
ICCM2014 
28-30th July, Cambridge, England 

 

1 

 

Complex modal analysis using undamped modes 

*Yujin Hu, and Li Li 
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, China. 

*Corresponding author: yjhu@mail.hust.edu.cn 

Abstract 

Based on undamped modes, a novel method is presented to efficiently calculate complex 
eigenpairs by combining the Neumann series and the reduced basis technique. To avoid 
the modal truncation problem, the reduced basis is calculated by using a Neumann series 
expansion and only requires the undamped eigenpair of interest. The sufficient condition 
for the convergent Neumann series is derived and the computational complexity of the 
proposed method is discussed. Useful characteristics on the accuracy and the advantages 
of the proposed method over the exact state-space method, as well as over the common 
approximate procedure of ignoring the modal coupling, are shown and discussed in terms 
of some case studies. It is shown that the complex eigenpairs can be calculated by simply 
postprocessing of undamped eigenpairs. 

Keywords: Complex modal analysis; Eigensolution; Undamped modes; Non-classically 
damped systems; Modal coupling; Frequency response function 

Introduction 
The equation of motion of an N DOF linear viscously damped system can be given by 

 ( ) ( ) ( ) ( )t t t t+ + =Mq Cq Kq f   (1) 

where M, C and K are real mass, damping and stiffness matrices, respectively; q(t) and 
f(t) are displacement vector and force vector, respectively. In this paper, assume that M is 
a positive definite symmetric matrix, K and C are non-negative definite symmetric 
matrices. The inclusion of the influence of damping in structural and mechanical systems 
is extremely important if a model is to be applied in predicting vibration levels, transient 
responses, transmissibility and design problems dominated by energy dissipation. The 
eigenvalue problem of the viscously damped system can be written in matrix form as 

 ( )2    1,  2,  , 2j j j j Nλ λ+ + = ∀ = …M C K φ 0  (2) 

Here λj and φj denote the jth eigenvalue and eigenvector. Although several efficient 
approximation techniques were suggested, the most common is so-called the proportional 
approximation method (PAM), which is simply to ignore the mode coupling by using 
undamped modal shapes. The undamped mode shapes (normal modes) can be obtained 
by solving the undamped eigenproblem Kuj=ωj

2Muj where ωj is the jth undamped 
frequency and in order of ascent; uj denotes the mode shape corresponding to the jth 
frequency ωj The PAM may be the most efficient approximate method, but the results of 
the PAM are not always with acceptable accuracy. It was shown by many studies 
(Hasselman, 1976; Warburton and Soni, 1977; Gawronski and Sawicki, 1997; Udwadia, 
2009) that the light damping, the diagonal dominance of the transformed damping matrix 
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and the good separation property of normal modes are not any more the sufficient 
conditions for the accuracy of the proportional approximation method (these conditions 
were once believed to produce small errors for the PAM). When the non-proportional 
part of the damping is local, some method developed by (Özgüven, 1987; Denoël and 
Degée, 2009) can be used to efficiently calculate the frequency responses of a non-
classically damped system in terms of the undamped modes. The complex modal analysis 
may be also a good choice to accurately calculate the frequency response (Adhikari, 
2013). If only the lower modes are available, the frequency responses can be efficiently 
calculated by the method developed by (Li et al., 2014b)(Li et al., 2014a). In addition, 
complex modes can be used to transform any viscously damped system with N DOF into 
N independent second-order equations [see, e.g., (Kawano et al., 2013; Morzfeld et al., 
2011; Ma et al., 2010) for details]. Note that in the dynamic response analysis, the 
primary computational effort is spent on the solution of the complex modes of the 
eigenproblem (2). 
 
Real eigensolution techniques can be easily extended to handle the damped eigenproblem 
in terms of 2N-space (state-space) formulation, where N is the system dimension [see e.g., 
(Veletsos and Ventura, 1986) for details]. Although these state-space methods are exact 
in nature, they usually need heavy computational cost in practice due to the double size of 
system matrices. The state-space methods are not only computationally expensive, but 
also lack the physical insight provided by the superposition of the complex modes in the 
original physical space. To avoid the disadvantages mentioned previously, some 
efficiently computational methods in the original space were developed to compute the 
complex modes [see, e.g., (Kwak, 1993; Adhikari, 2011; Fischer, 2000; Holz et al., 2004; 
Rajakumar, 1993; Lee et al., 1998)]. 
 
