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Abstract 

Elastic-plastic stress analysis of a Zener-Stroh crack paralleling to the interface of a 
coating-substrate system has been carried out in this work.  The sum of the Burgers 
vectors of the climb and the glide dislocations along the crack line account for the 
stress field around its blunt tip where dislocation enters, and the sharp tip where crack 
propagates. Firstly, Gauss-Chebyshev quadrature technique is applied to solve the 
governing equation of dislocation density functions constrained by load-free crack 
faces. When taking plasticity into account at both crack tips where stresses are high, 
the generalized Irwin plastic zone correction is recommended. Plastic zone size (PZS) 
for both tips and crack tip opening displacement (CTOD) for the sharp tip are then 
obtained. The effects of coating thickness, crack depth, material mismatch and 
displacement loads ratio onto PZSs and CTOD have been analyzed in detail. 

Keywords: Zener-Stroh crack, bi-material coating-substrate composite, singular 
integral equations, Gauss-Chebyshev quadrature technique, PZS, CTOD. 

Introduction 

Apart from the well-known Griffith crack, there is another mechanism of cracking as 
a result of edge dislocations in solids, firstly realized by Zener and Stroh [Stroh 
(1954); Zener (1948)] in literature. They proposed that the edge dislocations of a pile-
up that are stopped at an obstacle, such as a grain boundary (GB), could coalesce into 
a crack nucleus (Fig. 1). Some situations in which massive Zener-Stroh cracks are 
coalesced have been recognized: Noticing solids with smaller grain size will possess 
more GBs, as well as less amount of possible pile up of dislocations at each 
boundary. More GBs lead to frequent occurrences of dislocation pile-up and more 
potential sources of crack nucleuses; while less pile up of dislocations accumulated at 
each location make it harder for dislocations 
to be repelled and overcome the energetic 
barrier for diffusion across a GB. That’s why 
GBs are major sinks of dislocations as well. 
Therefore, knowing more about Zener-Stroh 
cracks’ behaviors in micro- or nano-scale 
structures is of much significance.                                        

                            Figure 1.  Zener-Stroh crack initiation 
 

Many attractive features of nanocrystalline (nc) and microcrystalline (mc) metals, 
such as high strength and hardness, and improved resistance to wear and corrosion 
damage compared to conventional metals have been fully discovered by researchers 
[Kumar et al. (2003); Zhang et al. (2005)].  However, due to the presence of high-
density ensembles of GBs as stoppers for lattice dislocations, nc becomes quite easy 
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to break, especially those super-refined into ultrasmall grain sizes [Pozdnyakov 
(2003)]. High stress concentration at GBs will facilitate crack nucleation and growing 
process, degrading the fracture toughness of the material. Moreover, bulk 
nanostructured materials usually have disappointingly low ductility. They exhibit a 
very low uniform elongation due to low work-hardening rate. Localized deformation 
(necking) under tensile stress often occurs very abruptly because of nc’s low 
dislocation accumulation capability [Zhao et al. (2006)]. In order to enhance both 
toughness and ductility of nc and mc, without sacrificing their high yield strengths, 
numerous methodologies and techniques have been suggested [Kuntz et al. (2004); 
Wang et al. (2002)]. No matter how different they look like, people do believe that 
fabrication of micro- or nano-composites is the best solution up to now in fulfilling 
practical needs where both strength and toughness are highlighted. 
 
Although literatures commence to study on the effects of nanocomposites onto 
fracture toughness as a whole body, the localized behavior, such as how certain types 
of microcrack are initiated and propagating through the composite is lack of 
information, especially with plastic zone correction at crack tips. Therefore we 
manage to start with the investigation of a Zener-Stroh crack lying in a semi-infinite 
substrate covered by a coating with finite thickness, and check around its crack tips to 
see how certain properties are improved from single-phase structures. To our best 
knowledge, most of the time, ductility of nanocomposites, though enhanced, still 
remains limited compared to their corresponding values of traditional coarse-grained 
materials. That’s why for most cases, the size of the process zone and the plastic 
region around the crack tip is sufficiently small, so the small-scale yielding 
assumption is applicable to account for crack tip plasticity [Koch (2007)]. With the 
additional concern of more complicated configuration and stress field, we proposed a 
generalized Irwin model in dealing with mode I and mode II stress intensity factors 
simultaneously. The advantage of this model is that the model itself is intuitive and 
the procedure can be easily adopted by engineers. Results include the plastic zone 
size, the crack tip opening displacement, and effective stress intensity factors of mode 
I and mode II in different scenarios. 

