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Abstract 

Nonlinear ultrasonic nondestructive testing using contact acoustic nonlinearity has been developed 

over the last decade. However, although nonlinear waves such as higher- and sub-harmonics are 

considered to be generated by the interaction of the crack faces such as clapping motion or friction, 

the mechanism of generation has not been understood clearly from theoretical view point yet. 1-D 

and 2-D numerical simulations have been conducted, and 3-D axisymmetric problems have been 

numerically solved so far. However, no full 3-D analysis has been done. Therefore, in this research, 

the boundary integral equation for an interface crack with nonlinear boundary conditions in 3-D 

medium is formulated, and solved numerically using a time-domain boundary element method. The 

Fourier spectra of received waves are evaluated in the form of far-field scattered waves because the 

received points are usually located far from the defects in NDT. 

Keywords:  Time-domain BEM, 3-D nonlinear ultrasonic simulation, Nondestructive testing (NDT), 

Higher-harmonics, Sub-harmonics, Contact acoustic nonlinearity 

Introduction 

The nonlinear nondestructive testing (NNDT) using contact acoustic nonlinearity (CAN) is 
considered as one of the effective methods for the evaluation of closed cracks in metal or on interface 
of bi-material. Thus, some NNDT methods using CAN have been developed in order to detect cracks 
and measure the length of closed part of a crack [Ohara at el. (2011)]. The generation of nonlinear 
ultrasonic waves by the CAN was advocated over thirty years ago [Buck at el. (1978)]. At this stage, 
higher-harmonics were considered to be generated by the interaction of the crack faces such as 
clapping motions or friction due to large amplitudes of incident waves [Solodov at el. (2011)]. 
However, the generation mechanism of sub-harmonics has not been understood clearly yet. Therefore, 
it is needed to investigate the mechanism more from the theoretical or numerical point of view. 
 
In previous researches, 2-D numerical simulations were carried out [Hirose (1994); Saitoh at el. 
(2011)]. 3-D axisymmetric problem of a penny-shaped crack subjected to normal incidence of a 
longitudinal wave was solved numerically [Hirose at el. (1993)]. However, no full 3-D analysis has 
been done. Therefore, in this research, the 3-D boundary integral equation (BIE) is formulated for an 
interface crack of bi-material with nonlinear boundary conditions and numerically solved using the 
time-domain boundary element method (BEM) in order to investigate the relation between the 
analysis conditions, such as frequencies of an incident wave and size of a crack, and the generation 
of higher- and sub-harmonics.  
 
In the proposed numerical method, the implicit Runge-Kutta (IRK) based convolution quadrature 
method (CQM) [Maruyama at el. (2013)] is applied to discretization of convolution integrals in BIE. 
Application of CQM to the discretization improves numerical accuracy and stability behavior of the 
time-marching process of time-domain BEM. In addition, far-field scattered waves are evaluated as 
received waves and used for the Fourier spectrum analysis because the received points are usually 
located far from the defects compared with the defect size and wave length in NDT. 
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Formulation of boundary integral equations 

A 3-D boundary element analysis model for nonlinear ultrasonic simulation is considered for two-

layer problems including the debonding area as shown in Fig. 1. This model consists of two semi-

infinite domains, 𝐷𝐼  and 𝐷𝐼𝐼  , and the interfaces between them, 𝑆ℎ  and 𝑆𝑑 , denote bonding and 

debonding areas, respectively. In addition, 𝒏𝐼 and 𝒏𝐼𝐼 are defined as unit vectors pointing into outer 

normal directions from respective domains where the upper subscripts, 𝐼  and 𝐼𝐼 , indicate the 

respective domains. In this analysis, a plane wave is used as the incident wave to investigate 

fundamental motions of the nonlinear crack. 

 

For the layered problems subjected to an incident plane wave, the free field formulation is usually 

used in BEM. Assuming that the interface 𝑆ℎ is flat, the free field 𝒖free which consists of incident 

wave 𝒖in , reflected wave 𝒖ref , and transmitted wave 𝒖trans  can be calculated analytically. The 

scattered wave 𝒖sc is defined as the disturbance of 𝒖free by the debonding area 𝑆𝑑, and following 

equations are obtained: 

 𝒖free; 𝐼 = 𝒖in; 𝐼 + 𝒖ref; 𝐼 , 𝒖free; 𝐼𝐼 = 𝒖trans; 𝐼𝐼 , 𝒖 = 𝒖free + 𝒖sc, (1) 

where 𝒖 is the total wave. Since 𝒖sc satisfies the radiation condition, the BIE is formulated for 𝒖sc 

as follows: 

 

