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Abstract It is well-known that the classical finite element method fails to provide 

accurate results to the Helmholtz equation due to the dispersion error, which is rooted 

at the “overly-stiff” feature of the FEM model. By combining the “smaller wave 

number” model of FEM and the “larger wave number” model of NS-FEM, an alpha 

finite element method(α-FEM) can obtain accurate solutions. In this paper, the 

α-FEM has been applied to analyze 2D underwater exterior scattering problems in the 

unbounded domain. The non-reflecting boundary condition is imposed as an artificial 

boundary to model exterior acoustic problems. Several two-dimensional underwater 

exterior scattering problems with known exact solutions have been chosen as 

numerical examples. Results demonstrate the excellent properties of α-FEM.  

Keywords:  Alpha finite element method(α-FEM), Acoustic Scattering, Unbounded 

Domain, Non-reflecting boundary 

 

Introduction 

For several decades, many numerical methods have been introduced to compute the 

approximate solutions of acoustic problems [Suleau et al.(2000); Harari and 

Magoules(2004); Babuska et al(1999)]. The standard finite element method (FEM) is 

one of the most widely-used numerical methods in solving these acoustic problems 

governed by the Helmholtz equation. However it is known that the FEM fails to 

provides reliable predictions in high frequency range. Many studies have been done 

to improve resolve this defect. But such efforts have difficulties because of the 

well-known “pollution error”.  

Various numerical methods have been proposed, They are the stabilized FEM 

[Harari and Huhes(1992; Thompson and Pinsky(1995)], higher order methods 

[Petersen et al.(2006)]，meshless method [Bouillard and Suleau(1998)] and so on. 

They all get better solutions. However, “softened” stiffness for the discrete model is 

more effective [Liu et al.(2009)]. The wave number in the FEM model is smaller than 

the actual one, leading to the so-called numerical dispersive error. The FEM model 

based on the standard Galerkin weak form behaviors stiffer than the continuous 

system. In order to “soften” the numerical system, Liu [Liu(2008; 2009)] has 

proposed generalized gradient smoothing technique and applied if in the meshfree 

setting to formulate the node-based smoothing point interpolation method (NS-PIM) 
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and node-based finite element method (NS-FEM). But NS-PIM and NS-FEM model 

both behave “overly-soft”. An alpha finite element method (α-FEM) was then 

proposed [Liu et al.(2008)] by combining the “overly-stiffness” of the FEM and the 

“overly-soft” of the NS-FEM through a parameter α, resulting in a numerical model 

with very close-to-exact stiffness. 

In this work, by introducing the DtN artificial boundary condition 

[Givoli(1988); Givoli and Keller(1989)], the accuracy and convergence of the α-FEM 

is studied. Initially the scattering problem is described. Next, the weak form of 

α-FEM and DtN boundary condition for the two dimensions case is derived. Finally, a 

comparison between the α-FEM solution, the FEM solution and the numerical 

solution shows the performance of the α-FEM for a rigid sphere as an example. 

 

Mathematical model of acoustic problem 

Consider an acoustic problem domain   with boundary  . The acoustic wave 

equation can be written as following form: 
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where p denotes the acoustic field pressure and c be the speed of sound traveling in 

fluid,    and t denote the Laplace operator and time. In the frequency domain, the 

acoustic can be expressed as: 
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where    and   denote the amplitude of the acoustic wave and the angular 

frequency,   √  . Then p satisfies the well-known Helmholtz equation: 
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where k is the wave number expressed as: 
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besides, the particle velocity   in an ideal fluid is proportional to the gradient of the 

pressure: 

 

 0  p j   (5) 



 

   For unbounded domain problems, an artificial boundary condition is introduced. 

In this paper we introduce a so-called “Dirichlet-to-Neumann” boundary condition 

[Keller and Givili(1989)] on the outer boundary of the domain discretized with finite 

elements: 
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where M is the DtN operator. In two dimensional problems, the DtN operator is 

expressed as; 
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where R is the radius of the outer boundary,   
   

is the Hankel function of the second 

kind,         are azimuth angle. 

 

Formulation of the       

In the standard FEM, the discretized system equation can be written in the following 

matrix form: 
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where 

The acoustic stiffness matrix: 
FEM T( ) ( )d


   K N N  (9) 

 

The acoustic mass matrix: 
T= d


M N N   (10) 

 

The acoustic damping matrix: 
T d


  nAC N N   (11) 

 

The vector of nodal acoustic forces: = d



T

nF N   (12) 

 

The nodal acoustic pressure:  T

1 2, , ,  np p pP   (13) 

 

In the NS-FEM, the problem is first divided into Ne elements with of Nn nodes as 

same as those used in the FEM. Then the problem is further divided in Nn node-based 



 

smoothing domains on top of the generated cells. For 2D problems, the smoothing 

domain    is created by connecting sequentially the mid-edge-point to the centroids 

of the surrounding triangles of node k. The boundary of the smoothing domain    is 

labeled as    and the union of all    forms exactly the global domain  . 

