the global stiffness matrix in the ES-MIN3 is exactly the same as the
practice in the standard FEM. It can be easily seen from (37) that the resultant linear system is
symmetric and banded (due to the compact supports of FEM shape functions), which implies that

the system equation can be solved efficiently.

Numerical results

Static analysis

Consider a flexible rectangular plate (0.314m X 0.414m) which is made of aluminum
( p =2700kg/m’, v =0.3, and E =71GPa). The thickness of the plate is 0.00lm. The plate is
subjected to a uniform load of q(X, y)=1Pa, and is given for clamp boundary condition. Uniform
meshes of 2 X N X N three-node triangular plate elements shown in Figure.5 is used in the

computation, where N denotes the number of elements per edge.
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=

(c)

Figure 5 Two rectangular plate models and the representative meshes: (a) clamped plate; (b)
simply supported plate; (c) regular mesh using three-node triangular elements

For static analysis, the deflection at the center point of the plate is computed; the result is plotted
against the mesh density in terms of number of elements per edge N, as shown in Figure.6. It is seen

that the ES-MIN3 achieves the higher accuracy compared to the DSG and MIN3 elements.

x10°

3 T T T T T T T T T
D/,/ A - 64
’g 25t =
£
c
el
°
L]
=
[
el
B
<
Q
O 2 =
—8—DSG
—*—ES-DSG
—©—MIN3
——ES-MIN3
15 | | | | I I I I Exich
8 10 12 14 16 18 20 22 24

Number of elements per edge

Figure 6 Convergence of deflection of the plate at the center against the mesh density

Free vibration analysis of plates

In this section, we investigate the performance of the ES-MIN3 used for computing the natural
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frequencies of plates. The geometry and material parameters of the plate are the same as in last
section. All the edges of the plate are simply-supported and five uniform meshes of 2 X N XN three-
node triangular plate elements with N=8, 12, 16, 20, 24 are used in the computation. The first six
natural frequencies of the plate obtained from ES-MIN3 are listed in Table 2, for comparison, the
analytical solutions and some other numerical results are also listed in the table. As indicated in the
table, all the numerical results are in good agreement with the analytical results in low frequency
range. The errors of the results for all these numerical methods become larger with the increasing of
mode order. However, the results obtained using ES-MIN3 is much more accurate and converged
much faster than those obtained using other methods. It is confirmed that the ES-MIN3 is efficient
and can give high accurate solutions in free vibration analysis. In particular, the ES-MIN3 can

achieve accurately the values of high frequencies of plate by using only coarse meshes.

Table 2 Convergence of the first six natural frequencies (Hz) of the plate

. Mode sequence number
Meshing | Methods
1 2 3 4 5 6

DSG 43.87 99.74 138.23 190.09 243.67 313.86

ES-DSG 39.93 88.57 122.37 172.39 191.12 277.93

s MIN3 41.95 96.03 130.66 186.66 220.30 301.90
ES-MIN3 39.86 87.09 120.98 171.40 178.50 271.09

DSG 41.71 92.82 125.83 173.07 204.74 272.24

ES-DSG 39.32 84.41 116.79 161.88 168.01 251.05

12 MIN3 40.27 88.14 120.48 168.61 182.61 263.15
ES-MIN3 39.33 83.88 116.36 161.27 163.64 244.26

DSG 40.63 88.97 120.61 165.99 186.77 257.54

ES-DSG 39.13 83.05 115.06 158.00 161.48 239.85

o MIN3 39.67 85.25 117.14 162.07 169.95 251.07
ES-MIN3 39.15 82.84 114.88 157.55 159.77 236.19

DSG 40.04 86.62 117.94 162.08 176.45 250.25

ES-DSG 39.05 82.47 114.31 156.07 159.02 234.67

20 MIN3 39.40 83.89 115.63 158.91 164.29 243.79
ES-MIN3 39.07 82.38 114.21 155.77 158.21 232.69

DSG 39.69 85.15 116.42 159.65 170.07 246.09

ES-DSG 39.00 82.17 113.91 155.00 157.85 232.00

24 MIN3 39.25 83.15 114.82 157.10 161.34 238.58
ES-MIN3 39.02 82.13 113.86 154.81 157.42 230.83
Analytical | 38.95 81.61 113.11 152.72 155.78 226.89
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Conclusions

In this work, the edge-based smoothed finite element method is combined with the well-known

MIN3 to give a so-called the ES-MIN3 for static and free vibration analyses of plates. The

smoothed Galerkin weak form is adopted to formulate the discretized system equations. The

numerical integration is performed over the smoothing domains associated with edges of mesh.

Through the formulation and the numerical examples, some concluding remarks can be drawn as

follows:

1)

2)

3)

4)

The ES-MIN3 is straightforward and the implementation is as easy as MIN3 for the static and
free vibration analyses of plates.

The shear locking of the triangular plate elements has been successfully alleviated with ES-
MIN3 and the ES-MIN3 elements have only three DOFs at each vertex node without additional
degrees of freedom, in addition, the ES-MIN3 only use the triangular elements which is a clear
adbantage compared to quadrilateral elements when the geometry domain of plate is
complicated.

For both static and free vibration analyses, the results of the ES-MIN3 agree well with other
methods. The ES-MIN3 gives much more accurate results than the DSG, MIN3 and is a good
competitor to the ES-DSG.

The ES-MIN3 works very well with triangular meshes and it is thus very promising to solve
real engineering problems which usually are of complicated geometries with very accurate

results.
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Abstract

The commercial applications of friction stir welding (FSW) to hard materials are limited by tool
breakages. But the tool forces and the relations to tool geometries remain unknown. So, here we
established a model on calculation of tool forces in FSW and examined how the tool design affects
the temperature fields and the tool forces along the welding direction. Results indicate that
temperature rises are very important for the tool forces in FSW. Both the increase of the shoulder
size and the increase of the rotating speed can lead to the increase of the welding temperatures in
FSW and then decrease the tool forces in the welding direction. Larger shoulder or higher rotating
speed can increase the tool life.

Keywords: Friction stir welding, Finite element method, Tool force, Temperature

Introduction

Friction stir welding (FSW) has been invented for more than 15 years. Due to its solid joining
nature, FSW has many advantages over the traditional fusion welding techniques, such as low
distortion, low welding defects, fine grains in welding zone, etc., which makes it being successfully
applied to aerospace, automobile, ship industries, etc. In FSW, a rotating tool is inserted into the
butt of two welding plates and then translates along the welding line [Thomas et al. (1991); Mishra
and Ma (2005)]. Based on the principles for FSW, friction stir processing (FSP) was developed by
[Berbon et al. (2001)] as a genetic tool for microstructural modifications. FSW has been used for
the joining of aluminum alloys [Ahmed et al. (2008); Altenkirch et al. (2008); Nielsen (2008);
Fonda et al. (2008); Cabibbo et al. (2007)], magnesium alloys [Aftrin et al. (2008) ; Gharacheh et al.
(2006); Park et al. (2003)], stainless steels [Reynolds et al. (2003); Saeid et al. (2008)], titanium
alloys [Mironov et al. (2008); Lee et al. (2005)], copper alloys [Park et al. (2004)], composite
materials [Feng et al. (2008); Fernandez et al. (2004)] and even the joining of dissimilar materials
[Kwon et al. (2008); Ouyang et al. (2006); Cavaliere et al. (2009)]. During the welding process,
welding tool is believed to be the key component for a successful FSW [Elangovan et al. (2008);
Zhang et al. (2009); Kumar and Kailas (2008)], especially for FSW of strong material [Bhadeshia
and DebRoy (2009)]. Although the tool force in welding direction can be measured in experiments
[Yan et al. (2005)], the theories for determination of the tool forces in FSW should be needed for
the development of reliable, lasting and cost effective welding tools and even for the optimization
of welding tools with lower costs. So, here we presented a method for calculation of tool forces.
Temperature rises are believed to be one of the key factors to affect the plasticized material flow
near the welding tool [Zhang and Zhang (2009); Nandan et al. (2007)]. So, the calculated tool
forces, the temperature rises and the different tools are considered together for the examination on
how the tool design affects the temperature fields and the tool forces along the welding direction.

Model description

ABAQUS was used with the combination of the user subroutine which was compiled by
FORTRAN code for the description of a modified coulomb friction law [Zhang (2008)]. Eight node
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thermo-mechanical brick elements are used for the mesh generation of the workpiece. For
convenience of mesh generation with brick elements, a circular workpiece with the radii of 30mm is
considered. The model has been validated for the temperature and material flow during FSW of
AA6061 [Zhang and Zhang (2008); Zhang et al. (2011); Zhang and Zhang (2007); Zhang and
Zhang (2009)]. The applied axial pressure is selected to be 70MPa, the pre-heating time 1.5s and
the traverse speed 140mm/min for the current computations. The inflow temperature is set to be the
room temperature (25°C). The boundary of the welding plate is treated as Eulerian type, on which
the motion of the material points can be independent of the meshes. Arbitrary Lagrangian—
Eulerian (ALE) method [Belytschko et al. (2000)] is combined with the adaptive meshing to avoid
excessive element distortions. Four different tool profiles are used for the numerical comparisons,
as shown in Fig.1. For the tool with a shoulder diameter of 20mm, three rotating speeds, i.e.
500rpm, 550rpm and 600rpm are used to study the effect of rotating speed on tool force. For other
cases, the rotating speed is set to be 500rpm.
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|
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Ko Ko
(c) Tool 11T (d) Tool IV

Figure 1 Schematics of welding tools

As shown in Fig.2, the tool forces in FSW can be determined by the hydraulic pressure and the
frictional stresses on contact surfaces,

F .= J.psinGdSl + jpt cos0dS, + J.ptdSZ (D)

Long —
S Sy S,

where p is the hydraulic pressure and p; frictional stress. S; and S are the pin-plate contact area and
the shoulder-plate contact area, respectively.
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Figure 2 Calculation of tool forces in FSW

The hydraulic pressure can be obtained from the trace of the stress tensor in FSW,
1
p=-— E trace(cij) (2)

where gjj is the Cauchy stress tensor which can be computed using the constitutive equation,

G = Cijklgil 3)

1

where Cjjq is the elasticity tensor and ¢y, is the elastic part of the strain( &, — & ). The total strain
can be computed using the strain displacement equation,

S %(ui,j + uj)i) 4)

where Uj is the displacement. The boundary condition used for the inflow and outflow regions are
ui=0 for i=2, 3 and u; =140mm/s for i=1.
The predictor-corrector method is used for the calculations of the plastic strain,

30

EP=1"—= 5
20 ©)
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where A is the plastic rate parameter, ¢' is the deviatoric stress, and & is the von Mises effective
stredss. The yield function can be defined as,

f=6-0,T)=0 (6)

where o; is the yield stress which is the function of temperature.
The temperature is determined by solving the heat transfer equation

T2 (T2 ()2 7T o 0
ot ox\ oOx) oy\ oy) o0z\ o0z
ka—Tnx+ka—Tn +ka—TnZ=q (8)
Ox oy * oz

where p is the density, C is the specific heat, K is the thermal conductivity, q is the heat flux on the
contact area and ny, Ny, N, represent the directions. The temperature dependent values of ¢ and k can
be found in [An and Liu (1998)]. Q is the heat generated by the plastic deformations,

Q= Gijéﬁ )]

where &f is the strain rate.
The heat flux on the contact area q is,

q=7py (10)

where 7 is the fraction of frictional heat entering the workpiece (90% in current work), y is the
relative velocity between the tool and workpiece.

The general finite element form for the heat transfer equation can be obtained by the spatial
discretization,

CT+KT =P (11)

where C is the heat capacity matrix, K the thermal conductivity matrix and P is the thermal load
matrix which is determined by the mentioned internal heat source, the heat flux on contact surface
and the boundary conditions. Explicit forward difference integration method is used to solve this
equation.

The displacement required to compute total strain can be determined solving the equation of
motion,

oy +F =i, (12)

where F; is the body force per unit volume and U; v is the acceleration.
The classical finite element form of the above equations can be obtained by spatial discretization,

|\/|U= PI_P'int (13)

where M is the mass matrix, P' load matrix and P internal nodal forces. Explicit central
difference integration method is used for the computation of displacements and accelerations of
nodes. The load matrix consists of the contact forces, normal (p,) and tangent (p;). The contact
forces can be expressed in terms of displacements of the contact points by the penalty algorithm
[Zhang et al. (2005)] with consideration of the shear failure criterion,

p, = —En(du,f —du; —5*) for both sliding and sticking states (14)
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b, = —min{gp,sign(du? —du!), & /+/3 ) for sliding state (15)

where E_ is penalty factor for normal contact, which can be taken from 1 to 100 times of the

n
element stiffness of the representative underlying welding material according to the overclosures in
calculations. &” is the gap. du, is the normal displacement. The superscripts m and s represent the
mater (tool) and slave (welding plate) contact surfaces. The displacement for master is considered
to be zero in this calculation.

Results and discussions

The computed temperature fields around the tool are shown in Fig. 3. The maximum temperature
for Tool I in 500rpm and 140mm/min is 430°C, as shown in Fig. 3(a). The experimental measured

temperature is about 440°C under the same welding conditions and tool sizes [Chen and Kovacevic
(2003)], which can verify the developed model for heat transfer. When conical pin is used, the
maximum temperature is decreased slightly to 426°C, as shown in Fig. 3(b). Compared with the
variation of pin shape, the effect of shoulder size on temperature is more obvious. When the
shoulder radius is changed to 10mm, the maximum temperature is decreased to 384 °C, as shown in
Fig. 3(c). With the further decrease of the shoulder radius to 8mm, the maximum temperature can
be further decreased to 344°C, as shown in Fig. 3(d). The observation on effect of shoulder size on
temperature is consistent to previous studies [Zhang et al. (2009)]. Usually, higher rotating speed is
used for smaller shoulder. So, two new cases for Tool III (Fig. 1) with higher rotating speeds are
adopted for comparisons. When the rotating speed is increased to 550rpm, the maximum
temperature can be increased to 393°C, as shown in Fig. 3(e). With the further increase for the
rotating speed to 600rpm, the maximum temperature can be increased to 400°C, as shown in Fig.
3(D).
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Figure 3 Temperatures in different cases: (a) Tool I in 500rpm (T
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=344°C); (e) Tool 111 in 550rpm (T__ =393°C); (f) Tool 111 in 600rpm (T =400°C)
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Temperature fields are important for the plasticization of the material near the welding tool. So, it
can significantly affect the frictional force calculation and even the tool forces. Frictional stresses
along selected paths A=>B=>C are shown in Fig.4 for different cases. The frictional stress on the
selected path is very similar for Tool I and Tool II. When the conical pin is adopted, the friction
stress on the contact surface is increased slightly. The friction stress can be increased due to the
decrease of the shoulder diameter and the decrease of the rotating speed. With consideration of the
temperature fields shown in Fig.3, the frictional stress can be increased with the decrease of
temperature in FSW. Moreover, the frictional stress on shoulder-plate interface is lower than the
one on the pin-plate interface. But with the increase of the temperature due to the increase of
rotating speed or increase of shoulder size, the friction stresses on pin-plate and shoulder-plate
interfaces become similar.
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Figure 4 Comparison of frictional stress in different cases

The calculated forces for different cases are shown in Fig. 5. When Tool I with 500rpm is used, the
calculated force in welding direction is 3.4kN. But when conical pin is adopted under the same
welding conditions, the tool force in welding direction is increased to 4kN due to the decrease of
temperature. When smaller shoulders are used for Tool III and Tool IV, the tool forces in welding
direction is obviously increased due to the obvious decrease of temperatures. This is the reason that
the larger shoulder can increase the tool life in manufacture. The experimentally measured
transverse force is about 8kN under the rotating speed of 500rpm and the shoulder diameter of
20.3mm for FSW of AA2524 [Yan et al. (2005)]. In fact, AA6061 can be believed to be softer than
AA2524 due to the smaller yield stress. So, it can be deduced that the transverse force for FSW of
AA6061 should be smaller than the one in FSW of AA2524 under the similar welding conditions.
For Tool III in 500rpm, the transverse force in FSW of AA6061 is 6.5kN. The comparison with
Ref. [Yan et al. (2005)] shows that the computed transverse force in current model is reasonable.
For smaller shoulder (Tool III), the increase of the rotating speed can decrease the tool force in
welding direction apparently. This means that higher rotating speed should be used in manufacture
for smaller shoulder in FSW, which can lead to more temperature rises. With the increase of the
temperature, the material becomes softer and then the tool force in welding direction can be
decreased.

—_
()

Tool force, kKN
O = NN W B 0 O 9 0 O
T

Tool I Toolll Toollll ToollV  Toollll Toollll
500rpm  500rpm  500rpm  500rpm 550rpm  600rpm

Figure 5 Tool forces in welding direction in different cases
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Conclusions

1) Temperature rise is very important for the tool force in FSW. Higher temperature can lead to
softer material near the welding tool and the decrease the tool forces in welding direction.

2) Both the increase of the shoulder size and the increase of the rotating speed can lead to the
increase of the temperatures in FSW and then decrease the tool forces in welding direction.

3) Larger shoulder or higher rotating speed can increase the tool life.
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Abstract

The finite element (FE) models were developed to predict the compressive response and energy-
absorbing capability of composite tube reinforced PVC foams. A vectorized user material
subroutine (VUMAT) was employed to define Hashin’s 3D damage criteria for the composite tube
to model the corresponding deformation and failure mechanisms. Good agreement was obtained in
terms of the load—displacement traces, the deformation and failure modes. Using validated models,
parametric studies were further carried out to investigate the crushing characteristics of composite
tube reinforced foam to optimize the composite tube configurations within the foam.

It has been shown that reinforcing the foams with composite tubes results in a significant increase in
both their compressive strength and energy absorption relative to their plain counterparts. It has also
been shown that the 12.5 mm carbon fibre tube reinforced foam out-performs the 10 and 8 mm tube
reinforced foam based sandwich panel in term of energy absorption. The energy absorption
increased with increasing of both foam density and tube diameters.

Keywords: Finite Element, Hashin 3-D Criteria, User-defined subroutine, Carbon tube reinforced
foam, Energy absorption.

Introduction

As a result of their superior specific strength and stiffness characteristics, excellent fatigue
properties and impressive corrosion resistance, composite materials, such as carbon fibre reinforced
plastic (CFRP) are currently finding widespread use in a wide range of high-performance
engineering structures. An additional attractive feature of these lightweight materials is their ability
to absorb significant energy under certain well-defined loading conditions. Extensive testing has
shown that composites, when produced in a tubular form and loaded in compression, are capable of
absorbing significant energy through a range of failure mechanisms including fibre fracture, matrix
cracking, debonding and delamination [Farley and Jones (1992)]. Over the years, this impressive
energy-absorbing capability has attracted the interest of many vehicle manufacturers, including
Chrysler and Ford. Indeed, [Jacob et al. (2002)] calculated that only 600 grams of composite is
required to absorb the energy of a medium-sized car travelling at 35 mph. Alia investigated the
energy-absorbing characteristics of polymer foams reinforced with small carbon fibre reinforced
epoxy tubes [Alia et.al 2014]. Figure la highlights the extraordinary failure characteristics
associated with composite materials, where a 10 mm diameter CFRP tube is being crushed at a low
rate of strain. These images give evidences that these failure modes of carbon tube are typical ones
of those observed in larger diameter tubes, with extensive splaying, fibre fracture and matrix
cracking. Zhou et al. investigated the failure mechanism and energy absorption capacity of both
carbon and glass rods experimentally. The progress failure of carbon and glass fibre rods subjected
to compression was examined and shown in Figure 1b that the carbon fibre rod under compression
demonstrates more ductile failure than the glass fibre one [Zhou et al. (2013)]. Clearly, the failure
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pattern of the rod influences its energy absorbing capacity. If buckling failure can be avoided the
energy absorption will be maximized. Therefore, it is necessary to introduce constraints to
composite tubes or rods. An effective way to apply such constraints is to embed them into PVC
foam, so that a progressive crushing of composite tube or rod can be realised. The study exhibits
failed PVC foam core with embedded carbon fibre and glass fibre pins. Both carbon and glass fibre
rods turn into dust, which indicate tests with successful constraints offered by PVC foam. The
energy-absorbing capacity of a composite tube or rod is most frequently evaluated by determining
its specific energy absorption (SEA) capability in J/kg. SEA values can vary greatly, for example,
from 20 kJ/kg for a pultruded glass fibre/epoxy [Jacob et al. (2002)] to values well in excess of 100
kJ/kg for carbon fibre-based systems [Hamada (1993)]. The precise value depends on a number of
parameters, including the geometry of the tube, its fibre architecture, as well as the mechanical
properties of the matrix phase. For example, Hamada and co-workers showed that the energy-
absorbing capacity of a 55 mm diameter CFRP tube decreased by fifteen percent in passing from a

unidirectional tube to one with its fibres oriented at +/-25°. A number of researchers have studied

the influence of specimen geometry on the energy-absorbing capability of composite tubes.
[Thornton et al. (1979); Thornton and Edwards (1982)] investigated geometrical effects in the
energy-absorbing response of tubes based on circular, square and rectangular cross-sections and
showed that the former out-performed both their square and rectangular tubular counterparts.
[Farley et al. (1986)] conducted tests on carbon and Kevlar fibre reinforced tubes, with ply
orientations typical of those used in sub-floor beam structures and showed that the tube diameter to
thickness ratio played a significant role in determining its subsequent strain energy-absorbing

capacity. Similar trends have been observed by [Alia et al. ( 2014)] following tests on circular

composite tubes, with values increasing by over fifty percent as the D/t ratio is reduced from
approximately 42 to 6. This evidence suggests that the use of very low values of D/t can lead to
greatly enhanced energy absorption in tubular structures. Following these initial tests on small
diameter reinforcements, individual tubes were embedded in a polymer foam and crushed at quasi-
static rates of strain

Jil PRI

Figure 1 Failure modes of the composite tube and rods sﬁbjecf to crushing load (a. tube, b. rods)

Composite sandwich structures are increasingly finding use in a wide range of lightweight load-
bearing engineering structures. Sandwich structures, such as those used in high-performance
aerospace components, are typically based on thin composite. The variation of the specific energy

absorption of circular CFRP tubes with diameter/thickness ratio by [Alia et al. ( 2014)]. The tube

embedded in a polymer foam and skins bonded to a low density foam or honeycomb core. The skins
are usually thin, often rendering these lightweight panels highly susceptible to damage by a hard
projectile, such as that associated with runway debris or hail. A number of investigations have
focused on the potential hazard resulting from an uncontained turbine engine failure on outer parts
of an aircraft [Shockey (1997), Rouse et.al (1997). In such sandwich structures, the skin sheets
carry bending loads, whilst the core resists transverse shear and through-thickness indentation
forces. Therefore, to enhance the load carrying capacity it is desirable to maximize the through-
thickness stiffness and strength of the core. One approach to achieve this goal is to add reinforcing
pins to the core, with the ends of the pins embedded in woven carbon fibre skin sheets. [Cartie and
Fleck (2003)] undertook the theoretical analysis and revealed that the through-thickness stiffness
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and strength are relatively insensitive to the pin arrangements in pyramidal, tetrahedral and random
patterns.

