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Abstract 

This paper is about how solving two dimensional multi-crack problems with arbitrary distribution 
by the virtual boundary meshless least squares method. In this article, the local domain where a 
single crack is contained would be treated as twain subdomain when solving multi-crack problem. 
And this method incorporates the point interpolation method (PIM) with the compactly supported 
radial basis function (CSRBF) often used in boundary-type meshless methods to approximately 
construct the virtual source function on the virtual boundary corresponding to each subdomain. 
According to the definition about sub-domain in this paper, the added extra sub-domains on the 
boundary extended along the crack surface as “conventional sub-domain method” in the direct 
boundary element method do not have to be considered, thereby reducing the computational, 
especially avoiding this calculation error caused due to inadequate number of the elements or with 
the collocation points configured on the boundary of the additional sub-domains and its improper 
configuration. In addition, since the configuration of virtual boundary has a certain preparability, 
the integration along the virtual boundary can be carried out over the smooth simple curve that can 
be structured beforehand (for 2D problems) to reduce the complicity and difficulty of calculus 
without loss of accuracy, while ‘‘Vertex Question’’ existing in BEM can be avoided. 
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1. Introduction 

Generally speaking, crack, multi-crack or micro-crack are pre-existed in engineering components 
[1] and structures [2], brittle or quasi-brittle materials, and so on. As is known to all, the stress 
intensity factor can be used to describe the stress field of the crack tip and predict crack growth in 
fracture mechanics. So the stress intensity factor for the calculation of a crack or multi-crack 
analysis also is very important. In fact, the equation with solving crack problem is easily established, 
but the exact solution is quite difficultly obtained, especially in multi-crack problems. That is, the 
analytic methods, such as the westergaard method [3], the complex variable function method [4], 
conformal mapping [5] and so on, can only solve the simple or regular crack problem, and complex 
or irregular crack problems need resort to numerical methods.  

The boundary element method (BEM) is an important kind of numerical methods, and it is 
suitable for analyzing a large field gradient function of the problem and also can better calculate the 
stress concentration. Some scholars solve the crack problems by the BEM, such as Z.H. Yao, P.B. 
Wang and H.T. Wang et al. [6-7] use dual BEM to analyze the numerous micro-cracks, Q.H. Qin and  
Y.W. Mai [8] employ the BEM for crack-hole problems in thermopiezoelectric materials, E.D. 
Leonel and W.S. Venturini [9] use the dual boundary element formulation to analysis of multi-
fractured domains, X.Q. Yan [10] analyzes the stress intensity factors of multiple circular arc cracks 
in a plane elasticity plate by employing the BEM, and so on. But the BEM still has its own 
drawbacks. It is shown that the coefficient matrix is asymmetric and its construction is time 
consuming in the process of calculation. In addition, the treatment of singular integration is 
inconvenient and takes much more time, and there is mimicry singular integral whilst reducing 
calculating precision, especially when solving the related physics quantities on the boundary, which 
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is called “Boundary Layer Effect”. Fortunately, the virtual boundary element least square method 
proposed by the authors in the literature [11-19] can avoid above described drawbacks in BEM, 
since its coefficient matrix is symmetric and it does not involve singular integral. 

According to the definition about sub-domain in this paper, the added extra sub-domains on the 
boundary extended along the crack surface as “conventional sub-domain method” in the direct 
boundary element method do not have to be considered, thereby reducing the computational, 
especially avoiding this calculation error caused due to inadequate number of the elements or with 
the collocation points configured on the boundary of the additional sub-domains and its improper 
configuration. In addition, since the configuration of virtual boundary has a certain preparability, 
the integration along the virtual boundary can be carried out over the smooth simple curve that can 
be structured beforehand (for 2D problems) to reduce the complicity and difficulty of calculus 
without loss of accuracy, while ‘‘Vertex Question’’ existing in BEM can be avoided.  

The rest of the paper is organized as follows. In Section 2, the radial point interpolation method 
and the stress intensity factor are described in brief. In Section 3, the calculation scheme for solving 
multi-crack problems by virtual boundary meshless least squares method is derived in detail, and 
the related processing technologies in the calculation of multi-crack problems are introduced. In 
Section 4, numerical examples are presented to demonstrate the efficiency and validity of the 
method proposed in the paper. Finally, a summary is given in Section 5 to conclude this paper. 

