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Abstract

The nonlinear convective instability of a flow in a fluid saturated impermeable and rectangular porous
channel of arbitrary aspect ratio is here investigated by taking into account the effect of viscous dis-
sipation. Darcy’s law and Oberbeck-Boussinesq approximation are assumed. The vertical boundaries
are assumed to be adiabatic and the horizontal boundaries are taken to be isothermal with the cold
face placed on top. The system is characterised by two sources of thermal instability: the buoyancy
activated by the non trivial temperature distribution due to the internal heat generation by the viscous
dissipation and the buoyancy triggered by the non linear temperature distribution due to the temper-
ature gap between the horizontal boundaries. The novel feature introduced in the present paper is the
fully nonlinear approach to the stability analysis. The results obtained by the linear stability analysis
are here used as a reference. The purpose of this paper is to analyse the system with the aim of finding
possible subcritical instabilities. The technique employed in order to investigate the nonlinear prob-
lem is the generalized integral transform technique. The computational task relative to the integral
transformation procedure and the solution of the ordinary differential equations obtained are carried
out by Mathematica 9 ( c©Wolfram Research).

Keywords: Nonlinear Stability, Generalised Integral Transform Technique, Porous Media, Viscous
Dissipation, Thermal Convection

Introduction

The study of the onset of the thermal instabilities is an important topic with a deep engineering impact.
In particular, the stability analyses of fluid saturated porous media have indeed several applications
in a widespread range of scientific fields: from the oil extraction engineering to geological and geo-
physical studies and biological tissues convection heat and mass transfer. The source of thermal
convection in fluid saturated porous media consists, typically, in the buoyancy force built up by heat-
ing from below boundary condition or an internal heat generation [Nield and Bejan (2013)]. In this
paper, the buoyancy force is identified as the source of thermal instability and an internal generation
effect, viz. the viscous dissipation, is employed in order to yield the buoyancy force. Analyses of this
topic have been published by [Nield (2007)], [Storesletten and Barletta (2009)] and [Barletta, Celli
and Rees (2009)]. The novel feature introduced in the present paper is the fully nonlinear approach
to the stability analysis. The results obtained by the linear stability analysis are here used as a ref-
erence [Nield and Barletta (2010)]. In order to solve the nonlinear problem a specific mathematical
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technique is here employed: the generalized integral transform technique (GITT) [Cotta (1998)] and
[Pontes, Alves and Cotta (2002)]. The GITT is an alternative hybrid numerical analytical technique
based on the eigenfunction expansion in the spatial variables of the problem fields, i.e. velocity and
temperature. The ordinary differential equations obtained by the integral transformation procedure
constitute an initial value problem that is solved numerically. The computational task relative to the
integral transformation procedure and the solution of the initial value problem are carried on by soft-
ware that allow for mixed symbolic and numerical computations such as Mathematica 9 ( c©Wolfram
Research).

Mathematical model

A rectangular porous channel saturated by fluid with arbitrary aspect ratio is here investigated. A
throughflow of give rate is assumed. The channel is considered impermeable while, for what con-
cerns the thermal boundary conditions, the vertical channel walls are assumed to be adiabatic and the
horizontal channel walls are assumed to be isothermal. A temperature gap, ∆T = Th−Tc, is imposed
between the horizontal boundaries. The cold face, Tc, is placed on top and the hot face, Th, is placed on
the lower boundary. The Oberbeck-Boussinesq approximation is assumed, Darcy’s law is employed
in order to define the momentum balance equation and the viscous dissipation contribution inside the
energy balance equation is taken into account as internal heat source. The curl operator is applied
to Darcy’s law so that the governing equations lose the pressure gradient contribution. The dimen-
sionless governing equations that describe the system together with the relative boundary conditions
are

∇∇∇ ·uuu = 0,
∇∇∇×uuu = ∇∇∇× (T eeey),

∂T
∂ t

+uuu ·∇∇∇T = ∇
2T +Geuuu ·uuu,

x = 0,s : u = 0,
∂T
∂x

= 0,

y = 0,1 : v = 0, T = R,0.