Since experimental trials are usually time-consuming and costly, it is evident that modelling the
crushing behavior to investigate the energy-absorbing characteristics using commercial finite
element software would be great interest. Once these models are verified, they can be used to
predict the response of rods and tube reinforced foam based on different configurations, loading and
boundary conditions without undertaking experimental tests. A number of numerical work has been
carry out to modeling the response of composite tubes. Carla McGregora developed a model to
predict the damage propagation, failure mode and energy absorption in triaxially braided composite
tubes under axial compression using LS-DYNA [Carla McGregora et.al (2010)]. The two-ply and
four-ply square tubes were modeled to predict energy absorbing of front rail structures components
on vehicular under axial crushing. A micromechanical model incorporated as a subroutine coded
into the ABAQUS implicit by [Beard and Chang (2002)] to simulate the complete crushing process
of plug-initiated triaxially braided composite tubes with promising initial results. The developed
model was incorporated into ABAQUS/Explicit to model dynamic response of tube under crushing
load by [Flesher (2006)] Another damage model on composite (Mat_58) in LS-DYNA with a lower
accuracy that the predicted SEA values of un-initiated tubes were 30-40% lower than experimental
results [Xiao et al. (2009)]. A developed model for composite tube was only able to capture the
axial crushing features of plug-initiated braided composite tubes accurately [C.J. McGregor et al.
(2007)], however the simulation of the this model on un-initiated tubes was not successfully on
failure modes due to model instability, there was a discrepancies between predicted and observed
failure modes.

It is a challenging task to develop a model that is able to capture both the energy absorption and
failure mode. A few researchers have attempted to model crushing of composite tubes and to
simulate a similar splaying mode of failure. Mamalis et al. developed a finite element modeling to
simulate axial collapse of CFRP square tubes under static and dynamic load. The model introduced
a third layer to model the resin layer into pulverized debris during axial crushing. The deletion of
the failure elements in the middle layer resulted a low energy absorption [Mamalis et al. (2006)]. A
splaying mode of failure on glass/polyester tubes has been developed by Silcock et al using LS-
DYNA [Silcock et al. (2006)]. The model employed a spotweld approach and pre-defining a debris
wedge to simulate a delamination, initiation and propagation of the splaying failure mode. Although
the failure modes were simulated successful, the correlation between measured and predicted load-
displacement profiles was lower. The most successful model to simulate the splaying mode of
failure on tube was developed by Pinho etal. using a decohesion element incorporated into
ABAQUS. Both the delamination and the transverse tearing through thickness between the
composite layers fronds were simulated. Both the load and failure modes was captures reasonably,
however only a portion of the propagation during the crushing process was modeled. [Pinho et al.
(2004)]

Although a few numerical modeling developed to simulate the response of composite using
commercial software LS-DYNA and Abaqus. However, those such as ABAQUS only has a number
of failure criteria for composite materials modeled using 2D elements, such as plane stress and
continuum shell elements [Carla McGregor (2010)]. Further, none of these criteria consider strain-
rate effects in composite materials, which is clearly important in dynamic studies. The 2D elements,
with the existing failure criteria, are not capable of taking large through-the-thickness rate-
dependent deformations into account. Therefore, it is necessary to develop a constitutive model
with associated failure criteria suitable for simulating a composite material using 3D solid elements.
Limited numerical modeling was developed to investigate the structural response of composite
using three-dimensional 3D solid elements. Recently, Thuc et al developed a FE models which were
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validated using experimental data from tests on FMLs based on a 2024-O aluminium alloy and a
woven glass—fibre/polypropylene composite. The rate-dependent failure criteria for a unidirectional
composite were used, which were based on the modified Hashin’s 3D failure criteria [Thuc et al.
(2013]. The constitutive model and failure criteria were then implemented in ABAQUS/Explicit
using the VUMAT subroutine. Based on the previous research [Thuc et al. (2013], A further
parametric studies were carried out to investigate the influence of the properties of the aluminium
alloy on the blast resistance of FMLs for aerospace applications. A vectorized user material
subroutine (VUMAT) was employed to define Hashin’s 3D rate-dependant damage constitutive
model of the GFPP. [Thuc et al. (2014)] Sandwich panels based on three-dimensional woven S-
glass/epoxy skins and a crosslinked PVC core were modelled using finite element techniques to
investigate the effect of through-the-thickness stitching on the blast resistance of the panels by
[Guan et al. (2014)]. The finite element model accurately predicted the failure modes and deformed
shapes of the sandwich panels over the range of impulsive loading conditions.

The superior mechanical properties provided by a roll wrapped composite tube manufactured
predominantly using high modulus (T700) unidirectional pre-preg carbon fibre oriented to provide
maximum strength in the lateral (Ilength-ways) axis, also the use of pre-preg reinforcement oriented
at 90° to ensures that the tube has good crush/burst strength around the section of the tube. Their
superior mechanical properties offers special energy absorption which mean that tubes of the same
weight as an aluminium or steel tube can be much stronger, or that tubes of the same strength can be
much lighter, contribute more energy absorption subject to compressive crushing.

This paper presents numerical modeling of compressive structural behavior of PVC foam core
panels reinforced by CFRP tubes. Here, the foam was modeled as a crushable foam material with
strain hardening. A vectorized user material subroutine (VUMAT) was employed to define
Hashin’s 3D damage criteria for the composite tube to model the corresponding deformation and
failure mechanisms. Energy absorption of the sandwich panels made with different densities of the
cores was also investigated. Modeling results were compared with the experimental results, in terms
of load-displacement relationships, deformation and failure modes. Reasonably correlation was
obtained.

2 Finite element modeling

2.1 PVC foam

Numerical models were developed to simulate the mechanical response of the tube reinforced foam
subjected to comparison. The PVC foam core in the structure was modeled as a crushable foam
subjected to compressive loading with rate-dependent strain hardening and both shear and ductile
failure criteria. It was assumed that the Poisson’s ratio of all of the foams was 0.32. The
phenomenological yield surface proposed by [Deshpande and Fleck (2001)] for a closed-cell foam

material, given by:
l 2 2 __2 2
= + - <0
¢ |1+(0(/3)2 |[q a O-m] O_Y (1)

where &, is the uniaxial yield strength of the foam in tension or compression, q is the Von Mises

stress, and &, is the mean stress. The term « defines the shape of the yield surface, which is given
by

o= 3k
Bkt +K)(3-k)

2)
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where k and K, are related to the ratios of the initial uniaxial yield stress o, and the hydrostatic
tensile yield stress P, to the hydrostatic compressive yield stress p;, respectively.

The yield stress in hydrostatic compression, p, describes the development of the size of the yield
surface and is given as:
| I t
o, (e oo (en) (L +3)+ 4]
O¢ (“:\;g(l]I )
P+

is defined as the plastic volumetric strain in the volumetric hardening model, and is set

3)

p.(en)) =

where &}’

axial
pl
compression test on the foam. Mechanical properties of the foams investigated are shown in Table
1.

equal to ¢, the compressive plastic strain. The term, p, can therefore be deterimed from a

Here, it is assumed that the response of a rate-dependent solid obeys the uniaxial flow rate
definition, which is given as:

‘?pl = h(q’ Epl > 9) (4)

in which the term h is a strain-hardening function, & is defined as the equivalent plastic strain, and

the parameter 4 is the temperature. The rate-dependent hardening curves can therefore be expressed
as:

£(5,,8,)=0,(8,)R(E,) (5)

in which Epl and R are defined as the equivalent plastic strain-rate and the stress ratio (= 6/0,)

_ t
gp| :.[Owiéplz‘épldt and RZEIUY (6)

Damage initiation in the PVC foam was modelled by applying a ductile damage criterion combined
with a shear damage criterion. The former assumes that the equivalent plastic strain at the onset of
damage is a function of the stress triaxiality (ratio of the pressure stress to the effective stress) and
strain-rate. The latter criterion assumes that the equivalent plastic strain at the onset of damage is a
function of the shear stress ratio and strain-rate. The fracture strains corresponding to the initiation
of ductile damage and shear damage and the related strain-rate need to be specified.

respectively, which are given as:

Table 1 Mechanical properties of the foams investigated used in this study [Zhou et al. (2012)].

C40 C80 C130 C200

Density (kg/m’) 40 80 130 200
Compressive modulus (MPa) 37 97 160 280
Compressive strength (MPa) 0.45 1.3 2.6 4.8
Compressive fracture strain 0.65 0.7 0.7 0.7
Tensile modulus (MPa) 28 66 110 175
Tensile strength (MPa) 0.7 2.0 3.8 6.0
Shear modulus (MPa) 13 30 47 75
Shear strength (MPa) 0.5 1.2 2.3 3.5
Shear fracture strain 0.08 0.23 0.30 0.30
Work of fracture in tension (kJ/m?) 0.21 0.44 0.76 1.33
Work of fracture in shear (kJ/m?) 4.5 12.6 27.6 44.2
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Poisson's ratio 0.32 0.32 0.32 0.32

2.2 CFRP Tube
2.2.1 Carbon fibre woven composites

The superior mechanical properties provided by a composite tube manufactured predominantly
using high modulus (T700) unidirectional pre-preg carbon fibre oriented to provide maximum
strength in the lateral (length-ways) axis, also the use of pre-preg reinforcement oriented at 90° to
ensures that the tube has good crush/burst strength around the section of the tube. Given that a roll
wrapped carbon fibre composite tubes tubes are manufactured from special high-modulus Toray
T700 unidirectional pre-preg carbon fibre oriented at 0° (down the length of the tube) and
unidirectional E-Glass oriented at 90° (around the section of the tube) by placing fibres in a
[0,90,0,90,0] pattern. The overall strength of tube equal 50% CF at 0° and 50% CF at 90° direction.
A constitutive model and failure criteria suitable for simulating the solid geometry composite using
3D solid elements was employed to summate the failure mechanism of carbon fire tubes.

Failure criteria for laminated composites are available in ABAQUS, which can be applied for panel
coordinate and continuum shell elements only. However, none of these existing criteria consider the
third direction through-the-thickness and strain-rate effects in the composite material in a
cylindrical coordinate system using 3D solid elements. In order to develop a constitutive model and
failure criteria suitable for simulating the composite tube using 3D solid elements, a 3D rate-
dependent failure criteria for a anisotropic composite is developed by modifying Hashin’s 3D
failure criteria [Hashin (1980), Thuc et.al (2012)], to include rate-dependent elastic moduli and
strength properties. The failure criteria, with the related constitutive model, are implemented into
ABAQUS/Explicit using a VUMAT subroutine provided by ABAQUS [ABAQUS Theory Manual.
6.11(2011)].

The material behaviour within the cross section is same in the lateral axis and roll directions
according to the material test data provided by the manufacturer. Therefore, the developed Hashin’s
3D failure criteria [Thuc et.al (2013] are able to simulate overall response of a roll wrapped
composite layer in a cylindrical coordinate. The failure functions may be expressed as follows:

2 2 2
Fibre tension: (0,,20): F! :(G”] +(G‘2j +(O-13J Jde =1 (7)

Xy Siy S
Fib ion: ( <0)-F°—|U11| d. =1
ibre compression: o, i) S A = (8)
1t
. . t (O-zz + 0-33) (7223 — 053035 0-122 + 0-123
Matrix tension: (0'22 +0,, 2 0): F.,= X2 X2 X2 d =1 9)
2t 23 12
Matrix compression: (o, + 0y, > O):
2 2 2 2 2
=L X ] (022+033)+(O'22+033) +023_022033+O—12+013 d =1
"1l 2s X2 482 X2 xz come=t (0
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where X, Xie, Xot, X2e, S12, S13 and Sp3 are the various strength components [18] and dg, dg, dme
and d,,. are the damage variables associated with the four failure modes.

The response of the material after damage initiation (which describes the rate of degradation of the
material stiffness once the initiation criterion is satisfied) is defined by the following equation:

, i (11)

oy ] _C101 C, Cj Ten]

O Ch, C; Cjy &

O3 | _ Cy C Ci 5

Oy B C. € (12)
O C’, Eny
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where C;;1s a 6 x6 symmetric damaged matrix, whose non-zero terms can be written as:

C,, =(1-d)E (1-vyv,)l

C,=01-d;)(1-d,)E,(1-v,v,)l

Cy=(1-d)(A-d)E;(1-v,Vv,)I

C,=(0-d;)1-d,)E (v, —V;V,,)l

C,,=(01-d,;)1-d,)E,(v;, —V,V;)[ (13)

C31 =(1-d (= dm JE (V3 =V, V)T
C44 = (1 —d f )(1 - Smtdmt )El (1 - Smcdmc )Gl2
CSS = (1 —d f )(1 - Smtdmt )El(l - Smcdmc )GZB
C66 = (1 —d f )(1 - Smtdmt)El(1 - Smcdmc )GB
where the global fibre and matrix damage variables as well as the constant I' are also defined as:
df :1_(1_dﬂ)(1_dfc)
d,=1-(1-d,)(1-d,.) (14)
[ =1/(1=V)Vy) = Vy3Vay = Vi3V3y =2V, V3pVy5)

where E; is the Young’s modulus in the 1 direction, Gj; is the shear modulus in the i—j plane and v;; is
the Poisson’s ratio for transverse strain in the j-direction, when the stress is applied in the i-
direction. The Young’s moduli, shear’s moduli, Poisson’s ratios and strengths of the CFPP are
given in Table 2 and 3. The factors s, and sy in the definitions of the shear moduli are introduced
to control the reduction in shear stiffness caused by tensile and compressive failure in the matrix
respectively. The following values are recommended in [ABAQUS Theory Manual (2011)]: sy =
0.9 and sy = 0.5.

Table 2. Properties data for the CFRP tube

=] E, Es G G G V12 Vi3 Va3 P
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (kg/m’)

70 70 10 8.6 8.6 8.6 0.1 0.3 0.3 1600
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Table 3. Damage initiation data for the CFRP tube

Xur Xic Xor Xac Stz Si3 So3
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

600 570 600 570 280 280 280

2.2.2. Strain-rate effects in the mechanical properties

The effects of strain-rate on the mechanical properties of a composite material are typically
modelled using strain-rate dependent functions for both the elastic modulus and the strength. Yen
developed logarithmic functions to account for strain-rate effects in a composite material as follows
[Yen (2012)]:

{SRT}={SO)[1+c1|n§i:j

(15)
{Ear}= {EJ{H—CJH?J

Where

=l \s‘l\ el fel fel [elf
{SRT} { It 2t lc X?c S12 513 Szz}T (16)
{ERT } {E E E Gl2 G]3 Gzz}

and the subscript RT refers to the rate-adjusted values, the subscript 0 refers to the static value,

z=1"1s the reference strain-rate, ¢ is the effective strain-rate, C; and C, are the strain-rate
constants, respectively.

2.3 Cohesive elements and material properties

The resin layer at the interface between 0° lateral axis and oriented at 90° across its diameter plies
was modelled using cohesive elements available in ABAQUS [ABAQUS Users Manual (2011)].
The elastic response was defined in terms of a traction-separation law with uncoupled behaviour
between the normal and shear components. The default choice of the constitutive thickness for
modelling the response, in terms of traction versus separation, is 1.0, regardless of the actual
thickness of the cohesive layer. Thus, the diagonal terms in the elasticity matrix and density should
be calculated using the true thickness of the cohesive layer as follows:
Knnzi’ Kss:E’ KttZE’p:pctc (17)
tC tC tC

The quadratic nominal stress and energy criterion were used to model damage initiation and damage
evolution, respectively. Damage initiated when a quadratic interaction function, involving the
nominal stress ratios, reached unity. Damage evolution was defined based on the energy
conjunction with a linear softening law. The mechanical properties of the cohesive elements were
obtained from [Karagiozova et al. (2010)].
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3 Implementation of the material model in ABAQUS/Explicit

The user defined VUMAT subroutine was developed to implement the material model and failure
criteria described in the previous sections in ABAQUS/Explicit. During each time step of
computation, this subroutine is compiled and enables ABAQUS/ Explicit to obtain the required
information regarding the state of the material and the material mechanical response at each
integration point of each element. The Hashin’s 3D failure criteria outlined in Eq. (7-10) are
calculated, and the elastic modulus and strength values are adjusted for strain-rate effects using Eq.
(14) base on these stresses computed within the VUMAT subroutine using the given strains and the
material stiffness coefficients. The element status, which determined by the failure criteria, is then
changed from 1 to 0 when an element fails. Accompanying the change of element status, the
stresses at that material point are reduced to zero and it no longer contributes to the model stiffness.
The element is removed from the mesh when all of the material status points of an element have
been reduced to zero.

The 3D tube reinforced foam panel consisted of the foam, the composite and the cohesive layers as
three separate parts. The PVC foam core and composite layers for CFRP tubes were meshed using
C3D8R elements, which are eight-noded, linear hexahedral elements with reduced integration and
hourglass control. The mesh generation and boundary conditions shown in Figure 2. The interfaces
between the composite layers were created using eight-node 3D cohesive elements (COH3DS). The
core size 1s 30x30x%20 (in mm) and the diameters of the tube modelled included 8, 10 and 12.5 mm.
The loading platens on both the top and bottom of the panel are meshed using rigid surface
elements. The compressive load is applied to the top platen, with an only degree of freedom in the
vertical direction. The bottom platen is fully fixed. Given that the panels were symmetric in nature,
a half of each panel can be modeled with the appropriate boundary conditions applied along the
planes of symmetry. A condition of general contact interaction was defined between the two
neighboring layers of composites. Surface-based tie constraints were imposed between the
composite layer and the cohesive layer to model adhesion between the adjacent layers. The contact
interaction property for interaction between the foam and composite layer was also defined.
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Figure 2 The geometry, mesh, boundary and loading conditions of the tube reinforced foam model.
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4 Results and discussion

Displacement (mm)

Figure 5 Load-displacement traces of individual carbon tube in diameter of 8, 10 and 12.5
mm under compression load.

a. Progress failre of crushing

b. Top view of the crushing of tube

Figure 6 Comparison of progress deformation and failure for 10 mm CFRP tubes between test FE
modeling.
The modeling for tube reinforced foam panel was developed based the rods reinforced foam. Prior
to model the foam panel with embedded tube, the individual tube with foam support has been
simulated and valuated with the experimental test on the tube. Figure 5 shows comparison of load-
displacement traces obtained from FE prediction and the corresponding experimental results of the
8 and 12.5 mm tube individually. Reasonably good correlation has been obtained between the
measurements and the numerical modeling in terms of the initial stiffness, the first peak load,
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plateau load and damage evolution. It clearly shows that the predicted load from FE modelling is in
a reducing trend after the first peak load during the compression process.

