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Abstract 
The paper is to introduce a computational methodology that is based on ordinary 
differential equations (ODE) solver for the structural systems adopted by super tall 
buildings in their preliminary design stage so as to facilitate the designers to adjust 
the dynamic properties of the adopted structural systems. The construction of the 
study is composed by following aspects. The first aspect is the modelling of a 
structural system. As a typical example, a mega frame-core-tube structural system 
adopted by some famous super tall buildings such as Taipei 101 building, Shanghai 
World financial center, is employed to demonstrate the modelling of a computational 
model. The second aspect is the establishment of motion equations constituted by a 
group of ordinary differential equations for the analyses of free vibration and resonant 
response. The solutions of the motion equations (that constitutes the third aspect) 
resorted to ODE-solver technique. Finally, some valuable conclusions are 
summarized.  

Keywords:  ODE-solver-oriented computational methodology, tall building 
structures, structural dynamic analysis, computational model of a mega frame-core-
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Introduction 
Nowadays, we are experiencing an unprecedented level of activity in the design and 
construction of super tall buildings because of the limitation of land resources and 
advanced construction technology, ad hoc in China [X. zhao et al. (2011)]. The world 
architecture history has been rewritten by the multiformity of structural systems, the 
complexity of component arrangements and the variation of architectural styles of 
current super tall buildings. However, the analytical level for the investigation of 
dynamic properties of various structural systems adopted by super tall buildings lags 
behind their construction level. Both computational models and numerical methods 
for the dynamic analyses proposed hitherto by existing literatures are quite limited in 
their ability to model and to determine the three-dimensional motion of the structural 
systems. 
 
For instance, Reza Kamgar, Mohammad Mehdi and Saadatpour [Reza et al. (2011)] 
developed a simple mathematical model based on Euler-Bernoulli beam theory to 
determine the first natural frequency of tall buildings including a framed tube, a shear 
core, a belt truss and an outrigger system with multiple jumped discontinuities in the 
cross section of the framed tube and shear core. Hong Fan, Q.L. Li, Alex Y. Tuan and 
Lihua Xu [Hong Fan et al. (2009)] investigated the seismic analysis of the structural 
system of Taipei 101, a mega-frame system with a central braced core connected to 
perimeter columns on each building face, by employing a 5-storey frame 
computational model composed by 3-D beams, 3-D columns and floor slabs. Wen-
Hae Lee [Lee (2007)] simplified a tube-in-tube tall-building system as an Euler-
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Bernoulli beam with variable cross-sections and then formulated an approximate 
solution procedure for the free vibration analysis.  
 
In order to render the computational model of a super tall building system closer to 
practical engineering as well as the corresponding numerical method more efficient, 
the purpose of this paper is to present an ODE-solver-oriented computational 
methodology for the structural systems adopted by super tall buildings in their 
preliminary design stage so as to facilitate the designers to adjust the dynamic 
properties of the adopted structural systems. The construction of the study is 
composed by following aspects. The first aspect is the modelling of a structural 
system adopted by a super tall building. As a typical example, a mega frame-core-
tube structural system as showed in Figure 1(a) adopted by some famous super tall 
buildings such as Taipei 101 building, Shanghai World financial center, is employed 
to demonstrate the modelling of a computational model. The second aspect is the 
establishment of motion equations constituted by a group of ordinary differential 
equations (ODE) for the analyses of free vibration and resonant response. The 
establishment utilized semi-discretization, displacement quantification and motion-
field quantification techniques. The solutions of the motion equations (that constitutes 
the third aspect) resorted to an ODE solver technique (Yuan Si [Yuan (1991, 1993)]). 
Finally, some valuable conclusions are summarized.   

1. Modelling of a super-tall building system 
Figure 1(a) shows a mega frame-core-tube system adopted by some famous super tall 
buildings such as Taipei 101 building, Shanghai World financial center, etc. On 
structural aspects, the space mega frame is composed by two grades of members. The 
first grade is mega columns and beams, and the second grade is interiorly 
supplementary frames in the mega frame. The mega columns are generally made by 
tubes or other mega-substructures, which are jointed by the giant beams in every 
several floors. Since the geometric dimension (cross sectional area and inertial 
moment, etc.) of the members of the mega frame is very large, comparing with that of 
the supplementary ones, the characteristic makes this kind of structure has great load 
bearing capacity, strong sidesway stiffness. By analyzing the structural performance 
of the mega frame-core-tub system shown in Figure 1(a), we can conduct following 
two basic assumptions: 
 
(1) Rigid floor slab assumption, that is, each floor is infinite rigid in its own plane; 
(2) Strain state assumption, that is, the axial strain of a mega beam is negligible 

comparing with that of a mega column. 
 