The generalized Irwin model of a sub-interface Zener-Stroh crack  

The plastic zone size 

Current physical problem is depicted in Fig. 2a. Stress fields ahead of the crack tips 
along x  axis can be expressed as [Anderson (2005)] 
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Here   (t1) ,   (t2 )  stands for the blunt and sharp crack tips, respectively. The subscript 2 
refers to the substrate material. 2ν  represents its Poisson’s ratio. Due to the Von Mises 
yield criterion, yielding will occur if the equivalent stress eσ  reaches the yielding 
stress of material 2, ysσ  
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The equivalent stress intensity factors eK  are then obtained by 
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From Eq. (2), the first order estimation of PZS can be expressed with respect to  

σ ys , 
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Due to stress relaxation around crack tips, it is clear that the actual plastic strain will 
be extended to a larger zone. See from Fig. 2b, the 2nd order estimation of PZS, 
known as plastic zone correction, has the following form: 
 

rp
(tm ) = (Ke

(tm ) )2

πσ ys
2 .                                                (5) 

Crack tip opening displacement 

The crack tip opening displacement of a Zener-Stroh crack under the generalized 
Irwin model is shown in Fig. 2c. Although we can see faces are completely open 
throughout the crack, propagation will be initiated only at the sharp tip due to the 
existence of tensile stress, not at the blunt tip that has been compressed and stabilized. 
As a result, only CTOD at the sharp tip will be discussed hereafter. CTOD at the 
sharp tip δ is given in literature as [Anderson (2005)] 
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µ2  is the shear modulus. 
 
κ 2 =

3−ν2

1+ν2

 for plane stress, and  κ 2 = 3− 4ν2  for plane 

strain. Substitute Eq. (4) into (6), with the universal relation   E2 2µ2 = 1+ν2 , we have 
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in which   E2 ' = E2  for plane stress, 
  
E2 ' =

E2

1−ν2
2  for plane strain.   E2  is the elastic 

modulus of the substrate. 
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Figure 2.  The current problem: (a) 
A Zener-Stroh crack in a coating-
substrate system subjected to a 
combined displacement load; (b) 
Generalized Irwin plastic zone 
correction: plastic zone sizes yr  

and pr  ahead of two tips; (c) The 
crack tip opening displacement δ  
at the sharp tip. 

The effective stress intensity factor 

Let’s begin with the Zener-Stroh crack of length   2a  without plastic zone correction. 
Concentrated climb and glide edge dislocations at the blunt tip would lead to an array 
of dislocations emitted along the crack line. Due to traction free condition on the 
crack faces, governing equation of combined distributed dislocation density   B(ξ )  
turns out to be 
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where ( )  denotes the complex conjugate. The kernels   F1(x −ξ )  and   F2(x −ξ )  are 
given in the literature [Lu and Lardner (1992)]. The boundary conditions are 
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a
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in which   Bx (ξ )  and   

By (ξ )  are the glide and climb dislocation densities, respectively. 

 bx
T  and  

by
T  are the corresponding total sum of Burgers vector in the  x  and  y  

directions. 
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Since the dislocation density tends to go infinity in a square root singular manner, Bx  

and By  can be rewritten into Bx (s) =
1
1− s2

φx (s)  and By(s) =
1
1− s2

φy(s) , where 

φx (s)  and φy(s)  are unknown regular functions. Substituting Bx  and By  into Eqs. (8) 
and (9), four singular integral equations with Cauchy kernels are obtained. Gauss-
Chebyshev quadrature technique is then implemented to solve them numerically, thus 
Bx  and By  can be obtained [Zhuang et al. (2013)]. Mode I and mode II stress 
intensity factors at each crack tip can be derived in the following form [Weertman 
(1996)] 
 

KI
(t1 ) = −2π πaφy(−1), KI

(t2 ) = 2π πaφy(+1),

KII
(t1 ) = −2π πaφx (−1), KII

(t2 ) = 2π πaφx (+1).
                 (10) 

 
Here φx (±1)  and φy(±1)  are values of regular functions at blunt (-1) and sharp (+1) 
crack tips after the half-crack length a  has been normalized to 1. 
 