1

2
𝒖sc;𝐼(𝐼𝐼)(𝒙, 𝑡) = ∫ ∫ 𝑼𝐼(𝐼𝐼)(𝒙, 𝒚, 𝑡 − 𝜏)𝒕sc;𝐼(𝐼𝐼)(𝒚, 𝜏)𝑑𝑆𝑦

𝑆ℎ+𝑆𝑑

𝑑𝜏
𝑡

0

− ∫ p. v. ∫ 𝑻𝐼(𝐼𝐼)(𝒙, 𝒚, 𝑡 − 𝜏)𝒖sc;𝐼(𝐼𝐼)(𝒚, 𝜏)𝑑𝑆𝑦
𝑆ℎ+𝑆𝑑

𝑑𝜏
𝑡

0

, 

(2) 

where 𝒕 is the traction force, and 𝑼 and 𝑻 are the fundamental solutions for displacement and traction, 

respectively in 3-D elastodynamics. The symbol p. v.  indicates the Cauchy’s principle integral. 

Substituting Eq. (1c) into Eq. (2), the BIE is expressed by 𝒖 and 𝒖free and can be numerically solved 

using discretization methods for time and space and appropriate interface conditions on 𝑆ℎ and 𝑆𝑑. In 

addition, 𝑆ℎ is truncated by finite area in numerical analysis. 

Discretization of BIE using IRK based CQM 

In solving the BIE (2) numerically, the convolution integrals are evaluated by means of the IRK based 

CQM [Lubich et al. 1993] and the surface integrals over 𝑆ℎ and 𝑆𝑑 are discretized by the piecewise 

constant boundary elements. If the 𝑚-stage Radau IIA method, which is one of the IRK methods, is 

used in the IRK based CQM, and the interface including the debonding area is divided into 𝑀 

boundary elements, the discretized BIE at the 𝑛-step and the 𝑖-sub-step in time are shown as follows: 

 
 

Figure 1.  Debonding area of bi-material interface subjected to an incident plane wave. 
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1

2
𝒖𝛾

𝐼(𝐼𝐼) 
((𝑛 + 𝑐𝑖)Δ𝑡) =

1

2
𝒖𝛾

free;𝐼(𝐼𝐼)((𝑛 + 𝑐𝑖)Δ𝑡) 

+ ∑  ∑ ∑ [𝑨𝛾𝛼
𝑖𝑗;𝑛−𝑘

{𝒕α
𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡) − 𝒕α
free; 𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡)}

𝑚

𝑗=1

𝑀

𝛼=1

𝑛

𝑘=0

− 𝑩𝛾𝛼
𝑖𝑗;𝑛−𝑘

{𝒖α
𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡) − 𝒖α
free; 𝐼(𝐼𝐼)

((𝑘 + 𝑐𝑗)Δ𝑡)}] , 

(3) 

where subscripts, 𝛼 and 𝛾, are the indexes of boundary elements and 𝑐𝑖  is the parameter in IRK 

method corresponding to the sub-step. In addition, 𝑨𝛾𝛼
𝑖𝑗;𝜅

 and 𝑩𝛾𝛼
𝑖𝑗;𝜅

 are influence functions expressed 

as follows: 

 𝑨𝛾𝛼
𝑖𝑗;𝜅

=
ℛ−𝜅

𝐿
∑ [∑{𝑬𝛽(𝑧𝑙)}

𝑖𝑗

𝑚

𝛽=1

∫ 𝑼̂𝐼(𝐼𝐼)(𝒙𝛾, 𝒚, 𝜆𝛽
𝑙 )𝑑𝑆𝑦

𝑆𝛼

] e−
2𝜋i𝜅𝑙

𝐿

𝐿−1

𝑙=0

, (4) 

 

𝑩𝛾𝛼
𝑖𝑗;𝜅

=
ℛ−𝜅

𝐿
∑ [∑{𝑬𝛽(𝑧𝑙)}

𝑖𝑗

𝑚

𝛽=1

p. v. ∫ 𝑻̂𝐼(𝐼𝐼)(𝒙𝛾, 𝒚, 𝜆𝛽
𝑙 )𝑑𝑆𝑦

𝑆𝛼

] e−
2𝜋i𝜅𝑙

𝐿

𝐿−1

𝑙=0

, (5) 

where (  ̂) indicates the function in the Laplace-domain, i is the imaginary unit, and the last arguments 

𝜆𝛽
𝑙  of 𝑼̂ and 𝑻̂ correspond to Laplace parameters. In Eqs. (4) and (5), 𝜆𝛽

𝑙 , ℛ, 𝐿, 𝑧𝑙 , and 𝑬𝛽  are the 

parameters of IRK based CQM [Maruyama et al. (2013)]. The matrix-vector products on the right 

side of Eq. (3) are effectively calculated by means of the fast multipole method (FMM), which is one 

of the acceleration methods for BEM. 

