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This paper focuses on parameter identification of Fluid Viscous Dampers, comparing different 
existing literature models, with the aim to recognize ability of these models to match experimental 
loops under different test specimens. Identification scheme is developed evaluating the 
experimental and the analytical values of the forces experienced by the device under investigation. 
The experimental force is recorded during the dynamic test, while the analytical one is obtained by 
applying a displacement time history to the candidate mechanical law. 
Identification procedure furnishes device mechanical parameters by minimizing a suitable objective 
function, which represents a measure of difference between analytical and experimental forces. To 
solve optimization problem, the Particle Swarm Optimization is adopted, and the results obtained 
under various test conditions are shown. Some considerations about the agreement of different 
models with experimental data are furnished, and the sensitivity of identified parameters of 
analyzed models against frequency excitation is evaluated and discussed..  
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Optimization 

Introduction 
In recent years, several devices have been proposed to reduce the effects of dynamic loads in civil 
structures and infrastructures. In this paper, the attention is focused on Fluid Viscous Dampers 
(FVD), generally viewed as passive dissipation elements [1], widely adopted in many civil 
engineering applications to reduce the vibration level and to increase structural protection level 
against wind and earthquake forces (see for instance [2],[3]). Among the most interesting features 
of viscous dampers, one should mention low maintenance costs, usability for several earthquakes 
without damage and viscous forces out-of-phase with the elastic ones. 
Viscous dampers utilized in civil structures to control seismic, wind induced and thermal expansion 
motions, are usually arranged in one of the following configurations: a diagonal or chevron bracing 
element within a steel or concrete frame, as a part of the cable stays of long-span bridges, as a part 
of tuned mass dampers, as a part of a base isolation system to increase the energy dissipation and as 
a device to allow free thermal movements [4]. Viscous dampers can be efficiently used in the 
construction of new buildings or in retrofitting existing structures. The importance of viscous 
dampers in vibration control has increased thanks to their energy dissipation capability and wide 
range of applications. 
A viscous fluid damper typically consists [1] of a piston within a damper housing, filled with a 
compound of silicone or similar type of oil. The fluid passes through several small orifices from one 
side of the piston to the other; therefore, the energy is dissipated through the concept of fluid 
orificing. The fluid damper produces a force that is not always proportional to velocity [5], 
depending on the type of orifice used. The orifice utilizes a series of passages to alter flow 
characteristics with fluid speed. The “fluid control orifice” provides forces proportional to  , where 
α is a coefficient varying in the range [0.5 ÷ 1]. When α=1, the behavior of FVD is linear and in 
earthquake engineering applications this is the most desired circumstance. Actually, FVDs contain 
valves instead of the piston within orifices. These valves are opened once the transmitted force 
exceeds a certain design limit. However, the force produced by FVD is not proportional to velocity, 
and also in this case the valves provide forces proportional to  .  
Since the applications of viscous dampers are growing very fast, the exact recognition of their 
mechanical behavior is of primary importance to provide a reliable support to design an efficient 
seismic protection strategy. Current identification techniques for viscous dampers are mostly based 
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on parametric models. Although parametric identification techniques have been successfully used to 
identify viscous dampers, non-parametric identification techniques are more suitable in structural 
health monitoring, because the system characteristics may continuously vary over time, both 
quantitatively as well as qualitatively. 
Several identification approaches, both parametric and nonparametric, are compared in [4], by using 
real data carried out from full-scale nonlinear viscous dampers, commonly used in large flexible 
bridges. About the parametric techniques, the capability of the Adaptive Random Search is explored 