(1)

where uuu = (u,v,w) is the velocity vector, T is the temperature, eeey is the unit vector of the y-axis, t is
the time, Ge the Gebhart number, R the Rayleigh number and s is the aspect ratio. A sketch of the
geometry and a description of the boundary conditions is reported in Fig. 1. The scaling employed in
order to obtain the dimensionless formulation is the following

t =
σ H2

α
t, xxx = Hxxx, uuu =

α

H
uuu, T = Tc +∆T

T
R
,

Ge =
gβ H

c
, R =

gβ ∆T H K
ν α

, s =
L
H
,

(2)

where the dimensional quantities are over-lined, σ is the dimensionless ratio between the average heat
capacity per unit volume of the porous medium and the average heat capacity per unit volume of the
fluid, H is the height of the channel, α is the effective thermal diffusivity, ν is the kinematic viscosity,
K is the permeability, c is the specific heat, g is the modulus of gravity acceleration, β is the thermal
expansion coefficient and L is the width of the channel.
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Figure 1. A sketch of the porous channel and its boundary conditions

Basic stationary solution

The first step in this stability analysis consists in redefining the velocity and temperature fields as
composed by two contributions: a stationary basic state and a perturbed field, namely

uuu = uuub +UUU , T = Tb +Θ, (3)

where the subscript b refers to the basic state. In the following we will need also the initial values
of velocity and temperature perturbed fields. These initial values are defined as a combination of an
initial value of the perturbed field plus the basic stationary flow contribution.

t = 0 : uuu = uuub +UUU0, T = Tb +Θ0. (4)

The stability analysis is here performed with respect to a particular stationary solution of the govern-
ing equations (1). A constant throughflow in the z-direction is assumed and the temperature field of
this fully developed flow is assumed to be dependent only on the y-coordinate, namely

uuub = {0,0,Pe}, Tb =
(1− y)(2R+Λy)

2
. (5)

The Péclet number is defined through the average velocity over the channel, Pe = wb L/α , and the
parameter Λ = GePe2. Inside the setup just described we may identify two possible mechanisms cap-
able to generate thermal instabilities: the coupling between the buoyancy force and the heat gener-
ated by viscous dissipation and the coupling between the buoyancy force and the vertical temperature
gradient produced by ∆T . Each mechanism is regulated by means of a nondimensional parameter:
Λ regulates the strength of the buoyancy force due to the viscous dissipation contribution whereas R
regulates the strength of the buoyancy force due to Darcy-Bènard-like mechanism coming from the
temperature gap ∆T .

Perturbed equations

On applying the Eq. (3) to Eq. (1) and subtracting the basic stationary state contribution one obtains

∇∇∇ ·UUU = 0,
∇∇∇×UUU = ∇∇∇× (Θeeey),

∂Θ

∂ t
+V

∂Tb

∂y
+Pe

∂Θ

∂ z
+UUU ·∇∇∇Θ = ∇

2
Θ+2GePeW +GeUUU ·UUU .

(6)
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The investigation may now be reduced in complexity by focusing our attention only on the longitud-
inal rolls and disregarding the other possible inclinations of the disturbances. Since the longitudinal
rolls lie on the (x,y)-plane, the contributions of those term in the equations that refer to the z-direction
are thus neglected. On introducing the streamfunction U = ∂Ψ/∂y and V =−∂Ψ/∂x, the governing
equations (6), the relative boundary conditions and the initial values reduce to

∇
2
Ψ =−∂Θ

∂x
, (7a)

∂Θ

∂ t
− ∂Tb

∂y
∂Ψ

∂x
+

∂Ψ

∂y
∂Θ

∂x
− ∂Ψ

∂x
∂Θ

∂y
=

∂ 2Θ

∂x2 +
∂ 2Θ

∂y2 +Ge
(

∂Ψ

∂y

)2

+Ge
(

∂Ψ

∂x

)2

, (7b)

x = 0,s : Ψ = 0,
∂Θ

∂x
= 0,

y = 0,1 : Ψ = 0, Θ = 0,

t = 0 : Ψ = Ψ0(x,y), Θ = Θ0(x,y).