Based on the two assumptions, we might simplify a mega frame-core-tube system 
shown in Figure 1(a) as a generalized equivalent continuous stiffened thin-walled 
tube-in-tubes as shown in Figure 1(b), and conclude that the wall of the thin-walled 
tubes is subjected to a plane stress state of longitudinal normal stress and horizontal 
as well as vertical shear stress, which are the functions with respect to the curved 
coordinate S, along the direction of centerline of the thin-walled tubes, and the 
longitudinal coordinate (vertical axis Z ) of the tubes, as showed in Figure 2. 
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 Figure 1: A mega-frame-core-tube 
system and its computational model
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Figure 2: Stress state of the tube
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The subgrade or the foundation soil of the structural system is idealized as a semi-
infinite elastic body, whose equivalent stiffness equations in the normal and 
tangential direction at the bottom and walls of a foundation pit have been formulated 
by employing the displacement equations of Mindlin [Mindlin (1936)] in a semi-
infinite elastic body subject to a concentrated force acting in the interior of the semi-
infinite elastic body. Using the equivalent stiffness equations [Gong (2007)], the 
interactions between the foundation and the subgrade (foundation soil) can be readily 
taken into considerations quantitatively.  
 
Consequently, the computational model of a mega frame-core-tube system of a super 
tall building will be a generalized equivalent continuous tubular shell constituted by 
stiffened thin-walled tubes-in-tubes supported on a semi-infinite elastic body as 
shown in Figure 1(b). 

2. Formulation of motion equations 

2.1 Semi-discretization technique and displacement quantification 
As shown in Figure 1(b), if we use one-variable functions 0 ( )xv z  , 0 ( )yv z   and  ( )zθ   
defined on the vertical axis Z of the tubular shell, which are piecewise functions in 
most cases, the transverse displacements of the cross section of the tubular shell in the 
X and Y directions, and the rotation around the longitudinal axis Z will be 
represented as 

    { }
0

0 0

( )
( ) ( )

( )

x

y

j

v z
v z v z

zθ

    =   
    

.     (1) 

Similarly, if we make a semi-discretization along the cross-section central line S by 
the vertical lines named nodal lines and employ the one-variable functions ( )in

jw z , and 
( )ex

jw z , respectively defined on the inner and outer nodal lines, and interpolation 
functions ( )j insϕ , and ( )j exsϕ between the inner and outer nodal lines, the axial 
displacement or longitudinal warping of the tubular shell will be expressed as 

    { } [ ( )]{ ( )}( , ) [ ( )]{ ( )}
in in

ex ex j

s w zu s z s w z
ϕ
ϕ

 =  
 

.     (2) 

where 1, 2,j n=   is the segment number of the nodal lines in the longitudinal 
direction Z (1 may represent foundation and 2 to 6 may stand for the first to fifth 
floors and so on, for example), and the segment number depending upon the property 
variation of the building system up the height is the intersection number between 
nodal lines and the curvilinear coordinate (central line of the cross section) S; { }0( )v z  
and { }( , )u s z  are function sets, constituted by all of the basic unknown functions; 
[ ( )]sϕ  a row vector, and { ( )}w z  a column vector, respectively. 

2.2   Motion-field quantification 
For free vibration analysis, the longitudinal and transverse dynamic displacements of 
the structural system (the tubular shell) can be respectively written in Galerkin’s form 
as 

{ } [ ( )]{ ( )}( , , ) [ ( )]{ ( )}
i tin in

ex ex j

s w zu s z t es w z
ωϕ

ϕ
   =   
   

,                             (3) 

    { } { }{ }0 0( , ) ( ) i t
j

v z t v z e ω= .       (4) 

For forced vibration steady-state response analysis, if giving an arbitrary vertical 
ground-motion of { )}(gu t , an arbitrary horizontal ground-motion of { )}(gT t  in the X 
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and Y directions, and the rotation around the longitudinal axis Z, for instance, the 
motion field of the computational model can be readily quantified as follow 

    
{ } { } { }

{ } { } [ ]{ }0

( , , ) ( ) ( , ) ( )

( , ) ( ) ( ) ( )

t
g

t
o g

u s z t u t u s z r t

v z t T t f t v z

= + 


= + 
,     (5) 

where ( )r t  and ( )f t  are the time functions concluded by means of the time-change 
law of ( )gu t  and ( )gT t , respectively. 