in [4]: the authors solved an optimization problem in which the numerical values of the unknown 
model parameters were estimated by minimizing an objective function based on the normalized 
mean square error between the measured and identified damper responses, evaluated as 
displacement/velocity, and obtained integrating dynamic equilibrium equations of FVD constitutive 
law, under experimental applied force history. 
In this field, also soft-computing techniques, fuzzy inference systems and neural networks have 
been applied to model a Magneto Rheological Fluid Damper [6][7]. Evolutionary computation 
methods, e.g., Genetic Algorithms (GA) [8][9], have been widely applied in parameter 
identification applications and many others. Among different nonlinear models, especially the 
Bouc-Wen has been identified thanks to its versatility. In [10], the GA was employed to identify a 
mechatronic system of unknown structure. In this framework, a real-coded GA has been recently 
adopted in [11] to identify a piezoelectric actuator, whose hysteretic behavior has been modeled by 
the Bouc-Wen nonlinear law. A magneto-rheological fluid damper behavior has been recognized by 
[12], with reference to a non-symmetric version of the original Bouc-Wen model and by using a 
real coded GA. The final algorithm is very similar to the GA, but its efficiency has been improved 
in virtue of a selection procedure embedded into crossover and mutation genetic operators. The GA 
has been widely adopted to fit the Bouc–Wen model to hysteresis loops experimentally obtained for 
composite materials [13], non-linear degrading structures [14], magneto-rheological fluid dampers 
[15][16][17] or bolted-welded connections [18]. In [19], a new method based on GA is developed to 
identify the Bouc–Wen model parameters from experimental hysteretic loops, obtained from 
periodic loading tests. 
Among evolutive algorithms, the Particle Swarm Optimization (PSO) [20] has been recognized as a 
promising candidate in parameter identification. The PSO is based on the multi-agent or population 
based philosophy (the particles) which mimics the social interaction in bird flocks or schools of 
fish, by incorporating the search experience of individual agents. Moreover, the PSO is effective in 
exploring the solution space in a relatively small number of iterations. PSO has been used in the 
design of PID controllers [21] and electro-magnetic [22].  The PSO convergence characteristic was 
analyzed in [23], where algorithm control settings were also proposed. In [24], a PSO algorithm is 
employed using experimental force–velocity data, obtained from various operating conditions, to 
identify the model parameters of a magneto rheological fluid damper.  
In [25] a parameter identification for basic and generalized Kelvin–Voigt and Maxwell models for 
FVD is carried out. The identification procedure developed by means of particle swarm 
optimization gives the best mechanical parameters by minimizing a suitable objective function that 
represents a measure of difference between analytical and experimental applied forces. Results are 
obtained under various test conditions, comparing the agreement of various models with 
experimental data. 
This paper focuses on parameter identification of FVD: the identification process is developed 
comparing the experimental and the analytical values of the forces experienced by the device under 
investigation. The experimental value of the force is recorded during the dynamic test, while the 
analytical one is obtained by applying the time history of displacements to the candidate mechanical 
law. In this way, a measure of the “distance” between experimental and analytical results is 
introduced, as the integral of the difference along the whole experiment. The optimal parameter set 
is thus derived by minimizing this distance using an evolutionary algorithm. For the parametric 
identification of FVD, the authors adopt an evolutive algorithm, the Particle Swarm Optimization. 
Different analytical models, characterized by increasing complexity, are considered and then are 
identified. The sensitivity against test conditions is also assessed.  
The next of the paper is organized as follows: in section 2 there is a selection of models adopted in 
this study for FVD modeling; in section 3, the identification scheme is posed and in section 4, some 
remarks of PSO algorithm are given. Moreover, in section 5 some specifications of experimental 
tests are furnished; section 6 reports the results of identified parameters, which are discussed in 
section 7. Some conclusions are finally given in section 8. 
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MECHANICAL MODELS FOR FLUID-VISCOUS DAMPERS 