(7c)

Since Eq. (7a) does not show a time dependency, the initial value for the streamfunction filed is not
necessary. On the other hand, the shape of Θ0 is chosen to be equal to the temperature field configur-
ation of a single longitudinal roll occupying the whole channel, Θ0(x,y) = cos(π x/s)sin(π y). One
may note that the value of the perturbation amplitude for Θ0 is of O(1). The choice of this order of
magnitude comes from the necessity to distinguish this analysis from the linear stability one. The
linear stability analysis requires, indeed, to employ perturbations small enough so that the nonlinear
terms in the perturbations inside the governing equations may be neglected.

The Generalised Integral Transform Technique

In order to perform the nonlinear stability analysis the Generalised Integral Transform Technique
(GITT) is employed. The GITT starts with the eigenfunction expansion of the problem potential on
the spatial variables. For what concerns the streamfunction field, the so-called auxiliary eigenvalue
problems in the x and y-directions are

d2ψ̄i(x)
dx2 +λ

2
i ψ̄i(x) = 0, ψ̄i(0) = ψ̄i(s) = 0, (8a)

d2ψ̃ j(y)
dy2 +ω

2
j ψ̃ j(y) = 0, ψ̃ j(0) = ψ̃ j(1) = 0. (8b)

The relative eigenfunctions and eigenvalues are

ψ̄i(x) =

√
2
s

sin(λi x), λi =
iπ

s
, i = 1,2, ... (9a)

ψ̃ j(y) =
√

2sin(ω j y), ω j = j π, j = 1,2, .... (9b)

For what concerns the temperature field, the so-called auxiliary eigenvalue problems in the x and
y-directions are

d2θ̄m(x)
dx2 + γ

2
mθ̄m(x) = 0,

dθ̄m(0)
dx

=
dθ̄m(s)

dx
= 0, (10a)
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d2θ̃n(y)
dy2 +σ

2
n θ̃n(y) = 0, θ̄n(0) = θ̄n(1) = 0. (10b)

The relative eigenfunctions and eigenvalues are

θ̄0(x) =
1
s
, θ̄m(x) =

√
2
s

cos(γm x), γm =
mπ

s
, m = 1,2, ... (11a)

θ̃n(y) =
√

2sin(σn y), σn = nπ, n = 1,2, ..., . (11b)

The GITT is based on the expansion of Eq. (7) by means of the eigenfuctions and eigenvalues Eqs. (9)
and Eqs. (11). The next step in the solution procedure consists in integral transforming Eq. (7). The
streamfunction transform relations pair, and the relative inverse relations, are defined as follows

Ψ̄i(y, t) =
∫ s

0
ψ̄i(x)Ψ(x,y, t)dx, Ψ(x,y, t) =

∞

∑
i=1

ψ̄i(x)Ψ̄i(y, t),

˜̄
Ψi, j(t) =

∫ 1

0
ψ̃ j(y)Ψ̄i(y, t)dy, Ψ̄i(y, t) =

∞

∑
j=1

ψ̃ j(y) ˜̄
Ψi, j(t).

(12)

The temperature transform relations pair, and the relative inverse relations, are

Θ̄m(y, t) =
∫ s

0
θ̄m(x)Θ(x,y, t)dx, Θ(x,y, t) =

∞

∑
m=0

θ̄m(x)Θ̄m(y, t),

˜̄
Θm,n(t) =

∫ 1

0
θ̃n(y)Θ̄m(y, t)dy, Θ̄m(y, t) =

∞

∑
n=1

θ̃n(y) ˜̄
Θm,n(t).

(13)

Integral transform procedure

In order to perform the integral transformation of Eq. (7), we start working on the streamfunction
equation. We first multiply Eq. (7a) by the eigenfunction of the auxiliary problem for the streamfunc-
tion in the x-direction ψ̄i(x) of Eqs. (9a) and then we integrate over x to obtain∫ s

0
ψ̄i(x)

[
∂ 2Ψ(x,y, t)

∂x2 +
∂ 2Ψ(x,y, t)

∂y2

]
dx =−

∫ s

0
ψ̄i(x)

∂Θ(x,y, t)
∂x

dx. (14)

Equation (14) can be integrated by applying the integration by parts, by applying the boundary con-
ditions in Eqs. (7c) and by applying the inverse definition in Eqs. (12). The integration yield to the
following expression