In this paper, based on undamped modes, an efficient method is presented to calculate the 
complex eigenpairs by combining the Neumann series and the reduced basis technique. 
To avoid the modal truncation problem, the reduced basis is calculated by using a 
Neumann series expansion and only requires the undamped eigenpair of interest (i.e., it is 
not necessary to calculate all the undamped eigenpairs to hold the accuracy of 
engineering required). The sufficient condition for the Neumann series is derived and the 
computational complexity of the proposed method is discussed. 

Solution of complex eigenvalue problem using classical normal modes 
Premultiplying the damped eigenproblem by using 2 1( )jλ

−M  yields 

 ( )1 2 1
N j j jκ κ− −+ + =I M C M K φ 0  with 1j jκ λ=  (3) 

Here IN denotes the identity matrix of size N. The previous equation can be rewritten as 

 ( )1 2 1
N j j j jκ κ− −+ = −I M C φ M Kφ  (4) 

By using the Neumann series expansion, one obtains 
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 ( )2 1 1

0

k

j j j j
k

κ κ
∞

− −

=

= − −∑φ M C M Kφ  (5) 

On the condition that the mode shapes are not changed significantly, it may be 
convenient to approximate the eigenvectors using undamped mode shapes 

 ( ) 2 ( )

0

k j
j j k

k
κ

∞ +

=

≈ − −∑φ r  (6) 

where 

 ( ) 1
0

j
j

−=r M Ku  and ( ) 1 ( )
1        1j j

k k k−
−= ∀ ≥r M Cr  (7) 

In view of 1 2
j j jω− =M Ku u , Eq. (7) can be further simplified as 

 ( ) 2
0

j
j jω=r u  and ( ) 1 ( )

1        1j j
k k k−

−= ∀ ≥r M Cr  (8) 

The basis vectors can be efficiently calculated using the matrix decomposition of the 
mass matrix M, which only needs to be obtained once for different eigenpairs. Once the 
matrix decomposition is available, the calculation of the series vectors by Eq. (8) 
involves only forward and backward substitutions, which are trivial. However, the 
coefficient of each basis vector is unknown. 
 
In the reduced basis technique, the approximate result is searched within a subspace 
spanned by using reduced basis vectors. We define a reduced subspace Rj for each 
complex eigenpair in terms of the first r terms of the Neumann series expansion. That is 

 { }( ) ( ) ( )
0 1 1span , , ,j j j N r

j r
×

−= ∈R r r r   (9) 

One obtains the approximate complex eigenvectors as 

 
1

( ) ( )

0

r
j j

j k k j j
k
α

−

=

≈ =∑φ r R α  where { }( ) ( ) ( ) 1
1 2 1, , ,

Tj j j r
j rα α α ×

−= ∈α    (10) 

Since the approximate eigenvectors should satisfy the eigenproblem (2), we determine 
these unknown coefficients αj by substituting the approximate eigenvectors back into Eq. 
(2) and pre-multiplying it using Rj

T, that is, 

 ( )2
j R j R R jλ λ+ + =M C K α 0  (11) 

with 

 T r r
R j j

×= ∈M R MR  , T r r
R j j

×= ∈C R CR   and T r r
R j j

×= ∈K R KR   (12) 

The robustness of the rectangular basis matrix Rj can be improved by using a Gram–
Schmidt orthonormalization procedure. The (r×r) reduced system matrices are dense 
matrices, but they are symmetric and much smaller in size than the (N×N) original system 
matrices. On the condition that the mode shapes of the systems do not have significantly 
changed, the approximate modified eigenvalue λj can be chosen by finding the eigenvalue 
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of the reduced eigenproblem (11) such that the absolute largest value of ωj−λj is 
minimized. Next, based on the frequency shifting technique, we give a method to obtain 
the eigenvalue λj. The reduced eigenproblem by Eq. (11) can be reformed as 

 ( )2 + =j R j R R jλ λ +M C K α 0   with j j jλ λ ω= −  (13) 

where the equivalent damping and stiffness matrices are 

 ( )2R R jω= +C C M  and ( )2
R R j R j Rω ω= + +K K C M  (14) 

Once the first-order mode of the reduced eigenproblem (13) is solved. The approximate 
modified eigenvalue λj can be calculated. Once the vector αj is calculated, the modified 
eigenvectors can be obtained using Eq. (10). It is interesting to note that the first reduced 
basis vector is the undamped mode shape in nature. If the complex eigenpair can be 
calculated to satisfy suitable accuracy requirements by using one reduced basis vector, it 
means the system is close to the classically damped system and the PAM may produce 
small errors. If the complex eigenpairs need more than one reduced basis vector, under 
such circumstance, the PAM will produce unexpected errors and the proposed method 
can be used for suitable accuracy requirements. 
 
