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Abstract 

In this paper, the free vibration behaviors of the functionally graded (FG) coated and undercoated 

plates are studied by a meshfree boundary-domain integral equation method. Based on the two-

dimensional elasticity theory, the boundary-domain integral equations for each single layer of these 

coating-substrate plates are derived initially by using elastostatic fundamental solutions. Employ the 

radial integration method to transform the domain integrals into boundary integrals and achieve a 

meshfree scheme. By applying the multi-region boundary element method, obtain the generalized 

eigenvalue system of the whole plate, which involves system matrices with boundary integrals only 

and the complete solutions for natural frequency and vibration modes are rigidly resolved. A 

comparative study of FG versus homogeneous coating is conducted. The influences of material 

composition, material gradient, coating thickness ratio, plate aspect ratio and the boundary 

conditions on the natural frequencies of the FG coated and undercoated plates are evaluated and 

discussed. 

Key words: free vibration, FG coated and undercoated plates, boundary-domain integral equations, 

meshfree method, multi-region boundary element method 

Introduction 

In many applications, especially in the space industry, energy industry and electronic industry, 

structures or part of structures are exposed to high temperature or high temperature gradients. 

Conventional metallic materials, such as carbon steels or stainless steels cannot resist such high 

temperature. In order to improve the resistance of metallic structures against extreme temperature 

conditions, without suppressing their strength and toughness, a thin layer of appropriate ceramic is 

generally used to cover the surface of the structures. For those structures which are subjected to 

constantly rolling, sliding contacts or abrasive wear, additional hardening process should be carried 

out within the outer surface of the materials. These two techniques are all forming the coating-

substrate system, where a functional material is coated on the substrate material to increase the 

durability and reliability of the structures. However, due to the discontinuous of the material 

properties of these two or more materials, severe residual and working stresses discontinuity at the 

material interfaces usually cause damage to the coating, or failure due to delamination. As a remedy 

to the aforementioned disadvantages in coating-substrate system, a concept of functionally graded 

(FG) coating are proposed, where a smooth spatial gradation of the material properties are 

introduced from coating to substrate in order to eliminated the effect of the suddenly change of the 

material properties, such that stress and strain discontinuous can be mitigated in the coating-

substrate system. 

 

Due to the superiorly properties, a world-wide requirements of the application of the FG coating-

substrate system triggered a series of research activities. The incorporation of functionally graded 

materials (FGMs) into coating design can help eliminate the mismatch of mechanical and thermo-

mechanical properties between the metal plates and coating layers. Thus a number of studies existed 

in the literature for analyzing of the mechanical and thermo-mechanical behavior of homogeneous 

plates coated by an FG layer. An FG coated elastic solid under thermomechanical loading was 

carried out by Shodja and Ghahremaninejad [2006]. Three-dimensional elastic deformation of a 
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functionally graded coating/substrate system was investigated by Kashtalyan et al [2007]. Chung 

and Chen [2007] analyzed the bending behavior of the thin plates coated by FG layer. Several 

researches have addressed contact response of FG coatings. Saizonou et al. [2002] studied the 

subsurface stress distribution of an FG-coated elastic solid under normal and sliding contact loading 

by the boundary element method (BEM). Contact mechanics of the FG coated solids was analyzed 

by Guler and Erdogan [2004]. It should be noted that in all above studies the properties the FGM 

were all assumed to vary exponentially through the thickness. 

 

Theoretical modeling of FG coatings has been focused predominantly on prediction of their fracture 

behaviours. Chen and Erdogan [2003] studied the interface cracks for a FG coating medium. A 

crack in the FG coating surface and its expansion into the substrate along the direction 

perpendicular to the interface between the coating and the substrate was presented by Chi and 

Chuang [1996]. Pindera et al. [2002, 2005] examined fracture mechanisms in thermal barrier 

coatings with FG bond coats under uniform cyclic thermal loading. However, the dynamic analyses 

of the FG coatings are very rare in the literature. Liew et al. [2006] investigated linear and non-

linear vibrations of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient, 

which were based on the first order shear deformation theory and von-Karman geometric 

nonlinearity. Hosseini-Hashemi et al. [2012] presented the exact closed-form solutions for both in-

plane and out-of-plane free vibration of the simply supported rectangular plates coated by a FG 

layer, based on three-dimensional elasticity theory. 

