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Abstract 

Tensegrity modules are spatial structures composed of tensile and compression components. Tensile 

and compression components are assembled together in a self-equilibrated state that provides 

stability and stiffness to the structure. Modules can be combined to create lightweight structures 

with good structural efficiency. Furthermore, tensegrity structures are good candidates for adaptive 

and deployable systems having thus applications in various scientific and engineering fields. 

Research into tensegrity structures has resulted in reliable techniques for their form-finding and 

analysis. Although bending is not considered in these techniques, tensegrity structures often sustain 

bending in their elements due to dead load and imperfections. Therefore, this paper investigates the 

effect of bending in a tensegrity “simplex” module. Dynamic relaxation is used to analyze the 

module with strut and strut-beam elements. The study reveals that bending increases stresses in 

elements and therefore should not be neglected.   
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Introduction 

Tensegrity structures are spatial reticulated structures composed of cables and struts in a self-

equilibrated pre-stressed state that provides stability and stiffness to the structure. The concept 

exists for almost 60 years now and has received significant interest in disciplines such as structural 

engineering [Motro (2005)], aerospace engineering [Skelton and de Oliveira (2009)] and biology 

[Ingber et al. (2014)]. In biology, tensegrity is used to explain cell mechanics [Ingber (2003)] while 

in aerospace engineering and structural engineering it is used to design strong yet lightweight 

modular structures [Skelton and de Oliveira (2009); Adriaenssens and Barnes (2001); Rhode-

Barbarigos et al. (2010)]. Tensegrity is also attractive for adaptive applications as actuators and 

structural elements can be combined [Skelton and de Oliveira (2009); Rhode-Barbarigos et al. 

(2012a)]. Therefore, tensegrity systems have also been proposed for deployable structures [Sultan 

and Skelton (2003); Rhode-Barbarigos et al. (2012b)] and robots [Paul et al. (2006); SunSpiral et al. 

(2013)].  

Research into tensegrity systems has resulted in reliable techniques for their form-finding and 

analysis [Tibert and Pellegrino (2003); Masic et al. (2005)]. In these techniques, compressive 

elements are modeled as struts with no bending as a pure compression state is desired. However, in 

reality elements in tensegrity structures are strut-beam elements sustaining bending due to dead load 

and imperfections such as initial curvature or eccentricity in their joints. Therefore, this paper 

focuses on the effect of bending in a tensegrity “simplex” module. Dynamic relaxation is used to 

analyze the module numerically and study the effect of considering strut-beam elements with initial 

curvature in its structural behavior.  
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 “Simplex” module topology and geometry 

The tensegrity structure studied in this paper is the “simplex” module. The “simplex” module is the 

basic spatial tensegrity system [Motro (2006)]. It is composed of 3 struts and 9 cables (Figure 1). 

The module topology is given in the appendix. The module has a single state of self-stress and a 

single infinitesimal mechanism which involves the translation and rotation of the upper triangle 

[Motro (2005)].  

 
Figure 1. The tensegrity “simplex” module 

 

In this study, strut elements and strut-beam elements are steel hollow tubes with a modulus of 

elasticity of 210GPa, while tensile elements are stainless steel with a modulus of elasticity of 

120GPa. Strut and strut-beam elements have a length of approximately 1.4m, a diameter of 76.1mm 

and a thickness of 4mm. Cables have a cross-sectional area of 0.2826mm
2
 and a tensile strength of 

31.8kN. Cable lengths depend on their topology with horizontal cables having a length of 0.866m 

and vertical cables having a length of 1.032m. Finally, vertical displacements on all nodes on the 

basis of the module are restrained. 

Dynamic Relaxation 

In this study, dynamic relaxation is employed for the static analysis of the “simplex” module. 

Dynamic relaxation is an explicit numerical form-finding and analysis method of tensile structures 

[Barnes (1999); Adriaenssens and Barnes (2001); Bel Hadh Ali et al. (2011)] that avoids stiffness-

matrix calculations [Brew and Brotton (1971)]. Therefore, it is suitable for the analysis of nonlinear 

structures such as tensegrity modules.  

In dynamic relaxation, a structure is modeled as a mesh of elements connected with nodes. A mass 

is assigned to every node. Loading is also applied to the nodes, while pre-stress is applied through 

the definition of an initial element length. The method explores the fact that the static solution for a 

structure subject to loading can be seen as the equilibrium state of a series of damped vibrations. 