∂ 2Ψ̄i(y, t)
∂y2 −λ

2
i Ψ̄i(y, t) =−

∞

∑
m=0

Āi,mΘ̄m(y, t), (15)

With the integral transform coefficient Ai,m defined as

Āi,m =
∫ s

0
ψ̄i(x)

dθ̄m(x)
dx

dx (16)

We thus multiply Eq. (15) by the eigenfunction of the auxiliary problem for the streamfunction in the
y-direction ψ̃ j(y) of Eqs. (9b) and then we integrate over y to obtain∫ 1

0
ψ̃ j(y)

∂ 2Ψ̄i(y, t)
∂y2 dy−λ

2
i

∫ 1

0
ψ̃ j(y)Ψ̄i(y, t)dy =−

∞

∑
m=0

Āi,m

∫ 1

0
ψ̃ j(y)Θ̄m(y, t)dy. (17)
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On following the same procedure employed to obtain Eq. (15) one can write

(λ 2
i +ω

2
j )

˜̄
Ψi, j(t) =

∞

∑
m=0

∞

∑
n=0

Ai, j,m,n
˜̄
Θm,n(t), (18)

where the integral transform coefficient Ai, j,m,n

Ai, j,m,n = Āi,m Ã j,n , Ã j,n =
∫ 1

0
ψ̃ j(y)θ̃n(y)dy (19)

We may now start transforming the equation for the perturbed temperature. We thus multiply Eq. (7b)
by the eigenfunction of the auxiliary problem for the temperature in the x-direction θ̄m(x) of Eqs. (10a)
and then we integrate over x to obtain∫ s

0

∂Θ(x,y, t)
∂ t

θ̄m(x)dx− ∂Tb

∂y

∫ s

0

∂Ψ(x,y, t)
∂x

θ̄m(x)dx+
∫ s

0

∂Ψ(x,y, t)
∂y

∂Θ(x,y, t)
∂x

θ̄m(x)dx

−
∫ s

0

∂Ψ(x,y, t)
∂x

∂Θ(x,y, t)
∂y

θ̄m(x)dx =
∫ s

0

∂ 2Θ(x,y, t)
∂x2 θ̄m(x)dx+

∫ s

0

∂ 2Θ(x,y, t)
∂y2 θ̄m(x)dx

+Ge
∫ s

0

(
∂Ψ(x,y, t)

∂y

)2

θ̄m(x)dx+Ge
∫ s

0

(
∂Ψ(x,y, t)

∂x

)2

θ̄m(x)dx.

(20)

The integration of Eq. (20) is based on the same procedure employed for the streamfunction thus using
the relations in Eqs. (11) and (12) and the integration by parts. The following equation is obtained

∂ Θ̄m(y, t)
∂ t

− ∂Tb

∂y

∞

∑
i=1

B̄m,iΨ̄i(y, t)+
∞

∑
i=1

∞

∑
o=0

C̄m,i,o
∂ Ψ̄i(y, t)

∂y
Θ̄o(y, t)

−
∞

∑
i=1

∞

∑
o=0

D̄m,i,o
∂ Θ̄o(y, t)

∂y
Ψ̄i(y, t) =−γ

2
mΘ̄m(y, t)

+Ge

[
∞

∑
i=1

∞

∑
o=1

Ēm,i,o
∂ Ψ̄i(y, t)

∂y
∂ Ψ̄o(y, t)

∂y
+

∞

∑
i=1

∞

∑
o=1

F̄m,i,oΨ̄i(y, t)Ψ̄o(y, t)

]
,

(21)

where the integral transform coefficients are defined as

B̄m,i =
∫ s

0

dψ̄i(x)
dx

θ̄m(x)dx, C̄m,i,o =
∫ s

0
ψ̄i(x)

dθ̄o(x)
dx

θ̄m(x)dx,

D̄m,i,o =
∫ s

0

dψ̄i(x)
dx

θ̄o(x)θ̄m(x)dx, Ēm,i,o =
∫ s

0
ψ̄i(x)ψ̄o(x)θ̄m(x)dx,

F̄m,i,o =
∫ s

0

dψ̄i(x)
dx

dψ̄o(x)
dx

θ̄m(x)dx.