 

In this paper, attention is focused on investigating the free vibration behaviors of two FG coating-

substrate structures. The first one involves a two-layer plate, namely an FG layer coated on a 

homogeneous substrate which is simply called the FG coated plate, the other involves a three-layer 

plate in which an FGM is employed for the inter-medium layer and different homogeneous 

materials are in the top and bottom layers, this is called an FG undercoated plate [Chung (2007)]. 

For each single layer of these plates, the boundary-domain integral equation formulations are 

derived initially by using the elastostatic fundamental solutions which is based on the two-

dimensional elasticity theory. A meshfree scheme is achieved to apply the radial integration method 

to transform the domain integrals arising from the material inhomogeneous and the inertial effects 

to the boundary integrals. Finally, an eigenvalue system involving system matrices with boundary 

integrals only is obtained through assembling all the sub-layer integral equations together by 

employing the multi-region BEM. By the harmonious combination of this meshfree boundary-

domain integral equation method and the multi-region BEM, a comparative study of FG coating 

versus homogeneous coating is conducted. Extensive numerical results are presented to demonstrate 

the influences of FG coating thickness ratio, plate aspect ratio, as well as boundary condition on the 

vibration characteristics of the FG coated and the FG uncoated plates. 

Material properties of the coating-substrate structures 

Three considered coating-substrate plates, namely, the homogeneous coated, FG coated, as well as 

the FG undercoated plates are schematic depicted in Fig. 1. Assume the layers of these coating-

substrate plates are perfected bonded to each other. The total length and height of these coating-

substrate structures are denoted by L and ht. hi represents the thickness of each layer. The coating 

and the substrate of the homogeneous coated plate as well as the top and the bottom layers of the 

FG undercoated plate are composed by pure ceramic and pure steel, respectively, there material 

parameters are described in Table 1. For the FG layer existing in FG coated and FG undercoated 

plates, assuming the top is ceramic rich and the bottom is steel rich, the Young’s modulus and the 

mass density are varying continuously in the transverse direction according to an exponential 

function described in Eqs. (1) and (2), while the Poisson ratio is constant. 
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where Et, ρt are the Young’s modulus and mass density for the top face constituent of the FG layer, 

and Eb, ρb are for the bottom face constituent. FGM gradation parameters are represented by β and γ 

for Young’s modulus and mass density respectively. x2 denotes the Cartesian coordinates variable in 

the transvers direction and hf is the thickness of the FG layer. The through thickness variation of the 

Young’s modulus for the three considered coating-substrate plates is shown in Fig. 2. 

 

Table 1． Material properties of the homogeneous ceramic and steel 

Material E(GPa) ρ(Kg/m
3
) ν 

Aluminum(Al) 70 2707 0.3 

Steel(S) 210 7806 0.3 

 

 

Figure 1． Coordinates and geometry of the coating-substrate plates (a) homogeneous coated 

plate; (b) FG coated plate; (c) FG undercoated plate 

 

Figure 2． Variation of Young’s modulus of (a) homogeneous coated plate; (b) FG coated plate; 

(c) FG undercoated plate 

Problem formulation 

The fulfillment of the free vibration analyses of the FG coated and FG undercoated plates as well as 

the homogeneous coated plates are by the harmonious combination of the developed meshfree 

boundary-domain integral equation method and the multi-region BEM. 

The meshfree boundary-domain integral equation method 

For each single layer of the coating-substrate plates, the governing differential equations of the 

steady-state elastodynamics without damping is expressed in terms of the frequency ω as  
2

, ( ) ( ) 0   ij j iux x .                                                                (3) 
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Which is based on the two-dimensional elasticity theory and the stress tensor σij, mass density ρ, 

displacement ui are quantities for each layer. A comma after a quantity represents spatial derivatives 

and repeated indexes denote summation. 

 

The elasticity tensor cijkl is described in the form of 

0( ) ( )ijkl ijklc cx x    where    0 2

1 2
       


ijkl ij kl ik jl il jk

v
c

v
,                (4a, b) 

where 
0

ijklc  represents the elastic tensor of the reference homogenous material, which is a “fictitious” 

homogeneous material with μ=1. )1(2/)()(   xx E  is the shear modulus. For the FG layer, μ(x) 

varies gradationally according to the coordinates, while it keeps a constant for the homogeneous 

layer. δij is the Kronecker delta. By taking the elastostatic displacement fundamental solutions Uij(x, 

y) as the weight function, the weak-form of the equilibrium Eq. (3) can be obtained as 