In view of Eq. (2), the number r in Eq. (10) can be then determined if 

 ( )2

2
(i ) j j je ω λ λ ε= + + <M C K φ  (15) 

where the parameter ε is a given accuracy for the absolute error. Alternatively, the 
number r in Eq. (10) may be determined by 

 θθ ε<   (here 
( )( )

1

1 1

cos
H
r r

H H
r r r r

θ −

− −

=
r r

r r r r
) (16) 

Here the parameter εθ is a given accuracy. It means that increasing the reduced basis 
vectors can be stoped if the reduced basis vectors become linearly-dependent. 

Computational considerations 
For the convergent Neumann series expansion, one obtains the necessary and sufficient 
condition ρ(κjM−1C)<1. Here ρ(•) denotes the spectral radius of matrix (•). It means that 
all the eigenvalues of matrix κjM−1C have absolute values less than one. The maximal 
eigenvalues of matrix M−1C can be found by solving the minimal eigenvalues of 
Myj=sjCyj. Once the minimal eigenvalue smin is solved, the convergence condition can be 
given by 

 min 1js κ <     or    min js λ<  (17) 

which can be approximated determined using the known undamped frequencies 

 min js ω<  (18) 
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When the size N is large, the operation count to solve the undamped eigenproblem is 
O(N3) (Adhikari, 2013). The operation count for the LDLT decomposition of the mass 
matrix M is 0.5Nb2 (Bathe, 1996), where b is the semi-bandwidth of the mass matrix. The 
process of forward and backward substitutions for these basis vectors given by Eq. (7) is 
2LrNb. Since the number of the basis vectors rN and the number of the calculated 
complex modes LN, the other operation count is trivial. Therefore, the operation count 
of the proposed method is O(N3+0.5Nb2+2LrNb). Since the half-bandwidth b is roughly 
proportional to N0. 5 (Bathe, 1996), the flop can be simplified as O(N3+0.5N2+2LrN1.5) for 
the consistent mass matrix and O(N3+2LrN1.5) for the lumped mass matrix. For non-
classically damped systems, the state-space method (the size of the state-space matrix is 
2N) to calculate the complex eigenproblem is O(8N3) (Adhikari, 2013). Therefore, the 
proposed method shows a clear advantage over the state-space method in engineering 
applications as O(8N3)> O(N3+0.5N2+2LrN1.5) in the case the consistent mass matrix and 
O(8N3)>O(N3+2LrN1.5) in the case of the lumped mass matrix. 

Examples and discussions 
Example 1: Three-DOF viscously damped system. A three DOF viscously damped 
system is considered here. The mass, damping and stiffness matrices are 

 
3 0 0
0 3 0
0 0 3

 
 =  
 
 

M , 
0 0 0
0 0.175 0.175
0 0.175 0.175

 
 = − 
 − 

C , 
4 2 0
2 4 2

0 2 4

− 
 = − − 
 − 

K  (19) 

To illustrate the accuracy of the proposed method, two cases for distinct damping 
matrices are considered. 
 
Case 1: consider the damping matrix given by Adhikari (Adhikari, 2011). In this case, 
the system does not satisfy the convergence condition for the Neumann series expansion 
and the assumption condition that the mode shapes are not changed significantly. Table 1 
lists the undamped frequencies and the complex eigenvalues using the exact state-space 
method and the proposed method for case 1. The damping coefficient of non-classically 
damped systems can be defined as (McLean, 2010) 

