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Abstract

Many  geophysical  and  astrophysical  phenomena  such  as  magnetic  fields  generation,  or  the 
differential  rotation  observed in  the atmospheres  of the  major  planets  are  studied by means  of 
numerical  simulations of the Navier-Stokes equations in rotating spherical shells. Two different 
computational codes, spatially discretized using spherical harmonics in the angular variables, are 
presented.  The  first  code,  PARODY,  solves  the  magneto-hydrodynamic  anelastic  convective 
equations  with  finite  a  difference  discretization  in  the  radial  direction.  This  allows  the 
parallelization on distributed memory computers to run massive numerical simulations of second 
order in time. It is mainly designed to perform direct numerical simulations.  The second code, 
SPHO, solves the fully spectral Boussinesq convective equations, and its variationals, parallelized 
on shared  memory architectures  and it  uses  optimized linear  algebra  libraries.  High-order  time 
integration methods are implemented to allow the use of dynamical systems tools for the study of 
complex dynamics. 

Keywords:  Hydrodynamics,  Spherical  shells,  Parallelism, Direct  Numerical  Simulation, 
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Introduction

The  Due  to  the  increase  of  computing  power  in  the  last  decades,  many  geophysical  and 
astrophysical phenomena, such as magnetic fields generation, or the differential rotation observed in 
the  atmosphere  of  the  major  planets,  are  studied  by  means  of  three-dimensional  numerical 
simulations  of the magneto-hydrodynamic  or thermal  convection  equations  in rotating spherical 
geometries.  The  introductory  sections  of  [Dormy et  al.  2004;  Net  et  al.  2008],  among  others, 
provide  good  reviews  of  the  state  of  the  art  on  this  subject.  The  difficulties  related  to  the 
experimental studies, such as the radial gravity which can only be reproduced by means of either an 
electrostatic radial field or approximated by the centrifugal force, enhance the importance of the 
numerical approach in these fields. However, non-stationary tridimensional waves arise at the onset 
of  convection  due  to  the  boundary  curvature,  and  thus  finding  a  solution  requires  very  high 
resolutions. Frequently,  as in [Pino et al. 2000], and [Plaut and Busse 2005], a two-dimensional 
annular geometry is used to approximate the real problem. For this reason the development and 
improvement of the numerical techniques provides the basis for such research. 

Several  numerical  codes  to  simulate  these  type  of  problems  were  developed  independently  by 
different research groups and benchmarked in [Christensen et al. 2001]. A common feature of these 
codes is that the velocity and magnetic fields are expressed in terms of poloidal and toroidal scalar 
potentials following the formulation of [Chandrasekhar 1981]. For the spatial discretization of the 
equations  on the  sphere,  many of  these  codes  use  pseudo-spectral  methods  based on spherical 
harmonics basis functions in the angular variables, which provide highly accurate solutions with 
relatively few grid points [Canuto et al. 1988]. These methods are based on transformations from 
the spectral to the physical space [Orszag 1970]. The calculation of the quadratic terms, appearing 
in the truncated equations, is performed in the physical space. The main differences between the 
codes arise in the discretization along the radial direction, in the implementation of the boundary 
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conditions and in the time-stepping procedures. There exist however other approaches such as that 
of [Kageyama and Sato 1995] that use finite differences or that of [Matsui and Okuda 2004] that 
use a finite-element-method in all directions.

Most of the current tridimensional studies consist of direct numerical simulations of periodic, quasi-
periodic, and even turbulent flows to study the variation of the time-averaged physical properties in 
the parameter space and to obtain scaling laws [Christensen and Aubert 2006; Oruba and Dormy 
2014]. These numerical simulations are performed with second order time integration semi-implicit 
schemes which only treat the diffusive terms implicitly. For a deeper understanding of the origin of 
the  laminar  flows  and  their  dependence  on  parameters,  pseudoarclength  continuation  methods 
[Sánchez et al. 2004; Sánchez et al. 2010], and the linear stability analysis of the time dependent  
solutions [Net et al. 2008; Garcia et al. 2008] have been successfully applied thanks to the use of  
high-order time integration methods which provide accurate enough solutions. On the other hand, 
high-order time integration can also be useful for evolving turbulent flows efficiently [Garcia et al. 
2014a]. 

