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Abstract
This paper presents dynamic modeling of tensegrity robots rolling over the ground. We have de-
veloped a 6-strut tensegrity robot that deforms its body for rolling locomotion over the ground.
Designing tensegrity structures and control laws appropriate to locomotion experimentally has con-
sumed much time and labor. Dynamic simulation of tensegrity robot rolling is thus required to
reduce time and labor in experimental trials.

We have formulated a set of dynamic equations of motion of tensegrity robots. Our tensegrity
robots consist of rigid struts and elastic actuators. Elastic actuators, which act as tensile elements,
shrink by applying air pressure into the actuators. Applying air pressure to designated actuators
deforms the tensegrity structure, which allows the structure roll over the ground. We have simulated
the rolling of two icosahedron tensegrity robots; one consists of 24 actuators while the other consists
of 12 actuators. Experimental evaluation validated our dynamic simulation.
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Introduction
Locomotion has been a main research issue in robotics and many robots have been proposed in the
past decade including wheel robots, crawler robots, and legged robots. Recently, much attention has
been paid to soft-bodied robots, which employ deformable bodies consisting of soft materials. Such
soft-bodied robots can deform their body for locomotion. Deformable bodies are useful for obstacle
avoidance and narrow passage locomotion. On the other hands, it is difficult to build larger bodies
since soft materials deform naturally under gravity. To cope with this problem, we have proposed
to introduce tensegrity structures into robot bodies.

Tensegrity structures consists of a set of rigid elements connected by elastic elements. Rigid
elements, which are referred to as struts, act as bones of a robot while elastic elements, which are
referred to as tensile elements, provide softness to the robot. Tenesgrity structures have been applied
robot locomotion [Aldrich et al. (2003); Paul et al. (2006); Arsenault and Gosselin (2008)]. Most
tensegrity robots employ crawling for locomotion. For dynamic locomotion, we have proposed
tensegtity robots that roll over the ground [Shibata et al. (2009)] and developed a six-strut tensegrity
robot driven by pneumatic McKibben actuators [Koizumi et al. (2012)]. Activating an appropriate
set of actuators in sequence, a tensegrity robot rolls over the ground. Unfortunately, determining a
sequence of appropriate actuators for locomotion requires much time since it is performed using a
real robot in trial and error manner. Additionally, we have many choices in tensegrity structures.
We have to select structures appropriate to rolling locomotion. This selection would require much
time.

Determining actuator sequence and selecting tensegrity structures would be performed on a
computer once we have establish a dynamic simulation of rolling tensegrity structures. Thus, we
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Figure1: Prototype of six-strut tensegrity robot

will establish dynamic modeling of rolling tensegrity structures and perform simulation of rolling
of tensegrity robots.

Tesegrtity Robots
Figure 1-(a) shows a prototype of six-strut tensegrity robots. This prototype consists of 6 rigid

struts and 24 pneumatic McKibben actuators. The struts are made of aluminum and are 570 mm
in length. Two rigid balls of diameter 45mm are attached to the both ends of each strut to help the
rolling of a tensegrity robot. McKibben actuators shrink by applying air pressure and extend via
external forces. Namely, McKibben actuators act as elastic elements. The actuators can generate
force of 800 N at air pressure of 0.5MPa. Contraction ratio is almost 34% without load and 20%
under the load of 3N by at air pressure of 0.5MPa. Air pressure to the actuators is applied externally
through air hoses.

Figure 1-(b) shows geometric description of a six-strut tensegrity robot. Let us attach numbers
1 through12 to individual vertices of the tensegrity robot. Then, each strut or each actuator is
specified by a pair of numbers corresponding to its both ends. A six-strut tensegrity forms an
icosahedron, consisting of eight regular triangles and twelve non-regular isosceles triangles. One
triangle is contacting to the ground when this tensegrity robot is in equilibrium, implying that each
equilibrium can be specified by its corresponding triangle.

Figure 2 describe successive rolling of a six-strut tensegrity robot. The prototype can perform a
successive rolling over a flat ground by applying air pressure to a sequence of actuator pairs.

Dynamic Modeling of Tensegrity Rolling
Let us summarize the dynamic of a rigid body. Let us attach body coordinate systemC− ξηζ to

the body while fix space coordinate systemO−xyz to space. Orientation of a rigid body is described
by rotation between the two coordinate systems. Let us introduce quaternionq = [ q0, q1, q2, q3 ]

T

to describe the orientation of a rigid body [Kuipers 2002]. This quaternion must satisfyqTq =
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Figure2: Successive rolling of a six-strut tensegrity robot

q20 + q21 + q22 + q23 = 1. The orientation matrix of a rigid body is then given as

R(q) =

 2(q20 + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

 . (1)

The first, second, and third columns of the above matrix correspond to unit vectors alongξ-, η-, and
ζ-axes. Angular velocity vector of a rigid body is described as

ω = 2H(q) q̇ = −2H(q̇) q, (2)

where

H(q) =

 −q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 .