2.3   Motion equations or governing equations 
By employing above motion field, the total kinetic energy as well as the potential 
energy of the structural system including the strain energy stored in the subgrade can 
be readily estimated. Then, by using a Hamiltonian principle, the governing equations 
of the structural system can be derived conveniently, which are the ordinary 
differential equations (ODE) and corresponding boundary conditions. For instance, 
the motion equations for free vibration will lead to 

    
{ } { } { } { } { } { }
{ } { } { } { } { } { }

1 1 1 1

1 1 1 1 1

0 ,      0

0

in in ex exu u u u
s i s i

in ex in ex exv v v v t
s s i i r

F F F F

F F F F F

+ = + = 


+ + + − = 
,      (6) 

    
{ } { } { } { } { } { }

{ } { } { } { } { }

0 ,   0

0

in in ex exu u u u
s i s ij j j j

in ex in exv v v v
s s i ij j j j

F F F F

F F F F

+ = + = 


+ + + = 

,      (7) 

in which, 

{ } { } 2
0[ ]{ ( )} [ ]{ ( )} [ ]{ ( )},   [ ]{ ( )},u u

s iE A w z G B w z G CF Fv z m A w zω′′ ′− −= =        

{ } { }
{ }

2
1 0 2 0

0

[ ]{ ( )} [ ] { ( )}, [ ]{ ( )},
[ ]{ ( )}

T
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v
i

t
r H

v
s G D v z G C w z m D v z

C k
F
F v

F
E z

ω= =

=

′′ ′+ 



 .            

Equations (6) and (7) are the motion equations for the foundation and other segments 
of the computational model respectively, and their corresponding boundary 
conditions at the bottom of the foundation will be 

    

{ } { }
( ) ( ) ( ){ }

( ){ } { }
1 1 0

0

[ ]{ '(0)} [ ]{ (0)} [ ]{ '(0)} [ ]{ (0)}

[ ] [ ] { (0)} [ ] { (0)}

      [ ] { (0)} + [ ]{ (0)} = 0

,   zD zD
inin e

in ex

x T

exT
tD

E A w k A w E A w k A w

G D G D v G C w
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= =





 ′+ + 

+








.      (8) 

The boundary conditions at the top of the computational model become as 

  { } { } { } { }
{ } { }1 1 0

[ ]{ '( )} 0 ,   [ ]{ '( )} 0
( [ ]) ( [ ]) { ( )} ( [ ] { ( )}) ( [ ] { ( )}) = 0in ex T in

in in

T ex

E A w H E A w H
G D G D v H G C w H G C w H′

= =
+ + + 





. (9) 

Also the displacement consistence and generalized internal force equilibrium 
conditions at each connection of the computational model must be 

1 1

0 0 1

{ ( )} { ( )} ,  { ( )} { ( )}
{ ( )} { ( )}

in in ex ex
k k k k k k k k

k k k k

w H w H w H w H
v H v H

+ +

+

= =
= 

,                (10) 
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








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The meaning of the matrices such as [A], [B], etc. can be referred to [Gong (2010)]. It 
is observed, in mathematic view, that the problem about the free vibration of a super 
tall building system is an eigenvalue problem, and its governing ordinary differential 
equations (ODE) can be theoretically solved by an ODE solver such as COLSYS 
[Ascher (1981)], a general purpose program developed to solve various ODE 
problems. However, the normal ordinary differential equation solver can only solve 
the standard ODE problem. Consequently, a computational software package known 
as EIGENCOL [Yuan (1991, 1993)] has been developed to solve the eigenvalues and 
corresponding modes efficiently [Yaoqing Gong (2010)]. 

3. ODE-Solver Method 
As mentioned previously, the free vibration of a super tall building system is an 
eigenvalue problem of a group of ordinary differential equations, which can be 
theoretically solved by an ODE solver. However, a normal ordinary differential 
equation solver can only solve a standard ODE problem. In order to find the 
eigenvalues, a computational software package known as EIGENCOL [Yuan (1991, 
1993)] has been developed to solve the eigenvalues and corresponding modes 
efficiently. According to the technique proposed in the literatures, before the ordinary 
differential equations with eigenvalues are solved, they should be transformed into 
the standard ODE forms accepted by COLSYS [Ascher (1981)]. The procedure 
includes following steps. 