In  this  paper  two  different  computational  parallel  codes,  spatially  discretized  using  spherical 
harmonics in the angular variables, are presented and their applicability for studying geophysical 
and astrophysical problems is discussed. Also, their parallel performance on the high performance 
computing center MesoPSL (http:// www.  mesopsl.fr  ) is analyzed and possible improvements of the
codes are suggested.

The  first  code,  PARODY,  solves  the  magneto-hydrodynamic  anelastic  convective  equations, 
although in this paper we only comment the Boussinesq implementation, with a finite difference 
discretization  in  the  radial  direction.  This  allows  the  parallelization  on  distributed  memory 
computers to perform massive numerical simulations of second order in time. It is mainly designed 
to perform direct numerical simulations and it has been widely used by many researchers, see for 
instance [Dormy et al.  1998; Raynaud and Dormy 2013; Schrinner et al.  2012; Schrinner et al. 
2014].

The  second  code,  SPHO,  solves  the  fully  spectral  Boussinesq  convective  equations,  and  its 
variationals,  parallelized  on  shared  memory  architectures  and  it  uses  optimized  linear  algebra 
libraries. High-order time integration methods [Garcia et al. 2014a; Garcia et al. 2010; Garcia et al. 
2014b] are implemented to allow the use of dynamical systems tools, such as that of [Sánchez et al. 
2004; Sánchez et al. 2010; Sánchez and Net 2013], for the study of complex dynamics.

The model and the equations

The thermal convection and magnetic field generation of a spherical electrically conducting fluid 
shell  differentially  heated,  rotating  about  an  axis  of  symmetry  with  constant  angular  velocity 
Ω=Ωk , and subject to radial gravity g=−γ r , where γ is a constant, and r the position vector, is 
implemented in the code PARODY. The mass,  momentum, energy and induction equations are 
written  by using an usual formulation  and non-dimensional  units  (see [Christensen et  al.  2001; 
Dormy 1997; Dormy et al. 1998; Schrinner et al. 2012] for details). The units are the gap width, 
d=r o−ri for  the  distance, ΔT (the  difference  of  temperature  between  the  innner  and  outer 

boundaries) for the temperature, d2
/ν for the time, and (ρμηΩ)

1 /2 for the magnetic field, ν being 
the  kinematic  viscosity, μ the  magnetic  permeability, η the  magnetic  diffusivity  and ri and ro the 
inner and outer radii, respectively. With these units the equations governing the dynamics of the 
fluid in the rotating frame of reference are

                     (∂t v+(v⋅∇)v−∇
2 v )E=−2Ω×v−∇ p+(r /r o) RaT+Pm

−1
(∇×B)×B ,                (1) 

                      ∇⋅v=0 ,                                                                                                                      (2)

                      ∂t T+v⋅∇ T=Pr−1
∇

2T ,                                                                                            (3)
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                     ∂t B=∇×(v×B)+Pm

−1
∇

2 B ,                                                                                      (4)
         
                     ∇⋅B=0.                                                                                                                       (5)

The non-dimensional parameters are the modified Rayleigh number Ra, the Prandtl number Pr , the 
magnetic Prandtl number Pm , the Ekman number E , and the radius ratio χ , They are defined by

                             Ra=
go αΔT d

νΩ
, E= ν

Ωd2 , Pr= ν
κ , Pm=

ν
η , χ=

ri

r o

,                                      

where α is the thermal expansion coeficient, κ is the thermal diffusivity, and go the gravity at the 
outer radius.

The boundary conditions for the velocity field can be either no slip or stress free at both boundaries, 
or mixed boundary conditions with no slip at the inner and stress free at the outer sphere. For the 
magnetic field, a conducting or insulating inner core can be imposed [Dormy 1997; Schrinner et al. 
2012], although only the insulating case will be considered in this paper. The temperature is fixed at 
both boundaries.