Figure 6 shows the comparison of progress deformation and failure for 10 mm CFRP tubes between
test FE modelling. The basic features of the extensive splaying, fibre fracture and matrix cracking
for the crushing tube were captured. The failed tubes is displayed the crushing states in which
indicates a progress collapse of tubes. However, the failure modes of FE shows less extensive
splaying of fibre may caused by the automatic remove of the failed element. The exact material data
for the resin and fiber in longitudinal and circular direction can improve the failure modes.

40

30

20

Load (kN)

10

Displacement (mm)

Figure 7 Comparison of load-displacement traces of C130 foam embedded in carbon tube in
diameter of 8, 10 and 12.5 mm.

Here, PVC foam panels with densities of 40, 80 and 130 kg/m3 are embedded CFRP tubes in three
diameters, i.e. 8, 10 and 12.5 mm. Figure 7 shows load-displacement traces obtained from
numerical modeling and the corresponding experimental results of the 8 and 12.5 mm embedded in
130 kg/m® PVC panel. The test results of a plain PVC foam panel without any CF tube are also
shown in the figure to evident the enhancement of carbon tube. Again, agreements between the
experimental results and the finite element simulations are very good, with well captured features in
the initial stiffness, the peak load, the damage evolution and the densification. Clearly, the
resistance load increased significantly up to a average plateau load of 11.3 and 22.7 kN for the 8§,
and 12.5 mm tube reinforced foam panel respectively. It noted that the plateau load of 12.5 mm
reinforced form panel is 8 times of the plain form panel without embedded tube. It also indicates
that the resistance force increased with diameter of embedded tube form 11.3 kN for the 8 mm tube
to 22.7 kN for the 12.5 mm tube reinforced foam.
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C130T8 Test  C130TS FE CI30T10 Test  C130T10 FE
a) Cross-sections

E oo

b) Ctushed foam panels

Figure 8 The comparison of cross-secion on tube embeded foam and fialure modes of curshed panel.

Figure 8 shows the cross-sections comparison of deformation and failure modes for C80 foam core
panel with embedded CFRP tubes obtained from test and FE modelling. The core structure was
deformed by 75% from its original configuration. The basic features of the foam crushing failure
and the pin failure were captured. The failure modes of FE shows less crushing debris due to the
failed elements removed automatic by the element control. The failed tubes is displayed the
crushing states in which indicates a progress collapse of tubes embedded in the PVC foam. The
more of the crushed failure modes of the tube reinforced panel are show in figures. The failure also
indicates that strong constraint from the foam forces the CFRP tubes failure crushing along their
longitudinal axis, which explains the enhancement of foam. However, the crushing failed elements
in the modeling may cause element penetration with each other, which underestimates resistance of
the tube to the compressive load.

40

30

20

Load (kN)

10

Displacement (mm)

Figure 9 Comparison of load-displacement traces between individual carbon tube in diameter
12.5 mm and tube embedded in C130 foam under compression load.

The comparison of the load-displacement traces between individual tube, tube embedded in foam,
and whole panel with a density of 130 kg/m’ and embedded CF tube in diameters of 12.5 mm are
exhibited in Figure 9. The dash line corresponding to the FE prediction whilst the solid line
corresponding to the experimental test. An examination of the response of tube shows that the
individual tube without foam constraint in a reduce trend during compression crushing, whilst the
tube embedded in foam contribute huge resistance and energy absorption during crushing, also
shows a increasing trend at the final stage of foam densification. The predicated load-displacement
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cure of the embedded curve evident that the tube contribute over 80% load and energy absorption of
foam panel and the embedded tube over perform more than twice of individual tube without foam
support for the case of 12.5 mm tube embedded in C130 foam. This evidence clearly supports the
suggestion that embedded tube in foam panel can modify the failure process and greatly enhance
the crush performance of the tubes.

350
10, 125
300 ) .
= 5sq | Individualtube l ,_*_\
g 10,125 ®10mm
g _
.-;g 200 l ¢ 10 mm FE
2 A
< 150 ®12.5mm
5 ~
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0 40 80 130
Foam density (kg/mm’)

Figure 10 Comparison of energy absorption for individual tube and tube reinforced foam den
between FE prediction and experimental test results.

Figure 10 shows the comprehensive comparison of energy absorptions obtained from experimental
tests and FE predictions for individual and embedded carbon tube in diameters of 8, 10 and 12.5
mm in foam panel with density form 40 to 130 kg/mm’. The green bar is FE prediction in the bar
chart. In general, correlation is quite good between test data and FE predication for the individual
tube on the energy bar chart with a difference less than 5%, whereas the difference on the tube
reinforced foam slight higher, which may caused by the estimated parameters for the interaction
between tube and foam core. The FE predictions for the 40 kg/m® foam panels are slightly lower
than those of experimental measurements, whilst such the predictions for the higher density panels
are slightly higher. The possible reason is that due to the weak constraint offered by the foam with
the lower density foam, in the modeling such crushing causes element penetration with each other,
which underestimates resistance of the tube to the compressive load. In the case of tube in higher
density foam, the strong constraint from the foam forces the CFRP tubes failure crushing along their
longitudinal axis, which offer continue resistance load without buckling failure and crushed totally.
The FE simulation is ideal situation compare to the real state of experiment test.
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Conclusions

User-defined constitutive models and strain-rate dependent failure criteria have been developed and
implemented into finite element models to simulate load-displacement traces of PVC foam panels
with embedded carbon fibre tubes, which are compared with the corresponding test results.
Reasonably good correlation has been obtained between the experimental results and FE predictions,
in terms of the initial stiffness, the peak load and the damage evolution. Here, three densities of the
foam and three sizes of the CFRP tubes are investigated. In addition, energy absorption features of
the sandwich core structures are captured by the modelling. The results show that the embedment of
CFRP tubes inside PVC foam core is a very effective way to enhance energy absorption of this
novel sandwich structure.

This evidence clearly supports the suggestion that embedded tube in foam panel can modify the
failure process and greatly enhance the crushing performance of the tubes. This study also shows
the advantage of FE modeling to predict and present the load of individual components for
structural design analysis and optimization. The user-defined subroutines can be further developed
to simulate more complex failure mechanisms of fibre reinforced composites.
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Abstract

Perforation damage of fibre metal laminates (FMLs) subjected to projectile impact was modelled
using the finite element (FE) analysis. Here, FMLs studied covered stacking sequences of 2/1 and
3/2 FMLs, which were made with different aluminium alloys (6161-O, 6061-T6, 7075-0) and glass
fibre reinforced polymer (GFRP) layers. A vectorized user-defined material subroutine (VUMAT)
was developed to define Hashin’s 3D rate-dependant damage criteria for the GFRP. The subroutine
was implemented into the commercial finite element code ABAQUS/Explicit to simulate the
deformation and failure of FMLs. The aluminium alloy layers were modelled as an isotropic elasto-
plastic material by Johnson-Cook plasticity and the related damage criterion. The resin layer was
simulated using cohesive elements, defined in terms of traction-separation. Good agreement was
obtained between the simulations and the experimental results, in terms of the load—displacement
traces, the deformation and failure modes.

Keywords: Impact, Fibre metal laminates, Hashin 3-D Criteria, Finite Element, Progressive Failure

1. Introduction

Fibre metal laminates (FMLs) are advanced composite structural materials that have been attracting
interest from a number of researchers to investigate the impact resistance [Reyes and Cantwell
(2000); Vogelesang and Vlot (2000)]. In recent years, a number of studies had been conducted to
investigate the low and high velocity impact behaviour of fibre metal laminates. Caprino et al.
[Caprino et al. (2004)] performed low-velocity impact tests on fibre metal laminates made of 2024-
T3 sheets and S2-glass/epoxy prepreg layers. Various impact masses, velocities, and energies were
applied in the tests to investigate the influence of these factors on the impact response. For
comparison purposes, similar tests were also performed on monolithic 2024-T3 sheets with the
equivalent thickness. Abdullah and Cantwell [Abdullah and Cantwell (2006)] studied the impact
behaviour of a glass fibre reinforced polypropylene FMLs and the results showed that the FML
offered an impressive resistance subject to low and high velocity impact. They found that FMLs
absorb more energy during plastic deformation in the aluminium and composite layers. A low
velocity impact tests on glass fibre-based FMLs has been conducted by Vlot and Fredell. The FMLs
offer a superior impact to both an aluminium alloy and a carbon fibre reinforced composite. [Vlot
and Fredell (1993)]. Vlot also conducted impact tests on an aluminium alloy and different types of
FML and composites [Vlot (1996)]. There was a crack at the carbon and aramid fibres based FMLs
and the energy absorption lower than that of a glass fibre reinforced FML. A inspection on the
tested specimens showed that the FMLs exhibited a similar indentation in size to those plain
aluminium alloy. Vlot et al. conducted impact tests on GLARE and plain aluminium and showed
that the FML exhibited an initial cracking energy. They alos found that the impact damage
resistance of these FMLs increased with increasing glass/epoxy content [Vlot et al (1999)].
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A numbers of FE modeling have been developed to simulate the impact response of FMLs using
numerical echniques. Guan et al investigated the impact response of fibre metal laminates based on
a woven polypropylene (PP) fibre reinforced composite and an aluminium alloy at velocities up to
150 m/s. Both the predicted failure modes and displacement of the FMLs was good agree with the
test data [Guan et al,(2009)]. Payeganeh et al. developed a number of FE models to investigate the
resistance force traces, deflection, in-plane strains and stresses in of FMLs subjected to low velocity
impact loading [Payeganeh et al. (2010)]. The results shown that the stacking sequence, the masses
and velocities of the impactor were important parameters in determining the impact response of the
FMLs. Lannucci et al studied the failure mode the impact load on FMLs. Modelling of composite
damage subjected to impact within the intermediate strain rate regime may be generally categorized
into four approaches [Lannucci (2006)], i.e. (1) failure criteria, (2) fracture mechanics, (3) plasticity
or yield surface, and (4) damage mechanics. The Tsai-Wu failure criterion describes the failure
surface in stress or strain space [Tsai and Wu (1971)]. However, it is a significant disadvantage to
use stress-based failure criteria to model brittle materials as the scale effect in relation to the crack
length in the same stress field cannot be modelled properly. Lee et al. [Lee et al. (2001)]
investigated the penetration and perforation behaviour of a 6061-T6 aluminium plate and a C12K33
carbon fibre reinforced 6061-T6 aluminium metal-matrix composite plate subjected to projectile
impact using an explicit finite element code, LS-DYNA3D. Perforation of the plate was found to
occur under all of the studied impact conditions. The deformation behaviour of the plate and
projectile as well as the projectile post-perforation velocity and the deceleration of the projectile
were strongly dependent on the plate properties and impact velocity. Payeganeh et al. developed
explicit FE models to investigate the contact force history, deflection, in-plane strains and stresses
of 2024-0 2/1, 5/4 and 2024-T3 2/1, 5/4 FMLs subjected to low-velocity impact [Payeganeh et al.
(2010)]. Failure shear strain and tension cut-off stresses were specified as failure criteria for
aluminium layers. The failure of fibre laminate was simulated using Tsai—-Wu failure criterion by
specifying tensile cut-off stress based on the ultimate tensile stress of the fibre.

Although a few numerical modeling developed to simulate the response of composite using
commercial software LS-DYNA and Abaqus. However, those such as ABAQUS only has a number
of failure criteria for composite materials modeled using 2D elements, such as plane stress and
continuum shell elements [Carla McGregor (2010)]. Further, none of these criteria consider strain-
rate effects in composite materials, which is clearly important in dynamic studies. The 2D elements,
with the existing failure criteria, are not capable of taking large through-the-thickness rate-
dependent deformations into account. Therefore, it is necessary to develop a constitutive model
with associated failure criteria suitable for simulating a composite material using 3D solid elements.

A limited numerical modeling were developed to investigate the structural response of composite
using three-dimensional 3D solid elements. Recently, Thuc et al. developed a FE models which
were validated using experimental data from tests on FMLs based on a 2024-O aluminium alloy and
a woven glass—fibre/polypropylene composite. The rate-dependent failure criteria for a
unidirectional composite were used, which were based on the modified Hashin’s 3D failure criteria
[Thuc et al. (2013]. The constitutive model and failure criteria were then implemented in
ABAQUS/Explicit using the VUMAT subroutine. Based on the previous research [Thuc et al.
(2013], A further parametric studies were carried out to investigate the influence of the properties of
the aluminium alloy on the blast resistance of FMLs for aerospace applications. A vectorized user
material subroutine (VUMAT) was employed to define Hashin’s 3D rate-dependant damage
constitutive model of the GFPP. [Thuc et al. (2014)] Sandwich panels based on three-dimensional
woven S-glass/epoxy skins and a crosslinked PVC core were modelled using finite element
techniques to investigate the effect of through-the-thickness stitching on the blast resistance of the
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panels by [Guan et al. (2014)]. The finite element model accurately predicted the failure modes and
deformed shapes of the sandwich panels over the range of impulsive loading conditions.

This paper presents numerical modeling of structural behavior of fibre metal laminates subjected to
impact loading for aerospace applications. Here, Johnson—Cook strain hardening and damage
criterion were employed to simulate the fialure of aluminiym layers. A vectorized user material
subroutine (VUMAT) was employed to define Hashin’s 3D damage criteria for the composite layer
to model the corresponding deformation and failure mechanisms. Energy absorption of the fibre
metal laminates plates made with different configurations of the liminates layers was also
investigated. Modeling results were compared with the experimental results, in terms of load-
displacement relationships, deformation and failure modes.

3 Finite element modeling

The two material layers in the FMLs, i.e. the composite and the aluminum alloy, exhibit very
different mechanical behaviors. Therefore, different constitutive models were used to simulate the
behavior of the metal and composite plies. The aluminium alloy layers were modelled as an
isotropic elasto-plastic material by Johnson-Cook plasticity and the related damage criterion.
ABAQUS/Explicit [Hibbitt et al. (2011)] was used to develop numerical simulations of the FMLs
subjected to projectile impact. Numerical modeling was undertaken on the 6061-O, 6061-T6 and
7075-O FMLs outlined in Table 1.

Table 1 Johnson—Cook constants and static tensile strength for aluminium alloys
Aluminum A B Strength
type (MPa) (MPa) n C D, D, D3 Dy (MP)
Al 6061-T6 324 114 042 0.002 0.13 0.13 -1.5 0.011 332
Al 6061-O 360 105 0.73 0.083 0.013 0.025 -1.7 -0.4 310
Al17075-O 535 658 0.71 0.024 -0.068 0.451 -0.95 0.036 551

3.1. Aluminium layers

The aluminium alloy was modelled as an elasto-plastic material included a rate-dependent

behaviour. Temperature effects in the aluminium alloy were not taken into account. The Johnson—
Cook material model was used in the form as below:

1+Cln (@)]
&o
(1)

where % is the equivalent plastic strain; é and o are the equivalent plastic and reference strain rate

¢ = [A+B(&)")

and A, B, C and n are material parameters. Damage in the Johnson—Cook material model is
predicted using the following cumulative damage law:

-2 ()
i @)

1+ Dsln (?)]
N (3)
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where 0" is the mean stress normalised by the equivalent stress and A% is the increment of
equivalent plastic strain during an increment in loading. D, is a function of the mean stress and the
strain rate. The parameters D;, D,, D3, and D4 are constants. Failure is assumed to occur when D =

. . pl . .
1. Hence the current failure strain, &, and thus the accumulation of damage,. The constants in the

Johnson—Cook model for the three alluminium alloys used in this study are given in Table 2. The

Young's modulus, Poisson’s ratio and density of the various aluminium alloys were taken as E =
73.5 GPa, v =10.3 and p = 2700 kg/m3, respectively.

3.2. Glass fibre reinforced composite layers

3.2.1. The 3D damage model for the composite material

A constitutive model and failure criteria suitable for simulating the solid geometry composite using
3D solid elements was employed to simulate the failure mechanism of glass fire layers. Failure
criteria for laminated composites are available in ABAQUS, which can be applied for panel
coordinate and continuum shell elements only. However, none of these existing criteria consider the
third direction through-the-thickness and strain-rate effects in the composite material in a coordinate
using 3D solid elements. In order to develop a constitutive model and failure criteria suitable for
simulating the composite tube using 3D solid elements, a 3D rate-dependent failure criteria for a
anisotropic composite is developed by modifying Hashin’s 3D failure criteria [Hashin (1980), Thuc
et.al (2012)], to include rate-dependent elastic moduli and strength properties. The failure criteria,
with the related constitutive model, are implemented into ABAQUS/Explicit using a VUMAT
subroutine provided by ABAQUS [ABAQUS Theory Manual. 6.11(2011)].

Given that a woven glass fibre composite layer is produced by placing fibres in a [0/90] pattern, the
material behaviour within the plane of the laminate is similar in those two directions according to
the material test data provided by the manufacturer. Therefore, the developed Hashin’s 3D failure
criteria [Thuc et.al (2013] be able to simulate overall response of a roll wrapped composite layer in
a cylindrical coordinate. The failure functions may be expressed as follows:

2 2 2
Fibre tension: (011 2 O): F= (&] + (&j + (&j ,d. =1 4)

Xlt S12 813
. . ( 0)'FC—GH| d. =1
Fibre compression: 0, <V):F/ = x—, = (5)
1t
. . . (op+0y,) oh-0,0, oph+0;
Matrix tension: (0p +0y,20): Fl =22 28] 725 —00733 4 21 T2 ¢ = (6)
22 33 m X 2 X 2 X 2 mt
2t 23 12
Matrix compression: (022 +0y, 2 O):
2 2 2 2 2
=L X _1 (0'22"'0'33)_'_(0'22"'0'33) +O-23_O-220'33+0'12+013 d =1 7
" ll2s X2 482 X2 X2 o
23 2¢c 23 23 12

where X, Xic, Xat, Xac, S12, S13 and Sp3 are the various strength components and dg, d, die and dpe
are the damage variables associated with the four failure modes.
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The response of the material after damage initiation (which describes the rate of degradation of the
material stiffness once the initiation criterion is satisfied) is defined by the following equation:

c=C()-¢e o;=C;-¢g

(®)
_011_ _C]OI C102 C103 __811 |
on| |Ch Cy Cj €n
O | _ C, C, Cj &3
0-12 CA(1)4 812 (9)
0y C; €x
O] | Cos L1
where C;;1s a 6 x6 symmetric damaged matrix, whose non-zero terms can be written as:
C,=(-d)E (1-vyv,;,)l
Cp= (1-d f )(1_dm)E2(1_V13V31)F
Cy=(1- do)a-d, )E;(1—-v,v, )l
C,=01- d (1= dm JE (Vy = V3 V)T
C23 :(l_df)(l_dm)Ez(Vsz — Vvl (10)
C31 =(1-d (L= dm JE (V3 =V, V)T
C44 = (1 —d f )(1 - Smtdmt )El (1 - Smcdmc )G12
CSS = (1 —d f )(1 - Smtdmt )El(l - Smcdmc )623
C66 = (1 —d f )(1 - Smtdmt)El(1 - Smcdmc )Gl3
where the global fibre and matrix damage variables as well as the constant I' are also defined as:
dy=1-(1-dg)(1-dy)
dm :1_(1_dmt)(1_dmc) (11)

I'= 1/(1 = ViV = VosVa = Vy5V5, — 2V21V32V13)

where E; is the Young’s modulus in the i direction, Gj; is the shear modulus in the i—j plane and vj; is
the Poisson’s ratio for transverse strain in the j-direction, when the stress is applied in the i-
direction. The Young’s moduli, shear’s moduli, Poisson’s ratios and strengths of the CFPP are
given in Table 2 and 3. The factors sy and sy, in the definitions of the shear moduli are introduced
to control the reduction in shear stiffness caused by tensile and compressive failure in the matrix
respectively. The following values are recommended in [ABAQUS Theory Manual (2011)]: sy =
0.9 and s, = 0.5.
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Table 2. Properties data for the GFRP composite

E: E> Es G2 Gz Go3 Vio Vi3 Va3 p
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (kg/m’)

13 13 24 1.72 1.72 1.72 0.1 0.3 0.3 1800

Table 3. Damage initiation data for the GFRP composite

Xa7 X1c Xot Xoc S12 Si3 Sa3
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

320 240 320 240 140 140 140

2.2.2. Strain-rate effects in the mechanical properties

The effects of strain-rate on the mechanical properties of a composite material are typically
modelled using strain-rate dependent functions for both the elastic modulus and the strength. Yen
[Yen (2012)] developed logarithmic functions to account for strain-rate effects in a composite
material as follows:

{sRT}={so>[1+cl|n§]

&

{ERT}z{EO){HchniJ

(12)

Where

KN . . . . . . . T
{}:ﬂgl‘ ‘52‘ ‘51‘ “92‘ ‘512‘ ‘513‘ ‘523‘}

{SRT}:{X X?t Ic ch Sw 513 S23}T (13)
{ERT}:{E E E Glz G G23}

and the subscript RT refers to the rate-adjusted values, the subscript 0 refers to the static value,

£=1"1is the reference strain-rate, ¢ is the effective strain-rate, C; and C, are the strain-rate
constants, respectively.

