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Abstract

Modelling problems in structural analysis requires of a statistical approach that allows us to take
into account the random nature of the variables as well as the uncertainties involved in the problem
being  analysed.  However  neither  all  statistical  models  are  valid  nor  all  assumptions  are
mathematically or physically reasonable. The aim of this paper is twofold: (a) to explain how to
build statistical models with mathematical and physical coherence, and (b) to describe the most
common  mistakes  made  when  building  or  selecting  mathematical  and  statistical  models.  We
provide some interesting tools to carry out this important task and present some examples that show
the inconveniences and consequences derived from an incorrectly established model.

Keywords:  Location-scale stable families, Structural analysis statistical models, Specification of
multivariate joint distributions, Extreme Values, Probability papers.

Introduction

Before selecting a model to solve a given engineering problem, a very important step consists of
dedicating sufficient time to study the problem under consideration in some depth. This means that
the engineer must understand the problem, the variables and the implied physical relations, which
should be  present  in the  model.  For  example,  an engineer  dealing with a  breakwater  needs to
understand that the large waves and winds are the most important agents implied in design. This
means that maxima events and then maxima extreme value distributions must be considered. The
limited or unlimited range of the random variables involved is also relevant, because this permits
excluding  either  the  Weibull  or  Frechet  type  of  distributions.  Ignoring  these  aspects  leads  to
unconservative or very expensive solutions which are engineeringly regrettable.

It is also convenient to use simple models, that is, as parsimonious as possible and dimensionally
consistent. In this line, the Buckingham theorem plays a fundamental role and should be the first
step in equation modelling. Apart from reducing the number of variables involved and avoiding us
to be concerned about dimensions, it permits us to check if the selected variables are sufficient or
need to be completed with additional variables to reproduce a physical problem or phenomena.

Another important decision to be made when building models is the selection of the families of
random variables  used to  reproduce the  real  ones.  In  this  context,  the  designer  must  take into
account the variable ranges and be aware that not all distribution families are valid for reproducing
all types of variables. In this context, one should know that some distributions are valid only for
dimensionless variables (Poisson, beta,  binomial,  etc.)  and that some distributions are not scale
(geometric, chi-squared, etc.) or location (gamma, log-normal, etc.) stable. For example, selecting
non-scale families means that the resulting models will not be valid for variables when written in
terms of different measure units, and then they are inadequate.

Since a statistical analysis requires the joint distribution of all variables involved, the selection of a
multivariate model is crucial too. In this line it is important to use feasible models. We point out
that  in  some  cases  a  lack  or  an  excess  of  simplifying  assumptions  can  lead  to  undefined  or
inexistent models, respectively.
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As a final example, the designers should be aware of the existence of different probabilistic papers
(maximum, minimum, etc.) and that not all data points but only those in the tail of interest must be
used when dealing with extremes. Ignoring these facts can be catastrophic.

Since we consider that all these issues are very relevant for engineers, they are discussed with some
detail in this paper.

The aim of this paper is twofold. On one hand we introduce some considerations to be taken into
account when building statistical models and, on the other hand, we point out some problems we
can find when these aspects are not considered. Besides, we provide some tools to facilitate this task
together with several examples for a better comprehension of the concepts discussed.

The paper is organized as follows. In Section 2 we present a brief review of some of the statistical
models proposed in different Civil Engineering fields. In Section 3 we make some considerations
about  the  units  of  the  random  variables  and  their  moments.  In  Section  4  we  emphasize  the
importance of the Buckingham theorem in order to build parsimonious and dimensionless models.
In Section 5 we deal  with extreme values and probability papers.  In Section 6 we explain and
discuss different possibilities to define multivariate models and finally, in Section 7 we give some
conclusions.

Some statistical models proposed in the literature

In the Civil engineering literature it is becoming more frequent to find statistical approaches. For
example, reliability analysis has reached all engineering fields. Due to the abundant bibliography
dealing with this issue, as a sample and for illustration purposes, Table  1 shows a list of some
examples of distributions used in the Civil Engineering literature.