3.1 Coordinate transformation 
The solving interval of standard ordinary differential equations must be [0,1] . Thusly, 
the coordinate transformation must be performed for a practical problem with the 
solving interval of [0, ]jH , for example. At this point, the transformation technique 
will be 

    ( ) ( ) ( )1
/ ,    i

i

d d d d

dx d dx H d
x H

ξ

ξ ξ
ξ = ⋅ == .       

3.2 Trivial ODE conversion technique 
Because eigenvalues are undetermined constants and also a part of the solution of a 
group of ODEs, the determination of the unknown constants become a key point for 
the solution of the group of ODEs. Therefore, a trivial ODE is necessary to convert 
the ODEs with eigenvalues into a new set of standard ODEs in which an eigenvalue, 
say 2ω , has been made as an unknown function. In view of the derivative of a 
constant is zero, the trivial ODE can be thusly established as 

 2( ) / 0d dλ ω ξ′ = = .               (12) 

The addition of equation (12) will lead to one more corresponding boundary 
condition. Finding the condition introduces another technique, equivalent ODE 
technique. 

3.3 Equivalent ODE technique 
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If we define a normalized function with respect to the forgoing mentioned basic 
unknown functions as 

{ } { } { } { } { } { }( )
0 0 0

2

( ) ( ) ( ) ( ) ( ) ( )
( )

T T

in in ex ex

Tw w w w v v d
R

H

ξ

ζ ζ ζ ζ ζ ζ ς
ξ

+ +
= ∫ ,           (13) 

where H  is the total height of the structural system. Equation (13) can be recognized 
as a generalized inner production of the basic unknown functions, and obviously 

    
{ } { } { } { } { } { }( )0 0

2

( ) ( ) ( ) ( ) ( ) ( )
( )

T T T

in in ex ex
w w w w v vdR R

d H

ξ ξ ξ ξ ξ ξ
ξ

ξ

+ +
′= = .   (14) 

Also if we set 

    
{ } { } { } { } { } { }( )1

0 0 0
2

( ) ( ) ( ) ( ) ( ) ( )
(1) 1

T T

in in ex ex

Tw w w w v v d
R

H
ζ ζ ζ ζ ζ ζ ς+ +

= =∫ ,     (15) 

the equation will become a standard normalized condition, and we can find two useful 
boundary conditions as follows 

}(0) 0
(1) 1

R
R

=
=

.                (16) 

By employing above trivial ODE 
conversion and equivalent ODE 
techniques, one can transform ordinary 
differential equations with eigenvalues 
into a new group of standard ODEs. For 
instance, equations (6), (7), (12) and (14) 
constitute a group of standard ODEs, and 
equations (8), (9), (10), (11) and (16) 
become their corresponding boundary 
conditions. The group of ordinary 
differential equations can be readily 
solved by a normal ODE solver such as 
COLSYS [Ascher (1981)]. 

4. Example and computational result 
analysis 

The purpose of the section is to demonstrate the numerical determination of resonant 
response for a super tall building system due to a given complex ground motion. 

4.1 Example 
Figure 3 shows the cross section of a mega frame-core-tube system adopted by a 
reinforced concrete super tall building under its structural construction as shown in 
Figure 1 (a). The height of the main superstructure is 261.9 meters, and the height of 
its foundation structure is 21 meters. The cross-section area of all the mega columns 
and beams is 22.4 2.4m× ; the cross-section size for all the columns and beams of the 
secondary frame in the mega frame is 20.7 0.7m× ; the distance between two columns 
is 8.4m . A box-pile foundation is implemented, and the foundation soil is clayey silt. 
The equivalent stiffness of soil at the bottom and side faces of the foundation pit is 
respectively utilized as follows. 