The  solenoidal  velocity  field, v , is  expressed  in  terms  of  toroidal, ut , and  poloidal, up , scalar 
potentials v=∇×(ut r)+∇×∇×(up r) . With the same expression for the magnetic  field and by 
applying the operators r⋅∇× and r⋅∇×∇×  to the Navier-Stokes equation (Eq. (1)), and r⋅ and 
r⋅∇× to the induction equation (Eq. (4)), the equations for the potentials can be deduced. Finally, 
the functions X=(ut ,up , bt ,b p ,T ) are expanded in spherical harmonic series up to degree L in the 
angular variables, namely

                                    X (t , r ,θ ,φ)= ∑
m=−L

L

∑
l=∣m∣

L

X l
m
(r , t)Y l

m
(θ ,φ)                                                     (6) 

with X l
−m

=X̄ l
m , and [u t]0

0
=[up]0

0
=[bt]0

0
=[b p]0

0
=0, to  uniquely  determine  the  four  scalar  potentials, 

and Y l
m
(θ ,φ)=Pl

m
(cos(θ))ei mφ , Pl

m being the normalized associated Legendre functions of degree
l and order m .  Since X l

−m
=X̄ l

m , only the m≥0 amplitudes are retained. With the latter expansion, 

the  equations  can  be  written  in  terms  of  their  complex  coefficients X l
m
=X l

m
(t , r) which  are 

functions of time and radius. The coefficients of the nonlinear terms of Eqs. (1-5) are obtained 
following [Dormy 1997].

A similar model is implemented in the code SPHO without the induction equation (Eq. (4)). The 
energy equation (Eq. (3)) is written in terms of the temperature perturbation Θ=T−T c from the 

conductive  state v=0,Tc=T c (r ). The unit  for  the  temperature  is ν
2
/ γαd 4. The  main  difference 

between the codes arise in the radial discretization of the amplitudes X l
m
( t , r) , in the time-stepping 

techniques, and in the parallel strategy used to solve the equations. All these issues are addressed in 
the following section.
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Parallel implementation

The PARODY code

Finite differences are used on a non-uniform mesh of N r+1 points, stretched near the boundaries to 
cope with thin Ekman-Hartmann layers. Although finite differences are local and less accurate with 
respect to other discretizations such as global collocation methods, they are suitable for a parallel 
implementation on distributed computers in the way we now describe. The radial grid is partitioned 
among the processors, pi , i=1,. .. ,N p , each one having all the spherical harmonic amplitudes at
rd i

, ... ,r di+ni
consecutive ni+1 radial points. The radial derivative operators are of second order 

except in the case of the poloidal scalar velocity which is of fourth order. If centered finite 
differences are used, to apply the derivative operators each processor pi has to communicate all the 
amplitudes at rd i

with pi−1, and all the amplitudes at rd i+ni
with pi+1. In the case of the poloidal 

scalar velocity the amplitudes at rd i+1 and at rd i+ni−1 must also be send to processors pi−1 and pi+1,

respectively. This parallelization is suitable because the evaluation of the nonlinear terms is the 
most demanding task and it is performed separately by each processor with the only need of 
communication for two vectors. 

Once the original equations  Eqs.  (1-5) are discretized a large system of 
N=2(L2

+2L)N r+(3L2
+6L+1)(N r−1) ordinary differential equations must be advanced in time. 

For time-integration, semi-implicit methods are used, namely, only the diffusive terms are treated 
implicitly with a Crank-Nicholson scheme, and the rest of the terms which include the non-linear 
and the Coriolis terms are treated explicitly with an Adams-Bashforth method. Thus the linear 
systems of equations to be solved at every step can be separated into spherical harmonic 
components, which can be solved independently, so that only a set of small linear systems must be 
solved at each time step. These linear systems are pentadiagonal in the case of the poloidal velocity 
and tridiagonal for the other scalars. More specifically, the pentadiagonal matrix comes from the 
radial discretization of (∂t−Δ)Δ , while the tridiagonal matrices come from the radial discretization 
of ∂t−βΔ , where β=1 in the case of the toroidal velocity potential, β=1/ Pr in the case of the 
temperature equation, and β=1/ Pm for the equations of the magnetic field potentials.