Table 1: Some probability distribution families used in the literature together with the
corresponding engineering variables.

VARIABLE DISTRIBUTION VARIABLE DISTRIBUTION

Geometric and mechanical 
properties

log-normal and normal Maximum wave height reverse Weibull

Material properties
normal, two- and three-
parameter Weibull

Two successive wave 
periods

bivariate Weibull and bivariate
Rayleigh

Excedences of wave height 
or significant wave height

Generalized Pareto Significant wave heights
Weibull, generalized gamma, 
generalized beta kind I and 
beta kind II

Stress range

Raleigh, wide-band, 
Weibull, beta, log-
normal, Rice’s and 
normal distributions

Significant wave height 
and wave period

Box-Cox + bivariate normal, 
bivariate log-normal and 
bivariate Plackett

Loads
Poisson, Gumbel and 
normal

Small wave heights in 
large depths

Rayleigh

Wind speed
Frechet, Gumbel, reverse 
Weibull and log-normal

Joint density of significant
wave height, wave period 
and current and wind 
speeds

Marginals transformed to 
normals by Box-Cox 
transformation plus 
multivariate normal

Wave period log-normal Wave height
Rayleigh distribution and 
reverse three-parameter 
Weibull

Fatigue life Weibull
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It is relevant to say that some of the used models above are theoretically justified and some are used
just  for  convenience  or  to  facilitate  calculations  or  mathematical  derivations.  For  example,  the
normal model is justified when the random variable being modelled is the sum of a large enough
number of other variables. This occurs frequently in strength of materials where in a cross section
of  volume  all  the  subelements  add  efforts  or  collaborate  to  resistance.  Poisson  and  gamma
distributions have been proved to correspond to rare events and the time of occurrence of the r-th
event, respectively. The Weibull, Gumbel and Frechet extreme value distributions and their reverse
versions are justified because they are the limit distributions of maxima or minima, which are very
important in Civil Engineering design because in general only maxima (waves, winds, earthquakes,
temperatures, etc.) and minima (draughts, fatigue strength, temperatures, etc.) values lead to failure.
However, it is not uncommon to see minima models erroneously used for maxima or vice versa.
The  generalized  Pareto  distribution  is  justified  because  it  arises  as  a  limit  distribution  for
exceedances (large waves, winds, etc.) over or shortfalls (rain, temperature, etc.) under a threshold.
Rice and Rayleigh distributions are also derived from theoretical models of waves.

Contrary, other distributions, such as the log-normal that arises in order to reproduce asymmetric
data, the generalized beta and the models based on the Box-Cox transformation that are used to fit
different data histograms, etc. have convenience as motivation.

In the Structures field, for example, [O’Connor and Kenshel (2013)] use the normal distribution to
describe  concrete  material  properties,  [O’Connor  and  Enevoldsen  (2009)]  propose  Log-normal
distributions  for  modelling  structural  parameters  and  uncertainties  associated  with  modelling,
[Simiu et al. (1980)] assume the Fretchet distribution for the wind speed and [Pourzeynali and Datta
(2005)] suggests the Raleigh distribution to model the stress range.

In the Material  Science field,  [Castillo and Fernández-Canteli  (2009)] develop a fatigue model
using a three-parameter Weibull distribution for a normalizing variable representing the whole S-N
field based on a unique distribution function, [Koller et al. (2009)] validate the use of a log-Gumbel
fatigue regression model and [Przybilla et al. (2011)] propose a method to obtain the distribution of
fracture stress  as a  three-parameter  Weibull  cumulative distribution function (cdf)  referred to a
uniaxially and uniformly tensioned surface element. We can also mention the case of Coast and
Ocean Engineering where [Ferreira and Guedes Soares (1999)] assume significant wave heights to
follow Beta distributions, [Ferreira and Guedes Soares (1998)] use the Generalized Pareto densities
for  excedences  of  wave  heights  and  significant  wave  heights,  or  [Ochi  (1992)]  proposes  the
Generalized Gamma distribution for significant wave heights.