Let J be inertia matrix of a rigid body andτ = [ τξ, τη, τζ ]
T be a set of external moments

aroundξ-, η-, andζ-axes applied to the body. Then, dynamic equation of rigid body rotation is
formulated as:

q̈ = −r(q, q̇) q − 2HT(q) J−1

(
(H(qq̇)× (JH(q)q̇)− 1

4
τ

)
, (3)

where

r(q, q̇) = q̇Tq̇ + 2νqTq̇ +
1

2
ν2(qTq − 1) (4)

with positive constantν. This r(q, q̇) originates from stabilization of holonomic constraintqTq −
1 = 0 [Baumgarte (1972)]. Denoting the right hand of Eq.3 byh(q, q̇, τ ), dynamic equation of
rigid body rotation is simply described as̈q = h(q, q̇, τ ).
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Figure3: Simulation result of rolling of six-strut tensegrity robot

Let us formulate the motion of thei-th strut. Let2L be the length of the struts. Assume that each
strut is uniform with its massm and inertia matrixJ . LetCi be the center of motion of thei-th strut
andxi denote its position. Let us attach coordinate systemCi − ξiηiζi to thei-th strut. Assume that
ζi-axis lies on the line between the both end of the strut andζi be unit vector alongζi-axis. Letting
fi andτi be external force and moment applied to thei-th strut, equations of motion of the strut are
given by

mẍi = fi, q̈i = h(qi, q̇i, τi). (5)

Recall that vertices of a six-strut tensegrity robot have their own numbers. LetRl be a set of
numbers adjacent to vertexl via elastic elements. Letyl be the position vector of vertexl. Let
j andk be vertex numbers at both end points of thei-th strut. Position vectors of the points are
given byyj = xi + Lζi andyk = xi − Lζi. Letfela(yl,yn, ẏl, ẏn) be viscoelastic force generated
by an elastic element connecting verticesl andn. Then, the resultant force applied to vertexj is
formulated as

f+
i =

∑
l∈Rj

fela(yj,yl, ẏj, ẏl). (6)

Similarly, the resultant force applied to vertexk is given by

f−
i =

∑
l∈Rk

fela(yk,yl, ẏk, ẏl). (7)

Additionally, we will apply penalty method to formulate contact forces from the ground. Assum-
ing that the ground is specified byz ≤ 0, contact force applied to a vertex of which position is
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(a-1)start (a-2) end
(a) experiment

(b-1) start (b-2) end
(b) simulation

Figure 4: Six-strut tensegrity robot rolling from planar symmetric contact

represented asx = [ x, y, z ]T is given by

fcon(x) =

{
0 (z > 0)

−Kz − Cż (z ≤ 0)
, (8)

whereK andC represent elastic and viscous coefficients of the ground. Contact forces applied to
verticesj andk is then formulated asfcon(yj) andfcon(yk).

Consequently, the resultant force and moment applied to thei-th strut are formulated as:

fi = f+
i + f−

i + fcon(yj) + fcon(yk) +mg, (9)

τi = (Lζi)×
(
f+
i − f−

i + fcon(yj)− fcon(yk)
)
, (10)

whereg represents the acceleration of gravity. Solving equations of motion of all struts numerically,
we can simulate the motion and deformation of a tensegrity robot.

Simulation Results
We have performed dynamic simulation of rolling of a six-strut tensegrity robot. Figure 3 shows
a sequence of snapshots of a result. Red circles describe vertices contacting to the ground while
yellow ones are not in contact with the ground. At first, a regular triangle is in contact with the
ground (Figure 3-(a)). Then, the body deforms (Figure 3-(b)) and one vertex of the regular triangle
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(a-1)start (a-2) end
(a) experiment

(b-1) start (b-2) end
(b) simulation

Figure 5: Six-strut tensegrity robot rolling from planar symmetric contact

loses its contact (Figure 3-(c)). Namely, the tensegrity robot is out of equilibrium, yielding rotation
around the line between the two contacting points (Figure 3-(d) and (e)). Finally, one vertex contacts
to the ground, resulting that a non-regular isosceles triangle is in contact with the ground (Figure
3-(f)).

Contact between a six-strut tensegrity robot and the ground can be specified by the triangle
contacting to the ground. Contact specified by a regular triangle is referred to asaxial symmet-
ric contactwhile contact represented by a non-regular isosceles triangles is referred to asplanar
symmetric contact. Note that we have eight axial symmetric contacts and twelve planar symmetric
contacts. Rolling of a six-strut tensegrity robot corresponds to a sequence of transitions among the
twenty contacts.

We have found that driving a pair of pneumatic McKibben actuators yields 1) transition from
axial symmetric contact to its neighboring planar symmetric contact, or 2) transition from planar
symmetric contact to its neighboring planar symmetric contact [Koizumi et al. (2012)]. Let us
examine if the above two transitions can be simulated. Figure 4 shows experimental and simulation
results of transition from axial to planar symmetric contacts. We have found that experimental and
simulation results meet well. Figure 5 shows experimental and simulation results of transition from
planar contact to its neighboring planar symmetric contact. The simulation result agrees with the
experimental result. As a result, we conclude that dynamic simulation of rolling tensegrity robots
works well.
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Figure6: Star-shaped tensegrity robot

(a-1)start (a-2) end
(a) transition from axial symmetric contact

(b-1) start (b-2) end
(b) transition from planar symmetric contact

Figure 7: Simulation results of rolling of star-shaped tensegrity robot
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Let us simulate the rolling of another tensegrity structure. Figure 6 shows a star-shaped tenseg-
rity structure. This structure consists of six struts and twelve actuators. Each actuator connects one
end point of a strut and the center of another strut. Note that no actuators contact to the ground
during rolling. We have simulated transitions from axial and planar symmetric contacts. Figure 7
shows simulation results. Figure 7-(a) shows an axial symmetric contact transits to its neighboring
planar symmetric contact. Figure 7-(b) describes a planar symmetric contact transits to its neighbor-
ing axial symmetric contact. These results suggest that this star-shaped tensegrity robot can perform
rolling from any contact to another.

Conclusion
We have established dynamic simulation of tensegrity robot rolling. It turns out that rolling of a
six-strut tensegrity robot can be simulated and simulation results agree with experimental results.
Additionally, we have simulated the rolling of a star-shaped tensegrity robot. Through simulation,
we have found that this tensegrity robot can perform rolling locomotion.
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