= 2j j djg α ω−   (here = ij j djλ α ω+ ) 

which is popular in the aeroelastic filed. The damping coefficient gj is approximately 
twice times the value of the conventional modal damping ratio. The MAC between the 
undamped mode shapes and exact complex mode shapes is 0.9953 for the first mode, 
0.7734 for the second mode and 0.6587 for the third mode (the MAC value close to unity 
denotes the similarity whereas it close to zero denotes no similarity). As can be seen, the 
MAC of the last two modes is not much similarity in comparison with that of the first 
mode and the last two undamped frequencies are close. Therefore the system shows a 
significant modal coupling. The high modal coupling means that the system does not 
satisfy the assumption condition that the mode shapes are not changed significantly. The 
minimal eigenvalue of Myj=sjCyj is 0.8571 (smin=0.8571). It means that the convergence 
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condition for the Neumann series expansion is not satisfied. Although the convergence 
problem and high modal coupling exist in the special case, the proposed method with two 
basis vectors shows a good accuracy (the maximal error is 0.7469% and the minimum 
MAC is 0.9822). Therefore, although the convergence condition given by (17) is the 
necessary and sufficient condition for the Neumann series expansion, it may be only a 
sufficient condition for the proposed method. In addition, the condition, which assumes 
the mode shapes are not changed significantly, maybe not a necessary condition for the 
proposed method. Now, we use these calculated modes to calculate the frequency 
response functions (FRFs). For the sake of comparison, the FRFs are also calculated 
using the direct frequency response method (DFRM) and the PAM. The DFRM, which 
requires a matrix decomposition of the dynamic stiffness matrix at each excitation 
frequency, is considered as an exact result. Two typical FRFs are shown in Figure 1. The 
damping coefficient is 0.0328 for the first mode, 0.0771 for the second mode and 0.7546 
for the third mode. Only two resonance peaks are visible since the damping coefficient of 
the third mode is high. It is shown that an unacceptable error is produced in the FRFs 
obtained by the PAM. However, the proposed method improves the results. 

Table 1. Eigenvalues using state-space method and the proposed method for case 1. 

 
Figure 1. FRFs for case 1. (a) The FRF excited at the first DOF and measured at the 
second DOF. (b) The FRF excited at the three DOF and measured at the three DOF. 
Case 2: the damping matrix is considered as Eq. (19). In this case, the system satisfies the 
assumption condition that the mode shapes are not changed significantly but does not 
satisfy the convergence condition for the Neumann series expansion. Table 2 lists the 
eigenvalues for case 2. The MAC of the undamped mode shapes and exact complex 
mode shapes is 0.9999 for the first mode, 0.9962 for the second mode and 0.9935 for the 
third mode. These MAC values close to unity show the system satisfy the assumption 
condition that the mode shapes are not changed significantly. The minimal eigenvalue of 
Myj=sjCyj is 8.5714 (smin= 8.5714), which means that the system does not satisfy the 

Mod
e  

Complex 
eigenvalue (exact) 

Undamped 
frequency 

One basis vector (r=1) Two basis vectors (r=2) 

Eigenvalues Error (%) MAC Eigenvalues Error (%) MAC 

1 

2 

3 

-0.0103 + 0.6298i 

-0.0478 + 1.2407i 

-0.5252 + 1.2890i 

0.6249 

1.1547 

1.5087 

-0.0125 + 0.6248i 

-0.1458 + 1.1455i 

-0.4250 + 1.4476i 

0.8734 

11.0078 

13.4770 

0.9953 

0.7734 

0.6587 

-0.0107 + 0.6295i 

-0.0406 + 1.2350i 

-0.5250 + 1.2825i 

0.0715 

0.7469 

0.4708 

0.9995 

0.9822 

0.9917 
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convergence condition for the Neumann series expansion. It is shown that, although the 
system does not satisfy the convergence condition in the special case, the proposed 
method with one basis vectors shows a good accuracy (the maximum error is 0.1378 and 
the minimum MAC is 0.9935) and the results of the proposed method with two basis 
vectors almost coincides with the exact results. As can be seen, the assumption condition 
can significantly affect the accuracy of the proposed method. In this case, two typical 
FRFs are shown in Figure 2. The damping coefficient is 0.0040 for the first mode, 
0.0251 for the second mode and 0.0565 for the third mode. It is shown that, although the 
damping coefficient is relatively light, an unacceptable error is also produced in the FRFs 
obtained by the PAM. However, the proposed method improves the results and its result 
shows a good agreement with that of the DFRM. 

Table 2. Eigenvalues using state-space method and the proposed method for case 2. 

 
Figure 2. FRFs for case 2. (a) The FRF excited at the first DOF and measured at the 
first DOF. (b) The FRF excited at the first DOF and measured at the second DOF. 