Another field with a wide variety of stochastic models is Transportation. Some examples are [Lo et
al. (1996)] who propose independent Poisson link counts or [Castillo et al. (2012)] who develop a
bayesian  network  considering  that  the  different  traffic  variables  follow  a  generalized  beta
distribution. Multinomial models were assumed by [Clark and Watling (2005)] for route flows and
shifted-gamma distribution was used by [Castillo et al. (2013)] for modelling the traffic flows.

From the list of publications above we can realize that a large set of distributions has been used.
Detected  inconsistencies  in  some  of  the  proposed  models  motivates  the  current  paper,  which
presents essential aspects to be considered when building statistical models.

Some considerations on units of the random variable and their moments

One  common  mistake  when  building  statistical  models  is  to  ignore  that  not  all  families  of
distributions are valid for all types of variables. We need to be aware that parameters of statistical
families have units. In particular, the mean has the same dimension as the random variable and the
variance the squared dimensions.
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Example 3.1 (Exponential distribution) For the exponential distribution Exp(λ) we have: 

E [X ]=1/λ ; Var [X ]=1/λ2. (1)

Since the dimension of  1/λ2  is the square of the dimension of 1/λ, the inverse of the variable unit,
the dimensions are consistent in this case. 

Example 3.2 (Beta distribution) ∼For the beta distribution, X Beta(a,b) we have: 

E [X ]= a
a+b

; Var [ X ]= ab

(a+b)2(a+b+1)
. (2)

This  implies  that  X  must  be  dimensionless,  because  in  the  term  a+b+1  a  and  b  must  be
dimensionless; otherwise they cannot be added to 1 (dimensionless). Once that a and b have been
recognized as dimensionless, E[X] and Var[X] are also dimensionless (see (2)). 

Example 3.3 (Weibull distribution) ∼ For the Weibull distribution, X W(λ,k) we have: 

E [X ]=λΓ(1+ 1
k ); Var [X ]=λ2[Γ(1+ 2

k )−Γ2(1+ 1
k )] , (3)

which implies that k must be dimensionless and λ must have the same dimensions as X, and that the
Weibull model can be made consistent for variables of any dimensions. 

Example 3.4 (Gamma distribution) ∼If  the random variable X is Gamma X W(λ,k),  the random
variable X+a with a≠0 is not gamma any more. This means that the gamma family is not stable
with  respect  to  changes  in  location  and  has  important  consequences,  because  the  gamma
distribution cannot  be  used  for  location variables,  such  as  temperatures.  More  precisely,  if  a
random temperature is gamma measured in Celsius degrees, it is not gamma when measured in
Farenheit or Reamur degrees. Thus, using the gamma family for temperatures is inadequate and
misleading. 

Other  examples  of  dimensionless  families  are  the  binomial,  negative  binomial  and  Poisson.
Contrary, normal distributions are examples of statistical families compatible with any dimension.

Parsimonious and dimensionless models: The Buckingham theorem

When a mathematical or statistical model is built, a dimensional analysis of the variables involved
must be initially carry out as this allows us to understand some deep relations among these variables
and help to avoid dimensional contradictions. Besides, it is recommendable to build a dimensionless
model in order to prevent dimensional inconsistencies and in some cases to reduce the problems
associated  with  precision  in  numerical  evaluations.  Finally,  it  is  important  to  work  with
parsimonious models, that is, the simplest models explaining all the aspects to be considered. To
these  aims  the  Rayleigh  method  of  dimensional  analysis  and  its  formalization  proposed  by
[Buckingham (1915)] plays a fundamental role. To illustrate, we propose the following example. 