2. The radial point interpolation method and the stress intensity factor 

2.1 The radial point interpolation method 
Consider a scalar function u(x) defined in the problem domain  , the approximation function 

uh(x) of u(x) is represented by a set of scattered interpolation nodes, and uh(x) can approximates u(x) 
at a point of interest x . By the reference [16], the RPIM function interpolation expression 
augmented with polynomials can be rewritten as [20-27] 

T T

1 1
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i j
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In which, ( )iR x  is the compactly supported radial basis function (CSRBF) proposed by Wu [28], n  
is the number of RBFs in the defined domain of the calculation point x , namely 

 4 2 3( ) (4 16 12 3 )iR r r r r   x                                                    (2) 

where i ir d x x , in which id  is the dimension of the local support domain for CSRBF (shown 
in Fig. 1), and 

(1 )     for 0   1      

0                   other

r r
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 


                                                   (3) 

and ( )jp x  is polynomial basis functions in two-dimensional coordinates  T ,x yx , m  is the 

number of polynomial basis functions. The vector a  of coefficients for RBFs is  T

1 2 na a a , 

and the vector b  of coefficients for polynomial is  T

1 2 mb b b . Then, coefficients ia  and jb  

are constants yet to be determined. 
In order to determine ia  and jb  in Eq. (1), a support domain is formed for the point of interest at 

x , and n  field nodes are included in the support domain. Coefficients ia  and jb  in Eq. (1) can be 
determined by enforcing Eq. (1) to be satisfied at these n  nodes surrounding the point of interest x . 
Then, the n m  unknown coefficients ia and jb in Eq. (1) can be obtained by the following 
equations 



3 
 

　
1 1

( ) ( ) ( )
n m

i I i j I j s I
i j

R a p b u
 

  x x x 　 1, 2, ,I n                      (4) 

1

( ) 0
n

j I I
I

p a


 x 　 1, 2, ,j m  　     　       　                         (5) 

where Eq. (5) is m  constraint conditions added using the orthogonality between ( )j Ip x ( 1,2, ,I n  ) 
and a  to solve n m  variables in Eq. (1). Combing Eqs. (4) and (5) yields the following set of 
equations in the matrix form 
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where the moment matrix B  is 
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Using Eq. (6) and by Eq. (1), we can obtain 

 T T -1 T( ) ( ) ( ) ( )s shu
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where the vector su  of function values is  T

1 2 nu u u , and the RPIM shape functions can 

be expressed as 

 T T T -1( ) ( ) ( )N R p B x x x                                                                      

 1 2 1          ( ) ( ) ( ) ( ) ( )n n n mN N N N N   x x x x x     (9) 

And the RPIM shape functions ( )N x  corresponding to the nodal displacements vector su  are 

obtained as 

 T
1 2( ) ( ) ( ) ( )nN N NN x x x x                                             (10) 

Therefore, Eq. (8) can be rewritten as 

T
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( ) ( )
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h
s i i

i

u N u


 N ux x                                                                     (11) 

In this paper, in order to further improve the accuracy and computational efficiency, the idea of 
RPIM with CSRBF is incorporated to approximately construct the virtual source function ( )k   
( 1,2k  ) in VBEM. 

 
 
 
 
 
 
 

 

 
 

Figure 1. Computing model of single 
      domain problem for the meshless 
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Figure 2. Local coordinate description  
of the crack tip displacement 
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2.2 The stress intensity factor 
In a given 2D Cartesian coordinate system, for the composite crack problems with containing Ⅰ 

and Ⅱ  type, the displacement 1u  and 2u  along 1x 、 2x  direction at crack tip point x  can be 
expressed respectively as (shown in Fig. 2) 
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Ⅰ Ⅱ        (13) 

In which, KⅠ and KⅡ are the stress intensity factors respectively corresponding to Ⅰ and Ⅱ type; 
r  is the distance between the calculation point x  and the crack tip point x ,   is the angle between 
the radial vector r  and the axis 1x ; in addition, 2(1 )G E   , and 3 4    (Plane strain 
problem), (3 ) / (1 )      (Plane stress problem). 

By Eqs. (12) and (13), when  turn counterclockwise an angle  , the displacement along 1x 、 2x  
direction at the crack tip point x  can be denoted respectively as 

  1 21 ,   ( 1)
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and, when  turn clockwise an angle  , the corresponding displacement is 
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By Eqs. (14) and (15) simultaneous solution, KⅠ and KⅡ can be obtained, namely 
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For ease of comparison to the stress intensity factor K  by different loads and under different 
geometric scales, need to introduce dimensionless stress intensity factor F . From the reference [29], 

( )F K a  , in which   is a reference stress and a  is crack half-length. 