   In the NS-FEM, the field variable is constructed using the linear FEM shape 

functions in the same way as those in the FEM. The difference is that the gradient 

component    is replaced by the smoothing item   ̅̅ ̅̅  obtained using the 

node-based gradient smoothing operation [Liu et al.(2005); Zhang et al(2007)].The 

acoustic stiffness matrix in the NS-FEM is expressed as: 
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The above integration is evaluated base on the summation of all the node-based 

smoothing domains as: 
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where the K
(k)

 is the local smoothed stiffness matrix associated with node k, and can 

be calculated: 
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where Ak is the area of the smoothing domain for node k in 2D problems, and 
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where is the FEM shape function for node i. 

In the      , each triangular element is divided into four parts with a scaled 

factor α: three quadrilaterals associated with three vertexes with equal area of 
 

 
    

and the remaining Y-shaped part in the middle of the element with a area of (1-α)Ae, 

where the Ae is the area of the triangular element. The NS-FEM and the FEM 

formulations are constructed respectively in the three quadrilaterals and the Y-shaped 

area for each element. Then the       will be the assembly from the entries of 

both the NS-FEM and FEM with the following form: 
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In unbounded domain, according to Givoli and Kaller [Givoli(1988); Givoli and 

Keller(1989)], the stiffness matrix K consists of two matrices: 

 

 FEM  b
K K K   (20) 

 

where K
b
 is the DtN artificial boundary matrix, it contains the operator M and the 

shape functions used in the FEM: 
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Finally, the discretized system equations can be obtained and written in the 

following form: 
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Numerical example 

In this paper, to illustrate the performance and ability of       for acoustic 

problems, the scattering problem on the exterior domain of a rigid sphere is dealt with. 

The radius of the sphere is 0.2, the radius of the artificial boundary is 1. 

   Consider a wave propagates in the exterior domain with two boundary condition 

described as follow: 

 

on the artificial boundary:  n M  p p   (23) 

 

on the boundary of the rigid sphere: -nv   (24) 

 

   The problem has an analytical solution as follow: 
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   Three different   values                   have been employed to 

compare the influence of   with element size of 0.02. The numerical results of 



 

acoustic pressure using       and exact solution are plotted in Fig1. It can be 

seen from plot that when      , the numerical solution is in agreement with exact 

solution. So       is used in the following computation.  

 

 

Figure 1. Analytical solution and α-FEM solution with different   values 
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Figure. 2 Analytical solution, FEM solution and α-FEM solution   

on the artificial boudary for k=5, k=15, k=25, k=30 

 



 

Four different wave number values k=5, k=10, k=15, k=20are employed to study 

the accuracy of       on the artificial boundary in Fig2. These plots show that 

for lower wave number,       and FEM all can provide close-to-exact solution. 

But       is more close to exact solution than FEM solution when comparing 

them in the forward scattering. For higher wave number, the advantage of       

is more obvious,       solution is still close to the exact solution on the artificial 

boundary, but FEM solution depart more from the exact solution. 

 

Figure 3. Calculation of       solution, FEM solution and  

analytical solutionas the wave number increasing at  

four nodes   𝟎   𝟎   𝟖    𝟎 𝟕  𝟎     𝟎    

 

In Fig3, we compare       and FEM solution with exact solution as the 

wave number increasing at four nodes                         

        From these plots we can find that as wave number increasing,       

and FEM both lose their accuracy, but the error of       is much smaller than 

the erroe of FEM. 

  

Conclusions and discussions 

In this work, the alpha finite element method (α-FEM) for solving scattering 

problems of the Helmholtz equation in two dimensions has been presented. By 

combining the “overly-stiff” FEM model with the “overly-soft” NS-FEM model, the 

α-FEM is obtained by a scaled factor        . Calculations of the scattering of a 

rigid sphere show the following conclusions: 

 

1. The scaled factor α has a giant effect on the accuracy of the α-FEM. 

2. The results indicate that the DtN boundary condition is a good alternative to other 

methods in solving scattering problems in infinite domains. 



 

3. The α –FEM and Fem use the same mesh, which means the α-FEM model can be 

get from the FEM model with little change. 

4. By using the gradient smoothing technology and the optimal alpha, the α-FEM 

appropriately softened the stiffness matrix and reduces the dispersion error. 

Numerical example demonstrate that the accuracy and convergence of the α-FEM 

is better than the FEM. 
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