Example 4.1 (Corbel Example. Dimensionless variables)  The example deals with a reliability
analysis of a corbel by means of the strut-and-tie model represented in Figure 1. In this case we
assume two possible failure modes, defined by the limit-state functions H 1 and H 2 : 

H 1 ≡ f s As−F v tanθ−Fh=0, (4)

H 2 ≡ f c Ab−F v=0 (5)
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where  F v and F h are the applied vertical and horizontal forces, respectively,  f s and  f c are the
strength of the steel and of the compressed concrete, θ is the angle between the compression strut
and the tie, As is the cross sectional area of the passive reinforcement and Ab is the area where the
action is applied.

Figure 1: Corbel Example. Strut-and-tie model.

The failure curve can be expressed as the minimum value of the previous limit-state functions, that
is, 

H = min {H1, H2} (6)

Based on the Buckingham Π Theorem, we get the dimensional decomposition shown in Table  2,
where [F] and [L] denote force and length magnitudes, respectively. We see that the n=7 variables
set up a dimensional matrix with rank q=2. Applying the Buckingham Π Theorem, we conclude that
the model (6) is equivalent to another with p=n−q=5 dimensionless parameters (ratios).

Table 2: Corbel Example. Dimensional decomposition.

 F v F h f s f c θ As
Ab

 [F] 1 1 1 1 0 0 0

 [L] 0 0 -2 -2 0 2 2

If  we  use  f s and  As as  reference  or  normalizing  variables,  we  obtain  the  following  new
dimensionless variables:

F v
∗= F v

f s As
; F h

∗= F h

f s As
; f c

∗= f c

f s
; θ∗=θ ; Ab

∗= Ab

A s
, (7)

and the new mathematical expression for the model (6) becomes: 

H ∗ = H
f s As

= min {1−F v
∗ tanθ∗−F h

∗ , f c
∗ Ab

∗−F v
∗} , (8)

where the asterisks refer to dimensionless variables. The main advantages of using the Buckingham
theorem are: 

1. The model presents p=5 variables instead of n=7, which implies a reduction in the problem
complexity. 

2. The variables are independent from any units being considered, avoiding possible dimensional
mistakes.  Moreover,  the  normalization  modifies  the  variable  ranges  and  reduces  possible
numerical precision problems. 
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3. The variable H ∗ becomes more meaningful than the associated dimensional variable H because
its  value  can  be  compared  for  different  cases  when  the  steel  characteristics  (area  and  yield
strength) are kept constant. 

We point out that the dimensional results can be recovered at the end of the process, undoing the
change proposed in (7). 

Extreme values and probability papers

In the engineering design of structures we need to deal with extreme values, that is, maxima (for
example,  loads,  moments,  etc.)  or  minima  (for  example,  strength  properties).  In  such  cases,  a
careful  selection  of  extreme  value  distributions  to  approximate  the  distribution  of  extremes  is
required. In this paper we deal only with maxima, but the minimum problem is similar. In order to
see  if  a  cdf  F(x)  can  be  approximated  for  maxima  by  a  reverse  Weibull,  Gumbel  or  Frechet
distribution we can use the following theorem by [Castillo (1988)]. 

Theorem 1 If F(x) is the cumulative distribution function of a random variable and 

lim
ε →0

F−1(1−ε)−F−1(1−2ε)
F−1(1−2ε)−F−1(1−4 ε)

=2c. (9)

then  F(x)  can  be  approximated  in  its  right  tail  by  a  Frechet  distribution  if  c>0,  a  Gumbel
distribution if c=0 and a Weibull distribution if c<0. 

In particular, if the range of F(x) is limited it cannot be approximated by a Frechet distribution and
if it is unlimited, we cannot use a Weibull distribution.

As some interesting examples,  Table  3 shows the corresponding approximating distributions of
some of the most common distributions for maxima and minima.

Table 3: Corresponding approximating distributions for maxima and minima of the most
common distributions.