The linear systems in PARODY are usually  [Dormy  et  al.  1998] solved with the parallel 
implementation of the LU factorization described in [Lakshmivarahan and Sudarshan 1990]. The 
main drawback of this solver is that it becomes sequential when decreasing the number of radial 
points of each processor and increasing the number of processors significantly. In the current 
parallel LU implementation a minimum of 4 radial points are needed for each processor. An 
implementation of a parallel Krylov iterative solver [Barrett et al. 1994; Saad 1996] could improve 
the solution of the linear systems. More precisely the IBiCGStab (Improved Stabilized version of 
BiConjugate Gradient Squared) method is an alternative form to BiCGStab which only involves a 
single global reduction operation instead of the usual 3 (or 4) [Yang and Brent 2002]. This solver 
allows to assign only one radial point at each  processor. Although this method is highly 
parallelizable because it only makes use of matrix products, its performance (number of iterations) 
depends strongly on the condition number of the matrix, which in our case is mainly influenced by 
the number of radial points and the time step used in the time integration. Thus several tests, with 
different N r and time steps corresponding to different physical regimes, must to be performed to 
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compare the performance of both solvers. Preliminary results addressing this issue will be shown 
later.

The SPHO code

In contrast to PARODY, this code employs a collocation method on a Gauss-Lobatto mesh of
N r+1 points ( N r−1 being the number of inner points). With this global discretization the radial 

grid can not be partitioned into several processors of a distributed memory cluster for an efficient 
parallelization. Thus the parallelization of the code is performed in the angular variables assuming 
shared memory architectures to avoid communications. The linear discretized operators of the 
equations for the spherical harmonics amplitudes are decoupled with respect to the order m. The 
same occurs for the Legendre transforms needed for the computation of the nonlinear terms. Then, 
the triangular grid {X l

m , m=0,... , L , l=m, ... , L} is partitioned among the processors by assigning 
a set of amplitudes with consecutive order mdi

,... ,mdi+ni
at each processor. In this case, the number 

of orders, ni+1 assigned to each processor increases as mdi
increase, to maintain a similar number of 

amplitudes X l
m . Finally, the fast Fourier transforms and the computations in the physical space 

needed for evaluating the nonlinear terms are also parallelized by evenly partitioning the colatitude 
physical grid among the processors.

Once the thermal convection equations have been discretized a large system of ordinary differential 
equations of size N=(3L2

+6L+1)(N r−1) must be integrated in time. Notice the smaller number 
of equations with respect to the PARODY code. In SPHO the induction equation is not considered. 
If N v variational equations are integrated the size of the systems becomes N v N+N .

Two classes of high order (up to five) time integration methods are implemented in SPHO. The first 
class of methods are the implicit-explicit (or fully implicit) backward differentiation formulas 
(IMEX-BDF) methods  [Garcia  et  al.  2010;  Garcia  et  al.  2014b]. The IMEX methods treat the 
nonlinear terms explicitly in order to avoid solving nonlinear equations at each time step. The 
Coriolis term is treated either semi-implicitly or fully implicitly, giving rise to different algorithms. 
The use of matrix-free Krylov methods (GMRES in our case) for the linear systems facilitates the 
implementation of a suitable order and time stepsize control. In contrast to PARODY, the matrices 
of linear systems to be solved in SPHO have dense blocks of dimension O(N r) (see [Garcia et al. 
2010] for details on the structure of these matrices). A second alternative implementation for the 
time stepping is the so called exponential Rosenbrock methods proposed in [Hochbruck et al. 1998]. 
A wide range of numerical simulations has shown that such exponential methods are more accurate 
by at least one order of magnitude than the equivalent order IMEX scheme [Garcia et al. 2014a]. 
This is especially true when they are employed with large time steps and at small Ekman number.