System identification involves creating a model for a system that, with the same input as the 
original system, the model will produce an output that matches the original system output with a 
certain degree of accuracy. The input or excitation of the system and model, and their 
corresponding outputs, are used to create and tune the model until a satisfactory degree of accuracy 
is reached.  
The application of non-classical methods for the parametric identification of viscous dampers 
requires: (i) the definition of an appropriate single-degree-of-freedom mechanical model and (ii) the 
formalization of the objective (or cost) function to be minimized. This section deals with the first 
aspect.  
Generally, the system to be identified could be modeled by physical laws that reflect the dynamics 
of the system. A model created by laws, which reflect the physical properties of the system is called 
a white-box model. However, creating a white box model for real-world (complex) systems is a 
challenging task. 
In structural applications, the selection of a proper model for FVD plays a central role to predict the 
real structural response after the identification. Generally, the description of FVD requires a suitable 
mechanical model, made of a set of springs and dashpots appropriately connected each other. In this 
study, different classical and generalized mechanical models are selected to identify a viscous 
device using experimental data. The main difference between classical and generalized models is 
that the generalized one incorporates a nonlinearity in spring and viscous elements; in addition, the 
resistant forces of generalized models have fractional exponential coefficients. 
 
Linear viscous model 
The simplest way to model a velocity dependent mechanical law is by means of the standard linear 
viscous model. The equation of the motion of a FVD modeled in this way and subject to a time-
varying force p is:  

  my Cy p+ =                                                                                (1) 

This basic model has the main advantage to be extremely simple, but sometimes it is too poor for a 
reasonable representation of real mechanical behavior. For this reason, it has been updated by the 
non-linear viscous model that depends on a fractional exponent of the velocity instead of a simple 
linear relationship. Generalized non-linear viscous model is described below:   
 
Generalized viscous model 
 It is a two parameters model proposed by Constantinou [26], [27] whose law is: 

                                             sgn( )my C y y pα
+ =     (2) 

where α is the damping term exponent, whose value lies between 0 and 1. Various mechanical 
behaviors are associated to different values of α. For instance, if α = 1 the linear viscous damping 
law corresponds; if α = 0 the dry friction appears (consequently, the force increases quickly for 
small velocity values, and becomes almost constant for large velocity values). This damping law 
has been widely adopted by various authors thanks to its ability in structural behavior modeling. For 
example, Lin and Chopra [28] make use of this constitutive law in the investigation of the 
earthquake induced response. In addition, this law is adopted in many structural computer codes.  
However, experimental studies demonstrated that the resistance force of viscous dampers depends 
not only on damper velocity, but also on damper deformation. This mechanical property may be 
mathematically modeled connecting a spring element and a viscous element, respectively. If these 
two elements are connected in parallel, the family of Kelvin-Voigt models is obtained. For example, 
if a linear spring is connected in parallel with the simple linear dashpot, the basic Kelvin-Voigt 
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model is derived. When non-linear springs are connected with generalized non-linear viscous 
models, other behaviors are obtained. In [29] Terenzi investigated linear and parabolic models for 
the elastic force ψe: 

                                                  1e K yψ =  (3) 

                                       
2

2 1 0e K y K y Kψ = + +                  (4) 

where K1 is the elastic stiffness, K2 and K0 are two constants. In [29], the authors stated that the 
parabolic function reproduces better the shape of the test cycles, but the linear function may be 
preferable, because it is simpler and yields a comparable energy balance. 
 
Generalized viscous – linear elastic model 
By combining Eq.(2) and Eq.(3), the equation of motion of a generalized Kelvin-Voigt model, 
subjected to a time-varying force p is derived: 

 1sgn( )my C y y K y pα
+ + =                                                      (5) 

 
Generalized viscous – quadratic elastic model 
In this model, the parabolic form in Eq.(4) is considered without the constant K0: 

2
1 2sgn( )my C y y K y K y pα

+ + + =                                                       (6) 

 

IDENTIFICATION: OPTIMIZATION PROBLEM 

The second step of parameter identification requires the formalization of a suitable objective 
function to be minimized. 
The model parameters x of the viscous damper are identified by solving the following single-
objective optimization problem: 

( ){ }min

       s.t. l u

f

≤ ≤
x

x

x x x  
where x = {x1,…,xj,…,xn} is a set of real parameters (in this case x collects the mechanical model 

parameters), xl = {x1
l,…,xj

l,…,xn
l} and xu = {x1
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u} are lower and upper bounds of x, 

respectively. The solution that minimizes the objective function (OF) f(x) is x*.  