(22)

We can now proceed multiplying Eq. (21) by the eigenfunction of the auxiliary problem for the
temperature in the y-direction θ̃n(y) of Eqs. (10b) and then integrating over y∫ 1

0
θ̃n(y)

∂ Θ̄m(y, t)
∂ t

dy−
∫ 1

0
θ̃n(y)

∂Tb

∂y

∞

∑
i=1

Bm,iΨ̄i(y, t)dy

+
∫ 1

0
θ̃n(y)

∞

∑
i=1

∞

∑
o=0

Cm,i,o
∂ Ψ̄i(y, t)

∂y
Θ̄o(y, t)dy−

∫ 1

0
θ̃n(y)

∞

∑
i=1

∞

∑
o=0

Dm,i,o
∂ Θ̄o(y, t)

∂y
Ψ̄i(y, t)dy

=−
∫ 1

0
θ̃n(y)γ2

mΘ̄m(y, t)dy+
∫ 1

0
θ̃n(y)

∂ 2Θ̄m(y, t)
∂y2 dy

+Ge
∫ 1

0
θ̃n(y)

[
∞

∑
i=1

∞

∑
o=1

Em,i,o
∂ Ψ̄i(y, t)

∂y
∂ Ψ̄o(y, t)

∂y
+

∞

∑
i=1

∞

∑
o=1

Fm,i,oΨ̄i(y, t)Ψ̄o(y, t)

]
dy.

(23)
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What is obtained integrating Eq. (23) with the technique employed for Eq. (21) is

d ˜̄
Θm,n(t)

dt
−

∞

∑
i=1

∞

∑
j=1

Bm,n,i, j
˜̄
Ψi, j(t)+

∞

∑
i=1

∞

∑
j=1

∞

∑
o=0

∞

∑
p=0

(
Cm,n,i, j,o,p−Dm,n,i, j,o,p

) ˜̄
Ψi, j(t) ˜̄

Θo,p(t)

=−(γ2
m +σ

2
n )

˜̄
Θm,n(t)+Ge

∞

∑
i=1

∞

∑
j=1

∞

∑
o=1

∞

∑
p=1

(
Em,n,i, j,o,p +Fm,n,i, j,o,p

) ˜̄
Ψi, j(t) ˜̄

Ψo,p(t),

(24)

where the integral transform coefficients are defined as

Bm,n,i, j = B̄m,iB̃n, j = B̄m,i

∫ 1

0

∂Tb

∂y
ψ̃ j(y) θ̃n(y)dy,

Cm,n,i, j,o,p = C̄m,i,oC̃n, j,p = C̄m,i,o

∫ 1

0

dψ̃ j(y)
dy

θ̃p(y)θ̃n(y)dy,

Dm,n,i, j,o,p = D̄m,i,oD̃n, j,p = D̄m,i,o

∫ 1

0
ψ̃ j(y)

dθ̃p(y)
dy

θ̃n(y)dy,

Em,n,i, j,o,p = Ēm,i,oẼn, j,p = Ēm,i,o

∫ 1

0

dψ̃ j(y)
dy

dψ̃p(y)
dy

θ̃n(y)dy,

Fm,n,i, j,o,p = F̄m,i,oF̃n, j,p = F̄m,i,o

∫ 1

0
ψ̃ j(y) ψ̃p(y)θ̃n(y)dy.

(25)

In order to complete the initial value problem, we now integral transform the perturbed contribution
of the initial values in Eqs. (4), namely

˜̄
Ψi, j(0) = fi, j,

˜̄
Θm,n(0) = gm,n, (26)

where

fi, j =
∫ s

0
ψ̄i(x)dx

∫ 1

0
ψ̃ j(y)Ψ0(x,y)dy,

gm,n =
∫ s

0
θ̄m(x)dx

∫ 1

0
θ̃n(y)Θ0(x,y)dy.