Performance of the codes in MesoPSL

In  this  section  we  investigate  the  performance  of  PARODY  and  SPHO  codes  on  the  high 
performance computer MesoPSL, which consist of an array of 92 nodes with 16 cores and 64 Gb of 
memory ram each one. More precisely, each node is a bi-processor with 8-cores Intel E5-2670 at
2,60 Ghz and the nodes are interconnected with infiniband QDR. 

Parody

Three  different  dynamo  test  cases,  corresponding  to  different  physical  regimes  with  the  same 
geometry (χ=0.35) and Prandtl number (Pr=1), have been considered for studying the behavior of 
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the iterative solver. The first test case, T1 , corresponds to a laminar dynamo with Pm=5 at relatively 

high E=10−3 and weakly supercritical modified Rayleigh number Ra=100. This is the benchmark 
case 1 of [Christensen et al. 2001]. The radial resolution is N r=160 and the spherical harmonics 

truncation parameter is L=64. The time integration is performed with a time step of Δ t=10−4 .  The 
second case, T2 , corresponds to a chaotic dynamo with Pm=0.5 at E=10−4 and Ra=700. The radial 
resolution is N r=256, the spherical harmonics truncation parameter is L=80 and the time step is

Δ t=10−6. Finally in the third case, T3 , the complexity of the dynamo with Pm=0.25  is increased 

because  of  the  lower E=3×10−5 and  higher Ra=2×103. The  radial  resolution  is N r=320, the 

spherical harmonics truncation parameter is L=112, and the time step is Δt=3×10−7 .

As commented previously, the iterative history of the IBiCGStab solver depends strongly on the 
condition  number  of  the  matrices A2 and A1 coming  from the  discretization  of (∂t−Δ ) Δ and of

∂t−βΔ, respectively.  These  matrices  depend  on  the  time  step,  but  also  on  the  degree l of  the 
spherical harmonic amplitudes. The condition number of both matrices decreases with increasing 
the degree l, thus we have only computed the condition numbers of the case  l=1. For an easier 
implementation of the iterative solver we solve all the linear systems for all X l

m as a single linear 
system, i.e, we perform the same number of iterations for each l . Then, as the condition number 
decreases with l, the residuals for the amplitudes decrease with increasing l . Tables (1) and (2), 
show  the  condition  numbers  of  the  matrices A1 and A2 and  their  preconditioners,  respectively. 
When decreasing the time step, the matrix A1 becomes close to a multiple of the identity, and the 
matrix A2 always has a larger condition number than A1 . For the latter we have used a diagonal 
preconditioner  to  improve  the  convergence  (see  table  (1))  while  minimizing  the  number  of 
communications. For the former we have used a little bit more complicated preconditioner that we 
explain below. In both cases left preconditioning is better than right preconditioning.

Table 1. Condition number dependence on the radial resolution and the type of 
preconditioner with Δ t=10− 4 .  M i A1 , mean left preconditioner  where M i is the Jacobi 
preconditioner with i iterations. For i=1 is the diagonal preconditioner.

                              N r         40       80         160        250       350        500

                             A1           5.6     25.3     112.8     295.7     595.3     1260.8  

                          M 1 A1        3.6     13.0      50.4      122.9     239.3     489.1

                          M 2 A1        1.5     3.8        13.1      31.2       60.3       122.8

                          M 3 A1        1.5     4.4        16.8      41.0       79.8       163.0

                          M 4 A1        1.1     2.2         6.8       15.9       30.4        61.6
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      Table  2.  Condition  number  dependence  on  the  radial  resolution  and  the  type  of 
preconditioner. M i A2 , mean left  preconditioner  where M i=P i Qi is  the preconditioner. 
Pi and Qi are the matrices corresponding to i Jacobi iterations with matrices D and A1 , 

respectively.