2.3 Cohesive elements and material properties

The resin layer at the interface between 0° lateral axis and oriented at 90° across its diameter plies
was modelled using cohesive elements available in ABAQUS [ABAQUS Users Manual (2011)].
The elastic response was defined in terms of a traction-separation law with uncoupled behaviour
between the normal and shear components. The default choice of the constitutive thickness for
modelling the response, in terms of traction versus separation, is 1.0, regardless of the actual
thickness of the cohesive layer. Thus, the diagonal terms in the elasticity matrix and density should
be calculated using the true thickness of the cohesive layer as follows:
a=ots K=o K=t o (14)
C

$§
tC
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The quadratic nominal stress and energy criterion were used to model damage initiation and damage
evolution, respectively. Damage initiated when a quadratic interaction function, involving the
nominal stress ratios, reached unity. Damage evolution was defined based on the energy
conjunction with a linear softening law. The mechanical properties of the cohesive elements were
obtained from [Karagiozova et al. (2010)].

3 Implementation of the material model in ABAQUS/Explicit

The user defined VUMAT subroutine was developed to implement the material model and failure
criteria described in the previous sections in ABAQUS/Explicit. During each time step of
computation, this subroutine is compiled and enables ABAQUS/ Explicit to obtain the required
information regarding the state of the material and the material mechanical response at each
integration point of each element. The Hashin’s 3D failure criteria outlined in equations (4-7) are
calculated, and the elastic modulus and strength values are adjusted for strain-rate effects using
equations (11) base on these stresses computed within the VUMAT subroutine using the given
strains and the material stiffness coefficients. The element status, which determined by the failure
criteria, is then changed from 1 to 0 when an element fails. Accompanying the change of element
status, the stresses at that material point are reduced to zero and it no longer contributes to the
model stiffness. The element is removed from the mesh when all of the material status points of an
element have been reduced to zero.

The fibre metal laminates consisted of the aluminum, the composite and the cohesive layers as three
separate parts. The aluminum and composite layers for CFRP tubes were meshed using C3D8R
elements, which are eight-noded, linear hexahedral elements with reduced integration and hourglass
control. The mesh generation and boundary conditions shown in Figure 1. The interfaces between
the composite layers were created using eight-node 3D cohesive elements (COH3DS). The plate
size is 75%75 (in mm). The initial velocity applied to the projectile, with an only degree of freedom
in the vertical direction. The plate edges are fully fixed. Given that the panels were symmetric in
nature, a quart of each panel was modeled with the appropriate boundary conditions applied along
the planes of symmetry. A condition of general contact interaction was defined between the two
neighboring layers of composites. Surface-based tie constraints were imposed between the
composite layer and the cohesive layer to model adhesion between the adjacent layers. The contact
interaction property for interaction between the aluminum and composite layer was also defined.

T 7555
77 s

Figure 1 The geometry, mesh, boundary and loading conditions of the model for FMLs.
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4 Results and Discussion

The developed finite element models have been simulated to predict the structural behaviour of
fibre metal laminates subject to perforation loading. Modeling results were compared with the
experimental results, in terms of load-displacement relationships, energy absorption, deformation
and failure modes. The perforation loading on individual layers has been modeling firstly to
validation the FE modeling. The perforation prediction on FMLs has been compared with the
experimental data.
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Figure. 2 Comparison of load-displacement traces of perforation tests for individual layers on
aluminum and GFRP

Figures 2a show the comparison between the experimental and the numerical load-displacement
traces for the individual layers of the 6061-0 and 7075-O aluminums. The peak loads from the
numerical predictions and the experimental tests for these layers were 750 and 3105 N,
respectively. The former are only 3.1% and 9.2% higher than the latter, respectively. Also the
predicted initial stiffness and the displacement at the peak load for the two aluminum were shown a
good agreement with the corresponding experimental results. The predicted perforation energies
were 5.8 and 20.8 J respectively, which are only 5.8% higher and 6.4% higher than the
corresponding experimental results. Figures 2b present the comparison between the experimental
and the numerical load-displacement traces for the 0.5 mm 3-ply and 1 mm 5-ply composite layers
respectively subjected to a low velocity impact. The load-displacement traces shows that the
stiffness is lower at beginning and the traced start liner up after the displacement of 1 mm. The peak
loads from the numerical predictions and the experimental tests for these layers were 1015 and 1692
N, respectively. The former are only 4.1% and 7.2% higher than the latter, respectively. Also the
predicted initial stiffness and the displacement at the peak load for the two GRP skins were in
reasonably good agreement with the corresponding experimental results. The predicted perforation
energies were 3.35 and 5.51 J respectively, which are only 5.8% higher and 6.4% higher than the
corresponding experimental results. The fibre metal laminate was simulated using the validated
individual layers.
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Figure. 3 Comparison of load-displacement traces of 2/1 and 3/2 fibre metal laminates between FE
and experimental tests.

The finite element models using the constitutive models and failure criteria presented in the figure 2
were developed to simulate the critical perforation impact tests of various fibre metal laminates.
Figures 3a and 3b show the simulated and the related experimental load-displacement traces of 2/1
and 3/2 FMLs plates made with 3-ply and 5-ply composite layers respectively subjected to low
velocity impact. Figure 3a shows the 0.5 mm thick 6061-O aluminum and 3-ply GFRP based
FMLs. The load-displacement traces show a linear up stiffness until the fist peak load. The
predicted peak loads for the 6061-O based 2/1 and 3/2 FMLs plates were 203 and 355 Newtons,
respectively, which are 2.4% and 6.0% higher than the experimental results respectively. The
predicted initial stiffness and the displacement at the peak load for the targets were in good
agreement with the corresponding experimental results. The predicted perforation energies were
11.09 and 23.65 Joules, respectively. In comparison with the experimental results they were slightly
higher, respectively.

Figure 3b shows the 1 mm thick 7075-O aluminum and 5-ply GFRP based FMLs. The load-
displacement traces show a linear up stiffness up to the displacement of 1 mm. The stiffness
reduced and shows a lower liner stiffness before up to first peak load. The reduced stiffness maybe
caused by the delamination between aluminum and composite layer which cased the stiffness
reduced. The predicted peak loads for the 7075-O based 2/1 and 3/2 FMLs plates were 7100 and
12900 Newtons, respectively, which are 5.4% and 8.1% higher than the experimental results
respectively. The predicted initial stiffness and the displacement at the peak load for the targets
were in reasonably agreement with the corresponding experimental results. The predicted
perforation energies were 74.4 and 132.5 Joules, respectively. In comparison with the experimental
results the results still slightly higher.
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Figure 5 Comparison of the simulated and experimental failure modes of 3/2 FMLs plates made
with 3-ply and 5-ply composite

Figures 5 show the comparison of the simulated and experimental failure modes of 3/2 FMLs plates
made with 3-ply and 5-ply composite subjected to an on-set perforation impact. The basic features
of the experimental failure modes for all the FMLs plates were well simulated, in terms of the cross
cracks at the rear face and the local deformation mode at the target centre. Since the difference
between the FMLs plates was thickness of aluminum and the number of composite plies in the
composite layer, the experimental failure modes for these two FMLs plates were quite similar. The
FE simulate the delamination of resin between composite and aluminum.
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Figure. 6 Comparison of load-displacement traces of impact tests on 2/1 and 3/2 7075-0O based fibre
metal laminates between FE and experimental tests.
Finite element models of other types of FMLs plates subjected to a low velocity impact were also
developed include the strain rate effects to broaden the validation. Figures 6 show the numerical
simulations of the experimental load-displacement traces for the 3/2 FMLs plates made with 5-ply
composite cores respectively subjected to an on-set perforation impact. Very good correlation was
obtained between the experimental results and the numerical simulations, in terms of the overall
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initial stiffness, the peak load and the perforation process. The predicted peak loads for these two
FMLs plates were 970 and 1551 N, respectively, which are only 5.4 % and 5.8 % higher in
comparison with the experimental results, respectively. The predicted initial stiffness and the
predicted displacement at the peak load were also shown reasonably agreement with the
corresponding experimental results. The predicted perforation energies for these two plates were
103.4 and 175.5 J, respectively. Compared to the experimental results, the FE were reasonable
higher.
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Figure. 7 Comparison of energy absorption of 2/1, 3/2 and 4/3 fibre metal laminates between FE

and experimental tests.
Figures 7 show the comparison between the the perforation energy and the corresponding test
results in a chart form. Clearly, very good correlation was obtained. The green bar show the FE
prediction of the modeling and all the FE results are slight higher than the experimental data as the
load-displacement traces shown in early figure. The possible reason may caused by the contact
parameters used for the contact between projectile and FMLs, the strain rate of the modeling,
elements control of the modeling. In further studies, more points can to be predicted by using
validated numerical models in order to draw out the reliable relationship, In fact, the finite element
models developed are well validated based on the reasonably good prediction compare to the test
results.

Conclusions

Finite element models have been developed to simulate the structural behaviour of fibre metal
laminates with various stacking sequences and three different aluminium alloys subjected to impact
loading. Hashin’s 3D failure criteria, incorporating strain-rate effects in the GFPP is implemented
into ABAQUS/Explicit using a vectorized user-defined material subroutine (VUMAT). Very good
correlation has been obtained between the numerical simulations and the experimental results, in
terms of load-displacement traces, peak load and perforation energy. A reasonable agreemetn bas
been shown in deformation mode and failure mode.

The validated finite element models, which cover the configurations of 2/1, 3/2 and 4/3 laminates
made with different layers included 3-ply and 5-ply composite and various thinckness of
aluminiums are ready to be used for further parametric studies of FMLs subjected to different
loading conditions. The evidence suggests that the impact resistance and energy absorption
increased with the increasing of laminates thickness and area density. Both the peak load and erergy
absorption of 6061-T6 overperform than the 6061-O based fibre metal laminates, however the
specifii erergy absorption of later slight higher than former. It also a suggests that the 7075-O alloy
offers the best impact resistance and energy absorptions.
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The dual-fuel circuit pressure-swirl atomizers are numerically studied by the finite
volume method with the inside kerosene flowing under the boundary condition of
mass-flow-inlet ~ (300L/h~580L/h) and  pressure-inlet (1.44MPa~3.04MPa)
respectively. It is suggested that the velocity magnitude of the area near the wall of
outlets, as significant parts of the internal flow filed of the atomizer, increases nearly
linearly with the flow rate and the pressure of inlets. Furthermore, outlet flow rate
slowly increases with the increasing inlet pressure under the pressure-inlet boundary
condition and the fuel supply pressure of vice orifice increases fast with the
increasing inlet flow rate under the mass-flow-rate boundary condition. Therefore, the
inlet pressure and flow rate significantly affect the performances of atomizers.

Keywords: Swirl atomizers, inlet flow rate, inlet pressure, atomization performance

0 Introduction

Due to recent trends toward direction of higher thrust to weight ratio, high power to
weight ratio, high reliability and low fuel consumption of aero-engine technology,
how to improve the performance of the engine is still the focus of research in the field
of the aviation. The atomizer of aviation engine is an inevitable necessity component
due to fuel into the combustion chamber of the aviation engine in the form of droplets
or spray is burned, the characteristics of atomization directly determine the
combustion efficiency and stability of aero-engine. This process involves the fuel
atomization performed by centrifugal atomizer. There are many types of centrifugal
atomizers, which highlight the advantages of large fuel adjustment range, and ensure
that better fuel atomization quality can still be obtained at the condition of low
volume, meeting the requirements of the stability and complete combustion of the
aviation turbine in different altitude. It is believed that in-depth study of the dual
centrifugal atomizer to improve engine performance has a crucial role.

During the last decade, a number of numerical and experimental researches by many
scholars were conducted on the atomizer considering different perspective and
methods. [Jain M et al.(2014)] conducted a detailed experimental study to understand
the role of Reynolds number and geometry on the flow coefficient, spray angle and
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droplet size in a spray atomizer. [Chen et al.(2010)] experimentally compared the
effects of different operating conditions under which primary and secondary fuel line
working at the same time on spray angle, indicating that the gap between the two
situations is obvious. [Tratnig, A et al. (2010)] carried out an experimental study to
evaluate mean diameter of liquid droplet caused by physical properties of working
fluid. Although researches on the atomizer has achieved some profound
understandings [C. J. Wang Et al. (2009); Zhang Et al. (2003); Chatterjee S et al.
(2014); M. Yue Et al. (2003); Y. D. Kong Et al. (2007); Han Z et al. (1997); Datta
AFan Y, et al. (2000); Fan Y et al.(2014)], due to small size of atomizer and the
complexity of its internal flow field, significant details of the flow field cannot be
captured only relying on experiments. And researches regarding the effects of inlet
pressure, inlet flow on the flow field inside the atomizer are not deep enough and
comprehensive. Henceforth, this study is devoted to investigate the law of
dependence of inlet pressure, inlet flow on the flow field inside the atomizer using
FLUENT software of computational fluid dynamics.

1 Physical model and calculation methods

1.1 computational model

A schematic of structure of the double line pressure swirl centrifugal atomizer and
fuel flow inside the atomizer is shown in Fig. 1. Primary and secondary fuel line is
consist of swirl chamber, swirl groove and fuel orifice respectively. When it is
working, fuel is accelerated in swirl groove of primary and secondary fuel line and
then rotated in swirl chamber and finally sprayed to orifice in the form of rotating
film which is spread into a cone by centrifugal force. The fuel becomes relatively
small particles under the effect of the air.

Swirl groove+ Swirl chamber+

The main fuel lina+

Main orifices

ZC

Vice orifice+

The secondary fuel line+

Figure 1. A schematic of cross-section of the atomizer and fuel flow inside it[C. J.
Wang Et al. (2009))]

1.2 numerical calculation method

Due to fuel was injected into the atomizer at a relatively high speed at the inlet and
then generated high-speed rotation at swirl chamber, the flow belonged to turbulent
flow. Therefore, numerical simulation of the flow field of fuel in the atomizer also
involves turbulence model, and standard k — ¢ turbulence model was selected in this
study. To analyze the flow characteristics of this three-dimensional model and
simplify the problem, the following assumptions of the flow are adopted: (1)
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incompressible; (2) gravity cannot be ignored. The governing equations are expressed
as follows:
Continuity equation:

V-(pv)=0 (1)
Momentum equation:
p{&+(z—)-V)z—)}=p?—Vp+yV21—) @)
O
Turbulence equations:
‘Xaitkha(g—lzji):aixj [ﬂ+%}§—i +G,*+G,-pe—=Y ,+S,
M+M:i_[u+&]a_g_+c GGG Curbrs,
0. Oy Oyl 0.3, | Trk e

C.- C... C,, isempirical constantand C, =144, C,, =192is the default value in
FLUENT. Where Pis density; # is kinematic viscosity; p is velocity vector; P

is pressure; f is combined external force.

1.3 mesh-independent verification

In the current work, CFD (Computational fluid dynamics, CFD) FLUENT software
was used for numerical simulation. In order to improve the efficiency and accuracy,
structural hexahedral mapped mesh generated by the pre-processing software ICEM
was used, as shown in Figure 2. By comparing the amount of each of the grid 1.247
million and 1.181 million, the velocity magnitude of the line y = o through diameter
at the outlet is shown in Figure 3, indicating that two lines almost overlap by the
mesh-independent verification. Therefore, using 1.181 million mesh could meet the
requirements of numerical simulation and analysis.
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Figure 2. Mesh of calculated domain Figure 3. Mesh independence verification

velocity magritude of the line y=0{m/s)
(3]
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1.4 boundary conditions

During the calculation, the 3rd aviation kerosene is used as the working medium. The
properties of the 3rd aviation kerosene used in the computation are a density
=800kg/m’, the dynamic viscosity coefficient=0.00144Pa.s, the surface tension
=0.0268N/s, the boundary conditions are as follows:

(1) The inlet pressure is 1.44, 1.84, 2.04, 2.64, 3.04Mpa respectively;

(2) The inlet flow rate is 300, 370, 440, 510, 580 L/h respectively;

(3) Total Guage pressure is 0MPa at the outlet;

2 Results and discussion

2.1 local flow field (pressure, velocity distribution) inside atomizer

Internal filed of the atomizer under the condition of primary and secondary fuel
supply pressure as the same 370MPa was numerically calculated. The pressure and
velocity distribution is shown in Figure 4 wherein Figure (a), Figure(b) displays the
contours of the pressure and velocity in plane of Z=0 respectively. It can clearly be
seen from Fig. 4 that the pressure has an apparent gradient in swirl chamber of
primary and secondary fuel line, furthermore, due to the large pressure gradient in the
secondary fuel line, there is an obvious area of low pressure in the center of swirl
chamber. Correspondingly, after the fuel inflowing the inlet, velocity of the fuel was
gradually increased, and increased rapidly after flowing into swirl groove and then
fuel generated the acceleration and rotation in swirl chamber, finally was sprayed in a
cone under the centrifugal force. The velocity maldistribution of the fuel in the
swirling groove is dedicated to a sudden contraction of flow channel and its irregular
structure. The geometric structure of the swirl chamber is gradually tapered, thus
velocity magnitude of the fuel increases rapidly, reaching a maximum at the outlet,
which provides the necessary conditions for the fuel in form of droplets into the
combustion chamber.

R B
1736008 5ETe<01

(a) Contours of pressure (b) Contours of velocity
Figure 4. Schematic of flow field in the atomizer

2.2 Effect of inlet pressure on average velocity of annular area at outlet and outflow
rate .

Jet speed at the outlet where near the central area of the outlet is air and near the edge
of the annular area of the outlet is the fuel directly determines the fuel atomization
quality. The average velocity of the area was extracted to explore the dependence of
fuel inlet pressure and inlet flow rate on it. Figure 5 (a) is the curve of the effect of
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inlet pressure on average velocity of annular area at outlet. It shows that, when the
inlet pressure is 1.44, 1.84, 2.24, 2.64, 3.04Mpa, the average velocity in the annular
area is 35.1, 39.5, 43.6, 47.6, 51.4 m/s correspondingly. When the inlet pressure
equally spaced (0.4Mpa) increases, the velocity increases 4.4, 4.1, 4.0, 3.8 m/s
separately. Namely as the inlet pressure (1.44-3.04Mpa) increases, the velocity
magnitude of annular area at outlet is almost linearly increased, however the growth
rate of velocity slows gradually. Therefore, in the situation of sufficient fuel supply
and complete combustion, increasing inlet pressure of atomizer, the more fuel into the
combustion chamber, greater combustion power can be generated. However,
increasing the inlet pressure is not completely converted to an increase of the average
velocity. Accordingly, when design the atomizer, a fact that with increased pressure
(a range), the increasing trend of combustion power became slowly should be fully
considered.

Outlet flow rate is one of the most critical indicators of the performance of the
atomizer. Exploring the influence of geometric parameters or different operating
conditions (inlet pressure) on the outflow rate has an important significance to guide
the design and development of the atomizer. This paper focused on the effects of inlet
pressure on the outlet flow rate, as shown in Figure 5 (b). It apparently demonstrates
that when the inlet pressure is1.44, 1.84, 2.24, 2.64, 3.04Mpa, outlet flow rate is 0.136,
0.153, 0.169, 0.183, 0.196 kg/s respectively. When the inlet pressure equivalently
spaced (0.4Mpa) increases, the outlet flow rate increases 0.017, 0.016, 0.014, 0.013
kg/s accordingly. That is, as the inlet pressure (1.44-3.04Mpa) increases, outflow rate
is almost linearly increased. but a trend of the increase rate gradually becoming
slower has appeared. It is proved once again that a fact that with inlet pressure (a
range)increased, the trend of increase of burning power becoming slower should be
took full account when design atomizer.
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Figure 5. The effect of inlet pressure on the local flow field

2.3 Effect of inlet flow rate on the average velocity of annular area of the outlet and
fuel supply pressure of the secondary line
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As described in section 2.2, studying the average velocity of annular area of the outlet
has great significance. The law of the impact of the inlet flow rate on the velocity is
shown in Fig 6(a). Seen from the figure, when the flow rate of the inlet is 300, 370,
440, 510, 580L/h, the average velocity of annular area of the outlet is 14.8, 18.7, 22.8,
26.6, 32.5 m/s separately. While the inlet flow rate equally spaced (70L/h) increases,
the velocity increases 3.9, 4.1, 4.8, 5.9 m/s respectively. That is with the increase of
the inlet flow rate (300-510L/h), the velocity of annular area of the outlet is gradually
increased, and the increase rate becomes gradually faster. Consequently, in condition
of combustion chamber is large enough and fuel combustion is compete, compared to
adjust the inlet pressure, adjusting inlet flow rate (in a range) can remarkably enhance
the combustion efficiency .