L LLLL

E=2.0×106 Pa
ρ=1800 kg/m3

c=4.2×103 

E=4.0×105 Pa
ρ=1000 kg/m3

c=1.5×104 

 

Figure 3. A damped truss structure. 

Example 2: Damped truss structure. A simple but representative truss structure, shown 
in Fig. 3, is considered. For an element e, the elementary matrices are defined as follows: 

1 0
0 12

e
e

A lρ  
=  

 
M , 

1 1
1 1e

e

EA
l

− 
=  − 

K  and 
1 1
1 1e

e

cA
l

− 
=  − 

C  

where A is the cross-section area, ρ is the density, E is the elastic modulus, c is the 
damping coefficient and le is the length of the truss element (le=0.5 m). here L=10 m and 

Mode  Complex 
eigenvalue (exact) 

One basis vector (r=1) Two basis vectors (r=2) 

Eigenvalues Error (%) MAC Eigenvalues Error (%) MAC 

1 

2 

3 

-0.0012 + 0.6250i 

-0.0145 + 1.1561i 

-0.0426 + 1.5060i 

-0.0013 + 0.6249i 

-0.0146 + 1.1546i 

-0.0425 + 1.5081i 

0.0095 

0.1281 

0.1378 

0.9999 

0.9962 

0.9935 

-0.0012 + 0.6250i 

-0.0145 + 1.1563i 

-0.0425 + 1.5061i 

0.0008 

0.0161 

0.0049 

1.0000 

0.9995 

0.9999 
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A=0.0001 m2. The DOF of the truss structure is 99. Figure 4 shows the first DOF of the 
FRF excited at the first DOF and measured at the first DOF. The complex modal 
superposition method should be used to accurately calculate the FRF since the results of 
the PAM do not give an acceptable accuracy. Table 3 lists the undamped frequencies and 
the complex eigenvalues using the exact state-space method and the proposed method. 
Two typical mode shapes calculated by using the exact state-space method and the 
proposed method with three basis vectors are shown in Figure 5. It is shown that the 
proposed method shows a good agreement with the exact results. The computational time 
of obtaining the first five complex eigenpairs is 3.2396e-2 seconds for the proposed 
method and 4.8613e-2 seconds for the state-space method. It means that the proposed 
method is faster than the state space method. If the DOF becomes larger, the time of the 
state-space method will increase rapidly and the proposed method will show a clear 
advantage over the state-space method as it discussed previously. 

 
Figure 4. The FRF calculated by the PAM and the complex modal analysis. 

Table 3. Eigenvalues using state-space method and the proposed method. 

 

Mode  Complex eigenvalue 
(exact) 

Undamped 
frequency 

One basis vector (r=3) Two basis vectors (r=4) 

Eigenvalues Error (%) Eigenvalues Error (%) 

1 

2 

3 

4 

5 

-2.4839e-2 +1.1883i 

 -8.6932e-2 +2.2064i 

 -3.5758e-1 +5.3648i 

 -5.7556e-1 +6.1127i 

 -7.9690e-1 +6.7949i 

1.1885 

  2.2078 

  5.3479 

  6.1088 

  6.8224 

-2.4836e-2 +1.1882i 

 -8.6913e-2 +2.2061i 

 -3.5588e-1 +5.3385i 

 -5.7054e-1 +6.0848i 

 -7.9366e-1 +6.7809i 

5.2116e-3 

  1.2450e-2 

  4.8983e-1 

  4.6164e-1 

  2.1052e-1 

-2.4836e-2 +1.1882i 

 -8.6913e-2 +2.2061i 

 -3.5592e-1 +5.3388i 

 -5.7060e-1 +6.0851i 

 -7.9375e-1 +6.7812i 

5.1716e-3 

  1.2273e-2 

  4.8479e-1 

  4.5686e-1 

  2.0528e-1 
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Figure 5. Complex mode shape. (a) First-order mode. (b) Fifth-order mode. 