3. The calculation scheme for solving multi-crack problems 

The idea for solving the multi-domain problems (shown in Fig. 3) by virtual boundary meshless 
least squares method has been given in the reference [16], and the virtual source function on the 
virtual boundary about each subdomain is approximately constructed by the boundary-type radial 
point interpolation method [20]. Here, according to basic idea of the literature [16], the idea for 
solving multi-crack problems is presented. According to the literature [16], there is  
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In which, (1) (2) ( )[ ( ), ( ), , ( )]n  J     is the square deviation functional of the multi-domain 
composite problem about virtual source function ( ) ( )i

k   ( 1,2k  ; 1,2, ,i n  ), and the above 
equation established must satisfies the given actual boundary conditions of the original problem and 
the corresponding connection conditions between the adjacent subdomains at the same time. n  is 
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the number of subdomains within the problem given. u
l   and p

l   are called the exterior 
displacement and traction boundary of l , respectively, l

uN  is the number of real boundary nodes 
whose displacement is known on the boundary l   (namely u

l  ), while l
pN  the nodes 

number of known traction with outward normal direction on the boundary p
l  ;  ( ) ( )l

i ju x  and 
( ) ( )l
i jp x  are the known displacement and traction values along ith direction at the jth boundary point 

jx  on the exterior boundary u
l   and p

l   of lth subdomain, respectively; l  and l  are 
weight coefficient about the displacement and traction of the lth subdomain, respectively; G  is the 
overall serial number of the current internal boundary ks  (namely G

ks ), GM  is the over-fulfilled 
collocation number on G

ks , J  and J  are weight coefficient about the displacement and traction 
on G

ks , respectively. By solving Eq. (17), the virtual source function ( ) ( )l
k   ( 1,2k  ; 1,2, ,l n  ) 

can be obtained. As soon as the virtual source function ( ) ( )l
k   is known, the corresponding physical 

value at x  about each subdomain can be calculated through the following equations, namely 
( ) * ( )( ) ( , ) ( )

l

l l
i ik kS
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l
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i ijk j kS

p n dS  x x                                                    (21) 

It can be known from Eqs. (18) and (21), Eq. (17) is the square deviation functional about virtual 
source function ( ) ( )i

k   ( 1,2k  ; 1,2, ,i n  ) that is the unknown function on the virtual boundary 

iS . Unlike the conventional VBEM, ‘virtual boundary meshless’ mentioned in the paper means that 
the virtual source approximate functions ( ) ( )i

k   ( 1,2k  ; 1,2, ,i n  ) constructed in the meshless 
VBEM are not dependent upon the geometric mesh generation of the computing element. That is to 
say, the idea of RPIM with CSRBF is incorporated to approximately construct the virtual source 
function. And a kind of background-mesh can be employed about the numerical integration of 
virtual source function in the method. Such as Eqs. (18) and (21), the virtual boundary lS  will be 
separated into em  elements and there are ge  Gauss spots within each element, then their Gauss 
numerical integral of ( ) ( )l

iu x  and ( ) ( )l
ip x  can be expressed  respectively as 

( ) * ( ) * ( )
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Substitute Eq. (22) and Eq. (23) into Eq. (17), then we can see that (1) ( )[ ( ), , ( )]n J    will 

change as the vector of the entire virtual source function values ( )l
s
  ( 1,2, ,l n  ), so 

(1) ( )[ ( ), , ( )]n J    can be expressed as (1) (2) ( )[ , , , ]n
s s s
  J    . In order to obtain the solution ( )l

s
  

( 1,2, ,l n  ), the variation is being made for Eq. (25), namely 
0 J                                                                     (24) 

Let Ns  be node number on all virtual boundaries of multi-domain complex issues, then the 
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unknown vector of entire node function values A  can be recorded as a unified manner, namely 

   TT(1)T (2)T ( )T
1 1 1 2 2 1 2 2 1 2, , , n

s s s Ns Ns               A     

 T

1 2 2   Ns                                                   (25) 

From Equation (24), we get the governing equation for solving the unknown virtual source 
function values at all nodes on all virtual boundaries. Equation (24) can be rewritten in matrix form 
as follows [16] 

 KA B                                                                   (26) 

