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Abstract 
Non-linear analysis of cable structures is computationally expensive due to large deformation 
against external loads. The Isogeometric Analysis method (IGA) initially developed by T.J.R. 
Hughes is considered to be more efficient than the existing numerical methods for large-
deformation analysis of cable structures. Moreover, Isogeometric Analysis is well suited for the 
structures with curved configurations, because the same mathematical descriptions for the geometry 
in the design (CAD) and the modeling in the analysis (FEA) are used. In this paper, we consider the 
self-equilibrium analysis of catenary cables as well as parabolic cables by using Isogeometric 
Analysis. The results demonstrate effectiveness and accuracy of Isogeometric Analysis for large 
deformation analysis of unstable structures, compared to the existing analysis methods. 
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Introduction 
There is a big gap between (computer aided) design (CAD) and analysis in conventional finite 
element analysis (FEA). This comes from the fact that they are using different mathematical 
descriptions for the geometry. The gap becomes critical for curved structures, such as shells and 
cable structures, because their geometries are much complex. To solve the gap by using the same 
mathematical description for both design and analysis, Hughes et al. (2005; 2009) and thereafter 
many other researchers developed a new analysis tool, called Isogeometric Analysis method (IGA). 
Furthermore, smoothness in the curved structures can also be guaranteed in IGA. 
The Isogeometric Analysis has been extensively applied for the studies on shell and plate structures, 
see for example those by Stefan et al. (2011) and Benson et al. (2010). However, there are only a 
limited number of studies on cables by using IGA. In this paper, we will apply IGA for self-
equilibrium analysis of cables under gravity, and investigate its efficiency as well as accuracy by 
comparison with conventional FEA. 
 

B-spline curve 
IGA and conventional FEA share almost the same analysis procedure, except that they use different 
shape functions. The same mathematical descriptions in (CAD) design, for example B-spline or 
NURBS curves (surfaces), are used as shape functions in IGA. In the following, we adopt B-spline 
curves as shape functions, which are constructed by taking a linear combination of B-spline basis 
functions. The vector-valued coefficients of the basis functions are referred to as control points. A 
piecewise-polynomial B-spline curve is given by 
 
 

               (1) 
 
 

C( ) " Ni,p( )
i"1

n

Bi



2 
 

N・

where n is the number of control points, p is the polynomial order, ξi is the local coordinate of the ith 
knot, and Bi is the (global) coordinates of the ith control point. Moreover, the basis functions Ni,p(ξ) 
are defined as follows: 
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Eq. (2) is referred to as the Cox-de Boor recursion formula (Cox, 1971; de Boor, 1972). Piecewise 
linear interpolation of the control points gives the so-called control polygon.  
 
 
 
 
 
 
 

 

 
Figure 1.  B-spline curve with control points,       Figure 2.  Quadratic B-spline basis function 

           control polygon, and knots 
 
An example B-spline curve is shown in Figure 1 with eight control points and p = 2; the resulting 
control polygon is shown in Figure1, and the B-spline basis functions are shown in Figure 2. Note 
that the curve is interpolatory at the first and last control points, due to the fact that the knot vector 
is open, and also at the sixth control point, due to the fact that the multiplicity of the knot ξ = 4 is 
equal to the polynomial order. Note also that the curve is tangent to the control polygon at the first, 
last and sixth control points. The curve is C 

p-1-continuous everywhere except at the location of the 
repeated knot, ξ = 4, where it is C 

p-2 (= C 
0)-continuous. 

To describe a two-dimensional B-spline, it is convenient to summarize the basis functions and their 
first-order derivative in a matrix form as follows: 
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where the components in     are given as 
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Formulations in large deformation 
The tangent stiffness matrix K is the sum of the linear stiffness matrix KE and the geometrical 
stiffness matrix KG: 
 
                 (6) 
 
The B-spline curves are used as shape functions for analysis of cable structures, thus, the 
formulations for KE and the geometrical stiffness matrix KG are given as [Bathe (1995)]   
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Where E is Young’s Modulus, A is the initial cross-sectional area, L0 is the initial element length 
before deformation, L is the current length after deformation,   is the axial stress in small 
deformation,   is the axial strain in small deformation xi, yi are the current coordinates of the 
specified nodes of the element, and           are the initial coordinates of the specified nodes of the 
element. For large deformation problems, the true axial strain has to be calculated from the 
extension of the cables, which is given as 
 
 

     (15) 
 
 
Structural analysis by singular value decomposition 

Tangent stiffness matrix K of an unstable structure is not invertible, because it is singular. To 
proceed the analysis for unstable structures ruling out the mechanisms as well as rigid-body motions, 
which cause singularity of K, singular value composition of K turns out to be convenient for 
formulations as well as computations [Kawaguchi (2011)]. By using a unitary matrix Ψ, a 
(symmetric) tangent stiffness matrix K is rewritten as follows: 
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where O is a zero matrix, λi is the ith singular value of K, dof is the number of degrees of freedom of 
the system. The pseudo-inverse matrix K- of the tangent stiffness matrix K is obtained as follows 
 
 
 
 
 

     (17) 
 
 
 
 
 
 
 
 
Subjected to the external load F, the displacements of control points of a (unstable) cable structure 
can be calculated by using the K- defined in Eq. (17) as follows:  
 

     (18) 
 
Accuracy evaluation and initial settings for analysis 

In this paper, we analyze the self-equilibrium shapes of the cable structures subjected to gravity, 
and verify the accuracy of the analyses, which is evaluated by the mean square error (MSE) defined 
as 
 