The following integral is assumed as measure to define the OF in the identification problem: 
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= −
− ∫x x                                                   (7) 

where tstart and tend  are the start and end time records, pm(t) is the force measured, while pe(t) is the 
force estimated. This is obtained by numerical differentiation of experimental displacement time 
history with a 3rd order algorithm to limit numerical noise. One should point out that the evaluation 
of this OF is extremely computational cheap if compared with alternative approaches, in which the 
duality of starting from an experimental force leads to the theoretical displacement, obtained by 
integration as a solution of the differential equation. The optimization problem is solved by Particle 
Swarm Optimization (PSO).  
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Experimental studies 

Test apparatus 

The 750 kN viscous damper was tested at SISMALB srl laboratory in Taranto, Italy. The test setup 
(Figure 1) consists of a high resistance steel frame to withstand loads of tension and compression of 
2200 KN. The device is anchored to the structure by means of a pin, and is stilled to the servant 
cylinder by means of a threaded connection. The movements are generated by a servant cylinder of 
1400 KN, controlled in force and/or displacement. Between the servant cylinder and the device a 
load cell of 2500 KN is located, which acquires the forces applied to the device during the entire 
duration of the experiment. In a displacement imposed test, the device movements are controlled by 
a transducer mounted on the device. The control and data acquisition system is able to generate a 
real time analysis of device displacements, by instantaneously variation of applied forces by the 
servant cylinder by means of a computer automatic control hydraulic pressure system. The 
displacement time history can be imposed with different laws, from sinusoidal, triangular, or 
through a generator step of generic ones. This system is able to control applied forces in real time 
according to the imposed displacement or force imposed test. Acquiring system has 30 channels and 
can command 2 actuators at the same time. 
Table 1 shows the design characteristics of the tested FVD.  
 

 
 

Figure 1. View of the viscous test machine and fluid viscous damper 
 
 

 
 

Figure 2.  A photo of the test apparatus with the fluid viscous damper 
 

 
Table 1 Fluid Viscous Damper Design Condition 

F [kN] Stroke [mm] C [kN/(mm/s)] V [mm/s] α  

750 ± 100 406.24 460 0.1 
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 Test cases 

Four experiments were performed to obtain dynamic response of the viscous damper. The 
experiments were designed to determine the dynamic characteristics of the damper at varying 
velocities and to evaluate the effective energy dissipation of the device. The damper was subjected 
to multiple sets of monotonic sinusoidal excitations, at peak velocities of 92 mm/s, 230 mm/s, 460 
mm/s ( % refers to design velocity 460 mm/s) The first three tests have a 3-cycle excitation period, 
while the fourth test (energy dissipation test)  has a 10-cycle period. The test specifications are 
summarized in Table 2. 
 

Table 2. Fluid viscous damper test condition 

No. Test Type Load  
(kN) 

Test stroke  
(±mm) 

Velocity 
(mm/s) Cycle 

1 
Constitutive law test 

750 20 92 (20%) 3 
2 750 20 230 (50%) 3 
3 750 20 460 (100%) 3 
4 Damping efficiency test 750 17 460 (100%) 10 

 

Parametric identification 

For the evaluation of optimal values of the unknown parameters in Equations (1), (2), (5), (6) the 
parametric identification performed by PSO, was applied with a population size N=50 and 
maximum number of iterations L=100. The parametric identification has been performed by solving 
the single-objective optimization problem, whose objective function is given by Equation (7). The 
algorithms have been performed fifty times, and the best solution has been carried out as the final 
identification result.  
 