2
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Application of the generalized Hooke’s law lkijkllkijklij ucuc ,
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In Eq. (6), the traction vector ,jiji nt   nj is the components of the outward unit normal to the 

boundary Γ of the considered domain Ω. iu~  is recognized as the normalized displacement vector 

correlating with the normalized shear modulus ~ , which are defined by [Gao (2008)] 

( ) ( ) ( )i iu ux x x ,                ( ) ln[ ( )] x x .                                   (7a, b) 

The fundamental solutions arising in equation (6) can be expressed as following, where Uij(x, y) and 

Tij(x, y) are chosen as the elastostatic displacement fundamental solutions for homogeneous, 

isotropic and linear elastic solids with μ=1 [Gao and Davies (2002)]. 
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where r=|x-y| is the distance from the field point x to the source point y. Boundary-domain integral 

equations for boundary points can be obtained by letting y to the boundary Γ in Eq. (6). There are 

two domain integrals emerged in the Eq. (6), the first one is due to the material inhomogeneous and 

the other arises from the inertial effect.  

Homogeneous layer 

Respect to the homogeneous layer, in the virtue of the shear modulus is a constant through the 

medium, therefore, l,
~  appears a zero value in Eq. (11), which leads to the integral kernel Vij inside 

the first domain integral of Eq. (6) vanish. Only the domain integral arises from the inertial effect 
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left with a constant ρh/μh ( ρh, μh are mass density and shear modulus for the homogenous layer), 

which can be extracted out of the domain integration. 

FG layer 

For the FG layer, the emerged two domain integrals are all remained. In the first domain integral, 

l,
~  is no longer a zero value. However, in the case of an exponential law for the Young’s modulus 

or shear modulus such as those used in this analysis, it can be seen from Eq. (7b) that l,
~  is constant 

and Vij(x,y) thus becomes very simple for integration. While the material properties ratio ρ(x)/μ(x) 

in the second domain integral still need to be consideration inside the domain integration due to the 

material properties are varying according with the coordinates. 

 

In order to treat the domain integrals in the Eq. (6), the radial integration method (RIM) proposed 

by Gao [2002] is employed to transform the domain integrals into the boundary integrals over the 

global boundary. In the RIM, iu~  in the domain integrals of Eq. (6) are approximated by a 

combination of the radial basis function and the polynomials of the global coordinates as 
0( ) ( )    A A k

i i i k i

A

u R a x ax ,    0  A

i

A

,    0  A A

i j

A

x .                (12a, b, c) 

In this analysis, the 4th order spline-type radial basis function A (R) is applied. By taking all the 

boundary nodes (Nb) and some internal nodes (Ni) to constitute the application points A (Nt=Nb+Ni), 

and substituting the coordinates of the field points x (xk) and the application point A (
A

jx ) into Eqs. 

(12), if with no two coincide noes, the unknown coefficient vectors can be calculated by a set of 

linear algebraic equations as 

  u ,            and        1   u .                                      (13a, b) 

Subsequently determining the coefficients A

i , k

ia  and 0

ia , substitute Eq. (12a) into the domain 

integrals of Eq. (6) and apply the RIM, the two domain integrals are transformed into the boundary 

integrals in the form of [Yang et al. (2014)] 
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where the relation xi=yi+r,ir is used to relate x with r. By rewriting Eq. (11) with rVV ijij  , the 

integral functions in Eqs. (14) and (15) can be expressed as [Yang et al. (2014)] 

2 2 2
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Since r,i in the above radial integrals is constant, then Eqs. (16b, c) can be evaluated analytically 

and other integrals are calculated by standard Gaussian quadrature formula [Yang et al. (2014)]. 

Therefore the displacement boundary integral equations with only boundary integrals are obtained. 
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After the spatial discretization of the each layer boundary into quadratic boundary elements with Nb 

boundary nodes, collocating the resulting boundary integral equations at the Nt boundary and 

internal nodes, two sets of discretized boundary integral equations are obtained, which can be 

expressed in the matrix from as 

         2

2 2 2 1 2 12 2 2 2

2 1
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u
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where I is the identity matrix with the size of 2Ni x 2Ni. { bu }, { iu } and { u~ } are the displacement 

vectors of the boundary nodes, internal nodes and applications points respectively. By considering 

the boundary conditions, the sub-columns of the coefficient matrices respect to the known 

displacements nodes should be interchanged with that respected to the tractions, so do the 

displacements and the tractions vectors. Meanwhile, it is noticed that the sub-columns of the 

matrices [Vb], [Pb] and [Vi], [Pi] corresponding to the known boundary displacement nodes should 

be taken as zero. Then Eqs. (19) lead to the following system of linear algebraic equations 