Fuel supply pressure is one of the indicators of the performance evaluating the
atomizer, maximization of fuel supply efficiency in the atomizer is one of the
fundamental purposes of numerous researches. The relationship between flow rate
and supply pressure of the fuel in the secondary line was considered in this paper as
shown in Figure 6(b).It is shown that when the inlet flow rate is 300, 370, 440, 510,
580L/h, supply pressure of the fuel of the secondary line is 5.5, 8.4, 11.9, 16.2,
20.9Mpa respectively. While the inlet flow equally spaced (70 L/h) increases, supply
pressure of the fuel of the secondary line increases 2.9, 3.5, 4.3, 4.7Mpa respectively.
That is, with inlet flow rate (300-510L/h) increased, the supply pressure of the fuel of
the secondary line increases, and the increase rate gradually becomes faster. It can be
explained that the fuel in the secondary domain, the more fuel supplied to the inlet
passage (300-510L/h) ,leading to area of air contact with fuel is larger, the flow
resistance is increased accordingly. It is seen that, when the primary and secondary
fuel line operate simultaneously, a consideration that the increasing the flow rate (a
range) makes the resistance of secondary fuel line increase and the effect that increase
rate becomes faster should be premeditated in design of the atomizer.
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Figure 6. The effect of inlet flow rate on the local flow field

3 Conclusions
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(1)  With inlet pressure (1.44-3.04Mpa) increased, the average velocity of annular
area of the outlet almost linearly increases, slightly emerging a trend that as the
pressure increases, the increase rate will be slower. But the velocity sharply
increases with the increasing inlet flow rate (300-510L/h), while the increase rate
gradually goes up. Compared to adjust the inlet pressure (a range) , changing the
inlet flow rate(a range) can more validly enhance combustion efficiency in the
time of atomizer design.

(2) With the inlet pressure (1.44-3.04Mpa) increased, the outlet flow rate almost
linearly increases, effect of air resistance on the fuel also reveals a relationship of
linear increase, but increase of the flow rate tends to be slower. When improve
combustion efficiency of the atomizer, this effect that increasing pressure (a
range), the outlet flow increases correspondingly, but the increase rate slows
down should be given full consideration.

(3) With the increasing inlet flow rate, the fuel supply pressure of secondary line
increases, but the increase rate gradually becomes faster. The more fuel supplied
to secondary passage, the greater chance of fuel contacting with air is, and the air
resistance on the fuel becomes larger. Designing a atomizer especially primary
and secondary passage operates at the same time, it is concentrated on the fact
that with inlet flow rate increased, resistance of secondary line is increased and
the growth rate becomes faster.
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Abstract

Particle flow code (PFC) is widely used to model deformation and stress states of
rockfill materials. The accuracy of numerical modelling with PFC is dependent upon the
model parameter values. How to accurately determine model parameters remains one of
the main challenges. In order to determine model parameters of particle flow model of
rockfill materials, some triaxial compression experiments are performed, and the
inversion procedure of model parameters based on response surface method is proposed.
Parameters of particle flow model of rockfill materials are determined according to
observed data in triaxial compression tests for rockfill materials. The investigation
shows that the normal stiffness, tangent stiffness and friction coefficient of rockfill
materials will slightly increase with increase of confining pressure in triaxial
compression tests. The experiments in laboratory show that the proposed inversion
procedure behaves higher computing efficiency and the forecasted stress-strain relations
agree well with observed values.

Keywords: micromechanical model, rockfill materials, parameter inversion, triaxial
compression tests, response surface method

1. Introduction

Rockfill materials are widely used to construct dams. The deformation characteristics of
rockfill materials commonly are numerically simulated by distinct element method and
PFC software. The accuracy of numerical modelling with PFC is dependent upon the
model parameter values. How to accurately determine model parameters remains one of
the main challenges. Some researchers have tried to determine the micromechanical
model parameters of granular materials experimentally. Masson performed a set of
distinct element simulations of the filling and the discharge of a plane rectangular silo
with variable values of particle mechanical parameters. The analysis of the influence of
friction and stiffness of contacts showed that these parameters played a major role in the
flow kinematics and in the stress field during filling and discharge processes [Masson
and Martinez (2000)]. Bagherzadeh developed a novel approach for the two-
dimensional numerical simulation of the phenomenon in rockfill using combined DEM
and FEM. All particles were simulated by the discrete element method as an assembly
and after each step of DEM analysis, each particle was separately modeled by FEM to
determine its possible breakage [Bagherzadeh et al. (2011)]. Hosseininia presented a
model to simulate the breakage of two-dimensional polygon-shaped particles. In the
model, each uniform (uncracked) particle was replaced with smaller inter-connected
sub-particles which are bonded with each other [Hosseininia and Mirghasemi (2006)].
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Renzo performed a mathematical modification of Mindlin’s tangential solution and
demonstrated formally its advantages with respect to the commonly used model [Renzo
and Maio (2005)]. Coetzee presented a method for determining the parameters of
cohesionless granular material. The particle size and density were directly measured and
modeled. The particle shapes were modeled using two to four spheres clumped together.
The remaining unknown parameter values were determined using confined compression
tests and angle of repose tests [Coetzee et al. (2010)]. Koyama proposed a numerical
procedure to determine the equivalent micro-mechanical properties of intact rocks using
a stochastic representative elementary volume (REV) concept and a particle mechanics
approach. More than 200 models were generated in square regions with side lengths
varying from 1 to 10 cm, using the Monte Carlo simulation technique [Koyama and Jing
(2007)]. Kulatilake performed laboratory experiments and numerical simulations to
study the behavior of jointed blocks of model material under uniaxial loading. The
effect of joint geometry parameters on the uniaxial compressive strength of jointed
blocks was investigated [Kulatilake et al. (2001)]. Each particle has material parameters
(micro-parameters) that influence the particle macro-behaviors. The accuracy of PFC
model depends on the micro-parameters of model. How to accurately determine PFC
model parameters remains one of the main challenges.

PFC*® models the movement and interaction of circular particles by the distinct element
method (DEM), as described by Cundall and Strack (1979). The overall constitutive
behavior of a material is simulated in PFC*° by associating a simple constitutive model
with each contact. The constitutive model acting at a particular contact consists of three
parts: a stiffness model, a slip model, and a bonding model. The stiffness model
provides an elastic relation between the contact force and relative displacement. The
slip model enforces a relation between shear and normal contact forces such that the two
contacting balls may slip relative to one another. The bonding model serves to limit the
total normal and shear forces that the contact can carry by enforcing bond-strength
limits. Gonzalez-Montellano performed the experimental to determine values for several
of the microscopic properties-the particle density, modulus of elasticity, particle-wall
coefficient of restitution, particle-particle coefficient of restitution, and the particle-wall
coefficient of friction-of maize grains and olives, required for use in DEM simulations
[Gonzalez-Montellano et al. (2012)]. Yoon developed a new approach for calibrating
contact-bonded particle models using ‘experimental design’ and ‘optimization’ in
uniaxial compression simulation. These were applied to calculate an optimum set of
microparameters used in generation of models to be tested in uniaxial compression
simulations [Yoon (2007)]. Belheine calibrated the micro-mechanical properties of the
numerical material using numerical triaxial tests in order to match the macroscopic
response of the real material. Numerical simulations were carried out under the same
conditions as the physical experiments. The pre-peak, peak and post-peak behaviors of
the numerical material were studied [Belheine et al. (2009)]. Chen investigated the
failure mechanism and the limit support pressure of a tunnel face in dry sandy ground
by using discrete element method. The contact parameters of the dry sand particles were
obtained by calibrating the results of laboratory direct shear tests. A series of three-
dimensional DEM models for different ratios of the cover depth to the diameter of the
tunnel were then built to simulate the process of tunnel face failure [Chen et al. (2011)].
Deluzarche proposed a methodology to define the resistance of the 2D particles so that
the same probability of breaking blocks may be reproduced as in a 3D material. The
model used the discrete element code PFC?” and considered breakable clusters of 2D
balls. The different parameters were determined from experimental data obtained from
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laboratory tests performed on rock blocks [Deluzarche and Cambou (2006)]. Alaei
simulated single crushing tests and triaxial tests on the Purulia dam’s material to
validate the presented model for rockfill material. The obtained results demonstrated the
accuracy of the adopted model and the model’s capability for considering a rockfill
material’s strength, deformation and crushing behaviour [Alaei and Mahboubi (2012)].
Even if some procedures has been proposed to determine micromechanical parameters
of rockfill materials, the common drawback of these estimating procedures lies in lower
fitting and predicting precision. Response surface methodology is a collection of
statistical and mathematical techniques useful for developing, improving, and
optimizing processes in which a response of interest is influenced by several variables
and the objective is to optimize this response. Response surface methodology has been
widely applied in inverse solution of soil-water transport model parameters [Saha et al.
(2010)], parameter optimization [Muthuvelayudham and Viruthagiri (2010)], nutritional
parameter optimization [Kunamneni et al. (2005)]. The aim of the paper is to propose a
new procedure for determining PFC model parameters of rockfill materials from triaxial
compression tests and to validate effectiveness of proposed inversion approach through
experiments in laboratory.

2. Numerical simulations for triaxial compression tests using PFC software

PFC model is based on the simulations of the motion of granular material as separate
particles. Using the soft particle approach, each particle contact is modeled with a linear
spring both in the contact normal direction and contact tangential direction, as shown in
Figure 1. The particles are allowed to overlap and the amount of overlap is used in
combination with the spring stiffness to compute the contact force components.

g Ban
g

Figure 1. DEM contact model

The normal stiffness of a particle is secant stiffness. The relation between normal force
and normal displacement is expressed as follows

F,=kU, (1)
Where F, denotes total normal force, k, denotes normal stiffness, U, denotes total
normal displacement. The shear stiffness of a particle is a tangent stiffness. The relation

between increment of tangent force and increment of tangent displacement is expressed
as follows

=—k,AU, (2)
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Where AF, denotes the increment of shear force, ks denotes tangent stiffness, AU,

denotes the increment of shear displacement.The slip model is defined by the friction
coefficient at the contact f [dimensionless], where f is taken to be the minimum friction
coefficient of the two contacting entities.

In order to determine the model parameters of rockfill materials, some triaxial
compression tests of rockfill materials are performed in laboratory. The largest size of
rockfill particles is 100mm, as shown in Figure 2. The smallest size is 0.lmm. The
diameter of test model is 300mm. The height is 700mm, as shown in Figure 3. Variation
of deviatoric stress (principal stress difference: o1-03) versus axial strain in triaxial
compression test of rockfill materials is depicted in Figure 4. o1 is major stress (axial
stress), and o3 is minor stress (confining pressure). These test data are available for
parameter estimation of PFC model of rockfill materials.
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Figure 2. Particle size distribution for rockfill materials
D

=

Figure 3. Triaxial compression test of rockfill materials
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Figure 4. Variation of deviatoric stress versus axial strain in triaxial compression
test of rockfill materials
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Figure 5. Simplified PFC?® model of triaxial compression test of rockfill materials

After taking into account of symmetrical characteristic of triaxial compression test
model, PFC model is simplified into two dimensions for simulating triaxial compression
test of rockfill materials, as shown in Figure 5. The radius of rockfill particle in PFC*"
model is approached as 20mm according to the average radius of rockfill particle.
Influences of normal stiffness, tangent stiffness and friction coefficient of rockfill
materials on stress-strain relation are simulated with PFC model, as shown in Figure 6,
7 and 8.

—o—normal stiffness:1e8
5000 - —@— normal stiffness:5e7
—A— normal stiffness:1e7

4000
3000
2000
1000

01-03 / kPa

0 2 4 6 8 10 12 14 16
axial strain / %

Figure 6. Influence of normal stiffness of rockfill materials on stress-strain
relations (Confining pressure 1200kPa)
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Figure 7. Influence of tangent stiffness of rockfill materials on stress-strain
relations (Confining pressure 1200kPa)
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—o— friction coefficient:1.0
—@— friction coefficient:0.5
5000 —A— friction coefficient:0.1

4000 r
3000 -
2000 r
1000 -

0 o

0 2 4 6 8 10 12 14 16
axial strain / %

01-03 / kPa

Figure 8. Influence of friction coefficient of rockfill materials on stress-strain
relations (Confining pressure 1200kPa)

3. Parameter inversion procedures for PFC model using response surface method

Based on the response surface method, the relation between unknown PFC model
parameters of rockfill materials and deviatoric stress in triaxial compression test is
approached as [Rosa et al. (2009); Bas and Boyaci (2007)].

5. (0=a+Ybx+Ycx 3)

Where s, (X) is principal stress difference (o1-03) at loading step k, a, bj and ¢; are

unknown coefficients, X is unknown model parameter vector after dimensionless
procedure.

%%, %) =k .k, ff (4)
k k., - f
k, ==k, ==,f==< 5
TR b - )
Where En, k: and f denote initial evaluating values of model parameters according to
prior to information.
Taking the first loading step as an example, the left items of following equations can be

calculated by simulations using PFC*” software under the given model parameter
combinations

51(%) = s(k,.k,, ) (6)
5. (X) = s(k, + Ak, k, ) (7)
5 (%) = s(k, — Ak, k,, f) (8)
5/ (%) = s(k,, k, + Ak, ) ©)
57 (X) = s(k,,k, — Ak, f) (10)
s’ (X) =s(k,,k,, f +Af) (11)
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s/ (X) =s(k .k, f —Af) (12)

ns Nso

Where AIZn = O.I,AIZs =0.1,Af = 0.1,s, denotes principal stress difference computed in

the first loading case under i-th parameter combination, which is computed by using
PFC?® software. There exist 7 unknown coefficients and 7 equations. So, the 7 unknown
coefficients in response surface functions in the first loading case can be determined by
solving linear equation set with MATLAB software. The unknown coefficients in
response surface functions for other loading steps may be deduced by analogy.

Initial evaluating parameter values of PFC model of rockfill materials are listed in Table
1, where p denotes particle density, which is a known constant, o, denotes confining

pressure in triaxial compression test.
Table 1. Initial evaluating parameter values of PFC model of rockfill materials
K/Nm k/Nm f p/kg/m’ o, /kPa
8.0e7 8.0e7 0.9 2800 400
1.2¢8 1.2¢8 09 2800 600
1.4e8 14e8 1.0 2800 1200

After performing a lot of numerical simulations for triaxial compression test with PFC
software, the coefficients of response surface functions for every load step under
different confining pressure are computed and listed in Table 2, 3 and 4.

Table 2. Coefficients of response surface functions for every load step (Confining

pressure 400kPa)
Load step a by b, b3 C1 Co C3
1 -26.0 -1505.0  870.0  1230.0  850.0 -400.0 -600.0
2 -1255.0  -2800.0 2625.0 3515.0 1600.0 -1250.0 -1650.0
3 -120.0  -3325.0 685.0 4040.0 1850.0  -250.0  -1800.0
4 1793.0  2870.0 -5005.0 -1260.0 -600.0  2550.0 900.0
5 6447.0 -12430.0 1370.0 -155.0  6500.0 -700.0 450.0
6 9443.0 -12030.0 -4455.0 -720.0 6400.0  2250.0 800.0
7 -4291.0  3205.0 5305.0 1240.0 -950.0 -2750.0 100.0
8 -20630.0 25270.0 5960.0 11940.0 -12000.0 -3100.0 -5400.0
9 -24579.0  31465.0 -2645.0 20555.0 -15150.0 1250.0 -8850.0
10 -54751.0 52535.0 21190.0 36745.0 -26050.0 -10600.0 -17050.0
Table 3. Coefficients of response surface functions for every load step (Confining
pressure 600kPa)
Load step a by b, b3 C1 C2 C3
1 -3733.0 5510.0 1670.0 1090.0  -2600.0 -800.0 -500.0
2 -2702.0  4855.0 1130.0 875.0 -2250.0  -500.0  -250.0
3 -3957.0 7280.0 1170.0 1445.0  -3500.0 -500.0 -350.0
4 -13691.0  19685.0  945.0 9075.0  -9750.0 -250.0 -4050.0
5 -6514.0  19105.0 -2110.0 -1610.0 -9150.0 1100.0 1400.0
6 3683.0  26660.0 -13130.0 -17845.0 -13000.0 6500.0 9550.0
7 -9866.0  42955.0 -9960.0 -10210.0 -21150.0 5000.0 5900.0
8 -12339.0  59555.0 -15075.0 -15865.0 -29650.0 7250.0  8850.0
9 1064.0  47920.0 -26850.0 -19710.0 -23700.0 13000.0 10900.0
10 -61362.0 101415.0 -10325.0 34545.0 -50450.0 4850.0 -15950.0
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Table 4. Coefficients of response surface functions for every load step (Confining

pressure 1200kPa)
Load
step a b1 b, b3 C1 Co C3
1 457.0 -625.0 835.0 -265.0 550.0 -350.0 150.0

2 -234.0 160.0 1090.0 850.0 300.0 -400.0 -300.0
3 1150.0  -2275.0 620.0 1380.0 1850.0 -100.0 -500.0
4 48694.0 -98960.0 -3070.0 2385.0 52700.0 1800.0 -850.0
5 -3356.0  4500.0 2495.0 1905.0  -1000.0 -1050.0  -250.0
6 -10869  15845.0 -2075.0 11170.0 -6750.0 1150.0 -4800.0
7 -3229.0  9035.0 42100 -4680.0 -3050.0 -1900.0  3600.0
8 29202.0 -5755.0 -17810.0 -30510.0 4050.0  8700.0 16200.0
9 -89748  75030.0 52945.0 53025.0 -36500.0 -25750.0 -24550
10 -94191  126100.0 16225.0 48875.0 -62400.0 -8150.0 -22050

o1-03/'kPa

05 05
Figure 9. Response surface of deviatoric stress (f=1.0, Confining

pressure=400kPa)

The objective function of estimating PFC model parameters for rockfill materials is
defined as Root Mean Square (RMS)

min J =\/ﬁi[sk(i)—sp]2 (13)

Where J is objective function of parameter inversion, S, is the observed principal stress

differences for the-k loading step in triaxial compression tests of rockfill materials, N is
the number of loading step. Equation (13) is an optimization problem with non-
constrained conditions and can be solved with some optimization algorithms. So, the
inverse problem for parameter estimation is transformed into optimization problem and
can be solved with BFGS optimization algorithm [Broyden (1970); Andonegi et al.
(2011)]. According to observed data in triaxial compression tests of rockfill materials,
as shown in Figure 4, and response surface functions, as shown in Table 2, 3, and 4, as
well as BFGS optimization algorithm, unknown PFC model parameters of rockfill
materials are identified and listed in Table 5.
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Table 5. Identified PFC model parameters of rockfill materials

kn /MN/m ks /MN/m f o,/ kPa
86.504 83.224 009175 400
128.88 124.45 0.9192 600
144.31 137.12  1.0389 1200

From Table 5, it will be found that the normal stiffness is slightly larger than tangent
stiffness and nearly equal to tangent stiffness. Based on identified PFC model
parameters of rockfill materials, variations of deviatoric stress versus axial strain in
triaxial compression test of rockfill materials under different confining pressure are
simulated again. The differences between observed deviatoric stresses and predicted
ones are depicted in Figure 10, 11 and 12. From these figures, we can find that predicted
values by PFC model agree well with the experimental ones.