   (19) 
 
 
where m is the number of evaluation points, yi,    are respectively the ith y-coordinate calculated by 
analysis and by theory, and f is sag of the cable.  
In this paper, two cable structures with different initial shapes. Each of them are analyzed by 
different models:  
・	
 9 two-node isoparametric elements with 10 nodes,	
 
・	
 30 two-node isoparametric elements with 31 nodes, 
・	
 9 four-node isoparametric elements with 10 (external) nodes,  
・	
 30 four-node isoparametric elements with 31 (external) nodes,  
・	
 a single cubic B-spline curve with 10 control points, and 
・	
 a single cubic B-spline curve with 31 control points.  
Two-node isoparametric elements are interpolated by straight lines, and four-node isoparametric 
elements are interpolated by cubic curves. To have the same (cubic) order for geometry description, 
the isogeometric elements are interpolated by the same polynomial order as four-node isoparametric 
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elements. Young’s Modulus E is 205[GPa], the initial cross-sectional area A is 0.0001[m2], spatial 
span is 30[m], the weight of the cable per unit length µ for catenary cables is 7.85[N/m], the vertical 
distributed load w0 for parabolic cables is 7.85[N/m], and the number of evaluation points of mean 
square error is 3000 points. CPU is 2.8 GHz Intel Core i7, the memory of the CPU is 12GB, and 
analysis software is MATLAB R2007b provided by MathWorks Corporation. 
 

Self-equilibrium analysis of catenary cable 
The self-equilibrium shape of a single cable against its own weight becomes a catenary [Japan 
Society of Civil Engineers (2001)]. In this section, a catenary is used as the exact solution. The 
formulation of symmetric catenary cable is give as 
 

   (20) 
 
 
where x, y is x-coordinate and y-coordinate respectively, T0 is the horizontal tension.  
 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 3.  Initial catenary cable of object 1 with 10 nodes 
  
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 4.  Final catenary cable of object 1 with 10 nodes 
  
 
 
 
 

 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 
Figure 5.  Initial catenary cable of object 2 with 10 nodes 

 
 
 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 6.  Final catenary cable of object 2 with 10 nodes 
 

 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 7.  Initial catenary cable of object 1 with 31 nodes 
 

 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 8.  Final catenary cable of object 1 with 31 nodes 

y " T0
R
cosh Rx

T0
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 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 9.  Initial catenary cable of object 2 with 31 nodes 
 

 
 

 
 

 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 
Figure 10.  Final catenary cable of object 2 with 31 nodes 

 
Table 1. Identified results of catenary cable 

 

 
 
 
 
 

 
 
 
 
 

The initial shapes from which the large deformation analysis for different modeling are shown in 
Figures 3, 5, 7, and 9, and their corresponding final shapes due to gravity are respectively shown in 
Figures 4, 6, 8, and 10. Note that in (a) and (b) in these figures, ◯ refers to element boundary node, 
● refers to element internal node; and moreover, in (c) in these figures, ◯ refers to control point. 
Performances of the analyses using conventional FEA as well as IGA with different number of 
elements are summarized in Table 1. It was clear that IGA is more accurate compared to 
conventional FEA when the structure is modeled by using the same (external) nodes (or control 
points for IGA). On the other hand, convergence performance of IGA is not superior to that of 
conventional FEA. 

Self-equilibrium analysis of parabolic cable 
The self-equilibrium shape of cable with large vertical distributed load compared to its own weight 
becomes a parabolic cable. Parabolic cables are widely used in design of suspension bridges. In the 
analysis, the weight of the cable is regarded as zero and vertical distributed loads like floor slabs of 
the bridge are treated as loads applied to the nodes. The formulation of a symmetric parabolic cable 
is given as 
 
 

   (21) 
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The initial shapes from which the large deformation analysis for different modeling are shown in 
Figures 11, 13, 15, and 17, and their corresponding final shapes due to gravity are respectively 
shown in Figures 12, 14, 16, and 18. Note that in (a) and (b) in these figures, ◯ refers to element 
boundary node, ● refers to element internal node; and moreover, in (c) in these figures, ◯ refers to 
control point. 
 

  
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 11.  Initial parabolic cable of object 1 with 10 nodes 
 

 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 12.  Final parabolic cable of object 1 with 10 nodes 
 
 

 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 13.  Initial parabolic cable of object 2 with 10 nodes 
 
 
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 14.  Final parabolic cable of object 2 with 10 nodes 
 

 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 15.  Initial parabolic cable of object 1 with 31 nodes 
 

 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 16.  Final parabolic cable of object 1 with 31 nodes 
 
  
 
 
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 17.  Initial parabolic cable of object 2 with 31 nodes 
 

 
 

 
 
  
 (a) two-node elements     (b) four-node elements    (c) cubic B-spline elements 

Figure 18.  Final parabolic cable of object 2 with 31 nodes 
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Table 2. Identified results of parabolic cable 

 

 
 
 
 
 

 
 
 
 
 

 
Performances of the analyses using conventional FEA as well as IGA with different number of 
elements are summarized in Table 2. It was clear that IGA performs better than conventional FEA 
in accuracy in all cases. However, the superiority of IGA in computation costs is not clear.  
 
Conclusions 

In this paper, we applied Isogeometric Analysis for self-equilibrium analysis of unstable cable 
structures and investigated its performances in accuracy as well as in efficiency. For all analysis 
cases in this paper both for catenary cables and parabolic cables, IGA is more accurate than 
conventional FEA. However, its performance on computational costs is not as clear as accuracy. 
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