Consequently, the governing equation is: 

 
 

     (1) 

 

where Fext and Fint are the external and internal forces at each node respectively, M corresponds to 

the nodal mass and D corresponds to damping. However, mass M and damping D are fictitious 

parameters optimized for the stability and convergence of the method [Belytschko and Hugues 

(1983)].    and v are the acceleration and the velocity at each node respectively. In this study, kinetic 

damping is employed [Cundall (1976)]. Therefore, kinetic energy is monitored and when a peak in 

kinetic energy is detected, the velocity is reset to zero, the geometry is updated and convergence is 
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checked. Expressing the acceleration in a finite difference form gives the velocity and the updated 

geometry for each node: 
 ;

     (2) 

 
 

     (3) 

 

where v
t+Δt/2

 and v
t-Δt/2

 are the nodal velocities at times t+Δt/2 and t-Δt/2 respectively. x
t+Δt

 is the 

nodal position at time t+Δt and Δt is the time step applied. The new geometry obtained allows 

updating the internal forces Fint and thus starting over. Convergence is obtained when the term Fext - 

Fint  is sufficiently small (equilibrium). 

To encounter the effect of bending in the “simplex” module, the bending-element formulation by 

Adriaenssens and Barnes (2001) is employed for strut-beam elements. Strut-beam elements are thus 

decomposed on a series of links and bending moments are estimated based on a finite difference 

modeling of a continuous beam. Bending moments are decomposed into shear forces that are added 

to the existing nodal forces and convergence is checked according to the general calculation scheme 

(Eq. 1). The formulation allows thus the method to maintain its computational advantages. 

Structural analysis  

Dynamic relaxation is used to analyze the structural response of the “simplex” module (stresses in 

the elements) under self-stress as well as under the combination of self-stress with vertical loading. 

In order to investigate the effect of bending in the “simplex” module, compressive elements are first 

modeled using struts (purely axially loaded elements) and then with strut-beam elements. Moreover, 

since tensegrity structures have pinned connections an initial curvature is also given to the strut-

beam elements (1/(10*lstrut)) to initiate bending action in them. 

Figures 2 shows the stresses in the cables and struts of the “simplex” module for different self-stress 

levels (5%, 10% and 15% of the tensile strength of the cables) with strut elements (left) and strut-

beam elements (right). The analysis shows that in both configurations cables are the most load 

bearing elements of the system. Furthermore, when strut-beam elements are employed stresses in 

cables reduce (up to 40%) while stresses in strut-beam elements increase (up to 44%). 

 

 
 

Figure 2. Stresses in the elements of the “simplex” module for different self-stress levels (5%, 

10% and 15% of the tensile strength of the cables) with strut elements (left) and strut-beam 

elements (right). 
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Figures 3 shows the stresses in the elements of the “simplex” module for different vertical loads 

applied on the top nodes (10kN, 20kN and 30kN per top node) with strut elements (left) and strut-

beam elements (right). A self-stress level of 5% is also applied in the cables to guarantee the 

stability and stiffness of the module. Similar to the self-stress study, the analysis reveals that cables 

are the load bearing elements and that when strut-beams are employed, stresses in these elements 

increase significantly (close to 100%) while stresses in cables remain in approximately the same 

level (decrease of 5%). 

 

 
 

Figure 3. Stresses in the elements of the “simplex” module for different loads applied on the 

top nodes (0kN, 10kN and 20kN per top node) with struts modelled as axial elements (left) and 

bending elements (right). 

 

Bending increases stresses in strut-beam elements. Consequently, it can lead to failure at lower 

loading levels than originally predicted with form-finding and analysis techniques that model 

compressive elements with struts. Therefore, bending should be taken into account when designing 

tensegrity systems especially for load-bearing applications. 

Discussion 

Current design theory holds that bending is undesirable in tensegrity elements. However, by 

integrating bending in the form-finding process, novel tensegrity structures constructed from 

flexible yet strong engineering materials that have low Young’s modulus and high strength such as 

Fibre Reinforced Plastics (FRP) could be explored. Applying such materials reduces significantly 

bending stresses in the strut-beam elements avoiding failure and thus opening the door to the 

development of a whole new realm of novel tensegrity systems that can sustain large elastic 

deformations without failure similar to natural systems [Ingber et al. (2014)]. 