Distribution
Domain of Attraction

Distribution
Domain of Attraction

Maximal Minimal Maximal Minimal

Normal Gumbel Gumbel Uniform Weibull Weibull

Exponential Gumbel Weibull Weibull Weibull Gumbel

Log-normal Gumbel Gumbel Weibull Gumbel Weibull

Gamma Gumbel Weibull Cauchy Fréchet Fréchet

Gumbel Gumbel Gumbel Pareto Fréchet Weibull

Gumbel Gumbel Gumbel Fréchet Fréchet Gumbel

Rayleigh Gumbel Weibull Fréchet Gumbel Fréchet

M = maxima m = minima M = maxima m = minima

The previous method permits determining the extreme value distributions associated with a given
one F(x). However, in practice we do not have this information but only data. In this case we can
plot this data on a Maximal Gumbel probability paper, as shown in Figure 2. Then, looking to its
right tail and determining whether the data trend is straight or has positive or negative curvature, we
can decide about Gumbel, Weibull or Frechet as approximating distributions, respectively.

Building multivariate statistical models

In this section we deal with the problem of defining the joint multivariate density of all the variables
which are relevant to the problem under consideration.
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There are several ways to define the joint density of a multivariate model. These methods can be
classified as underdetermined, overdetermined and uniquely determined methods, depending of the
number of imposed conditions. 

Figure 2: Maximal Gumbel probability paper illustrating the relevant zone. 

In order to uniquely determine a multivariate model with an underdetermined method, we have to
add  some  extra  conditions.  In  the  case  of  the  overdetermined  methods,  the  solution  is  not
guarantied. For a more detailed description of these methods, see [Arnold et al. (1992,1999,2001)]
and [Castillo et al (2014)].

The following example illustrates the cases of overdetermined and underdetermined methods.

Example 6.1 (Normal conditionals model) [Arnold et al (1999)] demonstrate that there are two
families of bivariate distributions with normal conditionals, that is, with conditionals X|Y=y and
Y|X=x which are normals: (a) the normal and (b) a family with regression lines and conditional
variances given by: 

E (X∣Y= y) = μ1( y)=−
m12 y2+m11 y+m10

2(m22 y2+m21 y+m20)
, (10)

var (X∣Y= y) = σ1
2( y )= −1

2(m22 y2+m21 y+m20)
, (11)

E (Y∣X =x ) = μ2( x)=−
m21 x2+m11 x+m01

2(m22 x2+m12 x+m02)
, (12)

var (Y∣X=x) = σ2
2( x)= −1

2(m22 x2+m12 x+m02)
, (13)

where the m’s are constants.

One example of a normal density is shown in the left plot of Figure 3, where the linear regression
lines are shown on the top projection and the normal marginals in the left and right projections.
Similarly, the right plot corresponds to a non-normal family, which shows projected non-linear
regression lines and non-normal marginals.

If we assume normal conditionals alone, the resulting model is undefined, but if in addition we
assume that the X|Y regression line is a proper third degree polynomial, we are in front of an
inexistent or impossible model as we can conclude from Equation (10).
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The simplest method to define a joint density corresponds to the independent model in which all
variables are independent, so that it is sufficient to define the univariate marginals. However, when
variables are dependent, the model complicates.

Figure 3: Two illustrative examples of bivariate densities with normal conditionals: normal
(left figure) and non-normal (right figure). 

Example 6.2 (Corbel Example.  Selecting probability distribution families) In this  example we
select and discuss the probability distribution families associated with the variables involved in the
corbel example introduced previously. To simplify and because the steel manufacture companies
are  very  reliable,  we  can  assume f s and As as  deterministic.  Thus,  we  only  have  the  random
variables  F v , F h , f c , Ab and θ . In addition we can assume that all variables are independent.
With the exception of  F v and F h , this is a reasonable assumption because they involve forces,
material  strengths,  areas  and  a  design  angle,  whose  values  are  undoubtedly  independent.
Furthermore,  we  assume  the  independence  of  F v and F h .  This  implies  that  only  marginal
distributions are needed in order to build the statistical multidimensional model.