 Identification results 
 
This subsection shows the identified parameter values that best fit the test results for the four 
analyzed models. Table 3, Table 4, Table 5 and Table 6 show the best (Min), worst (Max), mean 
and standard deviation (Std) values of the OF obtained under different numerical tests, for the four 
analyzed models. Data are represented also in Figure 3.   
 

Table 3. Objective Function results obtained from the PSOA using the linear viscous mechanical 
model for four different experimental tests 

Mechanical Model: Linear viscous 
Test Mean Max Min Std 
Test 1 0.324322 0.324322 0.324322 0 
Test 2  0.363997 0.363997 0.363997 2.8E-16 
Test 3   0.272685 0.272685 0.272685 1.68E-16 
Test 4 0.297829 0.297829 0.297829 1.68E-16 
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 Table 4 Objective Function results obtained from the PSOA using the Generalized viscous mechanical 
model for four different experimental tests 

Mechanical Model: Generalized  viscous 
Test Mean Max Min Std 
Test 1 0.254494 0.254494 0.254494 4.26E-14 

Test 2  0.332256 0.332257 0.332256 1.39E-07 
Test 3   0.264244 0.26426 0.264243 2.99E-06 
Test 4 0.28234 0.28234 0.28234 2.45E-09 

 
Table 5 Objective Function results obtained from the PSOA using the Generalized viscous – linear 

elastic mechanical model for four different experimental tests 
Mechanical Model: Generalized viscous- linear elastic 
Test Mean Max Min Std 
Test 1 0.162356 0.163188 0.162077 0.000298 
Test 2  0.203976 0.204116 0.203949 3.45E-05 
Test 3   0.153384 0.153388 0.153384 7.23E-07 
Test 4 0.127699 0.127699 0.127699 1.41E-12 

 
Table 6. Objective Function results obtained from the PSOA using the Generalized viscous – quadratic 

elastic mechanical model for four different experimental tests 
Mechanical Model: Generalized viscous- quadratic elastic 
Test Mean Max Min Std 
Test 1 0.173636 0.254494 0.158448 0.022962 
Test 2  0.208454 0.21712 0.203949 0.006284 
Test 3   0.160706 0.26426 0.153025 0.026845 
Test 4 0.12752 0.127699 0.126207 0.00049 

 
Tables 7-10 show the values of identified parameters obtained for each mechanical model, where 
mean, max, min and std indicate the values which correspond to mean, max, min and std of OF in 
previous tables. Results of identification are represented also in Figures 4-7. 

 
Table 7. Values of mechanical parameters obtained in four different test types, using the linear viscous 

mechanical model of FVD 

Mechanical Model: Linear viscous 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 

v=92mm/s v=230mm/s v=460mm/s v=460mm/s 
M(mean) - [kg] 0 0 0 0 
M(max) - [kg] 0 0 0 0 
M(min) - [kg] 0 0 0 0 
C(mean) - [kN/(mm/s)] 6.308518 9.955068 2.950677 3.599261 

C(max) - [kN/(mm/s)] 6.308518234 9.955068455 2.95067697 3.599260974 

C(min) - [kN/(mm/s)] 6.308518234 9.955068455 2.95067697 3.599260974 

C(std)-[kN/(mm/s)] 3.32E-14 0 1.93E-15 3.15E-14 
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Table 8. Values of mechanical parameters obtained in four different test types, using the fractional 
viscous mechanical model of FVD 

Mechanical Model: Fractional viscous 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 

v=92mm/s v=230mm/s v=460mm/s v=460mm/s 
M(mean) - [kg] 1.75E-14 1.45E-11 0 0 
M(max) - [kg] 8.74059E-13 7.26404E-10 0 0 
M(min) - [kg] 0 0 0 0 
M(std) - [kg] 1.24E-13 1.03E-10 0 0 

C(mean) - [kN/(mm/s) ^ α] 321.4664 101.8108 20.93332 60.02495 

C(max) - [kN/(mm/s) ^ α] 321.4663828 102.5398101 22.44238445 60.02544199 
C(min) - [kN/(mm/s) ^ α] 321.4663828 101.058709 20.75427774 60.01439848 