Conclusions 

This paper investigates the effect of bending in a tensegrity “simplex” module. Dynamic relaxation 

is used to analyze a “simplex” module with strut and strut-beam elements. It is found that 

considering bending increases stresses in the elements which can lead to failure at lower loading 

levels than predicted with traditional form-finding and analysis techniques. Therefore, it is 

important to consider bending when designing tensegrity structures. Moreover, integrating bending 

in the form-finding process could lead to bending-active tensegrity systems and thus novel 

applications of tensegrity systems. 



5 

 

References 

Motro, R. (2005). Tenségrité, Hermes Science. 

Skelton, R. E. and M. C. de Oliveira (2009). Tensegrity systems, Springer. 

Ingber, D.E., Wang, N., Stamenović, D. (2014). Tensegrity, cellular biophysics, and the mechanics of living systems. 
Reports on Progress in Physics, 77(4), 046603. 

Ingber, D.E. (2003) Tensegrity: I. Cell structure and hierarchical systems biology. J Cell Sci 116: 1157-1173 

Adriaenssens S., Barnes M.R. (2001). Tensegrity spline beam and grid shell structures, Eng Struct 23(1), 29-36. 

Rhode-Barbarigos L., Bel Hadj Ali N., Motro R., Smith I.F.C. (2010). Designing tensegrity modules for pedestrian 
bridges. Eng Struct, 32(4): 1158-1167. 

Rhode-Barbarigos L., Schulin C., Bel Hadj Ali N., Motro R., Smith I.F.C. (2012a). Mechanism-based approach for the 
deployment of a tensegrity-ring module. J of Struct Eng-ASCE, 138: 539-548. 

Sultan, C. and Skelton R. (2003). Deployment of tensegrity structures. Int J of Solids and Struct 40(18): 4637-4657.  

Rhode-Barbarigos L., Bel Hadj Ali N., Motro R., Smith I.F.C. (2012b). Design aspects of a deployable tensegrity-
hollow-rope footbridge. Int J of Space Struct, 27(2): 81-96. 

Paul C., Valero-Cuevas F.J., Lipson H. (2006). Design and Control of Tensegrity Robots for Locomotion, IEEE Trans. 
on Robotics, 22 (5), 944–957. 

SunSpiral V., Gorospe G., Bruce J., Iscen A., Korbel G., Milam S., Agogino A., Atkinson D. (2013). Tensegrity Based 
Probes for Planetary Exploration: Entry, Descent and Landing (EDL) and Surface Mobility Analysis. Int J of Planetary 
Probes. 

Tibert, A.G. and Pellegrino S. (2003). "Review of Form-Finding Methods for Tensegrity Structures." Int J of Space 
Struct 18: 209-223. 

Masic, M., Skelton R., et al. (2005). "Algebraic tensegrity form-finding." Int J of Solids and Struct 42(16-17): 4833-
4858. 

Motro R. (2006) Tensegrity: Structural Systems for the Future. Butterworth-Heinemann, Boston. 

Barnes, M.R. (1999). "Form Finding and Analysis of Tension Structures by Dynamic Relaxation." International Journal 
of Space Structures 14: 89-104. 

Bel Hadj Ali N., Rhode-Barbarigos L., Smith I.F.C. (2011). Analysis of clustered tensegrity structures using a modified 
dynamic relaxation Algorithm. Int. J. of Solids and Structures, 48(5): 637-647. 

Brew JS, Brotton DM. (1971). Non-linear structural analysis by dynamic relaxation. Int J Numer Methods Eng. 3(4), 
463-83. 

T.B. Belytschko, T.J.R. Hugues, (1983) Computational Methods for Transient Analysis: Computational Methods in 
Mechanics; Mechanics and Mathematical Methods, a Series of Handbooks. North-Holland, Amsterdam-New York. 

P.A. Cundall, Numerical Methods in Engineering (Proc. of the EF Conf. on Numerical Methods in Geomechanics), 1, 
132-150, (1976). 



6 

 

Appendix 

 
Table 1. Nodal coordinates for the “simplex” module 

 

Node X [mm] Y [mm] Z [mm] 

1 500 0 0 

2 -250 433 0 

3 -250 -433 0 

4 -433 250 1000 

5 0 -500 1000 

6 433 250 1000 

 
 

Table 2. Nodal connectivity for the “simplex” module 
 

Element Node Node 

Strut 1 4 

Strut 3 6 

Strut 2 5 

Cable 1 2 

Cable 2 3 

Cable 3 1 

Cable 4 5 

Cable 5 6 

Cable 6 4 

Cable 1 6 

Cable 3 5 

Cable 2 4 

 