When we improve our analysis to investigate the elastic-plastic fracture behaviors of 
the Zener-Stroh crack, plastic zone correction needs to be imposed at both crack tips. 
The elongated, effective half-crack length is given  
 

aeff
(tm ) = a + ry

(tm ) = a + (Ke
(tm ) )2

2πσ ys
2 .                               (11) 

 
Remember that a Zener-Stroh crack can only propagate from the sharp tip, let’s focus 
on investigation of effective stress intensity factors at that tip. Hence, we get 
 

KI
eff = 2π πaeff

(t2 )φy '(+1), KII
eff = 2π πaeff

(t2 )φx '(+1),            (12) 
 

where φx '(+1)  and φy '(+1)  are values of regular functions at the sharp tip after the 

effective half-crack length aeff
(t2 )  has been normalized to 1. 

Numerical examples and discussion 

Some numerical examples and discussions for the plastic zone size, the crack tip 
opening displacement and effective stress intensity factors of a Zener-Stroh crack of 
length 2a  are given. The crack is embedded in a coating-substrate without external 
loading. The total sum of the Burgers vector throughout the crack by

T + ibx
T  ensures 

faces are fully open. For the ease of assessment, PZS and CTOD are normalized by: 
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where KI

0 , KII
0 , Ke

0 , r0  and δ 0  are the mode I, mode II, equivalent stress intensity 
factors, PZS and CTOD respectively for the same Zener crack that is embedded in a 
homogeneous infinite plate of material ‘2’. The dependence of the normalized plastic 
zone size rp

(tm ) r0 , normalized crack tip opening displacement δ δ 0 , and normalized 

effective stress intensity factors KI
eff KI

(t2 )  and KII
eff KII

(t2 )  on the normalized coating 
thickness h / a , normalized crack depth d / a , the Dundurs’ parameter α , as well as 
displacement loads ratio bx

T /by
T  are shown in Tables 1-2.  

Normalized PZS and normalized CTOD 

In Table 1, normalized PZS at the sharp ( 0/spr r ) and blunt tip ( 0/btr r ), and 
normalized CTOD ( 0/δ δ  ) at the sharp tip of the Zener crack are depicted in 
different scenarios. For the case of bx

T = 0 , we may find the same α  leads to a pair of 
identical plastic zones around two tips. In the most special situation 0α = , if coating 
thickness h  is very large compared to half-crack length a  (  h = 10a ), it is verified 
from second column that values of pr  and δ  converge to their corresponding values 

0r  and 0δ  (they are called “reference values” in the context), no matter how far the 
crack is located beneath the interface.   
 
Comparing figures in second and third columns, we observe that with a decreasing 
coating thickness, PZS at both tips, and CTOD at the sharp tip will be decreased. And 
the trend becomes more significant in plane stress than plane strain condition. This 
observation tells us a fact that increasing the volume fraction of added material (the 
coating) will enhance the ductility of the original structure (the substrate) in manner 
of magnifying the plastic deformation region around the crack tips.  
 
Effects of the crack depth d  can be viewed from third column ( 2h a= ), where 
different material mismatches have different reactions from a decreased crack depth. 
Softer coatings (α < 0 ) shrink PZS and CTOD values lower than the reference while 
stiffer coatings (α > 0 ) result in higher-than-reference plasticity quantities. This 
indicates a fact that when the crack gets nearer to the interface, it becomes easier to 
propagate with a softer coating covered on top, but stabilized under the protection of 
a stiffer coating. 
 
Last two columns show continuous influence of displacement loads ratio bx

T by
T  onto 

PZS and CTOD. Supposing that crack depth d  can be either 0.5a  or 5a . If x dir−  
displacement load gradually increases from 0.1× by

T  to by
T , normalized rp  and δ  

will be increased without exceptions. As long as the crack is far away from the 
interface (for example d / a = 5 ), crack tip parameters become converge even within 
different material mismatches. But when the crack locates nearer, a thorough 
examination at different material mismatches tells that: a larger α  always results in 
higher sensitivities of normalized pr  and δ  along with the changing /T T

x yb b . Besides, 
this effect onto plane strain cases is more significant than it does on plane stress 
cases.  
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Table 1.  Normalized PZS and normalized CTOD, with 0β =  

   h = 10a,bx
T = 0    h = 2a,bx

T = 0  h = 2a,α = −0.4  h = 2a,α = 0.4  

rsp
r0

 

    

rbt
r0

 

    

δ
δ 0
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The effective stress intensity factors KI
eff  and KII

eff  

Due to the inclusion of the 1st order plastic zone size, we can see from Table 2, 
generally speaking, KI

eff KI  and KII
eff KII  are lower than 1. However the scale of 

decrement depends on material mismatches, crack depths and many more. One can 
see that KI

eff KI  and KII
eff KII  deduce more when the coating is stiffer (α > 0 ), 

meaning that the correction of KI  and KII  is more necessary if the substrate is coated 
with stiffer material. 
 