       2
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It is convenient to find that the traction vector { by } in Eq. (20b) which is for the internal nodes is 

the same with that for the boundary nodes, such that the boundary nodes traction vector can be 

expressed in the terms of the coefficient matrices of Eq. (20a) by multiply the [Bb]
-1

, and a new 

relationship can be set up by the equations 
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             for internal nodes,                         (21b) 

where 

   
1

   b b b
A B A                            

1
   b b b
P B P ,                             (22a) 

      
1

    i i i b b
A A B B A               

1
    i i i b b
P P B B P .            (22b) 

In each single region, all the nodes could be divided into three sets as shown in Fig 3. The first set 

includes the boundary nodes solely associated with a single region. This set nodes are denoted by 

‘s’. The remaining boundary nodes reside on region-to-region interfaces belong to the second set 

which are denoted by ‘c’. The third set is formed by the internal nodes which are denoted by ‘i’. 

Then Eqs. (21) can be rewritten in the form of these three sets nodes as 
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2

        
        

         
               

bss bsc bsi bs bss bsc bsi bs bs

bcs bcc bci bc bcs bcc bci bc bc

is ic ii i is ic ii i

A A A x P P P x y

A A A u P P P u t

A A A u P P P u 0

.                    (23) 

In Eq. (23), bsx  contains the unknown normalized displacements and the unknown traction vectors 

for the first set boundary nodes, while bsy  contains all the known vectors. In the free vibration 

analysis, only the homogeneous system of the linear algebraic equations is needed, which can be 

obtained by taking the vectors bsy  containing the known normalized boundary displacements as 

well as the known boundary tractions to be zero. However, the normalized displacements bcu~  and 

traction bct  for the set two nodes are all unknown. 

 

Figure 3． Node sets of the coting-substrate plates 

Assemble the system of equations by the multi-region BEM 

After obtaining the system linear algebraic equations for the each single layer separately, the multi-

region BEM is then employed to assemble the stiffness matrix and mass matrix for the whole 

coating-substrate plates. Taking a two-layer FG coated plate as an example. The divided boundaries 

are described in Fig. 4. The boundary of the each layer is discretized into two sub-boundaries Γ1, Γ2 

and Γ3, Γ4, where Γ2 and Γ3 are the common interface. Let ui and ti denote the nodal displacement 

and the traction vectors on boundary Γi respectively. The boundary integral equations can be written 

together in the matrix form 

2

        
        

         
               

b11 b12 b1i1 b1 b11 b12 b1i1 b1

b21 b22 b2i1 b2 b21 b22 b2i1 b2 b2

i11 i12 i1i i1 i11 i12 i1i i1

A A A x P P P x 0

A A A u P P P u t

A A A u P P P u 0

   for Ω1,  m=1,2,      (24a) 

2

        
        

         
               

b33 b34 b3i2 b3 b33 b34 b3i2 b3 b3

b43 b44 b4i2 b4 b43 b44 b4i2 b4

i33 i34 i2i i2 i33 i34 i2i i2

A A A u P P P u t

A A A x P P P x 0

A A A u P P P u 0

    for Ω2, m=3,4      (24b) 

Then takes into account the interface equilibrium and compatibility conditions for the tractions and 

displacements shared by Ω1 and Ω2 

b2 b3 t t ,        b2 b3u u       between Ω1 and Ω2                                 (25) 

Finally yields a 2N x 2N (N contains all the boundary nodes and the internal nodes for the whole 

coating-substrate plate) generalized eigenvalue system. 

     XMXK 2 ,                                                       (26) 

where 
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 

 
 
 
 
 
 
 
 

b11 b12 b1i1

b21 b22 b33 b34 b2i1 b3i2

b43 b44 b4i2

i11 i12 i1i

i33 i34 i2i

A A 0 A 0

A A + A A A A

K 0 A A 0 A

A A 0 A 0

0 A A 0 A

[ ]

 
 
 
 
 
 
 
  

=

b11 b12 b1i1

b21 b22 b33 b34 b2i1 b3i2

b43 b44 b4i2

i11 i12 i1i

i33 i34 i2i

P P 0 P 0

P P + P P P P

M 0 P P 0 P

P P 0 P 0

0 P P 0 P

(27ab) 

   T

i2i1b4b2b1 uuxuxX ~~~ .                                                        (27c) 

 

Figure 4． Boundary discretization of a two-layered FG coated plates 

By resolving this general eigenvalue equation, the eigenvalue ω and the eigenvector {X} for the 

coating-substrate plates can be obtained numerically. 