C(std) - [kN/(mm/s)^ α ] 1.05E-10 0.254748 0.284589 0.001661 

α(mean) 0.121515 0.456479 0.647184 0.472998 
α(max) 0.121514934 0.458176548 0.648755563 0.473033897 
α(min) 0.121514934 0.454813372 0.634798957 0.472996579 
α(std) 6.82E-14 0.00058 0.002352 5.61E-06 

 
Table 9. Values of mechanical parameters obtained in four different test types, using the fractional 

viscous –linear elastic mechanical model of FVD 

Mechanical Model: Fractional viscous- linear elastic 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 
v=92mm/s v=230mm/s v=460mm/s v=460mm/s 

M(mean) - [kg] 2.034798 1.820115 0.000221 4.88E-12 

M(max) - [kg] 2.198171813 1.904731018 0.004116766 2.43898E-10 

M(min) - [kg] 1.810732517 1.602184231 0 0 

M(std) -[kg] 0.089231 0.077191 0.000761 3.45E-11 
C(mean) - [kN/(mm/s) ^ α] 52.61233 24.70355 2.924908 3.575181 

C(max) - [kN/(mm/s) ^ α] 58.98786914 24.94752828 2.925077333 3.575181353 

C(min) - [kN/(mm/s) ^ α] 48.52647178 24.41265785 2.924898421 3.575181353 
C(std) - [kN/(mm/s) ^ α] 3.512028 0.125295 3.31E-05 8.73E-11 
α(mean) 0.510677 0.768888 1 1 
α(max) 0.52834009 0.772247572 1 1 
α(min) 0.484805623 0.766278406 1 1 
α(std) 0.014462 0.001346 0 0 
K0(mean) - [kN/mm] 70.59402 41.37259 9.3253 13.89884 
K0(max) - [kN/mm] 75.50983233 42.59740601 10.00317587 13.89884259 
K0 (min) - [kN/mm] 63.74648345 38.15868057 9.286881568 13.89884253 
K0(std) - [kN/mm] 2.749654 1.129993 0.132487 9.43E-09 
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Table 10. Values of mechanical parameters obtained in four different test types, using the fractional 

viscous – quadratic elastic mechanical model of FVD 

Mechanical Model: Fractional viscous- quadratic elastic 

Parameters 
Test Type N.1 Test Type N.2 Test Type N.3 Test Type N.4 

v=92mm/s v=230mm/s v=460mm/s v=460mm/s 

M(mean) - [kg] 1.528561 1.22022 0.007768 1.00E-15 

M(max) - [kg] 2.180005282 1.921826379 0.189771629 4.99811E-14 

M(min) - [kg] 0 0 0 0 

M(std) -[kg] 0.861915 0.886947 0.032415 7.07E-15 
C(mean) - [kN/(mm/s) ^ α] 67.00402 25.31663 4.324775 3.574265 

C(max) - [kN/(mm/s) ^ α] 321.4663828 26.52458809 22.43076879 3.57518146 

C(min) - [kN/(mm/s) ^ α] 48.53968825 24.39242143 2.924898421 3.567545202 
C(std) - [kN/(mm/s) ^ α] 52.75564 0.696476 4.821501 0.002507 
α(mean) 0.480449 0.764121 0.972133 1 
α(max) 0.527975613 0.771759295 1 1 
α(min) 0.121514934 0.753137579 0.634903225 0.999999994 
α(std) 0.077104 0.005187 0.095558 7.80E-10 
K1(mean) - [kN/mm] 55.07667 32.25728 10.0696 13.94087 
K1(max) - [kN/mm] 74.9994301 42.88675282 42.85875522 14.24910384 
K1(min) - [kN/mm] 0 13.76515596 0 13.89884243 
K1(std) - [kN/mm] 26.29288 13.44016 6.269791 0.114977 
K2(mean) - [kN/mm^2] 0.007748 0 0.002121 0.010372 
K2(max) - [kN/mm^2] 0.082770673 0 0.036533794 0.086436416 
K2(min) - [kN/mm^2] 0 0 0 0 
K2 (std) - [kN/mm^2] 0.023509 0 0.008492 0.028374 
 