Conclusions 
Based on undamped modes, an efficient method is presented to calculate complex 
eigenpairs by combining the Neumann series and the reduced basis technique. The 
method only requires the undamped eigenpair of interest. Some interest characteristic is 
shown and discussed in terms of numerical examples. It is shown that the complex 
eigenpairs can be calculated by simply postprocessing of undamped eigenpairs. Note that 
the first reduced basis vector is the undamped mode shape in nature. If complex eigenpair 
can be calculated by using one reduced basis vector to satisfy suitable accuracy, it means 
the system is close to the classically damped system and the proportional approximation 
method (PAM) may produce small errors. Therefore, it can be concluded that the 
proposed method can be reduced to the PAM when only the first reduced basis vector is 
used. If complex eigenpairs need more than one reduced basis vector to satisfy suitable 
accuracy requirements, under such circumstance, the PAM will produce unexpected 
errors and the proposed method can be used for suitable accuracy. Therefore, the 
proposed method is also developed as a criterion for choosing the PAM. 

Acknowledgments 
This work is supported by the National Natural Science Foundation of China (51375184). 

References 
Adhikari S. (2011) An iterative approach for nonproportionally damped systems, Mechanics Research 

Communications 38, 226-230. 
Adhikari S. (2013) Structural Dynamic Analysis with Generalized Damping Models: Analysis, John Wiley 

& Sons. 
Bathe K-J. (1996) Finite element procedures. New Jersey: Prentice Hall. 
Denoël V and Degée H. (2009) Asymptotic expansion of slightly coupled modal dynamic transfer functions, 

Journal of Sound and Vibration 328, 1-8. 
Fischer P. (2000) Eigensolution of nonclassically damped structures by complex subspace iteration, 

Computer Methods in Applied Mechanics and Engineering 189, 149-166. 
Gawronski W and Sawicki JT. (1997) Response errors of non-proportionally lightly damped structures, 

Journal of Sound and Vibration 200, 543-550. 



 

10 

 

Hasselman T. (1976) Modal coupling in lightly damped structures, AIAA Journal 14, 1627-1628. 
Holz UB, Golub GH and Law KH. (2004) A subspace approximation method for the quadratic eigenvalue 

problem, SIAM Journal on Matrix Analysis and Applications 26, 498-521. 
Kawano DT, Morzfeld M and Ma F. (2013) The decoupling of second-order linear systems with a singular 

mass matrix, Journal of Sound and Vibration 332, 6829-6846. 
Kwak M. (1993) Perturbation method for the eigenvalue problem of lightly damped systems, Journal of 

Sound and Vibration 160, 351-357. 
Lee I-W, Kim M-C and Robinson A. (1998) Efficient solution method of eigenproblems for damped 

structural systems using modified Newton-Raphson technique, Journal of Engineering Mechanics 
124, 576-580. 

Li L, Hu YJ and Wang XL. (2014a) Accurate method for harmonic responses of non-classically damped 
systems in the middle frequency range, Journal of Vibration and Control in press. 

Li L, Hu YJ, Wang XL and Lü L. (2014b) A hybrid expansion method for frequency response functions of 
non-proportionally damped systems, Mechanical Systems and Signal Processing 42, 31-41. 

Ma F, Morzfeld M and Imam A. (2010) The decoupling of damped linear systems in free or forced 
vibration, Journal of Sound and Vibration 329, 3182-3202. 

McLean DM. (2010) MD Nastran Dynamic Analysis User's Guide. Santa Ana: MSC.Software Corporation. 
Morzfeld M, Ma F and Parlett BN. (2011) The transformation of second-order linear systems into 

independent equations, SIAM Journal on Applied Mathematics 71, 1026-1043. 
Özgüven H. (1987) A new method for harmonic response of non-proportionally damped structures using 

undamped modal data, Journal of Sound and Vibration 117, 313-328. 
Rajakumar C. (1993) Lanczos algorithm for the quadratic eigenvalue problem in engineering applications, 

Computer Methods in Applied Mechanics and Engineering 105, 1-22. 
Udwadia FE. (2009) A note on nonproportional damping, Journal of Engineering Mechanics 135, 1248-

1256. 
Veletsos AS and Ventura CE. (1986) Modal analysis of non ‐ classically damped linear systems, 

Earthquake Engineering & Structural Dynamics 14, 217-243. 
Warburton G and Soni S. (1977) Errors in response calculations for non-classically damped structures, 

Earthquake Engineering & Structural Dynamics 5, 365-376. 
 

 


	*Yujin Hu, and Li Li
	Abstract
	Introduction
	Solution of complex eigenvalue problem using classical normal modes
	Computational considerations
	Examples and discussions
	Table 3. Eigenvalues using state-space method and the proposed method.
	Conclusions
	Acknowledgments
	References