Numerical analysis and discussion 

Two numerical analysis examples make up this section. The first one is conducted by the 

comparative study of the 2D homogeneous coated and the FG coated plates. The other investigates 

the free vibration behaviors of the FG undercoated plates. The boundary conditions for these three 

plates are notated by the combination of four edges boundary situations moving counter clockwise 

starting from the edges x2=0. The simply supported (S), fixed (C) and free (F) boundary conditions 

are imposed as below and shown in Fig. 5. 

 

S: tx1=0, v=0, on x1=0;         C: u=v=0, on x1=0;           F: tx1= tx2=0, on x1=0. 

 

A developed FORTRAN program [Yang et al. (2014)] is using to fulfill this numerical evaluation 

and plane-strain condition is considered throughout this study. The natural frequencies are all 

normalized by  

AlAlt Eh   ,                                                               (28) 

where ht is the total thickness of the analyzed plate. 

 

Figure 5． Different supports for coating-substrate plates (a) simply supported; (b) fixed; (c) 

free 
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Verify the accuracy of the results  

In order to verify the accuracy of the present method, the results evaluated by the developed 

meshfree boundary-domain integral equation method are used to compare with that calculated by 

the traditional finite element method (FEM). The first ten normalized natural frequencies of the 

SSSS supported homogeneous coated plate (HCP), FG coated plate (FCP) and the FG undercoated 

plate (FUCP) with L/ht=1 are shown in Table 2. In this study, the coating thickness ratio considered 

for HCP is h3/ht=0.5, for FCP is h2/ht=0.5, and for FUCP is hc/ht=0.5, h2/ht=0.6. From the Table 2, 

it can be seen that the results of the present methods have a great agree with that of the FEM, even 

for the high frequencies. 

Table 2． Comparison the normalized frequencies of the homogeneous coated plate, FG 

coated plate and the FG undercoated plate 

HCP FEM Error(%) FCP FEM Error(%) FUCP FEM Error(%) 

1.8456 1.8408 0.26 1.8057 1.7999 0.32 1.8070 1.8021 0.28 

1.9856 1.9772 0.42 1.9378 1.9270 0.56 1.9042 1.8946 0.50 

2.9478 2.9427 0.17 3.0070 2.9999 0.23 3.1112 3.0580 1.74 

3.8201 3.8151 0.13 3.9569 3.9179 1.00 3.9257 3.8885 0.96 

3.9252 3.9161 0.23 4.0271 3.9850 1.06 4.1889 4.1533 0.86 

4.2923 4.2861 0.14 4.4794 4.4641 0.34 4.5159 4.5055 0.23 

4.4885 4.4773 0.25 4.6930 4.6709 0.47 4.7561 4.7356 0.43 

5.2895 5.2786 0.21 5.4499 5.4207 0.54 5.4261 5.4075 0.34 

5.5976 5.5928 0.09 5.6657 5.6671 0.02 5.5483 5.5491 0.01 

5.8012 5.7909 0.18 5.9679 5.8794 1.51 5.8907 5.8831 0.13 

Comparative study for the homogeneous coated plates and the FG coated plates 

For the sake of understanding the free vibration behaviors of the FG coated plates in a more 

comprehensive view, the free vibration of the homogeneous coated plates is also analyzed to do the 

comparative study. The square and the rectangular homogeneous coated and the FG coated plates 

with five coating thickness ratios (hi/ht=0.1, 0.2, 0.3, 0.4 and 0.5) as well as six boundary conditions 

are investigated in details. The square coating-substrate plates with six different boundary 

conditions are described in Fig. 6. 

 

 

Figure 6． Boundary conditions for the FG coated plates (a) CFSF; (B)CCSS; (C)CFFF; 

(D)SSSS; (E)FSCS; (F)SFCS 
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The normalized fundamental frequency versus the coating thickness ratio of the homogeneous 

coated and the FG coated plates with L/ht=1 and 2 are drawing in Fig. 7 and 8, respectively. From 

figures 7(a) and 8(a), It can be seen that, with increasing the coating thickness ratio, the normalized 

fundamental frequencies of the CCSS and CFFF coated plates are increased, but it is decreased for 

the FSCS and SFCS coated plates, while, for the other two coated plates it varies in a parabolic 

tendency, which is for the square coated plates. Nevertheless, for the rectangular coated plates, the 

variation trend of the normalized frequency according with the coating thickness ratio is the similar 

with that of the square one, except for the SSSS coated plates, which decrease with increasing of 

hi/ht. The plate aspect ratio effects the normalized frequencies of the coated plates in a way like that, 

for the CFSF and CFFF coated plates, increase the normalized frequencies with increasing the 

plates aspect ratios, however, it effects the CCSS and SSSS coated plates in an opposite tendency. 

