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Abstract 

Topology optimization of anisotropic materials is one of the most challenging research topics in the 

field of structural optimization and full of innovation. This paper aims at to find the optimal lay-out 

of anisotropic materials under harmonic response loads within a specified region. The optimization 

model which subject to response amplitude of the harmonic excitation is established and solved by 

using Independent, Continuous, Mapping (ICM) method. The filter function of elemental mass 

matrix, elemental stiffness matrix and elemental weight would be introduced, by which the three 

matrixes are updated in iteration putted into the dynamic topology optimization of differential 

equation to analyses the design sensitivity and optimize the structure. An explicit expression of 

constraint(s) with respect to the topological variables is obtained based on Rayleigh’s quotient and 

sequential approximation method with filter functions. Then, the mathematical formulation of 

optimal problem of anisotropic materials is established and solved by dual sequence quadratic 

programming (DSQP). Finally, Numerical examples are provided to demonstrate the validity and 

effectiveness of the ICM method. 
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Introduction 

The vibration Control is a major problem in industrial engineering. How to make materials property 

achieve optimization and lightweight as far as possible at the same time, is bottleneck of the high-

end equipment manufacturing and aerospace industry, which urgently need to be solved. The 

traditional parameter optimization for structure optimization design cannot meet the requirement of 

lightweight design in the engineering field. However, through the method of topology optimization, 

the structure of the topology configuration could be redesign, which is of a new train thought of the 

structural dynamic design.  

A large number of examples have proved that topology optimization is a magic tool to improve the 

material mechanics performance. Now, many studies have been carried out on dynamic response 

topology optimization. SIMP method [Allahdadian S, Boroomand B, Barekatein A R(2012).] is 

applied  to study the optimal topology of the support structure with minimum compliance design 

under harmonic force. Kang [Kang Z, Zhang X, Jiang S, et al(2012)] aims at damping structure 

composite board to research minimum amplitude of topology optimization under harmonic 

excitation by SIMP and GCMMA method. Rong [Rong J H, Xie Y M，Yang X Y, et al(2000)] 

applies the ESO method to study the random dynamic response of minimum weight topology 

optimization problems. Zhang [Zhang Qiao, Zhang Weihong, Zhu Jihong. (2010)]  make use of the 

RAMP methods research the dynamic response topology optimization subject to the random 

dynamic response of white noise excitation. Recently there are some literatures such as [Motamarri 
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P, Ramani A, Kaushik A(2012)]take advantage of equivalent statics to solve the problem of dynamic 

response, it avoids to solve the complicated problems such as dynamic equation problems. 

In engineering field, engineers often want to get the optimal structure of minimizing weight with 

satisfying some mechanical constraint at a certain point of interest. As for the minimum weight 

problem subjected to dynamic response displacement, the objective function and constraints include 

higher nonlinear implicit function equations. It is more difficult to have it explicit, and difficult to 

analysis the design sensitivity. However, sensitivity analysis of dynamics is a major problem for 

topology optimization.  

In this paper, ICM method [Sui Yunkang(1996), Sui Yunkang& Ye Hongling(2013)]is extended to 

construct the optimal model of anisotropic materials under harmonic response loads within a 

specified region. And the optimal model is solved by dual sequence quadratic programming. 

Numerical examples show that this method is effective and valid for the problem of topology 

optimization subjected to dynamic response displacement.  

The ICM (Independent Continuous Mapping) method for anisotropic materials 

ICM method, namely Independent, Continuous and Mapping method, designs a special type of 

topological variable independent of specific physical quantity to indicates the ‘exist-null’ of 

elements, which is proposed by Sui (1996) for skeleton and continuum structures. 

The “polish function” and “filter function” are the key points in the ICM method, which are used to 

map discrete variables and inverse continuous variables. By introduce material’s retention ratio v, 

the discrete variables “0-1” could indicate the optimal lay-out of or topological structure, namely 
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Where it  is topological variable, 0

iv  is material’s initial value, ( )H v  is mapping relation, which can 

be regard as a step function like Fig.1. The “polish function” means using a smoothed curve to 

approximate the step function like Fig.2. And the “filter function” is inverse function to the “polish 

function” like Fig.4. The filter function can also be considered as the inverse function of the step 

function like Fig.3. 
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Fig.1 Step function Fig.2 Polish function Fig.3 The Hurdle function Fig.4 Filter function 

 

The important role of filter function is use to identify the physical parameters, the element weight, 

element quality matrix and element stiffness matrix cloud be recognized. 

     , ,w i m i k iw wf t f t f t  M M K K                                   (2) 

Where w , M , K are respectively initial element weight, initial element mass matrix, and initial 

element stiffness matrix. w, M, K are weight, mass matrix and stiffness matrix of ith element. 

( )w if t , ( )k if t , ( )m if t are respectively filter functions of weight, mass matrix, stiffness matrix of ith 

element. Thus, the model of continuum topology optimization with dynamic response constraints 

can be written as follows 
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Where ju  is allowable amplitude constraint, J is the total number of effective displacement 

constraints. As the equations of continuum problem, the filter function could recognize the elastic 

tensor and density of structure 
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Where kf  and mf  are filter function equations of different physical parameters. As we know, there 

is a relationship between ijklC  and Young's modulus. Assume that there is a matrix A 
0 0

ijkl k ijkl kE f f E  C A C A                                             (5) 

For 2d orthotropic material, assuming 33 32 31 0     ，and ignoring the z axis direction of the 

two modulus, elastic tensor can be expressed as: 
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So, for the anisotropic material, Eq(3) could be expressed  
0 0 0

1 1 2 2 12 1, ,k k kE f E E f E G f G                                         (7) 

Usually, the composite material’s each independent modulus displays a marked difference. The 

high ratio in low topology variable (null zone) may impact on structure mechanics of exist zone 

performance, as the local mode in dynamic topology optimization. So ICM identification equations 

for 2d orthotropic material could be 
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In ICM method, the polish function is applied to eliminate intermediate variables 

          )(•)(•= 0 tPtfEE β                                     (9) 

Where    0

0 0 0

1 2 12 1 2 12, , , , ,E E G E E G E E . In order to prevent the numerical instability, define 
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Eq.9 could be 
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The   of Eq.9 is a variable parameter. The topology variable ti is approaching to 0-1 with the   

increasing. Throughout the iterative process,   is changed in stages.  