—o— Experimental result
—— Predicted result

2500
2000
1500
1000
500
0

01-03 /kPa

01 23456 78910
axial strain/%
Figure 10. Comparison between experimental values and predicted ones in triaxial
compression test (Confining pressure 400 kPa)

—o— Experimental result
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Figure 11. Comparison between experimental values and predicted ones in triaxial
compression test (Confining pressure 600 kPa)
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—o— Experiment value
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Figure 12. Comparison between experimental values and predicted ones in triaxial
compression test (Confining pressure 1200 kPa)

The further investigation facts that the normal stiffness, tangent stiffness and friction
coefficient will increase with the increase of confining pressure o3, as shown in Table 5
and in Figure 13 and 14. The relations between constitutive model parameters of
particles and confining pressures can be expressed as follows

_ (93\p

K, —a(—Pa) (14)
0 F3\¢

ks _l//( Pa) (15)
_ mcZ3\n

f= m(—P ) (16)

a

Where ¢, y and m are coefficients of empirical equations, £, ¢ and n are exponents of
empirical equations, P, is atmosphere pressure, P, =100kPa. After regression analysis,
the coefficients and exponents of empirical equations are determined as follows:
o=51.1, f=0.437, y=50.5, {=0.423, m=0.763, n=0.120.

—o— normal stiffness

- 160 —o— tangent stiffness

Z 140 -

2
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80
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Figure 13. Variation of normal stiffness and tangent stiffness versus confining
pressure
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Figure 14. Variation of friction coefficient versus confining pressure

4. Conclusions

1) A new inversion procedure is proposed to determine PFC model parameters of
rockfill materials. Based on the response surface method, the relation between unknown
PFC model parameters of rockfill materials and deviatoric stress in triaxial compression
test is approached. By comparing forecasted stress-strain curves with observed ones, the
effectiveness of proposed model parameter inversion procedure is validated by
experiments in laboratory.

2) The investigation facts that the normal stiffness is slightly larger than tangent
stiffness and nearly equal to tangent stiffness. The normal stiffness, tangent stiffness and
friction coefficient will increase with the increase of confining pressure.

3) The nonlinear relations between constitutive model parameters of particles and
confining pressures are presented. But the expressions and its coefficients only supply
references because the number of samples is not large enough. How to determine pro-
fractured mechanical characteristics of rockfill materials should be further investigated
in the future.
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Abstract

The Finite-Discrete Element Method (FEM/DEM) is a promising tool to analyze the
tire-sand interactions. However, it usually requires a long driving distance to
investigate the tire running behavior on the sand road which will lead to a large-scale
simulation model. The Alternately Moving Road Method is proposed in this study to
reduce the size of the simulation model: the sand road which has been passed over by
the tire is removed and same size of road specimen is laid in front of the tire
simultaneously. This method possesses the ability to keep the road scale constant and
acceptable in the simulation of arbitrary length sand roads. Numerical model of tire
driving on sand road is established to verify the feasibility of the method. And the
simulation results are compared with the current experimental results to validate the
feasibility and effectiveness of the method.

Keywords: Alternately Moving Road Method, Tire-sand interactions, FEM/DEM,
Running behavior

1 Introduction

The in-depth study of the tire-sand interactions is significant to the design and
parameter match of off-road vehicles. Recently, as the rapidly developed of computer
technology, numerical method becomes an efficient and economic approach for the
research of this field. The Finite Element Method (FEM) and the Discrete Element
Method (DEM) are two frequently used methods. The FEM, which is based on the
continuous theory, possesses the advantage of describing the tire characteristics
[BIRIS et al., (2011); Cuong et al., (2013); Gonzalez Cueto et al., (2013); Li and
Schindler, (2013); Moslem and Hossein, (2014)], and the DEM is appropriate to
model the granular futures such as large displacement of the sand [Khot et al., (2007);
Knuth et al., (2012); Nakashima et al., (2007); Smith and Peng, (2013); Zhang et al.,
(2012)]. Thus, it is quite nature to use the DEM and the FEM together (FEM/DEM)
to taken into account the advantages of the two method in the investigation of tire-
sand interactions, where the sand can be modeled by using the DEM and the tire
model can be discretized into finite elements.

The FEM/DEM method has been used by David [David et al., (2001)], Nakashima
[Nakashima and Oida, (2004); Nakashima et al., (2008), (2009)] and Zhao [Zhao and
Zang, (2014a), (2014b)] to investigate the tire-soil interactions and proved to be an
effective tool. In these literatures, the discrete elements were contact with each other
and with the finite elements, and the contact detection was the most time consuming
part. Although various kinds of contact detection algorithms were applied by
researchers to improve the computing efficiency, it is still the bottleneck problem for
the application of this method due to large amount of discrete elements, especially for
a longish test road. In this study, the 3D FEM/DEM is applied to investigate the tire-
sand interactions and the Alternately Moving Road Method (AMRM) is proposed to
keep a constant number of discrete elements for the simulation of arbitrary length test
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roads.

The structure of the paper is as follows: Sect. 2 briefly introduces the basis for the
application of the FEM/DEM to the investigation of the tire running behavior on sand
terrain. Sect. 3 illustrates the principle of the AMRM according to two-dimensional
schematics. Sect. 4 presents the detailed FEM/DEM numerical example of a rigid tire
running on sand road, where the feasibility of the AMRM is also displayed. The
conclusions of this study are listed in Sect. 5.

2 The basis for analyzing tire running behavior by using FEM/DEM

The motions of the discrete elements and the finite element nodes are governed by the
Newton’s Second Law. For arbitrary element i, the equations are expressed by Eq. (1)
(used for both discrete elements and finite element nodes) and Eq. (2) (only used for
discrete elements).

m (d°u, /dt*) =F, (1)

1,(d%,/ dt*) = M, 2)
where m; and |; are the mass and inertia moment of element i, respectively; U; and 6;
are the displacement and the rotation angle of element i, respectively; F; and M; are
the total external force and centroidal moment of element i, respectively. Egs. (1) and
(2) are solved by the explicit finite difference method.

The contact models for elements are shown in Fig. 1, where h;j is the overlap of two
contact elements; Vi, Vj, ®; and j are the velocity and angular velocity of element i
and J, respectively; Oj, O; are the mass center of the discrete element i and ],
respectively; C is the contact point of the elements; F, is the normal force, and Fs,
taken Coulomb friction law into account, is the tangential force among elements. Fe
and F,y are the normal spring and the normal damping forces, respectively; Fse and
Fsv are the tangential spring and the tangential damping forces, respectively. The
spring and damping forces are calculated by the Hertz-Mindlin theory [Balevicius et
al., (2004)] for both the two types of contact, where the finite elements are regarded
as spheres with infinite radius [Han et al., (2000)]; u is the friction coefficient.

(a) Discrete elements model (b) Discrete and finite element model (c) Interaction forces
Figure 1. Contact models among elements

The concept of analyzing tire-sand interactions by using the FEM/DEM is illustrated
in Fig. 2. The discrete elements contact with each other and with the finite element
tire. Consequently, the tire drawbar pull N, vertical reaction force P and slip ratio S
can be derived from Egs. (3) - (5).

N=G-|R 3)
P=)1, (4)
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s=(1-v/(rm))

)

where f is the contact force between the finite elements and the discrete elements; G=
> fy+ and R=Xf_are the gross traction force and the resistance, respectively; v and @

are the translational speed and the angular velocity of the tire; r is the tire radius.

S

b

X

Figure 2. The tire-sand analysis system by using the FEM/DEM
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3 The Alternately Moving Road Method

FE wheel
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DIFE sand particles

It is obvious that the sand outside a certain distance of the tire center have less
influence on the tire running behavior. Thus, during the tire running process, the sand
which is run over by the tire could be removed and new sand could be laid in front of
tire to form new road. Accordingly, the Alternately Moving Road Method is proposed
and the specific steps are as follows: first, the sand road sample, which is a section of
the whole road, is established. Then, the initial sand road is assembled by combining
two road samples in sequence. After that, the tire is placed on the sand road and starts
to run. The alternation is performed when the tire travels a proper distance. The
execution flowchart of the method is shown in Fig. 3, where T is the current
calculation time; Ty, is the termination time, At denotes the time step of the explicit

time integration.

/ Data read /

v

Establish the sand road sample

v

Assembly the initial sand road

v

Place the tire on the sand road

»]

Y

Tire start running

Alternate the sand road

/

Data output /

!

1=T+A4t

Figure 3. The execution flowchart
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3.1 The establishment of sand road sample

Firstly, the discrete elements which are randomly distributed in a given domain are
generated. There might be contact among the elements but no overlaps, contact forces
or confining stress at this stage. Thus the elements should be rearranged to a steady
state under self-weight to simulate the real sand. The boundary of the domain is
constrained by rigid walls during the rearrangement process and the C-grid algorithm
[Williams et al., (2004)] is applied for the contact detection among the discrete
elements. The Discrete Element Set (DES) at the stable stage is the so-called sand
road sample (recorded as DES S), as illustrated by two-dimensional schematic in Fig.
4. To facilitate the descriptions later, the element sequence numbers in the schematic
are recorded as 1 ~ N; the coordinates of arbitrary element i are recorded as X: Sy, Y:
Sy,i; the length of the sample is equal to a; The constraint boundaries of the rigid wall
are X: [0,a], Y: [0,b]. The contact detection regions for the C-grid algorithm are also
set to be X: [0,a], Y: [0,b].

A
Y

DES §

A

X a 0

Figure 4. The sand road sample
3.2 The assembly of the initial sand road

The initial sand road consists of two sand road samples mentioned in Sect. 3.1. The
sand road sample DES S is duplicated into two DESs and recorded as DES A, and
DES A;. The DES Ay and DES A, are arranged in sequence along the X direction to
assemble the initial sand road, as illustrated in Fig. 5. The total element number of the
initial sand road is 2N. This is realized by adding the constant value a to the X
coordinate of each element in DES A;. Simultaneously, the element sequence
numbers of DES A; are changed into N+1 ~ 2N. The coordinates of arbitrary element
i in DES A; are X: Syinta, Y: Syin. Other parameters of the elements are unchanged.
The constraint boundaries of the rigid wall are altered into X: [0,2a], Y: [0,b]. The

contact detection regions for the discrete elements are also altered as X: [0,2a], Y:
[0,b].

A
Y
b
DES Ai DES Ao
N X 2a < > 0
Initial sand road

Figure 5. The initial sand road
3.3 The Alternately Moving Road process
The tire is placed at the center position of the DES Ay, as illustrated in Fig. 6, and
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vertical load including self-weight of the tire and external load is loaded to the tire
mass center. A constant angular velocity @ and corresponding translational speed v
are enforced to the mass center of the tire after the vertical reaction force between the
tire and the road is equal to the given vertical load. Then the tire starts to run along
the X direction under specific slip ratio conditions.

%
<— Tire A

@

DES Ax DES Ao

X 2a 0
< »

Initial sand road

Figure 6. Initial position of the tire

The Alternately Moving Road process is performed when the tire arrives at the
alternate point, where DES A has almost no influence on the tire running behavior
and the distal end of the DES A; is not serious damaged. In this study, the alternate
point is at the center position of the DES A as illustrated in Fig. 7.

< (L) Tire A

. - oy, Y

Alternate point @ ( |
1

The distal end
™~ DES A1 DES Ao

A

X 2a 0
o »

Initial sand road
Figure 7. The alternate point for the AMRM

Then the elements of DES Aj are removed and the road sample DES S (established in
Sect. 3.1) is duplicated again and recorded as DES A,. The element coordinates of
DES A, are altered by adding the constant value 2a to the X coordinate of each
element and the element sequence numbers are recorded as 1 to N. The coordinates of
arbitrary element i are X: Syi+2a, Y: Sy after the alternation. Then, the DES A, and
DES A, form a new sand road, as illustrated in Fig. 8. The constraint boundaries of
the rigid wall are altered into X: [0,3a], Y: [0,b]. The contact detection regions for the

discrete elements are also changed into X: [0,3a], Y: [0,b].

Sand road after first alternation

‘Ll
-— . A
Tire
O Y
_______ - b
SA DES Ao
DES A2 DES A1 (Removed)
D X 3a 2a 0
< Initial sand road >

Figure 8. The first time of sand road alternation
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Repeat the alternate process along the tire running direction and the tire running
behavior on arbitrary length of sand road can be investigated with constant number of
discrete elements. The alternate principles are as follows: for the kth alternation, if k
is odd, the element sequence number is set to be 1~N; else if k is even, the element
sequence number is set to be N+1~2N; The coordinates for arbitrary element i should
be changed into X: Syi+(k+2)a, Y: Syi for K is odd, and to be X: Syint+(k+2)a, Y: Syin for
k is even; The constraint boundaries of the rigid wall and the contact detection regions
for the discrete elements should be changed into X: [ka,(k +2)a], Y: [0,b].

4 Numerical examples

Three-dimensional numerical model of tire running on sand road is established based
on the soil-bin experiment in [Shinone et al., (2010)] to validate the feasibility and
effectiveness of the AMRM in the investigation of the tire-sand interactions, where
the sand road is modeled by discrete elements and the tire is discretized into finite
elements. And the tire running behavior under different slip ratio is also investigated.

4.1 The sand road sample

Firstly, the discrete elements, which are randomly distributed in a given domain of X:
[0,735], Y: [0,480], Z: [0,280], are generated, as illustrated in Fig. 9. The friction

coefficient between the discrete element and the rigid wall is set to be 0.3. The
displacement contour of the discrete elements in Z direction during the rearrangement
process under self-weight is shown in Fig. 10. The time history of the total
gravitational potential energy (TGPE) is shown in Fig. 11. The value shows a
decreasing trend and tends to be stable after 1.1 s of rearrangement. Then the
rearrangement process is completed. The porosity value for the final state is about
0.32. The discrete element set is stored as the road sample. It should be noticed that
this paper is focusing on the validation of the effectiveness of the AMRM, thus the
radius range of the discrete element is 6~7 mm which is larger than the real sand.

Unit:mm

.
3

735

Figure 9. The configuration of the discrete element after the initial generation
Discrete element parameter: Young’s Modulus: 75000 MPa, Poisson’s Ratio: 0.3, Density:
2400 kg/m3, Element number: 45551, Friction coefficient: 0.3.

Fringe Levels Fringe Levels
3.000e+00 _ 3.000e+00 _
-6.300e+00 -6.300e+00
-1.560e+01 -1.560e+01
-2.490e+01 _ -2.490e+01 _
34206401 _
_4.350e+01 -4.350e+01

-6.280e+01 :W

-6.210e+01 _| -6.210e+01 __

-8.070e+01
-9.000e+01

TA0e0t L
-8.070e+01
-9.000e+01

(@) t=0s (b) t=0.365 s
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Fringe Levels Fringe Levels

3.000e+00 _ 3.000e+00 _
-6.300e+00 -6.300e+00
-1.560e+01 -1.660e+01

2490401 _ -2.490e+01 _

(c) t=0.730 s (d) t=1.095 s
Figure 10. The displacement counter of the discrete elements in Z direction
during the rearrangement process under self-weight (front view)

250 -

230 -

15{] T T T T T T T T T T 1
0 01 o002 03 04 05 06 07 08 009 1 1.1

Time /()

Figure 11. Time history of the TGPE of the discrete elements

4.2 Models of the initial sand road and the tire

The initial sand road consists of two road samples as illustrated in Fig. 12. The model
size parameters are refer to the soil-bin experiment in [Shinone et al., (2010)]. The
discrete element number is 91102, the length of the initial sand road is 1470 mm
which is two times of the sand road sample illustrated in Sect. 4.1. The parameters of
the discrete elements are the same as the ones in Sect. 4.1.

Unit: mm

Sand road

(a) Front view (b) Left view
Figure 12. The models of the initial sand road and the finite element tire
Parameters of the tire: Young’s Modulus: 2 MPa, Poisson’s Ratio: 0.49, Density: 1800 kg/m”,
Element number: 1344.

The tire is placed on the sand road. Vertical load of 1295 N including the self-weight
of the tire and the external vertical load is loaded to the center of the tire. The tire
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sinks onto the sand road until the vertical reaction force between the tire and road
reached 1295 N. Afterwards, constant angular velocity of 0.5 rad/s and corresponding
translational speed are enforced to the tire center, and the tire travels towards the X
direction under 30% slip ratio. The tire deformation is neglected for the given
experimental inflation pressure of the tire in [Shinone et al., (2010)]. The friction
coefficient between the tire and the sand road is set to be 0.4.

4.3 The alternately moving road process

The tire running along the X direction and the alternation of the sand road is
performed when the tire running a distance of k*735 mm, where K is alternate times.
The displacement counter of the discrete elements in Z direction during the traveling
process is shown in Fig. 13: Fig. 13(a) is the initial configuration; Fig. 13(b) shows
the rut of the tire at time 0.777 S; when the tire travels a distance of 735 mm, the first
alternation is performed, as shown in Fig. 13(c); then, the tire continues to move, and
the rut of the tire at 1.58 S is shown in Fig. 13(d); After 1470 mm of travel, the second
alternation is performed, as illustrated in Fig. 13(e); The total tire traveling distance is
1560 mm, and the final configuration is shown Fig. 13(f). During the running process,
the length of the sand road keeps a constant value of 1470 mm, the total number of the
discrete elements keeps a constant value of 91102.

The simulation is carried out on a PC. The principal characteristics of the PC are Intel
Core 13-2100 1.58GHz (CPU), 2.00GB (RAM) and Windows XP Home Basic SP3
32bit. The elapsed time for the above numerical test is approximately 72 hours.

Figure 13. Displacement counter of the discrete elements under the rolling tire in
30% slip ratio
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4.4 Tire running behavior

Fig. 14 shows the vertical reaction force as a function of the traveling distance under
the 30% slip ratio condition. It can be seen that the vertical reaction force shows an
abrupt fluctuation at the initial stage. The possible reason is that there is a vertical
downward velocity when the tire was placed on the sand road (see Sect. 4.2 for detail),
this lead to an impact between the tire and the road. Afterward, the tire vertical
reaction force tend to be stable and its value fluctuates around 1295 N which is the
given load value.
1950

1300

Vertical reaction force /(N

0 200 400 600 200 1000 1200 1400 1600
Traveling distance /{num)

Figure 14. The vertical reaction force during the traveling process

Fig. 15 shows the drawbar pull as a function of the traveling distance under the 30%
slip ratio condition. Analogous to the abrupt fluctuations of the vertical reaction force,
the drawbar pull also shows a dramatic fluctuation at the initial stage because the tire
traction force G is proportional to the vertical reaction force. After that the drawbar
pull value is relatively stable without any abrupt fluctuations at the alternate point and
its value fluctuates around 75 N. The possible reason for the fluctuations of the
drawbar pull is the large radius values of the discrete elements.
350

Drawbar pull /(N

0 200 400 600 200 1000 1200 1400 1600

Traveling distance /()

Figure 15. The tire drawbar pull during the traveling process

Fig. 16 shows the tire sinkage value as a function of the traveling distance under the
30% slip ratio condition. It can be seen that the tire sinkage value increases
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dramatically at the initial stage due to the unbalance vertical force acting on the tire.
Then its value fluctuates around the value of 45 mm and there are no abrupt
fluctuations at the alternate point.

Trawveling distance /(rum)
0 200 400 600 800 1000 1200 1400 1600

-10 A

Sinkage/{mm)

-30 A

-40 A

50 -
Figure 16. The tire sinkage during the traveling process

Fig. 17(a) presents the flow trend of the discrete elements in the X-Z plane under the
rolling tire with 30% slip ratio. Herein, the velocity vectors of the elements are used
to display their flow trend. It can be seen that the flow trend can be divided into two
areas: the forward area flow in clockwise direction due to the bulldozing force of the
tire and the rear area in anticlockwise direction because of the traction force of the
rolling tire (digging effect). This result agrees qualitatively with the experimental
result [Zhuang, (2002)] as illustrated in Fig. 17(b).

(a) Simulation result (b) Experimental result [Zhuang, (2002)]
Figure 17. Flow trend of the sand particles under a rolling tire

A constant angular velocity of 0.5 rad/s and corresponding translational velocity for
different slip ratios according to Eq.(5) are loaded to the mass center of the tire to
further analyze the influence of the slip ratio on the tire running behavior. Fig. 18
illustrates the tire equivalent sinkage values (the average sinkage value under each
slip ratio) as a function of the slip ratios. It can be seen that the equivalent tire sinkage
values are rise with the increase of the slip ratio. And the trend becomes steeper when
the slip ratio is larger. This agrees qualitatively with the experimental results in
[Shinone et al., (2010)]. However, the simulation results are larger than the
experiment results. The possible reason is that the parameters in this study are
decided by a trial and error preliminary computation to ensure the numerical stability
at this stage. And the selection of the microscopic parameters among the discrete

256



ICCM2014, 28th-30th July 2014, Cambridge, England

elements has strong effects on its macroscopic mechanics.
Ship ratio /(%a)
0 10 20 30 40 50

10 4 — Simulation result A Expenmental result
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‘ ‘
‘

Sinkage/(mm)

60 -

70 -
Figure 18. The relation between tire sinkage and slip ratio

Fig. 19 illustrates the equivalent values (the average drawbar pull value under each
slip ratio) of the drawbar pull as a function of the slip ratios. It can be seen that the
drawbar pull shows an increasing trend when the slip ratio is less than 25%, and its
value tend to be stable when the slip ratio is larger than 25%. Such whole developing
trend agrees qualitatively with the experimental result in [Shinone et al., (2010)]. It
should be noticed that there is a large difference between the simulation results and
the experimental results when the slip ratio is less than 15%. The possible reason for
this phenomenon is the larger translational speed of the tire for the smaller slip ratio
condition according to Eq. (8), and this leads to larger tire bulldozing resistance. The
drawbar pull values have a little decrease after the slip ratio value is larger than 35%.
This is because the bulldozing force is even larger due to the larger tire sinkage
values under these slip ratio conditions. It should also be noticed that all the drawbar
pull values are smaller than the experimental results because of the larger sinkage
values, as shown in Fig. 19, which leads to larger bulldozing resistance.