Nonlinear interface conditions 

The interface condition on the bonding area 𝑆ℎ is the continuity of displacement and traction as 

 𝒖𝐼 = 𝒖𝐼𝐼 , 𝒕𝐼 = −𝒕𝐼𝐼 . (6) 

For the debonding area 𝑆𝑑, three types of interface conditions, “separation”, “stick”, and “slip”, are 

considered [Hirose (1994); Saitoh at el. (2011)]. “separation” means that two surfaces of upper and 

lower materials are separated with no traction, while “stick” and “slip” are contact conditions under 

compressive normal stress state. For the “stick” condition, the surfaces of two materials move with 

no relative velocity. On the other hand, the “slip” condition allows a relative tangential movement 

with dynamic friction force. Therefore, these three conditions are described as follows: 

 𝒕𝐼 = 𝒕𝐼𝐼 = 𝟎 :  separation, (7) 

 [𝑢3] = 0, 𝒕𝐼 = −𝒕𝐼𝐼 , [𝒖𝑡]̇ = 𝟎 :  stick, (8) 

 [𝑢3] = 0, 𝑡3
𝐼 = −𝑡3

𝐼𝐼 , 𝒕𝑡
𝐼 = −𝒕𝑡

𝐼𝐼 =
[𝒖𝑡]̇

|[𝒖𝑡]̇ |
𝜇𝑑(−𝑡3

𝐼 ) :  slip, (9) 

where [𝒖] is the crack opening displacement and expressed by [𝒖] = 𝒖𝐼𝐼 − 𝒖𝐼, ( )̇ indicates the time 

differentiation, and the subscript 𝑡 means tangential components in 𝑥1 and 𝑥2 directions. In addition, 

𝜇𝑑 is the dynamic friction coefficient. 

Numerical procedure 

The numerical algorithm is shown in Fig. 2. At the beginning of a time step in the IRK based CQM, 

the discretized BIE (3) is solved assuming that the interface conditions on each element are the same 

as those in the previous time step. If the additional constraint conditions enclosed by the double 
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rhombuses in Fig. 2 are not satisfied, the interface condition on the element, which is one of 

“separation”, “stick”, and “slip”, is changed into one of the other conditions and then the system of 

equations is assembled and solved again. After conducting the iterative calculations, if both the 

interface conditions and the additional constraint conditions on all elements at all sub-steps are 

satisfied, the time step proceeds to the next one. 

 

Some remarks concerning the numerical calculations are given below. At the initial time step, the 

interface condition of “stick” is given on all elements on the debonding area assuming that the 

interface is closed before the wave incidence. There are two possible phase shifts from “separation” 

to one of two contact conditions, i.e., “slip” and “stick”. In the present study, the priority is given to 

the change from “separation” to “stick”, if [𝑢3] > 0 for the “separation” is violated on the element. 

In numerical calculations, it is difficult to achieve the condition [𝒖𝑡]̇ = 𝟎 exactly in the transition 

from “stick” to “slip”. Therefore, we set [𝒖𝑡]̇ = 𝟎 unless the following condition is satisfied: 

 𝜉 < cos(𝜃stop) , ξ = [𝒖𝑡]̇  ∙ [𝒖𝑡]̇ prev (|[𝒖𝑡]̇ ||[𝒖𝑡]̇ prev|)⁄ , (10) 

where [𝒖]prev is the crack opening displacement at the previous time step. Eq. (10) means that the 

transition from “slip” to “stick” occurs when there is a big change in the slip direction. In this study, 

𝜃stop is given by 90 degrees. 

Far-field scattered wave 

In this research, the scattered wave by an interface crack at far-field [Hirose at el. (1989)] is calculated 

to investigate the generation of nonlinear ultrasonic waves. For example, when 𝒙 is the receiver point 

and 𝒚 is the point on a crack, the far-field scattered L wave by an interface crack of bi-material 

𝑢𝐿
sc,far;𝐼(𝐼𝐼)

 is given by 

 
 

Figure 2.  Numerical algorithm. 
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 𝑢𝐿
sc,far;𝐼(𝐼𝐼)(𝒙, 𝑡) ≃

1

4𝜋𝑥
Ω𝐿 (𝒙̂, 𝑡 −

𝑥

𝑐𝐿
𝐼(𝐼𝐼)

), (11) 

where 𝑥 = |𝒙| and  𝒙 = 𝒙 𝑥⁄ . Ω𝐿 is the far-field amplitude of L wave, which is expressed for 𝑦3 = 0 

as follows: 

 