                              N r           40              80               160            250            350             500

                             A2        5.3×104    1.2×106    2.3×107    1.6×108    6.3×108    2.8×109

                          M 1 A2     4.3×102    4.1×103    5.5×104    3.2×105    1.2×106    5.0×106

    Δ t=10−4      M 2 A2     8.8×101    5.5×102    6.2×103    3.4×104    1.3×105    5.3×105

                          M 3 A2     8.3×101    6.0×102    6.5×103    3.6×104    1.4×105    5.6×105

                          M 4 A2     6.4×101    3.4×102    2.8×103    1.5×104    5.4×104    2.2×105

                              N r            40             80              160             250             350             500

                             A2        8.3×103    4.5×104    2.2×105    6.8×105    1.7×106    5.1×106  

                          M 1 A2     2.3×102    9.6×102    4.0×103    1.1×104    2.3×104    5.5×104

   Δ t=10−7       M 2 A2     5.9×101    2.4×102    9.8×102    2.4×103    4.9×103    1.1×104

                          M 3 A2     7.7×101    3.2×102    1.3×103    3.2×103    6.3×103    1.3×104

                          M 4 A2     2.9×101    1.2×102    5.0×102    1.3×103    2.6×103    6.0×103

Consider  the  matrix D coming  from  the  discretization  of  the  laplacian Δ with  the  appropriate 
boundary  conditions.  The  preconditioning  matrix  for A2 is M i=Pi Qi where Pi and Qi are  the 
matrices corresponding to i Jacobi iterations with matrices D and A1 , respectively (see [Barrett et 
al. 1994; Saad 1996] for further details on preconditioning techniques). In all the cases we have set
i=2 which reduces significantly the condition number and for which the preconditioning operation 
only  requires  one  additional  communication.  See  Table  2  for  the  dependence  of  the  condition 
numbers on the type of preconditioning, radial resolution and time step.

In figure (1) the run time for performing one time step when using the LU and IBiCGStab solvers is 
plotted  versus  the  number  of  MPI  tasks  for  each of  the  cases  considered.  In  all  the  cases  the 
tolerance for the IBiCGStab is set in a way that the mean physical properties (such as volume 
averaged kinetic energy densities or the Nusselt number) differ by less than 3% with respect that 
obtained  with  the  LU  solver  when  starting  the  integration  from  an  initial  condition  as  in 
[Christensen et al. 2001]. The solution at the previous time instant has been chosen as initial seed 
for starting the iterations. In the case T1 (Fig. 1(a)) due to the relatively large time step Δt=10−4 the
matrices are ill conditioned and the IBiCGStab solver requires at least 100 iterations for obtaining a
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Figure 1. (a)  Run time for advancing one time step plotted versus the  number of MPI tasks 
for the test case T1 . (b) and (c) are as (a)  but for the test cases T2 and T3 , respectively. (d) 
Same as  (a) but plotted versus the number of nodes when using 16 MPI task  for the test case 
T3 .  The symbols and types of lines indicate:  iterative solver (*, dotted line) and direct solver 
(+, solid  line). 

residual of order 10−6 when solving the linear systems with the matrix A2 . With this number of 
iterations the iterative solver requires considerably much more computing time than the direct one. 
For the case T2 (Fig. 1(b)), the number of iterations is about 50 and thus the difference between the 
LU and IBiCGStab curves  decreases.  Finally,  for  the  case T3 (Fig.  1(c))  only 20 iterations  are 

needed to achieve a residual of order 10−4 which has been found enough for obtaining good time-
averaged values.

Notice  in the slopes of the curves of Figs.  1(b,c) that  the IBiCGStab solver has slightly better 
scalability when using a larger number of processors. In this figure a degradation of the scalability 
is also evident when using 16 processors because of the architecture of the computer (each node has 
16 cores and there is thus competition for memory access). To address this issue in figure 1(d) the 
run time is plotted versus the number of nodes when using 16 MPI task for the test case T3 . It is 
clear that is better not to use all the cores of each node to avoid memory access competition, in this 
way, the computing time can be halved.

SPHO

In  this  section  we  describe  the  performance  of  the  code  SPHO  parallelized  using  OpenMP 
directives and optimized by using basic linear algebra public libraries  (GOTO [Goto and Geijn 
2008] and ATLAS [Whaley et al. 2000]) and the FFTW3 library for the fast Fourier transforms 
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[Frigo and Johnson 2005]. A test for the integration of the variational equations [Hirsch et al. 2004] 
is also performed.

