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Abstract 

In this work, a face-based smoothed extended finite element method (FS-XFEM) is 
developed for three-dimensional fracture problems. This method combines the 
extended finite element method (XFEM) and smoothing technique together. With 
XFEM, arbitrary crack geometry can be modeled and crack advance can be simulated 
without remeshing. With face-based smoothing technique, the integration of singular 
term over the volume around the crack front can be eliminated, thanks to the 
transformation of volume integration into area integration. Numerical examples are 
presented to test the accuracy and convergence rate of the FS-XFEM. From the 
results, it is clear smoothing technique can improve the performance of XFEM for 
three-dimensional fracture problems  
Keywords: three-dimension, face-based smoothed extended finite element method, 
stress intensity factor.  
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1. Introduction 

The fracture analysis by standard finite element method (FEM) is quite cumbersome 
and tedious caused by conforming the crack geometry to element boundary. 
Remeshing, which greatly increases the computation time, is always needed to match 
the new geometry of the crack surface, when the crack advances. In order to avoid 
these two disadvantages of FEM, the extended finite element method (XFEM) has 
been proposed to facilitate the modeling of arbitrary crack geometry and its 
evolvement [Belytschko et al. (1999); Moes et al. (1999);]. In the XFEM, the 
displacement field of the standard FEM is enriched by a discontinuous displacement 
function and the asymptotic displacement field around the crack tip based on a local 
partition of unity. The most important advantage of XFEM is that it can simulate the 
crack without conforming the mesh to the crack geometry and crack propagation 
without remeshing. The method can improve the accuracy by incorporating arbitrary 
functions into the displacement field of the standard FEM to describe the local 
behavior around the singular features such as crack tips, notches or corners and thus 
is a flexible and powerful tool in the field of fracture mechanics. Currently, the 
XFEM is widely used to simulate two- and three-dimensional elastic and plastic 
fracture problems [Elguedj et al. (2006); Bordas et al. (2008); Rabczuk et al. (2007); 
Rabczuk et al. (2009)]. Attracted by the advantages of the XFEM, researchers in other 
fields of computational physics have also employed it [Chessa et al. (2003); Chopp et 
al. (2003); Merle et al. (2002); Ji et al. (2002)].  

 
 

On the other hand, a generalized gradient smoothing technique was introduced by 
[Chen et al. 2001]. More recently, Liu has established a G space theory and 
developed weakened weak (W2) formulation which has been the foundation for 
smoothed finite element methods (SFEM) [Liu et al. (2009); Liu (2010); Liu et al. 
(2010)]. Using different schemes of smoothing domain formation, cell-based 
smoothed finite element method (CS-FEM) [Le et al. (2010)], node-based smoothed 
finite element method (NS-FEM) [Liu et al. (2010)] and edge-based smoothed finite 
element method (ES-FEM) [Chen et al. (2012)] are developed. With the smoothing 
technique the domain integration is transformed into boundary integration according 
to the divergence theory. The shape function derivative is replaced with the shape 
function multiplied by the component of the outward unit vector along the boundary 
of the smoothing domain. Thanks to this transformation, the singular term existing in 
the derivatives of the shape functions for fracture mechanics is eliminated with 
smoothing technique. Smoothed methods have shown several advantages. For 
example, NS-FEM can provide upper bound solution [Liu et al. (2010)]. ES-FEM 
[Chen et al. (2012)] is proved to be more efficient and more accurate. In the ES-FEM, 
the system stiffness matrix is computed using strains smoothed over the smoothing 
domains formed based on the edges of the triangles. It is proved that the ES-FEM 
possesses the following excellent properties: (1) the ES-FEM model possesses a 
close-to-exact stiffness: it is much softer than the 'overly stiff' FEM and much stiffer 
than the 'overly soft' NS-FEM model; (2) the results are often found to be 
superconvergent and ultra-accurate: much more accurate than the linear triangular 
elements of FEM; (3) the implementation of the method is straightforward and no 
penalty parameter is used, and the computational efficiency is better than the FEM 
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using the same set of nodes. These properties of the ES-FEM have been confirmed by 
many works [[Chen et al. (2012)], Liu et al. (2008); Cui et al. (2011)]. 