Ω𝐿 (𝒙, 𝑡 −
𝑥

𝑐𝐿
𝐼(𝐼𝐼)

) = ∑
𝐶𝑝𝑗𝑘𝑞

𝐼𝐼(𝐼)

𝜇𝐼𝐼(𝐼)
𝐴𝑘

±𝛼 𝜁𝑞
±

𝑐𝐿
𝐼(𝐼𝐼)

𝑇𝛼,𝐿(𝜻±)
|𝑥̂3|

𝜈
𝛼=𝐿,𝑇𝑉

                   

                                                                × ∫ 𝑛𝑗
𝐼(𝒚) [𝑢𝑝]̇ (𝒚, 𝑡 − [

𝑥

𝑐𝐿
𝐼(𝐼𝐼)

−
𝜻± ⋅ 𝒚

𝑐𝛼
𝐼𝐼(𝐼)

]) 𝑑𝑆𝑦
𝑆𝑑

 , 

(12) 

where 𝐶𝑖𝑗𝑘𝑙 is the elastic constant tensor and 𝜇 is the shear modulus. 𝑇𝛼,𝐿(𝜻±) is the transmission 

coefficient with incident wave propagation vector 𝜻±  into 𝑥3 = 0 plane when the wave mode is 

changed from 𝛼 to L and the wave is propagating from 𝐷𝐼𝐼(𝐼) to 𝐷𝐼(𝐼𝐼) . In addition, 𝜻±, 𝜈, and 𝐴𝑘
±𝛼 

are given by 

 𝜻± = (
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂1,
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂2, ±𝜈) , 𝜈 = √1 − (
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂1)

2

− (
𝑐𝛼

𝐼𝐼(𝐼)

𝑐𝐿
𝐼(𝐼𝐼)

 𝑥̂2)

2

, (13) 

 𝐴𝑘
±𝐿 = (

𝑐𝑇
𝐼𝐼(𝐼)

𝑐𝐿
𝐼𝐼(𝐼)

)

2

𝜁𝑘
±, 𝑨±𝑇𝑉 = 𝒅̂𝑇𝐻 × 𝜻±. (14) 

In Eq. (14), 𝒅̂𝑇𝐻 is the displacement vector of the TH wave propagating to 𝜻± direction. In Eqs. (12)-

(14), ± is decided by the positional relation between 𝒙 and 𝒚 in derivation of the Green’s function, 

and + and – correspond to 𝑥3 > 𝑦3 and 𝑥3 < 𝑦3, respectively [Achenbach at el. (1982)]. In addition, 

the TV and TH wave components of the far-field scattered waves are described by analogous formulas. 

In this study, Ω𝐿 is used for the Fourier spectrum analysis, because the far-field scattered waves do 

not include the truncated error of 𝑆ℎ if only [𝒖]̇  is calculated accurately. 

 Numerical examples 

Scattering of an incident plane wave by a penny-shaped nonlinear interface crack with radius 𝑎, as 

shown in Fig. 3, is analyzed by the proposed method. The material constants are shown in Table 1 

 
 

Figure 3.  Scattering of an incident plane wave by a penny-shaped interface crack of 
bi-material. 
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and the static and dynamic friction coefficients, 𝜇𝑠 and 𝜇𝑑, are given by 𝜇𝑠 = 0.61 and 𝜇𝑑 = 0.47, 

respectively. The incident plane wave is given by a three cycle sinusoidal wave with amplitude 𝑢0. 

 

Fig. 4 shows the vertical displacements at the center points on top and bottom surfaces of the interface 

crack subjected to the normal incident L wave with the normalized wave number 𝑘𝑇
𝐼 𝑎 = 2𝜋𝑎𝑓 𝑐𝑇

𝐼⁄ =
2.0 where 𝑓 is the center frequency of the incident wave. In Fig. 4, the clapping motion occurs at the 

crack face. The crack opening displacement rapidly decreases and then vanishes when the crack is 

completely closed. Fourier spectra of the backscattered far-field amplitude Ω𝐿 (𝑎𝑢0)⁄  and the 

incident wave are shown in Fig. 5. These spectra are normalized by their maximum values. It is 

observed that large higher-harmonics components are included in the backscattered wave. 

Conclusions 

In this paper, the boundary integral formulation, interface conditions, and numerical algorithm for the 

simulation of an interface crack of bi-material subjected to an incident plane wave are presented. 

Moreover, the calculation method of far-field amplitude for the two-layer problem, and numerical 

results of normal incidence of L wave are shown. From the numerical results, the generation of higher-

harmonics by CAN was confirmed using the proposed method. Additional numerical examples, such 

as oblique incidence, will be shown in near future. 
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