In figure 2(a) the run time for advancing one time step obtained with one core divided by the run 
time  obtained  by p cores ( p≤16 ) is  plotted  versus  the  number  of  equations  for  several 
representative resolutions which are shown in Table 3. The run time for advancing one time step 
with a fixed time step integration method is basically that for computing the nonlinear terms and for 
solving the linear systems which are solved by an LU method. Because a direct solver is used, the 
physical regime plays no role and the performance depends only on the discretization mesh.

Figure 2. (a) The ratios t 1/ t p , where t p means the run time obtained with p processors, plotted 
versus the number of equations. (b) Sequential run time for advancing one time step obtained 
with the basic BLAS library divided by the sequential run time obtained with the ATLAS and 
GOTO optimized libraries plotted versus the number of equations. (c) Test for the variational 
equations: the relative error, ε , plotted versus the centered finite difference approximation 
step h  for three tolerances (labeled on the curves) of the VSVO time integration code.

Table 3. Radial resolution, N r , and spherical truncation parameter, L , used in figures 
2(a,b).

            N r      24   32   38   50   60     72     80     88     94     106   120   130   150   170

             L       42   54   70   84   106   128   150   172   194   230   256   280   300   320
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When the number of equations is relatively small (up to 2×106 ) the performance degrades when 
using more than 8 cores because of the access memory competition, however, as the number of 
equations  is  increased  there  is  more  computational  work  and  the  competition  for  the  memory 
decreases,  increasing  the  performance.  We  obtain  speed  ups S p=9 .1 for p=16 for  the  high 

resolution mesh N r=170 and L=320, more specifically we obtain S p=1 .53 p0 .64 . Notice that the 
slope of the p-curves of Fig. 2(a) increases with increasing p.

As commented before, when using a collocation method to radially discretized the equations, all the 
radial operators of the original equations are substituted by dense matrices. When the evaluation of 
an operator is required all similar computations are grouped to call efficient implementations of the 
matrix-matrix product subroutine DGEMM of BLAS. Also the Legendre transforms needed for the 
evaluation of the nonlinear terms are implemented with this subroutine. In figure 2(b) the sequential 
run  time  for  advancing  one  time  step  obtained  with  the  basic  BLAS  library  divided  by  the 
sequential run time obtained with the ATLAS and GOTO optimized libraries is plotted versus the 
number of equations for the same resolutions as in Fig. 2(a). Important savings can be obtained with 
the GOTO library for the larger number of equations where the run time can nearly be halved with 
respect the basic BLAS library.

Finally, a test for the integration of the variational equations is performed in the following. Assume 
that the evolution equation for u∈ℝ

N , where u is the vector of all the unknowns of the discretized 
equations, is

                                      ∂t u=L0
−1 ( Lu+B (u,u ) ) ,                                                                                 (7) 

and let u (t )=ϕ t (u0 ) be its solution with initial condition u (0 ) =u0 at t=0 . In the latter equation, L0

and L are linear  operators  including the  boundary conditions.  The former  is  invertible,  and the 
latter,  for  the  scheme  used,  includes  the  diffusive,  the  buoyancy,  and the  Coriolis  terms.  The 
operator B, which will be treated explicitly in the IMEX-BDF formulae, will always contain only 
the nonlinear terms. The variational equations along u (t ) are 

                                      ∂t u=L0
−1 ( Lu+B (u,u ) ) ,                                                                                 (8) 

                                      ∂t u=L0
−1 ( Lu+B (u,u ) ) ,                                                                                 (9) 

with w (t )=(u (t ) ,v ( t ) )∈ℝ
2N the  solution  with  initial  condition w (0 )=(u0, v0) . The  property

Dϕt (u0 )v0 =v ( t,v0 ) allows us to validate the numerical integration of Eqs.  (8-9):

                                  v (t,v0)=D ϕt (u0 )v0≈
ϕt (u0+hv0 )−ϕ t (u0−hv0 )

2h
= ṽ ( t,v0 ) .                           (10) 

Algorithm

1. Initialise u0, v0∈ℝ
N , the final time at which the errors will be computed, t>0, and the step 

for the centered formula h> 0.
2. Integrate t time units the variational equations Eqs.  (8-9) with initial  condition (u0, v0) .
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3. Integrate t time units the original system Eq. (7) with initial conditions u0 +hv0 and u0−hv0

to obtain ϕt (u0+hv0 ) and ϕt (u0−hv0 ) , respectively.