 
In view of the advantages of XFEM and ES-FEM, an edge-based smoothed XFEM 
has been developed to combine the advantages of the two methods for two-
dimensional fracture problems [Jiang et al. (2013); Chen et al. (2012)]. Although the 
ES-XFEM has achieved remarkable progress in the simulation of fracture mechanics, 
the previous works are confined to two-dimensional fracture problems. In this paper, 
for the first time, the face-based smoothing technique is combined into XFEM to 
develop three-dimensional face-based smoothed extended finite element method (FS-
XFEM).  
 
[Karihaloo et al. (2003); Karihaloo et al. (2001)] from a simplified variational 
function using a truncated asymptotic crack tip displacement, formulated the hybrid 
crack element (HCE) for evaluating the SIF but also the coefficients of the higher 
order terms of the crack tip. But it has not been extended to three-dimensional 
fracture problem. A direct traction boundary integral equation method (TBIEM) for 
three-dimensional crack problems is developed in [Xie et al. (2014)]. However, a 
singular system of equations is always obtained [Aliabadi (1997); Cruse (1988)]. 
Special methods [Pan (1997)] has to be employed to tackle this problem. The 
proposed FS-XFEM will not have these problems comparing with the above 
problems. 
 
This paper is organized as follows: Section 2 provides a brief description of FS-FEM. 
Section 3 introduces the formation of face-based smoothed XFEM. Section 4 
illustrates the computational procedure for three-dimensional stress intensity factor 
(SIF). Section 5 gives two examples to test the newly developed method and compare 
the results of FS-XFEM with those of XFEM. The conclusion is made in Section 6.  

2. Face-based smoothed FEM (FS-FEM) 

2.1. Smoothing domain formation 

Due to the excellent features of ES-FEM in two-dimensional problems, the FS-FEM 
[Nguyen-Thoi et al. (2009a; 2009b)] for three-dimensional problems is developed. In 
the FS-FEM, linear tetrahedral elements, which are feasible for arbitrarily 
complicated geometry, are used to mesh the problem domain. Instead of using the 
edges of the elements in two-dimensional problems, faces of the elements in the FS-
FEM are used to create smoothing domains. Therefore, it is named face-based 
smoothed finite element method. The faces of the elements in three-dimension can be 
classified into two types: boundary face and interior face. The boundary face lies on 
the boundary of the domain, while the interior face lies inside the domain. The 
smoothing domains associated with these two types of faces are formed in different 
ways. For the interior face, which is shared by two elements, the smoothing domain is 
formed by connecting the three points of the face to the centroids of the two elements 
shown in Fig. 1(a). For the boundary face, which belongs to only one element, the 
smoothing domain is formed by the face and the centroid of the only element. Four 
points (three from the face and one being the centroid of the element) automatically 
form a tetrahedral shown in Fig. 1(b). 
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Figure 1. Two types of smoothing domains (a) smoothing domain formed based on 
interior face (b) smoothing domain formed based on boundary face 

2.2. The formulation of FS-FEM 

In the FS-FEM, the problem domain is meshed with 4-node tetrahedral elements. 
Based on the above description of smoothing domain formulation, faceN  smoothing 
domains in the whole model can be created. Here faceN  is the number of the faces in 

the whole problem domain Ω . The smoothing domains satisfy ∑ =
Ω=Ω faceN

k
k

1
 and 

∅=Ω∩Ω ji , .ji ≠ With face-based smoothing technique, the integration of the 
derivatives of the shape functions over domain can be transformed into integration of 
shape functions multiplied with component of outward unit vector of the boundary 
face. The integration result is then divided by the volume of the smoothing domain. In 
the setting of FS-FEM, the smoothed strain is obtained as: 
 

uBε =  (1)  

 
Here [ ]Tnsnsns wvuwvu 111=u is the displacement vector with all the 
displacement components of the nodes belonging to the smoothing domain. B  is the 
strain-displacement relationship matrix in three dimension expressed as: 
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where kΓ  is the boundary face of the smoothing domain. )(xk

hn  is the h  component 
of the outward normal vector on the boundary kΓ . )(xiN  is the shape function. s

kV  is 
the volume of the smoothing domain. 
 
By Gauss quadrature, )( kihb x can be further written as: 
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where gauN  is the number of the Gauss points and nw  is the weight of the Gauss point. 

k
faceN  is the number of faces attached to the smoothing domain kΩ .  nx  is the 

coordinate of the Gauss point on the boundary face.  )( niN x  is the thi  shape function 
of the Gauss point nx .  )( n

k
nn x  is the outward unit normal component.  