What is more, the normalized fundamental frequencies for the FSCS coated plates makes no 

difference with that of the SFCS coated plates, then it can be concluded that the plate aspect ratio 

effects less for the SFCS and FSCS coated plates. 

 

 

Figure 7． The normalize fundamental frequency versus coating thickness ratio of the 

homogeneous coated plates with different boundary conditions (a) L/ht=1; (b) L/ht=2 

 

Figure 8． The normalized fundament frequency versus coating thickness ratio of the FG 

coated plates with different boundary conditions (a) L/ht=1; (b) L/ht=2 

From Fig 7 and 8, it can be seen that the variation trend of the homogeneous coated plates and the 

FG coated plates with different aspect ratios, coating thickness ratios and boundary conditions 

almost in an identical way, which shed lights on that the free vibration behaviors of the coating-

substrate plates will be determined based on the associated effects of the different kinds of the 

variables, and contrast to the others, the material properties play a weaker role. But compare the 
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free vibration behaviors of these two coating-substrate plates in a more detail, it will be found that, 

with the variation of the important parameters, the changing of the normalized natural frequencies 

for the FG coated plates are more temperately, that can be seen from Fig. 9. Then it can be 

concluded that, the coating thickness ratio, plate aspect ratio and the boundary conditions have a 

less effectiveness on the FG coated plates than the homogeneous one. 

 

 

Figure 9． Normalized fundamental frequencies versus coating thickness ratio (a) CFSF 

coated plates; (b) CCSS coated plates 

Free vibration behaviors of the FG undercoated plates 

In this section, the three-layered FG undercoated plates are investigated. For the FG undercoated 

plates, the thickness of the whole coating is denoted by hc, in which the top homogeneous coating 

has the thickness h3, and the bottom FG layer has the thickness h2. In this study, fixes the coating 

thickness ratio, hc/ht=0.5, meanwhile, six variational h2/hc=0, 0.2, 0.4, 0.6, 0.8 and 1 are considered 

in the parametric study. Respect to the h2/hc=0, that is the FG layer thickness is changing to zero 

which refers to the homogenous coated plate and when the h2/hc=1, it refers to the FG coated plates. 

Two plate aspect ratios and six different boundary conditions are still used to simulate the free 

vibration behaviors of this FG undercoated plates. The normalized fundamental frequency versus 

h2/hc of the considered FG undercoated plates are plotted in Fig. 10. 

 

 

Figure 10． The normalized fundamental frequency versus h2/hc of the FG undercoated plates 

It is important to be noted that, the parameter h2/hc changing from 0 to 1, represents the thickness of 

the FG layer changing from 0 to hc. In the meantime, the rising of this parameter makes the covered 

proportion of the steel constituent enlarged, which directly leads to the grown up of the young’s 

modulus and mass density for the entire FG undercoated plates. It illustrates that the larger the 
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parameter h2/hc, the stiffer of the FG undercoated plates. Then it can be obtained from the Fig 10 

that, with the increasing of the h2/ht, decrease the normalized fundamental frequencies of the CFSF, 

CCSS and CFFF FG undercoated plates, while increase that of the FSCS and SFCS FG undercoated 

plates, these characters are fitting for both of the square and the rectangular FG undercoated plates. 

However, the SSSS FG undercoated plates is a special case, that is for the L/ht=1 the normalized 

fundamental frequency is in an upward trend and for the L/ht=2, it plays an opposite trend.  

Conclusions 

In this paper, the free vibration of the FG coated and the FG undercoated plates are analyzed by the 

developed meshfree boundary-domain integral equation method. The homogeneous coated plates 

are also considered to do the comparative study. These numerical analyses demonstrate that the 

present method is accuracy and efficiency. Based on the parametric studies, it obtained that, the free 

vibration behaviors of the FG coated plates and the FG undercoated plates are influenced by the 

associated effects of the different kinds of the important parameters, and these parameters affect the 

homogeneous coated plates a lot.  
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