Table  4 shows  the  selected  marginal  distributions,  the  associated  parameters  and  the
corresponding ranges.

Table 4: Corbel Example. Marginal distribution functions for the dimension variables.

Dimension Variable Lower Upper Assumed Assumed Parameters

Variable Type Bound Bound Distribution Shape Scale Location

f s  Deterministic 455124 kN/m2 455124 kN/m2

As  Deterministic 5.92e-4 m2 5.92e-4 m2

F v
Random: Extreme

Value
positive value positive value 3P Max- Weibull 0.21 36.209 kN 68.846 kN

F h
Random: Extreme

Value
negative value positive value 3P Max- Weibull 0.236 9.776 kN −4.225kN

f c Random: General positive value positive value Gamma 149.50
142.5 kN/m2

Ab Random: General positive value positive value Gamma 1.45
0.031 m2

θ Random: General π/6 π/3 Generalized Beta
α=2
β=15

π/6 −1

Now,  given  these  selected  distributions,  we  can  obtain  the  distributions  for  the  associated
dimensionless problem. With this aim, first we represent As and f s by their expected values, i.e.,
As≡E [As]=μAs

and f s≡E [ f s]=μ f s
, obtaining the following new dimensionless variables: 

F v
∗=

Fv
μ f s

μA s

; F h
∗=

F h
μ f s

μA s

; f c
∗=

f c
μ f s

; Ab
∗=

Ab
μA s

,
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and the limit-state function: 

H ∗ = H
μ f s

μ As

= min {1−Fv
∗ tanθ−F h

∗ , f c
∗ Ab

∗−F v
∗}. (14)

For  the  new  non-dimensional  variables  appearing  in  equation  (14),  Table  5 shows  the
corresponding  distributions  and  associated  dimensionless  parameters.  The  values  have  been
obtained using  μ f s

=455124 kN /m2 and μA s
=5.92e-4 m2 .

Table 5: Corbel Example. Marginal distribution functions for the dimensionless variables.

Dimensionless Assumed Assumed Parameters

Variable Distribution Shape Scale Location

F v
∗

3P Maximum Weibull 0.21 0.134 0.256

F h
∗

3P Maximum Weibull 0.236 0.036 −0.016

f c
∗

 Gamma 149.5 3.13e−04

f s Gamma 1.45 52.365

θ∗ Generalized Beta =2, β=15 π/6 −1

Table  5 shows  that  only  the  scale  and location parameters  are  affected  by  the  normalization.
Moreover, the parameters of the Generalized Beta distribution remain constant because they are
associated with the dimensionless variable θ∗=θ . Finally, the statistical families in Table 4 remain
in Table 5 because all of them are stable with respect to scale changes.

However, there exists another way to deal with the dimensionless problem without using scale-
stable distributions. The process consists of obtaining the dimensionless sample data before fitting
the distribution parameters. 

One of the most important methods to define dependent multivariate models is Bayesian networks,
which are defined by means of a directed acyclic graph G together with the conditional distributions
of each of the involved variables given their parents, as follows: 

f (x1 ; x2 ;…; xn)= f 1( x1) f 2( x2∣x1) f 3( x3∣x1 ; x 2)… f n( xn∣x1 ; x2 ;… ; xn−1)=∏
i=1

n

f i( xi∣π i) , (15)

where πi are the parents of the variable X i in the directed acyclic graph G. Bayesian networks are
the  simplest  way to  reproduce  complicated  multidimensional  families  of  distributions  avoiding
incompatibilities.

Example 6.3 (Corbel Example. A multivariate model)  In this example we determine a multivariate
model associated to the previously dimensionless corbel example.