¥ -

200 — Simulationresult A Expenmentalresult

150

100 - A A A A 4 A
F

Drawbar pull /{N)

0 10 20 30 40 30
) ) Slip ratio /(%) ) )

Figure 19. The relation between tire drawbar pull and slip ratio
4.5 Discussions

As can be seen from the Fig. 14, Fig. 15 and Fig. 16, the alternate moving road
process is stable and effective for the simulation of tire running behavior on arbitrary

257



ICCM2014, 28th-30th July 2014, Cambridge, England

length sand roads.

As can be seen from Fig. 17, Fig. 18 and Fig. 19, the tire slip ratio has strong effect
on its running behavior. The sinkage value of the tire rises with the increases of the
slip ratio due to the tire traction effect (digging effect). This leads to the increase of
the bulldozing resistance which is the main resistance for tire running on sand road.
The drawbar pull shows a steeper increasing trend when the slip ratio is less than 25%
and the values tend to be stable when the slip ratio is larger due to the dramatically
increase of the resistance under these slip ratio conditions.

The comparisons between the simulation results and current experimental results
show that the FEM/DEM is a straightforward and effective tool to investigate the tire
running behavior on sand road, where the flow trend of the sand particles under a
rolling tire, the drawbar pull and the sinkage of the tire and the dynamic parameters
such as vertical acceleration value of the tire can be obtained expediently and
reasonably.

5. Conclusions

From the above investigation, following results can be obtained:

(1) The Alternately Moving Road Method is proposed and applied to the FEM/DEM
simulation of tire running behavior on the sand road. This method possesses the
ability of simulating arbitrary length of sand road with constant discrete element
numbers. Numerical simulation results show that the method is stable and effective.

(2) The tire running behavior such as the normal reaction force, tire drawbar pull, tire
sinkage and flow trend of the sand particles can be obtained conveniently by the
FEM/DEM. The comparisons between the simulation and current experimental
results show that FEM/DEM is an effective and promising approach to simulate the
tire running behavior on the sand terrain. The current research work is not only
appropriate for the tire-sand interactions, but also suitable for the investigation of
other terramechanics problems such as soil cultivation process.

Plans for the future work are to improve the accuracy of the method. The size effect
of the discrete elements and the new discrete element interaction models considering
the rolling resistance [Ai et al., (2011); Jiang et al., (2005); Kuhn and Bagi, (2004)]
should be investigated.
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Abstract

Modelling problems in structural analysis requires of a statistical approach that allows us to take
into account the random nature of the variables as well as the uncertainties involved in the problem
being analysed. However neither all statistical models are valid nor all assumptions are
mathematically or physically reasonable. The aim of this paper is twofold: (a) to explain how to
build statistical models with mathematical and physical coherence, and (b) to describe the most
common mistakes made when building or selecting mathematical and statistical models. We
provide some interesting tools to carry out this important task and present some examples that show
the inconveniences and consequences derived from an incorrectly established model.

Keywords: Location-scale stable families, Structural analysis statistical models, Specification of
multivariate joint distributions, Extreme Values, Probability papers.

Introduction

Before selecting a model to solve a given engineering problem, a very important step consists of
dedicating sufficient time to study the problem under consideration in some depth. This means that
the engineer must understand the problem, the variables and the implied physical relations, which
should be present in the model. For example, an engineer dealing with a breakwater needs to
understand that the large waves and winds are the most important agents implied in design. This
means that maxima events and then maxima extreme value distributions must be considered. The
limited or unlimited range of the random variables involved is also relevant, because this permits
excluding either the Weibull or Frechet type of distributions. Ignoring these aspects leads to
unconservative or very expensive solutions which are engineeringly regrettable.

It is also convenient to use simple models, that is, as parsimonious as possible and dimensionally
consistent. In this line, the Buckingham theorem plays a fundamental role and should be the first
step in equation modelling. Apart from reducing the number of variables involved and avoiding us
to be concerned about dimensions, it permits us to check if the selected variables are sufficient or
need to be completed with additional variables to reproduce a physical problem or phenomena.

Another important decision to be made when building models is the selection of the families of
random variables used to reproduce the real ones. In this context, the designer must take into
account the variable ranges and be aware that not all distribution families are valid for reproducing
all types of variables. In this context, one should know that some distributions are valid only for
dimensionless variables (Poisson, beta, binomial, etc.) and that some distributions are not scale
(geometric, chi-squared, etc.) or location (gamma, log-normal, etc.) stable. For example, selecting
non-scale families means that the resulting models will not be valid for variables when written in
terms of different measure units, and then they are inadequate.

Since a statistical analysis requires the joint distribution of all variables involved, the selection of a
multivariate model is crucial too. In this line it is important to use feasible models. We point out
that in some cases a lack or an excess of simplifying assumptions can lead to undefined or
inexistent models, respectively.
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As a final example, the designers should be aware of the existence of different probabilistic papers
(maximum, minimum, etc.) and that not all data points but only those in the tail of interest must be
used when dealing with extremes. Ignoring these facts can be catastrophic.

Since we consider that all these issues are very relevant for engineers, they are discussed with some
detail in this paper.

The aim of this paper is twofold. On one hand we introduce some considerations to be taken into
account when building statistical models and, on the other hand, we point out some problems we
can find when these aspects are not considered. Besides, we provide some tools to facilitate this task
together with several examples for a better comprehension of the concepts discussed.

The paper is organized as follows. In Section 2 we present a brief review of some of the statistical
models proposed in different Civil Engineering fields. In Section 3 we make some considerations
about the units of the random variables and their moments. In Section 4 we emphasize the
importance of the Buckingham theorem in order to build parsimonious and dimensionless models.
In Section 5 we deal with extreme values and probability papers. In Section 6 we explain and
discuss different possibilities to define multivariate models and finally, in Section 7 we give some
conclusions.

Some statistical models proposed in the literature

In the Civil engineering literature it is becoming more frequent to find statistical approaches. For
example, reliability analysis has reached all engineering fields. Due to the abundant bibliography
dealing with this issue, as a sample and for illustration purposes, Table 1 shows a list of some
examples of distributions used in the Civil Engineering literature.

Table 1: Some probability distribution families used in the literature together with the
corresponding engineering variables.

VARIABLE DISTRIBUTION VARIABLE DISTRIBUTION
Geomanc and mechanical log-normal and normal  |[Maximum wave height  [reverse Weibull
properties
Material properties normal, two- and three- ||Two successive wave bivariate Weibull and bivariate
prop parameter Weibull periods Rayleigh
. Weibull, generalized gamma,
Exc'e depces of wave h'elght Generalized Pareto Significant wave heights |generalized beta kind I and
or significant wave height beta kind I1

Raleigh, wide-band,
Weibull, beta, log- Significant wave height
normal, Rice’s and and wave period

normal distributions

Box-Cox + bivariate normal,
bivariate log-normal and
bivariate Plackett

Stress range

Poisson, Gumbel and Small wave heights in

Loads normal large depths Rayleigh
Joint density of significant |Marginals transformed to
Wind speed Frechet, Gumbel, reverse [[wave height, wave period |[normals by Box-Cox
P Weibull and log-normal [|and current and wind transformation plus
speeds multivariate normal
Rayleigh distribution and
Wave period log-normal Wave height reverse three-parameter
Weibull
Fatigue life Weibull

261



ICCM2014, 28th-30th July 2014, Cambridge, England

It is relevant to say that some of the used models above are theoretically justified and some are used
just for convenience or to facilitate calculations or mathematical derivations. For example, the
normal model is justified when the random variable being modelled is the sum of a large enough
number of other variables. This occurs frequently in strength of materials where in a cross section
of volume all the subelements add efforts or collaborate to resistance. Poisson and gamma
distributions have been proved to correspond to rare events and the time of occurrence of the r-th
event, respectively. The Weibull, Gumbel and Frechet extreme value distributions and their reverse
versions are justified because they are the limit distributions of maxima or minima, which are very
important in Civil Engineering design because in general only maxima (waves, winds, earthquakes,
temperatures, etc.) and minima (draughts, fatigue strength, temperatures, etc.) values lead to failure.
However, it is not uncommon to see minima models erroneously used for maxima or vice versa.
The generalized Pareto distribution is justified because it arises as a limit distribution for
exceedances (large waves, winds, etc.) over or shortfalls (rain, temperature, etc.) under a threshold.
Rice and Rayleigh distributions are also derived from theoretical models of waves.

Contrary, other distributions, such as the log-normal that arises in order to reproduce asymmetric
data, the generalized beta and the models based on the Box-Cox transformation that are used to fit
different data histograms, etc. have convenience as motivation.

In the Structures field, for example, [O’Connor and Kenshel (2013)] use the normal distribution to
describe concrete material properties, [O’Connor and Enevoldsen (2009)] propose Log-normal
distributions for modelling structural parameters and uncertainties associated with modelling,
[Simiu et al. (1980)] assume the Fretchet distribution for the wind speed and [Pourzeynali and Datta
(2005)] suggests the Raleigh distribution to model the stress range.

In the Material Science field, [Castillo and Fernandez-Canteli (2009)] develop a fatigue model
using a three-parameter Weibull distribution for a normalizing variable representing the whole S-N
field based on a unique distribution function, [Koller et al. (2009)] validate the use of a log-Gumbel
fatigue regression model and [Przybilla et al. (2011)] propose a method to obtain the distribution of
fracture stress as a three-parameter Weibull cumulative distribution function (cdf) referred to a
uniaxially and uniformly tensioned surface element. We can also mention the case of Coast and
Ocean Engineering where [Ferreira and Guedes Soares (1999)] assume significant wave heights to
follow Beta distributions, [Ferreira and Guedes Soares (1998)] use the Generalized Pareto densities
for excedences of wave heights and significant wave heights, or [Ochi (1992)] proposes the
Generalized Gamma distribution for significant wave heights.

Another field with a wide variety of stochastic models is Transportation. Some examples are [Lo et
al. (1996)] who propose independent Poisson link counts or [Castillo et al. (2012)] who develop a
bayesian network considering that the different traffic variables follow a generalized beta
distribution. Multinomial models were assumed by [Clark and Watling (2005)] for route flows and
shifted-gamma distribution was used by [Castillo et al. (2013)] for modelling the traffic flows.

From the list of publications above we can realize that a large set of distributions has been used.
Detected inconsistencies in some of the proposed models motivates the current paper, which
presents essential aspects to be considered when building statistical models.

Some considerations on units of the random variable and their moments

One common mistake when building statistical models is to ignore that not all families of
distributions are valid for all types of variables. We need to be aware that parameters of statistical
families have units. In particular, the mean has the same dimension as the random variable and the
variance the squared dimensions.
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Example 3.1 (Exponential distribution) For the exponential distribution Exp(1) we have:
E[X]=1/\; Var[ X 1=1/2\". (1)

Since the dimension of 1/\> is the square of the dimension of 1/3, the inverse of the variable unit,
the dimensions are consistent in this case.

Example 3.2 (Beta distribution) For the beta distribution, X~Beta(a,b) we have:

ab
(a+b)(a+b+1)

E[X]zaib; Var[ X]=

()

This implies that X must be dimensionless, because in the term a+b+1 a and b must be
dimensionless, otherwise they cannot be added to 1 (dimensionless). Once that a and b have been
recognized as dimensionless, E[X] and Var[X] are also dimensionless (see (2)).

Example 3.3 (Weibull distribution) For the Weibull distribution, X~W(2,k) we have:

I 1“(1+2)—F2 1+%) ,

1+—1|; Var[X]=\

k) ar[ X | p

which implies that k must be dimensionless and /. must have the same dimensions as X, and that the
Weibull model can be made consistent for variables of any dimensions.

Example 3.4 (Gamma distribution) If the random variable X is Gamma X~W(,k), the random
variable X+a with a#0 is not gamma any more. This means that the gamma family is not stable
with respect to changes in location and has important consequences, because the gamma
distribution cannot be used for location variables, such as temperatures. More precisely, if a
random temperature is gamma measured in Celsius degrees, it is not gamma when measured in
Farenheit or Reamur degrees. Thus, using the gamma family for temperatures is inadequate and
misleading.

E[X]=AT 3)

Other examples of dimensionless families are the binomial, negative binomial and Poisson.
Contrary, normal distributions are examples of statistical families compatible with any dimension.

Parsimonious and dimensionless models: The Buckingham theorem

When a mathematical or statistical model is built, a dimensional analysis of the variables involved
must be initially carry out as this allows us to understand some deep relations among these variables
and help to avoid dimensional contradictions. Besides, it is recommendable to build a dimensionless
model in order to prevent dimensional inconsistencies and in some cases to reduce the problems
associated with precision in numerical evaluations. Finally, it is important to work with
parsimonious models, that is, the simplest models explaining all the aspects to be considered. To
these aims the Rayleigh method of dimensional analysis and its formalization proposed by
[Buckingham (1915)] plays a fundamental role. To illustrate, we propose the following example.

Example 4.1 (Corbel Example. Dimensionless variables) The example deals with a reliability
analysis of a corbel by means of the strut-and-tie model represented in Figure 1. In this case we
assume two possible failure modes, defined by the limit-state functions H ,and H, :

H, = f,A—F tan0—F,=0, (4)
HZ = chb_FVZO (5)
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where F  and F, are the applied vertical and horizontal forces, respectively, f and f are the

strength of the steel and of the compressed concrete, 9 is the angle between the compression strut
and the tie, A_ is the cross sectional area of the passive reinforcement and A, is the area where the

action is applied.

Figure 1: Corbel Example. Strut-and-tie model.

The failure curve can be expressed as the minimum value of the previous limit-state functions, that
IS,
H=min {H], H} (6)

Based on the Buckingham II Theorem, we get the dimensional decomposition shown in Table 2,
where [F] and [L] denote force and length magnitudes, respectively. We see that the n=7 variables
set up a dimensional matrix with rank q=2. Applying the Buckingham II Theorem, we conclude that
the model (6) is equivalent to another with p=n—q=>5 dimensionless parameters (ratios).

Table 2: Corbel Example. Dimensional decomposition.

F Fh fs fc 6 A Ab

v N
[F] I N Y R
2

[L] 0 0o | 2 | 2 0 2

If we use f_and A, as reference or normalizing variables, we obtain the following new
dimensionless variables:

r—_F . P w«—Je. ¥—0 - w« — A
Fr=—r Fi=7r fi=5, 0°=0; A;=2, (7)
and the new mathematical expression for the model (6) becomes:
H" = A min{1—F tan® —F, fIA,—F|, (8)

where the asterisks refer to dimensionless variables. The main advantages of using the Buckingham
theorem are:

1. The model presents p=>5 variables instead of n=7, which implies a reduction in the problem
complexity.

2. The variables are independent from any units being considered, avoiding possible dimensional
mistakes. Moreover, the normalization modifies the variable ranges and reduces possible
numerical precision problems.
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3. The variable H™ becomes more meaningful than the associated dimensional variable H because
its value can be compared for different cases when the steel characteristics (area and yield
strength) are kept constant.

We point out that the dimensional results can be recovered at the end of the process, undoing the
change proposed in (7).

Extreme values and probability papers

In the engineering design of structures we need to deal with extreme values, that is, maxima (for
example, loads, moments, etc.) or minima (for example, strength properties). In such cases, a
careful selection of extreme value distributions to approximate the distribution of extremes is
required. In this paper we deal only with maxima, but the minimum problem is similar. In order to
see if a cdf F(x) can be approximated for maxima by a reverse Weibull, Gumbel or Frechet
distribution we can use the following theorem by [Castillo (1988)].

Theorem 1 If F(x) is the cumulative distribution function of a random variable and

. F '(1—g)—F '(1-2¢) _ ..
llfr;F”(l—zs)—F”(l—%) 2 &

then F(x) can be approximated in its right tail by a Frechet distribution if c¢>0, a Gumbel
distribution if c=0 and a Weibull distribution if c¢<0.

In particular, if the range of F(x) is limited it cannot be approximated by a Frechet distribution and
if it is unlimited, we cannot use a Weibull distribution.

As some interesting examples, Table 3 shows the corresponding approximating distributions of
some of the most common distributions for maxima and minima.

Table 3: Corresponding approximating distributions for maxima and minima of the most
common distributions.

R Domain of Attraction o Domain of Attraction
Distribution - — Distribution - —
Maximal Minimal Maximal Minimal
Normal Gumbel Gumbel Uniform Weibull Weibull
Exponential Gumbel Weibull Weibull Weibull Gumbel
Log-normal Gumbel Gumbel Weibull Gumbel Weibull
Gamma Gumbel Weibull Cauchy Fréchet Fréchet
Gumbel Gumbel Gumbel Pareto Fréchet Weibull
Gumbel Gumbel Gumbel Fréchet Fréchet Gumbel
Rayleigh Gumbel Weibull Fréchet Gumbel Fréchet
M = maxima m = minima M = maxima m = minima

The previous method permits determining the extreme value distributions associated with a given
one F(x). However, in practice we do not have this information but only data. In this case we can
plot this data on a Maximal Gumbel probability paper, as shown in Figure 2. Then, looking to its
right tail and determining whether the data trend is straight or has positive or negative curvature, we
can decide about Gumbel, Weibull or Frechet as approximating distributions, respectively.

Building multivariate statistical models

In this section we deal with the problem of defining the joint multivariate density of all the variables
which are relevant to the problem under consideration.
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There are several ways to define the joint density of a multivariate model. These methods can be
classified as underdetermined, overdetermined and uniquely determined methods, depending of the
number of imposed conditions.

MAXIMAL GUMBEL PAPER

0.995 200

0.949 100

0.95 | -1 50

0.95 20

0.9 10

Probability
Return Period

px

0.4

0.1 1.11

0.005 1.01

Figure 2: Maximal Gumbel probability paper illustrating the relevant zone.

In order to uniquely determine a multivariate model with an underdetermined method, we have to
add some extra conditions. In the case of the overdetermined methods, the solution is not
guarantied. For a more detailed description of these methods, see [Arnold et al. (1992,1999,2001)]
and [Castillo et al (2014)].

The following example illustrates the cases of overdetermined and underdetermined methods.

Example 6.1 (Normal conditionals model) /A4rnold et al (1999)] demonstrate that there are two
families of bivariate distributions with normal conditionals, that is, with conditionals X|Y=y and
Y| X=x which are normals: (a) the normal and (b) a family with regression lines and conditional
variances given by:

2
myy +mp y+my

E(X|Y=y) = w(y)=- , (10)

1 2(m22y2+m21y+m20)

-1

var(X|[Y=y) = oi(y)= 5 : (11)

2(’"22)’ +m21y+m20)

m21x2+m11x+mm

ElY| X=x) = X)=— , 12
( | ) M2( ) 2(m22x2—|—m12x+m02) ( )
var (Y| X=x) = 0§(x)= — 1 , (13)

2
2(m22x +mpx+ moz)
where the m’s are constants.

One example of a normal density is shown in the left plot of Figure 3, where the linear regression
lines are shown on the top projection and the normal marginals in the left and right projections.
Similarly, the right plot corresponds to a non-normal family, which shows projected non-linear
regression lines and non-normal marginals.

If we assume normal conditionals alone, the resulting model is undefined, but if in addition we
assume that the X|Y regression line is a proper third degree polynomial, we are in front of an
inexistent or impossible model as we can conclude from Equation (10).
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The simplest method to define a joint density corresponds to the independent model in which all
variables are independent, so that it is sufficient to define the univariate marginals. However, when
variables are dependent, the model complicates.

e

Sy
*ﬁ’:‘:b’t‘ =

\
g b
'::“i:&.’o’a‘:t\‘ﬂ»\

Figure 3: Two illustrative examples of bivariate densities with normal conditionals: normal
(left figure) and non-normal (right figure).