 
COMPARISON OF HYSTERESIS LOOPS PREDICTED BY VARIOUS MODELS 
 
In figures 3-6 the experimental hysteresis loops of the damper under investigation are compared 
with those simulated by the selected models previous described, for load application velocities V1, 
V2 , V3  and V4. More precisely, in figures 3 and 4, the relationships between displacement and 
forces are shown, whereas figures 5 and 6 illustrate the relationships between force and velocity. 
The dotted lines represent the experimental loops, while the solid lines are the theoretical loops 
obtained by using the identified parameters for each assessed model.  
From these plots one can notice that the experimental and theoretical loops have exactly the same 
relative displacement (and velocity), whereas the damper force of the theoretical loop is computed 
according to each model. The experiment loops in Figures 3 and 4 show that, under harmonic 
excitation, the hysteresis loop of the damper changes when load application velocity increases. The 
comparison between theoretical and simulated loops points out that the simulated results obtained 
by the generalized viscous – linear elastic model ((b) in figure 3) match well with the experimental 
loops under all the excitation frequencies. The agreement of this model with experimental loop is 
better with respect to the linear viscous elastic one ((a) in figure 3). On the other hand, the other 
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analyzed models lead to elliptic hysteresis loops. For this reason, these cannot match well with the 
experimental loops for all the frequencies, because the loop changes its shape from low to high 
frequencies. For example, the linear viscous model underestimates the force for all frequencies and 
especially at low frequency.   
With reference to generalized viscous – linear elastic  ((c) in figure 4) and generalized viscous – 
quadratic elastic ((d) in figure 4) models, one can observe a good match with experimental loops 
for all velocities of the load application. The third  and the fourth models predict well the force; in 
effect, one should consider another aspect, i.e. the area of the loop, which represents the amount of 
dissipated energy in  the cycle. The plots point out that  the generalized  viscous – linear elastic 
model overestimates the amount of dissipated energy for all velocities of load application. On the 
contrary, the generalized viscous – quadratic elastic  predicts  fine the dissipated energy, especially 
for high load application velocity. The same observation can be pointed out with reference to  
generalized viscous – quadratic elastic model.  
 

  

  

  

 
(a) 

 
(b) 

Figure 3. Comparison between theoretical  and experimental force- displacement 
relationship: a) Linear viscous model, b) Generalized viscous model. 
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In figures 5 and 6 the relationships between the force and the velocity are shown. The first and the 
second model don't predict absolutely the experimental force -velocity experimental loop, wearers 
the third  and the fourth model match satisfactorily the experimental loop, especially for high 
excitation frequency.  
Because the matching of the identified model with the experimental ones depends on the excitation 
frequency, it is interesting to evaluate the sensitivity of identified parameters against the frequency 
excitation. For this purpose, for each model, the mean value p  of each identified parameter p, 
evaluated from the four tests is extrapolated; the range of variation   max minp p p∆ = − and the ratio 

/p p∆  are furnished (table 11-14) to quantity the variability of mentioned parameters with respect 
to the test conditions. From numerical data in tables 11-14, one can deduce that, except for the 
linear viscous model, the parameter C exhibits the highest variability against the velocity of the 
external excitation application. Anyway, all analyzed models present almost a comparable 
variability of involved parameters.  
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Figure 4. Comparison between theoretical and experimental force- displacement relationship: 
c) Generalized viscous- linear elastic, d) Generalized viscous- quadratic elastic. 
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Figure 5. Comparison between theoretical and experimental force- velocity relationship: a) 
Linear viscous model, b) Generalized viscous model. 