In the above equation,  2 2st Ns Ns
k


K =  is a symmetric coefficient matrix; A  is the vector of the 

unknown virtual source function values (2 1)Ns ; B  is the right term that can be obtained based on 

the boundary conditions.  
Definition of crack subdomain 

Suppose that is the number m  of cracks contained in whole domain Ω , and the local domain of 

each crack is treated as two sub-domains. So whole domain is artificially divided into 2 +1m sub-

domains, in which the boundary +
i  and -

i   of each crack is respectively referred to as the upper 
and lower boundaries of the crack (or left and right boundaries), as shown in Figure 4. Respective 
sub-domain can be artificially defined corresponding to the boundary +

i  or -
i  of each crack, 

namely sub-domain +
iΩ  corresponding to +

i . That is, there is twain sub-domain corresponding to 
each crack. And sub-domain *Ω  is considered as “Substrate domain” in addition to the crack sub-
domains defined. 

On numerical implementation of this method terms, the definition of the configuration shape of 
the crack has a certain degree of arbitrariness, such as rectangular or semi-circular or semi-elliptical 
and so on. And the selection of its shape and size hardly affects the result of the calculation. 
Compared with “conventional sub-domain method” in the direct boundary element method [30], the 
added extra sub-domains on the boundary extended along the crack surface do not have to be 
considered according to the definition about sub-domain in the paper, thereby reducing the 
computational, especially avoiding this calculation error caused due to inadequate number of the 
elements or with the collocation points configured on the boundary of the additional sub-domains 
and its improper configuration. 

Element division near the crack tip by equal proportions 
Due to stress gradient with larger changes on the vicinity of the crack tip, therefore, how the 

elements are reasonably distributed on the actual boundary near the crack tip to get a better 
numerical solution will be very important. Through numerical integration practice, we decorate the 
desired nodes in order to define the elements required near the crack tip for the numerical 
integration based on "proportional" mathematical ideas in the paper, thereby decide the division and 
distribution of element near the crack tip. The ideas of the specific implementation: suppose that a  
is crack half-length, and denote a BA


. Here, point A  is regarded as the crack tip, the desired 

nodes ia  are arranged from point B  to point A according to the calculation formula 
(1 ) (1 )i n

ia q a q   ( 1,2, , ;   1)i n q  , in which q  is scale factor. When i n , the position 
corresponding to na  is the crack tip A . 

4. Numerical Examples 

4.1 There is a through-wall crack with crack half-length 1 mma   at the center position of the plate 
of side length 100 mml  , as shown in Figure 5. The load of perpendicular to upper and lower plate 
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edge is uniform distribution of tension, and it is expressed as 1 MPa  . Young's modulus of 
elasticity E=2.1×106 MPa, Poisson’s ratio ν=0.3. 

Now, employ the method proposed in this article to calculate the above issues. The problem can 
be artificially divided into three sub-domains, namely one referred to as the subdomain *Ω  of 
"Substrate domain" and the other two sub-domains 1

+Ω  and 1
-Ω  belonging to crack definition, as 

shown in Figure 6. For crack sub-domain 1
+Ω , 22 elements are divided on the crack boundary 1

+  
based on "proportional" mathematical ideas, and three internal boundaries corresponding to 1

+Ω  take 
straight line edge and its each one is divided into 20 elements. Then there are a total of 104 
elements on all actual boundaries corresponding to 1

+Ω . However, for the virtual boundary 1
+S  of 

1
+Ω , employ a circle configuration of radius 1 1.22 mmr  , and 45 elements are evenly distributed 

on 1
+S . However, for sub-domain 1

-Ω , its actual and virtual boundaries are divided by using the 
same method as the processing subdomain 1

+Ω . For the subdomain *Ω  of "Substrate domain", its 
outer boundary SΓ  is formed by the four straight line edges and 20 elements on each one are evenly 
distributed, then the element implementation of its internal boundary, namely element number and 
distribution, should be the same as the division corresponding to crack subdomain. However, for 

*Ω , exist simultaneously inner virtual boundary *
inS  and external one *

exS , and their configuration 
all are a circle with the radius 3 72 mmr   and  4 1.9 mmr  , respectively. And 45 elements are 
evenly distributed on *

inS  or *
exS . All nodes on inner and external virtual boundaries add up to 180, 

namely DOF number is 360. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

With employing Westergaard’ stress function method [29] to calculate the stress intensity factor of 
this example, the analytical solutions obtained is MPa  ( 1.7725 MPa ), and the numerical result 
in accordance with the method proposed in the paper for solving the stress intensity factor is 
1.7758 MPa , its numerical error is 1.86‰. However, under the same degree of freedom, the 
comparison of the numerical results of the literature [31] about BEM J integral method and 

Figure 4. Diagrammatic sketch of containing
multiple cracks 

Figure 5. Calculation diagram of single crack 

Figure 7. Calculation figure of three collinear cracks Figure 6. Discretization of single crack 

（a）

（b）

（c）

*
exS

*
inS
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F

displacement discontinuity method with the analytical solutions and the numerical solutions in the 
paper is shown in Table 1.  