Example 6.2 (Corbel Example. Selecting probability distribution families) In this example we
select and discuss the probability distribution families associated with the variables involved in the
corbel example introduced previously. To simplify and because the steel manufacture companies
are very reliable, we can assume f  and A as deterministic. Thus, we only have the random

variables F , F,, f., A, and 0. In addition we can assume that all variables are independent.
With the exception of F and F,, this is a reasonable assumption because they involve forces,

material strengths, areas and a design angle, whose values are undoubtedly independent.
Furthermore, we assume the independence of F and F,. This implies that only marginal

distributions are needed in order to build the statistical multidimensional model.

Table 4 shows the selected marginal distributions, the associated parameters and the
corresponding ranges.

Table 4: Corbel Example. Marginal distribution functions for the dimension variables.

Dimension Variable Lower Upper Assumed Assumed Parameters
Variable Type Bound Bound Distribution Shape Scale Location
f. Deterministic | 455124 kN/m® | 455124 kN/m’
A, Deterministic 5.92¢-4 m’ 5.92¢-4 m’
F, Randolrzls hl;?;ctreme positive value | positive value | 3P Max- Weibull | 0.21 36.209 kN 06.646 kN
F, Rando;; 'lféctreme negative value | positive value | 3P Max- Weibull | 0.236 9.776 kN —4.225kN
2
f. Random: General | positive value | positive value Gamma 149.50 142.5 kN/m
2
A b Random: General | positive value | positive value Gamma 1.45 0.031'm
0 Random: General n/6 n/3 Generalized Beta ;:125 /6 -1

Now, given these selected distributions, we can obtain the distributions for the associated
dimensionless problem. With this aim, first we represent A and f by their expected values, i.e.,

A=E[A]= w, and [ =E [ f.,]= W, , obtaining the following new dimensionless variables:
F Fh fg i * Ab

*

FV:—M_f‘MAV; Fh:_‘uf&MA‘; fc:W’ A, W,
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and the limit-state function:

H
Welk

H = = min|1=F tanO—F}, fi4;-F]|. (19

For the new non-dimensional variables appearing in equation (14), Table 5 shows the
corresponding distributions and associated dimensionless parameters. The values have been
obtained using w, =455124 kN Im* and wy =5.92e-4 m.

Table 5: Corbel Example. Marginal distribution functions for the dimensionless variables.

Dimensionless Assumed Assumed Parameters
Variable Distribution Shape Scale Location
F; 3P Maximum Weibull 0.21 0.134 0.256
F, 3P Maximum Weibull 0.236 0.036 ~0.016
f Gamma 149.5 3.13e—04
S Gamma 1.45 52.365
0" Generalized Beta a=2, p=15 /6 —1

Table 5 shows that only the scale and location parameters are affected by the normalization.
Moreover, the parameters of the Generalized Beta distribution remain constant because they are
associated with the dimensionless variable 8" =8 . Finally, the statistical families in Table 4 remain
in Table 5 because all of them are stable with respect to scale changes.

However, there exists another way to deal with the dimensionless problem without using scale-
stable distributions. The process consists of obtaining the dimensionless sample data before fitting
the distribution parameters.

One of the most important methods to define dependent multivariate models is Bayesian networks,
which are defined by means of a directed acyclic graph G together with the conditional distributions
of each of the involved variables given their parents, as follows:

f(xl:'xz"---f xn>:f1(x1)fz(x2|x1>f3(x3|x1fxz)---fn(xn|x1 , ‘XZ"""'xnfl):l__! f;(xi|7[i): (15)

where T, are the parents of the variable X, in the directed acyclic graph G. Bayesian networks are
the simplest way to reproduce complicated multidimensional families of distributions avoiding
incompatibilities.

Example 6.3 (Corbel Example. A multivariate model) In this example we determine a multivariate
model associated to the previously dimensionless corbel example.

From equations (4) and (5) we know that
H = fi|F; FI 7, A7,0) (16)

Hy = f,|F..fl.4;), (17)

where H| and H) are the dimensionless limit-state functions, using u g and W, .
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In order to correctly define the joint distribution of these limit-state functions, we have to carry out
an analyses of the dependence relation among the involved variables. In this example, we assume
independence among all variables, except between I and F,, because these forces are usually

related.

Due to the fact that variables involved in H, are independent we can compute the joint probability
by means of the set of all marginal, that is,

SH)=F(FL [0 4y)=f(FD) ff2) S (45), (18)
However, in the case of the, H| applying equation (15) to determine this joint probability, we get:
fHY) = f(F] Fy [0 A47.0) =
= S(E)SFINF) LN FO) SN FL SO FrL L Ay =
= fFD)SENFD) ) A7) f(0), (19)
which requires to know the conditional distribution of F given F, .

With this aim, we represent the data (F; , F) (see left Figure 4) and observe that they exhibit the
following linear regression:

FI=399F +031. (20)

Next, we find that the residuals follow a maximal Weibull model (see right Figure 4):

Fiolr) = exp[—[l—k(r;k)]llk},' 1—k(rg7‘)>o. 1)

Max-Weibull Probability Paper

0999

1000

Regression line for iF:,,F:J

0.87

08

Figure 4: Data and regression line for the Corbel example and residuals given on a Normal
probability plot.

Combining this expression with the regression equation (20) leads to the final model for F|F

1k
| ¥ F —399F,—031—A\
FF(‘|F;(fv|fh):eXp{_[l_k( Oh )] ] (22)
only valid for
F =399F,—031—\
l—k( ’ ~ )>o (23)
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Then, the estimation of the Weibull parameters using the maximum likelihood method leads to
k=0.262; 0=0.218; u=—0.0789.

In this way, the joint probability of this multivariate model becomes defined and we can evaluate
the failure probabilities.

Conclusions
The following conclusions can be drawn from this paper:

1. Random variables and the parameters of statistical distributions are dimensional. These must be
taken into consideration when statistical models are selected, otherwise, inadequate models can be
obtained leading to important dimensional problems.

2. A previous dimensional analysis of the variables involved must be performed before building a
model. This leads to a deep understanding of the relations among the involved variables, avoids
dimensional inconsistencies and reduces numerical precision problems. In this direction, the IT
Buckingham theorem is the most convenient and recommendable tool to be used.

3. Identification of the adequate extreme value distribution is very important in real practice. There
are theorems that allow us to decide which of the Weibull, Gumbel or Frechet distributions or their
reverse versions corresponds to a given cdf F(x).

4. We must be aware of the fact that different probability papers exists. With respect to extreme
value analysis there are two Gumbel probability papers, one for maxima and one for minima. It is
important to realize that only the tail of interest must be plotted and fitted.

5. Care must be taken in selecting the adequate multivariate joint density functions. In this line, we
must be aware that an excess of assumptions leads to impossible models, and a lack of them, to
undefined models. Finally, Bayesian networks is the most adequate method to define the joint
distributions, based on a directed acyclic graph and the conditional distributions of each of the
random variable given their parents.
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Abstract

This paper presents dynamic modeling of tensegrity robots rolling over the ground. We have de-
veloped a 6-strut tensegrity robot that deforms its body for rolling locomotion over the ground.
Designing tensegrity structures and control laws appropriate to locomotion experimentally has con-
sumed much time and labor. Dynamic simulation of tensegrity robot rolling is thus required to
reduce time and labor in experimental trials.

We have formulated a set of dynamic equations of motion of tensegrity robots. Our tensegrity
robots consist of rigid struts and elastic actuators. Elastic actuators, which act as tensile elements,
shrink by applying air pressure into the actuators. Applying air pressure to designated actuators
deforms the tensegrity structure, which allows the structure roll over the ground. We have simulated
the rolling of two icosahedron tensegrity robots; one consists of 24 actuators while the other consists
of 12 actuators. Experimental evaluation validated our dynamic simulation.

Keywords Tensegrity, Rolling, Dynamics, Modeling, Simulation

Introduction

Locomotion has been a main research issue in robotics and many robots have been proposed in the
past decade including wheel robots, crawler robots, and legged robots. Recently, much attention has
been paid to soft-bodied robots, which employ deformable bodies consisting of soft materials. Such
soft-bodied robots can deform their body for locomotion. Deformable bodies are useful for obstacle
avoidance and narrow passage locomotion. On the other hands, it is difficult to build larger bodies
since soft materials deform naturally under gravity. To cope with this problem, we have proposed
to introduce tensegrity structures into robot bodies.

Tensegrity structures consists of a set of rigid elements connected by elastic elements. Rigid
elements, which are referred to as struts, act as bones of a robot while elastic elements, which are
referred to as tensile elements, provide softness to the robot. Tenesgrity structures have been applied
robot locomotion [Aldrich et al. (2003); Paul er al. (2006); Arsenault and Gosselin (2008)]. Most
tensegrity robots employ crawling for locomotion. For dynamic locomotion, we have proposed
tensegtity robots that roll over the ground [Shibata et al. (2009)] and developed a six-strut tensegrity
robot driven by pneumatic McKibben actuators [Koizumi e al. (2012)]. Activating an appropriate
set of actuators in sequence, a tensegrity robot rolls over the ground. Unfortunately, determining a
sequence of appropriate actuators for locomotion requires much time since it is performed using a
real robot in trial and error manner. Additionally, we have many choices in tensegrity structures.
We have to select structures appropriate to rolling locomotion. This selection would require much
time.

Determining actuator sequence and selecting tensegrity structures would be performed on a
computer once we have establish a dynamic simulation of rolling tensegrity structures. Thus, we
will establish dynamic modeling of rolling tensegrity structures and perform simulation of rolling
of tensegrity robots.
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Figure 1: Prototype of six-strut tensegrity robot

Tesegrtity Robots

Figure 1-(a) shows a prototype of six-strut tensegrity robots. This prototype consists of 6 rigid
struts and 24 pneumatic McKibben actuators. The struts are made of aluminum and are 570 mm
in length. Two rigid balls of diameter 45mm are attached to the both ends of each strut to help the
rolling of a tensegrity robot. McKibben actuators shrink by applying air pressure and extend via
external forces. Namely, McKibben actuators act as elastic elements. The actuators can generate
force of 800N at air pressure of 0.5MPa. Contraction ratio is almost 34% without load and 20%
under the load of 3N by at air pressure of 0.5MPa. Air pressure to the actuators is applied externally
through air hoses.

Figure 1-(b) shows geometric description of a six-strut tensegrity robot. Let us attach numbers
1 through 12 to individual vertices of the tensegrity robot. Then, each strut or each actuator is
specified by a pair of numbers corresponding to its both ends. A six-strut tensegrity forms an
icosahedron, consisting of eight regular triangles and twelve non-regular isosceles triangles. One
triangle is contacting to the ground when this tensegrity robot is in equilibrium, implying that each
equilibrium can be specified by its corresponding triangle.

Figure 2 describe successive rolling of a six-strut tensegrity robot. The prototype can perform a
successive rolling over a flat ground by applying air pressure to a sequence of actuator pairs.

Dynamic Modeling of Tensegrity Rolling

Let us summarize the dynamic of a rigid body. Let us attach body coordinate system C — £n(¢ to
the body while fix space coordinate system O —zyz to space. Orientation of a rigid body is described
by rotation between the two coordinate systems. Let us introduce quaternion ¢ = [qo, q1, ¢2, q3|*
to describe the orientation of a rigid body [Kuipers 2002]. This quaternion must satisfy q*q =
@ + ¢} + ¢3 + ¢3 = 1. The orientation matrix of a rigid body is then given as

20@ + ) —1 212 — q0g3)  2(q1g3 + qog2)

R(@) = | 2(qa2 +q0a3) 2(a+a3) —1 2(q203 — qoq1) | - (1)
2(1gs — q0g2)  2(q2q3 + qoq1)  2(g5 +¢3) — 1
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(b)

(d) (e) ()

Figure 2: Successive rolling of a six-strut tensegrity robot

The first, second, and third columns of the above matrix correspond to unit vectors along £-, 77-, and
(-axes. Angular velocity vector of a rigid body is described as

w=2H(q)g=—-2H(q) q, )
where
—q1 4o 43 —Q2
Hg=| - - o «
@B 92— 9o
Let J be inertia matrix of a rigid body and 7 = [7¢, 7, 7¢]* be a set of external moments

around &-, n-, and (-axes applied to the body. Then, dynamic equation of rigid body rotation is
formulated as:

1
i=—rla.d)q 20" 77 (D) x UH(@d) - 7). ®
where
1
r(g.4) =4'q+2vq'q+ ;v (g a 1) )

with positive constant v. This r(q, q) originates from stabilization of holonomic constraint q*q —
1 = 0 [Baumgarte (1972)]. Denoting the right hand of Eq.3 by h(q, ¢, 7), dynamic equation of
rigid body rotation is simply described as § = h(q, q, T).

Let us formulate the motion of the :-th strut. Let 2 be the length of the struts. Assume that each
strut is uniform with its mass m and inertia matrix J. Let C; be the center of motion of the i-th strut
and x; denote its position. Let us attach coordinate system C; — &;n;(; to the ¢-th strut. Assume that
(;-axis lies on the line between the both end of the strut and ¢; be unit vector along (;-axis. Letting
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@ (e) ()

Figure 3: Simulation result of rolling of six-strut tensegrity robot

fi and T; be external force and moment applied to the i-th strut, equations of motion of the strut are
given by

mx; = fi, g, = h(q;,q;, 7). )

Recall that vertices of a six-strut tensegrity robot have their own numbers. Let R; be a set of
numbers adjacent to vertex [ via elastic elements. Let y; be the position vector of vertex . Let
j and k be vertex numbers at both end points of the ¢-th strut. Position vectors of the points are
given by y; = x; + L¢; and y, = x; — L. Let feoa(Yi, Yn, Ui, Yn) be viscoelastic force generated
by an elastic element connecting vertices [ and n. Then, the resultant force applied to vertex j is
formulated as

fi+ = Zfela(yj)yhyjayl)‘ (6)

ZER]‘

Similarly, the resultant force applied to vertex k is given by

7= Feal¥r v 9. %0). (7

lERy

Additionally, we will apply penalty method to formulate contact forces from the ground. Assum-
ing that the ground is specified by z < 0, contact force applied to a vertex of which position is
represented as © = [, y, z]7T is given by

0 z2>0
fcon(w)z{ ke (®)
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(a-1) start (a-2) end
(a) experiment

—400 40

(b-1) start (b-2) end
(b) simulation

Figure 4: Six-strut tensegrity robot rolling from planar symmetric contact

where K and C represent elastic and viscous coefficients of the ground. Contact forces applied to
vertices j and k is then formulated as feo,(y;) and feon(Ys).
Consequently, the resultant force and moment applied to the i-th strut are formulated as:

.fi = .fi++.fi_+fcon(yj)+fcon(yk)+mga (9)
T, = (LCz) X (fj— - fi_ + fcon(yj> - fcon(yk)) ) (10)

where g represents the acceleration of gravity. Solving equations of motion of all struts numerically,
we can simulate the motion and deformation of a tensegrity robot.

Simulation Results

We have performed dynamic simulation of rolling of a six-strut tensegrity robot. Figure 3 shows
a sequence of snapshots of a result. Red circles describe vertices contacting to the ground while
yellow ones are not in contact with the ground. At first, a regular triangle is in contact with the
ground (Figure 3-(a)). Then, the body deforms (Figure 3-(b)) and one vertex of the regular triangle
loses its contact (Figure 3-(c)). Namely, the tensegrity robot is out of equilibrium, yielding rotation
around the line between the two contacting points (Figure 3-(d) and (e)). Finally, one vertex contacts
to the ground, resulting that a non-regular isosceles triangle is in contact with the ground (Figure

3-(H).
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(a-2) end
(a) experiment

(b-1) start (b-2) end
(b) simulation

Figure 5: Six-strut tensegrity robot rolling from planar symmetric contact

Contact between a six-strut tensegrity robot and the ground can be specified by the triangle
contacting to the ground. Contact specified by a regular triangle is referred to as axial symmet-
ric contact while contact represented by a non-regular isosceles triangles is referred to as planar
symmetric contact. Note that we have eight axial symmetric contacts and twelve planar symmetric
contacts. Rolling of a six-strut tensegrity robot corresponds to a sequence of transitions among the
twenty contacts.

We have found that driving a pair of pneumatic McKibben actuators yields 1) transition from
axial symmetric contact to its neighboring planar symmetric contact, or 2) transition from planar
symmetric contact to its neighboring planar symmetric contact [Koizumi et al. (2012)]. Let us
examine if the above two transitions can be simulated. Figure 4 shows experimental and simulation
results of transition from axial to planar symmetric contacts. We have found that experimental and
simulation results meet well. Figure 5 shows experimental and simulation results of transition from
planar contact to its neighboring planar symmetric contact. The simulation result agrees with the
experimental result. As a result, we conclude that dynamic simulation of rolling tensegrity robots
works well.

Let us simulate the rolling of another tensegrity structure. Figure 6 shows a star-shaped tenseg-
rity structure. This structure consists of six struts and twelve actuators. Each actuator connects one
end point of a strut and the center of another strut. Note that no actuators contact to the ground
during rolling. We have simulated transitions from axial and planar symmetric contacts. Figure 7
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Figure 6: Star-shaped tensegrity robot

—400-400

(a-1) start (a-2) end
(a) transition from axial symmetric contact

(b-1) start (b-2) end
(b) transition from planar symmetric contact

Figure 7: Simulation results of rolling of star-shaped tensegrity robot
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shows simulation results. Figure 7-(a) shows an axial symmetric contact transits to its neighboring
planar symmetric contact. Figure 7-(b) describes a planar symmetric contact transits to its neighbor-
ing axial symmetric contact. These results suggest that this star-shaped tensegrity robot can perform
rolling from any contact to another.

Conclusion

We have established dynamic simulation of tensegrity robot rolling. It turns out that rolling of a
six-strut tensegrity robot can be simulated and simulation results agree with experimental results.
Additionally, we have simulated the rolling of a star-shaped tensegrity robot. Through simulation,
we have found that this tensegrity robot can perform rolling locomotion.
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Abstract

This paper is about how solving two dimensional multi-crack problems with arbitrary distribution
by the virtual boundary meshless least squares method. In this article, the local domain where a
single crack is contained would be treated as twain subdomain when solving multi-crack problem.
And this method incorporates the point interpolation method (PIM) with the compactly supported
radial basis function (CSRBF) often used in boundary-type meshless methods to approximately
construct the virtual source function on the virtual boundary corresponding to each subdomain.
According to the definition about sub-domain in this paper, the added extra sub-domains on the
boundary extended along the crack surface as “conventional sub-domain method” in the direct
boundary element method do not have to be considered, thereby reducing the computational,
especially avoiding this calculation error caused due to inadequate number of the elements or with
the collocation points configured on the boundary of the additional sub-domains and its improper
configuration. In addition, since the configuration of virtual boundary has a certain preparability,
the integration along the virtual boundary can be carried out over the smooth simple curve that can
be structured beforehand (for 2D problems) to reduce the complicity and difficulty of calculus
without loss of accuracy, while ‘“Vertex Question’’ existing in BEM can be avoided.

Keywords: Virtual boundary, Meshless, Least squares, Radial basis function, Multi-crack

1. Introduction

Generally speaking, crack, multi-crack or micro-crack are pre-existed in engineering components
' and structures [2], brittle or quasi-brittle materials, and so on. As is known to all, the stress
intensity factor can be used to describe the stress field of the crack tip and predict crack growth in
fracture mechanics. So the stress intensity factor for the calculation of a crack or multi-crack
analysis also is very important. In fact, the equation with solving crack problem is easily established,
but the exact solution is quite difficultly obtained, especially in multi-crack problems. That is, the
analytic methods, such as the westergaard method ), the complex variable function method ™,
conformal mapping ™) and so on, can only solve the simple or regular crack problem, and complex
or irregular crack problems need resort to numerical methods.

The boundary element method (BEM) is an important kind of numerical methods, and it is
suitable for analyzing a large field gradient function of the problem and also can better calculate the
stress concentration. Some scholars solve the crack problems by the BEM, such as Z.H. Yao, P.B.
Wang and H.T. Wang et al. ' use dual BEM to analyze the numerous micro-cracks, Q.H. Qin and
Y.W. Mai ® employ the BEM for crack-hole problems in thermopiezoelectric materials, E.D.
Leonel and W.S. Venturini ! use the dual boundary element formulation to analysis of multi-
fractured domains, X.Q. Yan "% analyzes the stress intensity factors of multiple circular arc cracks
in a plane elasticity plate by employing the BEM, and so on. But the BEM still has its own
drawbacks. It is shown that the coefficient matrix is asymmetric and its construction is time
consuming in the process of calculation. In addition, the treatment of singular integration is
inconvenient and takes much more time, and there is mimicry singular integral whilst reducing
calculating precision, especially when solving the related physics quantities on the boundary, which
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is called “Boundary L