 
 
 
 

Table 11. Parameters sensitivity of Linear viscous mechanical model 
M  [kg] 0 

M∆  0 
/M M∆  0 

C  [kN/(mm/s)] 5,703381 
C∆  7,004391 
/C C∆  1,228112 
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Figure 6. Comparison between theoretical and experimental force- velocity relationship: c) 
Generalized viscous- linear elastic, d) Generalized viscous- quadratic elastic. 

 
Table 12. Parameters sensitivity of generalized viscous mechanical model 

 
C  - [kN/(mm/s) ^ α] 126,0589 

 
C∆  300,5331 

 
/C C∆  2,384069 

 
α  0,424544 

 
α∆  0,525669 

 
/α α∆  1,238197 



ICCM2014 
28-30th July, Cambridge, England 

Table 13: Parameters sensitivity of Generalized viscous- linear elastic mechanical model 
 

M  [kg] 0,963784 
M∆  2,03E+00 
/M M∆  2,11E+00 

C  [kN/(mm/s) ) ^ α] 20,95399 
C∆  49,68742 
/C C∆  2,371263 

α  0,819891 
α∆  0,489323 
/α α∆  0,596815 

0K  - [kN/mm] 33,79769 

0K∆  61,26872 

0 0/K K∆  1,812808 
 

Table 14:  Parameters sensitivity of Generalized  viscous- quadratic elastic 
mechanical model 

M  [kg] 0,689137 
M∆  1,53E+00 
/M M∆  2,22E+00 

C  [kN/(mm/s)  ^ α] 25,05492 
C∆  63,42976 
/C C∆  2,531628 

α  0,804176 
α∆  0,519551 
/α α∆  0,646066 

1K  - [kN/mm] 27,83611 

1K∆  45,00707 

1 1/K K∆  1,616859 

2K  - [kN/mm2] 0,00506 

2K∆  0,010372 

2 2/K K∆  2,049701 
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Conclusions 

This study concentrates on classical and generalized mechanical models for FVD. The focal 
difference between classical and generalized models is that the generalized ones incorporate 
nonlinearity in spring and viscous elements; in addition, the resistant forces in generalized models 
have fractional exponential coefficients. To evaluate the effectiveness of diverse models to catch the 
hysteretic behavior of real FVDs, diverse analytical models have been identified on the basis of 
experimental tests. The identification procedure is performed  comparing the experimental and the 
analytical values of the forces experienced by the device under investigation. The experimental 
forces have been recorded during the dynamic test and the analytical ones have been evaluated by 
imposing the time history of displacement to the candidate mechanical law. The parametric 
identification of a real FVD has been developed by Particle Swarm Optimization. The identification 
process furnishes the best mechanical parameters by minimizing the difference between analytical 
and experimental applied forces. Four experiments have been performed to obtain the dynamic 
response of the viscous damper under investigation, varying the velocity of the load application.  
The results show that the analytical results obtained by the generalized viscous – linear elastic 
model match well the experimental loops, under all the excitation frequencies, better with respect 
the linear viscous elastic one. Moreover, with reference to generalized viscous – linear elastic and 
generalized viscous – quadratic elastic it has been observed a good match with experimental loops 
for all velocities of the load application. The generalized viscous – linear elastic model and the 
generalized viscous – quadratic elastic model one predict well the force, but the generalized  
viscous – linear elastic overestimates the amount of dissipated energy for all velocities of the load 
application. On the contrary, the generalized viscous – quadratic elastic predicts well the energy 
dissipated, especially for high velocity of load application. The same observation can be made with 
reference to generalized viscous – quadratic elastic model. Moreover, the sensitivity of identified 
parameters against the frequency excitation has been investigated. Results showed that, except for 
the linear viscous model, the parameter C exhibits the highest variability against the velocity of the 
external excitation application. Anyway, all analyzed models present almost a comparable 
variability of involved parameters. 
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