4.2 There are three collinear through-wall cracks with crack half-length 1 mma   of each crack for 
the plate with side length 100 mml  , as shown in Figure 7. The load of perpendicular to upper and 
lower plate edge is uniform distribution of tension, and it is expressed as 1 MPa  . Young's 
modulus of elasticity E=2.1×106 MPa, Poisson’s ratio ν=0.3. In addition, the center distance of 
adjacent cracks denotes d , and the distance between adjacent crack tips is 2 /a d . 

Now, employ the method proposed in this article to calculate the above issues. The problem can 
be artificially divided into seven sub-domains, namely one referred to as the subdomain *Ω  of 
"Substrate domain" and the other six sub-domains +

iΩ  and -
iΩ  ( =1,2,3i ) belonging to crack 

definition. Then the whole region Ω  is divided into seven sub-domains, namely iΩ  ( 1,2, ,7i   ), 
and the discrete processing program on actual and virtual boundary of each subdomain is same as 
one of the previous example. However, the comparison of the numerical results of calculating the 
normalized stress intensity factor AK , BK , CK  at crack tip A, B, C. by the method proposed in the 
paper with them of employing the BEM with 45 displacement discontinuity element[32] and based 
on the stress function method[33] is shown in Table 2. And by comparison with the literature [32], 
the method proposed has fewer degrees of freedom for calculating the same problem, thus 
calculation efficiency can be improved. And the results of the method proposed is numerically more 
to be close to them of the literature [33] by comparison with the literature [32]. 

Tab.1 the stress intensity factor for the single crack 

K Analytical 
solution J integral method [31] Displacement discontinuity method [31] 

The method of
this paper

result (MPa) 1.7725 1.7867 1.9303 1.7758 

error —— 8 ‰ 8.9 ％ 1.86 ‰ 

Tab.2 the normalized stress intensity factor for three collinear cracks 

 

 

AK  BK  CK  

The paper [32] [33] The paper [32] [33] The paper [32] [33] 

0.05 0.99885 0.9961 1.00083 0.99851 0.9961 1.00040 0.99876 0.9963 1.00063 

0.1 0.99951 0.9972 1.00150 0.99959 0.9973 1.00164 1.00058 0.9982 1.00252 

0.2 1.00370 1.0015 1.00585 1.00483 1.0026 1.00702 1.00799 1.0059 1.01030 

0.3 1.01067 1.0085 1.01296 1.01480 1.0126 1.01710 1.02170 1.0195 1.02407 

0.4 1.02058 1.0184 1.02297 1.03115 1.0288 1.03353 1.04285 1.0405 1.04529 

0.5 1.03381 1.0317 1.03631 1.05666 1.0540 1.05913 1.07405 1.0714 1.07663 

0.6 1.05118 1.0490 1.05383 1.09643 1.0932 1.09915 1.12046 1.1171 1.12316 

0.7 1.07447 1.0722 1.07724 1.16144 1.1571 1.16456 1.19261 1.1881 1.19558 

0.8 1.10743 1.1049 1.11032 1.27891 1.2724 1.28348 1.31668 1.3104 1.32136 

0.9 1.16105 1.1581 1.16439 1.55727 1.5405 1.56454 1.59952 1.5835 1.60685 

2 /a d
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5. Conclusions 

1. The ideas of the virtual boundary meshless least squares method with radial point interpolation 
have been formulated for solving multi-crack problems. However, the given numerical examples 
indicate its high accuracy and high efficiency. 

2. The point interpolation scheme with compactly supported radial basis function is introduced into 
the method so that no element mesh is required in this method. Consequently, this method has 
the advantages of boundary-type meshless methods. It can be used for the calculation and 
analysis of complex question. 

3. By comparison of “conventional sub-domain method” in the direct boundary element method, 
the added extra sub-domains on the boundary extended along the crack surface do not have to be 
considered according to the definition about sub-domain in the paper, thereby reducing the 
computational, especially avoiding this calculation error caused due to inadequate number of the 
elements or with the collocation points configured on the boundary of the additional sub-
domains and its improper configuration. 
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