(27)

Discussion of the results and concluding remarks

The task of this investigation is comparing the results obtained by the nonlinear analysis with the
values obtained by the linear stability analysis. We start switching off the contribution of the Darcy-
Bènard-like instability source: whenever the temperature gap between the horizontal boundaries is
negligible, viz. R= 0, the relative buoyancy force contribution is absent. With R= 0 the linear stability
analysis responds a threshold value for the governing parameter Λcr = 471.38 and a threshold value
for the wavenumber kcr = 4.6752, [Nield and Barletta (2010)]. The subscript cr stands for critical
value. Figures (2) and (3) show the neutral stability curves obtained fixing R = 0 for different values
of Ge as functions of the aspect ratio s. The different curves reported in the frames refer to different
values of the number of equations employed to model the problem. The eigenfunction expansion has,
in fact, to be truncated at some point and n is the number of equations obtained with the different
choices of the truncation point. In Fig. 2 and Fig. 3 the dotted lines refer to those truncation points
that produce a number of equations n = 30, the dashed lines refer to n = 60 and the continuous lines
to n = 90. Figures (2) and (3) prove that the present nonlinear analysis reproduce exactly the same
minimum (highlighted by the horizontal dashed line Λcr = 471.38) obtained by the linear stability
analysis. The value of the aspect ratio, relative to second minimum of Λ, results to be equal to
the wavelength corresponding to the critical wavenumber value kcr = 4.6752 obtained by the linear
stability analysis. The difference between Fig. 2 and Fig. 3 lies on the values of the Gebhart number
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Lcr=471.38
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Figure 2. Critical values of Λ as a function of the aspect ratio s for Ge→ 0, R = 0 and different
values of the number of equations employed n

Lcr=471.38

0.5 1.0 1.5 2.0 2.5
460

480

500

520

540

s

L

Figure 3. Critical values of Λ as a function of the aspect ratio s for Ge = 1, R = 0 and different
values of the number of equations employed n

assumed: Fig. 2 refers to Ge→ 0 and Fig. 3 is refers to Ge = 1. The limit Ge→ 0 is compatible
with finite values of Λ if we consider, together with the limit Ge→ 0, a fast basic flow, viz. Pe� 1.
Figure (4) shows a comparison between the neutral stability curves obtained with R = 0, n = 90 and
two different values of the Gebhart number: Ge→ 0, the continuous line, and Ge = 1, the dashed line.
This figure shows how the system results not to be sensitive to the magnitude of the Gebhart number.
We proceed switching off the viscous dissipation and looking for the Darcy-Bénard-like instability. In
order to neglect the viscous dissipation contribution the limits Ge→ 0 and Λ→ 0 are considered. In
this case the linear stability analysis responds a threshold value for the critical parameter Rcr = 4π2

and a wavenumber kcr = π , [Nield and Barletta (2010)]. Figure (5) shows the neutral stability curves
for Ge→ 0 and Λ = 10−4. Once again the dotted line refer to those truncation points that produce a
number of equations n = 30, the dashed line refer to n = 60 and the continuous line to n = 90. These
curves show that the present nonlinear analysis reproduces exactly the same minimum (highlighted
by the horizontal dashed line Rcr = 4π2) found by the linear stability analysis. Moreover, the critical
aspect ratio value relative to the second minimum in Fig. 5 is equals to the wavelength corresponding
to the critical wavenumber value kcr = π found by the linear stability analysis. The nonlinear stability
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Lcr = 471.38

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 4. Critical values of Λ as a function of the aspect ratio s for a given value of the number
of equations employed, n = 90, and two different values of the pair (Ge,R): (Ge→ 0,R = 0),
continuous line, and (Ge = 1,R = 0), dashed line

Rcr = 4 Π
2

0.5 1.0 1.5 2.0 2.5
35

40

45

50

55

60

s

R

Figure 5. Critical values of R as a function of the aspect ratio s for Ge→ 0, Λ = 10−4 and
different values of the number of equations employed n

analysis here proposed is preliminary investigation of the problem presented. A partial investigation
of the parametric range is indeed presented. Nonetheless it is a fairly good starting point for the
investigation of nonlinear thermal instabilities. We may conclude that, in the parametric range here
studied, the setup investigated does not present subcritical instabilities and the nonlinear stability
analysis does not highlight a change behaviour with respect to the linear analysis.
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