Dynamic response equations 

 

Dynamic response equation has been extensively researched.  

  Mu Cu Ku P                                                      (12) 

Define the structural damping coefficient is R, the dynamic equation can be turned into 

        2 1i R    M K u P                                    (13) 

In the process of optimization, the reciprocal transformation to design variables as follows 
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Derivation with design variables for both sides of equation, then  
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Through the filter functions, the derivative of stiffness matrix and mass matrix is as followed, 
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So solving the sensitivity is transformed into the problem of solving differential equations 

        2 1i R    M K Z
                                    (18) 

Solve Eq(12) could get the dynamic response u  and Eq(17) could get the sensitivity  . 

Numerical solution of topology optimization 

In order to solve the optimal model of Eq(3), the objective function needs to be modified by second 

order Tailor expansion. The power function is adopted to recognize structure weight as filter 

function. The objective function of 
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For completely eliminating the intermediate variable, the optimization model is also need to be 

modified, so polish function is introduced to objective function  
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Solve the first and second order partial derivative 
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Omit the constant terms, the objective function is approximated as 
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Constraint function ( ( ), ( ))j k i m i ju f t f t u  of Eq(3) can also be explicited by Taylor's approximation. 

However, as the local approximation, it will take more truncation errors. So we have to find another 

effective way to make it explicit. 
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Fig.1 The process card of sequential approximate 
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Fig.2 The process card of double mapping 

 

Fig.1 shows the process of sequential approximate. Where v denotes the number of iterations of 

topology optimization process. PO is the original mathematical programming, PA is mapping 

mathematical programming. M denotes mapping relationship, M-1 denotes inverse relationship 
 1k

x
  is the solution of PA. The solution of the original mathematical programming *x is 

approximated to  1k
x

 , namely  1
*

k
x x


 E , E is defined as the unit matrix. Sequential 



 

6 

 

approximation can be understood as the PO to PA when the iterative process start every times. It is 

turn into a parallel mapping and inversion, as      0 1 *k
x x x x     , equal 

to  0* 1x x M . According to RMI(Relation Mapping Inverse)( Sui, 1996), there is slight error in 

the sequence of approximate approach. The inverse relationship 1M  is simply putted as E, The 

process of sequential approximate of Fig.1 could be improved as following card. 

Fig.2 shows the process of double mapping. PO can be mapped to PD by precise mapping Me, 

which is the process sequential approximate. This is a series-parallel connection mapping and 

inversion method. PO and PA are in series by PD, which is formed a double mapping. The 

sequential approximate PD to PA
(k)

 formed a multiple parallel, then 
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Where the j is the outer circulation variable, k is the inner circulation variable. The mapping relation 

Ma is defined linear Taylor expansion.  

Now, the response amplitude constraints ( ( ), ( ))j k i m i ju f t f t u  could be 
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Eq(24) can be transformed 
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From above calculation, the optimization mode is  
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Considering that the number of design variables is frequently quite bigger than that of 

constraints in topology optimization of continuum structure, the programming discussed-above 

could be converted into dual programming according to dual programming theory in order to solve 

the optimal model simply. 

Now, we employ the Dual Quadratic Programs to solve the optimal model (27).  
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From Kuhn-Tucker condition, we can get the standard quadratic programming. Then solve it and 

update  design variables until the convergence condition of structural weight is satisfied. In this 

paper, a precision of convergence is prescribed to be 0.001. 
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Numerical example  

Take T300/4211 as base structure of topology optimization, the 

modules of which is as fellow: E1=126GPa, E2=8GPa, G12=3.7GPa, 

 = 15600kg/m3. The damping coefficient of the structure is 0.02 and 

structure size is 80×50×10mm. The exciting force is 1000N located 

bottom right corner, the frequency of which is 1000Hz, Divide 80 × 50 

meshes. The angle of material coordinate system and geometric 

coordinate system are respectively 0 °, 30 °, 45 °, 60 ° and 90 °.  
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Fig.4 Optimal topology 

 

 
 

 

Fig.5 Iteration history of structural weight 

 

 
 

 

Fig.6 Iteration history of response amplitude 
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The optimized topology configurations for different ply angles are shown in Fig.4. Iteration 

history of structural weight and response amplitude with different ply angles are given in Fig.5-

Fig.6. As a result, we find that the optimized topology configurations for different ply angles are 

different. With increasing the ply angle, the structural weight is increasing. But the optimal results 

are all satisfied with the response amplitude.  

Conclusions 

Based on ICM topology optimization method, the minimum weight subject to dynamic amplitude 

response with anisotropic material is established. The logarithmic type filter functions are 

introduced to build up the anisotropic structure topology optimization model. By using the dual 

quadratic programming and sequential approximation method, the mathematical model is solved. 

Numerical example shows that the method of this paper can effectively solve the problem of 

dynamic response topology optimization of anisotropic material. 
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