From equations (4) and (5) we know that 

H 1
∗ = f 1(F h

∗ ,F v
∗ , f s

∗ , As
∗ ,θ) (16)

H 2
∗ = f 2( F v

∗ , f c
∗ , Ab

∗) , (17)

where H 1
∗ and H 2

∗ are the dimensionless limit-state functions, using μA s
and μ f s

.
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In order to correctly define the joint distribution of these limit-state functions, we have to carry out
an analyses of the dependence relation among the involved variables. In this example, we assume
independence among all variables, except between F v and  F h , because these forces are usually
related.

Due to the fact that variables involved in H 2
∗ are independent we can compute the joint probability

by means of the set of all marginal, that is, 

f (H 2
∗)= f (F v

∗ , f c
∗ , Ab

∗)= f (Fv
∗) f ( f c

∗) f (Ab
∗) , (18)

However, in the case of the , H 1
∗  applying equation (15) to determine this joint probability, we get:

f (H 1
∗) = f (F v

∗ , F h
∗ , f s

∗ , As
∗ ,θ) =

= f (F h
∗) f (F v

∗∣Fh
∗) f ( f s

∗∣F h
∗ , F v

∗) f (As
∗∣F h

∗ , F v
∗ , f s

∗) f (θ∣F v
∗ , F h

∗ , f s
∗ , As

∗) =
= f (F h

∗) f (F v
∗∣Fh

∗) f ( f s
∗) f (As

∗) f (θ) , (19)

which requires to know the conditional distribution of  F v
∗ given F h

∗  .

With this aim, we represent the data (F h
∗ , F v

∗) (see left Figure 4) and observe that they exhibit the
following linear regression: 

F v
∗=3.99 F h

∗+0.31 . (20)

Next, we find that the residuals follow a maximal Weibull model (see right Figure 4): 

F R(r ) = exp{−[1−k ( r−λ
σ )]

1/ k}; 1−k( r−λ
σ )⩾0. (21)

Figure 4: Data and regression line for the Corbel example and residuals given on a Normal
probability plot. 

Combining this expression with the regression equation (20) leads to the final model for F v
∗∣F h

∗

F F v
∗∣F h

∗( f v
∗∣ f h

∗)=exp{−[1−k( F v
∗−3.99 F h

∗−0.31−λ
σ )]

1/ k} (22)

only valid for 

1−k( F v
∗−3.99 F h

∗−0.31−λ
σ )⩾0 (23)
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Then, the estimation of the Weibull parameters using the maximum likelihood method leads to 

k=0.262;        σ=0.218;        μ=−0.0789.

In this way, the joint probability of this multivariate model becomes defined and we can evaluate
the failure probabilities. 

Conclusions

The following conclusions can be drawn from this paper: 

1. Random variables and the parameters of statistical distributions are dimensional. These must be
taken into consideration when statistical models are selected, otherwise, inadequate models can be
obtained leading to important dimensional problems. 

2. A previous dimensional analysis of the variables involved must be performed before building a
model. This leads to a deep understanding of the relations among the involved variables, avoids
dimensional  inconsistencies  and reduces  numerical  precision problems.  In  this  direction,  the  Π
Buckingham theorem is the most convenient and recommendable tool to be used. 

3. Identification of the adequate extreme value distribution is very important in real practice. There
are theorems that allow us to decide which of the Weibull, Gumbel or Frechet distributions or their
reverse versions corresponds to a given cdf F(x). 

4. We must be aware of the fact that different probability papers exists. With respect to extreme
value analysis there are two Gumbel probability papers, one for maxima and one for minima. It is
important to realize that only the tail of interest must be plotted and fitted. 

5. Care must be taken in selecting the adequate multivariate joint density functions. In this line, we
must be aware that an excess of assumptions leads to impossible models, and a lack of them, to
undefined models.  Finally,  Bayesian networks is  the  most  adequate  method to  define the joint
distributions,  based on a directed acyclic graph and the conditional distributions of each of the
random variable given their parents. 
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