532.4 10zD dK r= × KPa/m, 525.1 10tD dK r= ×  KPa/m, 525.1 10tH dK r= ×  KPa/m, 
532.8 10nH dK r= ×  KPa/m. dr  is a coefficient that depends on the realistic site 

conditions ( 1.0 is used in this example); rC  is the contact coefficient between the 
foundation and the subgrade (takes 0.5 in this example); the materials used in the 
structural system are respectively: the thickness of the wall for the foundation tube is 

8.4
8.4

8.4

8.4

8.4

8.4

8.4 8.4 8.4 8.4 8.4 8.4

50.4m

 50
.4

m
mega frame

secondary frame

core tube

  Figure 3. cross-section of 
a mega frame-core-tube system
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0.6m , the concrete level is 50C , and the concrete level for the mega frame is 
50C too; the concrete level executed for the secondary frame is 35C , the thickness of 

the wall for the inner tube is 0.40m , 0.45m  for the outer tube, and the concrete level 
for the tubes is 40C . 

4.2 Computational result analysis 
In the following tables and 
figures xP , yP , zP  and θP  
represent a group of natural 
periods of the structural 
system in the X, Y, Z, and 
θ  (around axis Z) directions, 
respectively. It is implied 
that if the ground motion 
periods coincide with the 
group of natural periods of 
the structural system, the 
resonance of the structural 
system will occur. That is, if  

x x2π/ω =P , y y2π/ω =P , 
z z2π/ω =P  and θ θ2π/ω =P , 

resonance will occur; 0xv , 
0yv , θ , inw , and exw  stand 

for the resonant 
displacement amplitudes at 
the top of the structural 
system in the transvers 
directions as well as the 
resonant warping at the top 
of inner and outer tubes of 
the computational model. 

5. Conclusions 
The structural resonance 
will occur when the ground 
motion period in one 
direction is very close to the 
natural period of the 
structural system in the 
identical direction. The 
characteristic of the 
computational result is that 
the dynamic response value 
is very large (should be 
infinite theoretically), as 
shown in Figure 4, a step 
change is happening. 
A designer must pay 
attention to the coupling 
natural periods of a structural system as long as the movement of its foundation soil 
during an earthquake is very hard to predict or evaluate quantitatively. The 
adjustment of a structural system, including the change of its material, arrangement of 
its components, etc., will lead to the change of its dynamic property, especially its 
coupling natural period that possess many combinations, as listed in table 1. As 
shown in Figure 5, when the ground motion period changes to a certain degree, the 
structural system might experience a different coupling resonant state. Also as listed 
in table 2, they implicitly teach us that the dynamic property improvement of a 
structural system just in a single direction could render the structural system to stay in 
a potential coupling resonant state. 

Table 1. Resonant response of coupling vibration 
xP  yP  zP  θP  0xv  0yv  inw  exw  

3.9 4.9 4.2 21 1866.75 52.70 342.66 372.85 
4.5 4.9 4.2 1.3 38.66 34.46 13.99 15.07 
2.9 3.1 3.1 3.1 1533.69 11.15 319.34 344.75 

 

Table 2. Influence of dynamic-property 
adjustment on resonant response 

xP  0yv  inw  exw  
7.9 0.45 0.05 0.11 
3.5 1.62 0.46 0.28 
2.2 33.86 5.05 6.52 
1.7 151.96 28.95 28.38 
1.5 245.71 45.16 44.71 

 

Table 3. Influence of structural stiffness on resonant 
response 

structural 
stiffness 0xv  0yv  θ  inw  exw  

3.15 3.51 3.25 -0.82 0.45 2.53 
3.5 1.69 -0.16 -0.82 0.26 1.22 

4.15 -3.34 -26.24 -0.82 -1.87 -5.25 
4.55 9.97 463.79 -0.82 38.67 107.55 

 

Table 4. Influence of foundation stiffness on resonant 
response 

foundation 
stiffness 0xv  0yv  θ  inw  exw  

2.2 3.58 4.60 -0.82 0.58 2.59 
3.2 3.55 4.53 -0.82 0.57 2.56 
4.2 3.53 4.49 -0.82 0.57 2.55 
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The resonant periods or natural periods of a structural system strongly depend on its 
global rigidity, as shown in table 3. The reduction of global rigidity of a structural 
system will make its natural period become longer, and vice versa.  
 
The influence of the foundation stiffness of a structural system on its resonant periods 
or natural periods is not obvious if the superstructure remain unchanged, as shown in 
table 4. These computational results tell us that it is not a wise way to improve the 
dynamic property of a structural system by means of increasing the size of the 
foundation in its aseismic design. 
 
The methodology presented in the paper is helpful for the determination of coupling 
frequencies or periods of a complex structural system, which are very hard to find in 
the published literatures hitherto and to determine by utilizing other numerical 
methods. 
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