Moreover, when α < 0 , crack with greater depth shows smaller values of KI

eff KI  
and eff

II IIK K . Similar trends can be seen when α > 0  and crack gets closer to the 
interface. This illustrates that cases of shallower crack under stiffer coating, or deeper 
crack under softer coating, are in greater need of correction in terms of stress intensity 
factors. It is also not difficult to find KI

eff  and KII
eff of the sharp tip of a Zener crack 

under plane stress differ more from KI  and KII  respectively than the results shown 
for plane strain condition. 
 

Table 2.  Effective stress intensity factors KI
eff  and KII

eff , with 0β = , 2h a= , 
/ 0.5T T

x yb b =  

/d a   0.1 0.2 0.3 0.4 0.5 0.6 

0.4α = −  
 

 

KI
eff

KI

 
Plane stress 0.99827 0.99822 0.99818 0.99815 0.99812 0.99808 

Plane strain 0.99857 0.99853 0.99851 0.99850 0.99848 0.99847 

 

KII
eff

KII

 
Plane stress 0.99783 0.99777 0.99772 0.99767 0.99763 0.99758 

Plane strain 0.99820 0.99816 0.99813 0.99811 0.99809 0.99807 

0.4α =   

KI
eff

KI

 
Plane stress 0.99682 0.99694 0.99704 0.99713 0.99720 0.99727 

Plane strain 0.99791 0.99802 0.99810 0.99818 0.99824 0.99830 

 

KII
eff

KII

 
Plane stress 0.99625 0.99631 0.99637 0.99642 0.99648 0.99653 

Plane strain 0.99753 0.99761 0.99767 0.99773 0.99779 0.99784 

Conclusions 

In the present work, plastic zone size, crack tip opening displacement and effective 
stress intensity factors for a sub-interface Zener-Stroh crack in a coating-substrate 
system under combined displacement load bT = by

T + ibx
T  are investigated by a 

generalized Irwin model. In the numerical examples, we specifically describe the 
dependence of normalized plastic zone size for sharp tip rsp / r0 , for blunt tip rbt / r0 , 
normalized crack tip opening displacement for sharp tip δ /δ 0 , as well as normalized 
effective stress intensity factors for sharp tip KI

eff /KI , KII
eff /KII  on normalized crack 

depth d / a , normalized coating thickness h / a , Dundurs’ parameter α , and 
displacement loads ratio bx

T /by
T . According to the results obtained and discussed, 

following conclusions can be made: 
1. Either the Zener-Stroh crack exists in an infinite bi-material composite 

without mismatches (α = β = 0 ), or it locates far from the interface (d / a > 5 ) 
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in a coating-substrate system with mismatches (arbitrary α  and β ), the 
current physical problem reduces to the corresponding problem of the same 
crack in a homogeneous material. 

2. Normalized PZS and normalized CTOD will be increased with the increasing 
coating thickness. When coating thickness is fixed, a Zener crack moves 
nearer to the interface will experience higher PZS and CTOD values if the 
substrate is coated with stiffer material, but lower PZS and CTOD if it has a 
softer coating instead. 

3. These are the circumstances shall we need to produce the effective stress 
intensity factors: 1) if the coating is softer than the substrate and the crack is 
relatively deep beneath the interface; 2) if the coating is stiffer than the 
substrate and the crack locates near the interface; 3) choose substrate with 
stiffer-coating system to evaluate when the other conditions are the same; 4) 
choose plane stress structure to evaluate when the other conditions are the 
same. 

4. When the coating thickness and crack depth are fixed, with the increasing 
displacement loads ratio bx

T /by
T , normalized PZS and normalized CTOD 

grows more rapidly and around higher values if the substrate is coated with 
stiffer materials, especially in plane strain condition. 
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