4. Compute ṽ (t,v0)=(ϕ t (u0 +hv0 )−ϕ t (u0−hv0 )) /2h .

5.  Check the error

                                              
∥ṽ (t,v0 )−v ( t,v0 )∥

∥v ( t,v0 )∥
                                                                             (11) 

Notice  that ε=ε (t,u0, v0, h,tol ) , where tol=εa=εr is  the  tolerance  for  the  Q-implicit  VSVO  time 

integration code fully described in [Garcia et al. 2010] ( ε a is the absolute and εr the relative error 
tolerance). 

To check the time integration of the variational equations we will consider a case in which the 
Ekman number is E=10−4 , the Prandtl number is Pr=0 .1 and the radius ratio is χ=0 .35 . More 
precisely, a modulated travelling wave with azimuthal wave number md=6 which is stable at the 

weakly supercritical Rayleigh number Rae=2 .59929964×105 ( Rae=( γαΔTd4 )/ (κν ) ) is considered. 

This is a quasiperiodic resonant orbit which has two frequencies f 1=60 .21680 and f 2=26 .75897 .

They satisfy the  relation (4f1−9f2) / f 2=O ( tol ) , where tol is  the  tolerance  of  the  time  integration 

method used to obtain the initial condition u0 .

The initial conditions of Eqs. (8-9) are v0 =u0 where u0 is the initial condition of the quasiperiodic 

orbit and the final time of the time integration is t≈1/ f 2 . We compute ṽ (t,v0) for several values of 

the finite difference step h and we integrate Eqs. (8-9) with several time integration tolerances tol .
The results are shown in Fig. 2(c), where the relative error ε of Eq. (11) is plotted versus the finite 
difference  tolerance h for  three  different  tolerances tol=10−3 , 10−6 , 10−9 of  the  VSVO  time 
integration code. In this figure the error due to the time integration and that due to the truncation 
can be identified. The latter is exibited for h>10−2 where the curve has an slope 2. The error due to 
time integration appears for h<10−2 .

Discussion

Two different approaches for solving hydrodynamical problems in rotating spherical shells are 
studied in this paper. In the first approach a finite differences radial discretization is used to allow 
the parallelization with MPI directives by partitioning the shell in the radial direction into different 
processors. This is suitable because several types of architectures can be used to run the code. The 
implementation of the improved version of the BiCGStab Krylov solver could improve the 
efficiency of the code in certain physical regimes, which need very small time steps for their 
integration in time. With this iterative solver a larger number of processors can be used to minimize 
the computing time for obtaining time-averaged physical properties of chaotic and turbulent 
dynamo models.

In the second approach the parallelization is performed by partitioning the triangular mesh of 
spherical harmonics and by using OpenMP directives. The code can only be executed on shared 
memory architectures. The implementation of the code is performed in such a way to rely on the use 
of matrix-matrix products with the DGEMM subroutine of the BLAS library. In this case the code 
is fully spectral, integrates the variational equations, and the time integration schemes are of high 
order to obtain high accurate solutions which are needed when using dynamical systems tools for a
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deep study of the physical system.

In certain architectures, such as that of MesoPSL (a cluster of nodes with several cores each one) it 
is better not to use all the cores to avoid competition for a memory access. Notice that the approach 
followed in SPHO can be also performed in PARODY by assigning one MPI task at each node and 
using the cores of it to parallelize the computations on the spherical harmonics mesh using OpenMP 
directives. The systematic use of the DGEMM subroutine can also improve the code.

Possible slight improvements of the SPHO code with MPI directives will consist on separating 
independent computations on different nodes. For instance one node could compute the velocity 
field and another node the vorticity field, which are both needed for the evaluation of the nonlinear 
terms.
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