 
The set of algebraic equations for FS-FEM can be obtained in the form of matrix: 
 

fdK =  (5)  

 
Here d  is the displacement vector of all the nodes in the model, K is the global 
stiffness matrix and f  is the nodal force. 
 
The entries in sub-matrices of the stiffness matrix K  in Eq. (5) can be expressed as: 
 

∑
=

=
faceN

k

s
kijij

1
,KK  (6)  

 
Here the summation means an assembly process, 

s
kij ,K  is the stiffness matrix 

associated with the smoothing domain kΩ  and can be computed by 
 

s
kij ,K = s

kjiji Vd
s
k

BDBBDB
TT

=Ω∫Ω  (7)  

 
where s

kV  is the volume of the smoothing domain kΩ , D  is the matrix of material 
constants that is defined as follows: 
 



6 
 



























+
+

+

=

G
G

G
G

G
G

00000
00000
00000
0002
0002
0002

λλλ
λλλ
λλλ

D  (8)  

 

with 
)1(2 ν+

=
EG , 

)21)(1( νν
υλ

−+
=

E . Here E  is the Young's modulus, and ν  is the 

Poisson's ratio. 

3. Face-based smoothed XFEM (FS-XFEM) 

3.1. The formulation of FS-XFEM 

The displacement of XFEM is composed of three parts: the continuous displacement 
from standard finite element method, the enrichment part that represents discontinuity 
across the crack surface and the enrichment part that describes the singular strain field 
around the crack front. Heaviside function is usually employed as enrichment 
function for the discontinuity across the crack surface. A set of branch functions, 
which are derived from the displacement field around the crack front, are used to 
produce the singular strain field around the crack front. Nodal subtraction is used in 
FS-XFEM. 
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Here )(xNi , )(xN j  and )(xNk  are the shape functions associated with different types 

of nodes and iu  is nodal displacement in standard FEM. femfsN −  is the node set of the 
whole finite element model. jx  and kx  are the coordinates of  the thj  and thk  nodes 
in the element respectively. )(xH  is a Heaviside jump function and is set as follows:  
 





−
≥⋅−

=
            otherwise    1

0)( if    1
)(

* nxx
xH  (10)  

 
cfsN −  is the set of nodes whose support domain is completely cut by the crack surface. 

ja  is the enriched degree of freedom associated with node set cfsN − . efsN −  is the set 
of nodes in the vicinity of the crack front. )(xαφ  are a set of branch functions to 
model the asymptotic features of the displacement field around the crack front: 
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where ),( θr  is the local polar coordinate system, which is defined so that the plane 
where 0=θ  must be tangent to the crack front. α

kb  is the thα  (of the totally four) 
enriched degree of freedom associated with node set efsN − . 
 
Caused by different types of enrichment functions, nodes in FS-XFEM can be 
categorized into three types. (a) common nodes denoted by femfsN − , which are not 
enriched by either )(xH  or )(xαφ ; (b) )(xαφ enriched nodes denoted by efsN − . As 
shown in Fig. 2(a), the smoothing domain 21GABCG . Here ABC  is the face, based 
on which the smoothing domain is formed. 1G  and 2G  are the centroids of the two 
elements, which share the face ABC . The crack surface EFMN is in this smoothing 
domain. But the crack front MN  is also inside the smoothing domain, which means 
that the crack surface does not completely cut the smoothing domain but part of the 
smoothing domain. )(xαφ  is used to describe the displacement behavior around the 
crack front. Therefore, nodes associated with this smoothing domain are enriched by 

)(xαφ . (c) )(xH  enriched nodes denoted by cfsN − . As shown in Fig. 2(b), the 
smoothing domain 21GABCG  is constructed in the same way as Fig. 2(a). Here EFD  
is the crack surface. This smoothing domain is completely cut by the crack surface. 
Therefore, )(xH  is used to enrich the nodes associated with the smoothing domain, if 
the nodes are not enriched by )(xαφ .  
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Figure 2. (a) crack-front element (b) crack-cut element  
 
Employing the strain smoothing operation, the smoothed strain over kΩ  from the 
displacement approximation can be written as: 
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where )( k

u
i xB  is the smoothed strain gradient matrix for the standard FS-FEM part, 

and )( k
a
j xB , )( k

b
m xB  correspond to the Heaviside function and branch functions 

enriched parts respectively. Those matrices can be written as: 
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In the above equation, zyxhb k
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Using Gauss quadrature along the segments of boundary, the above equations can be 
written as: 
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Here k

faceN  is the number of the boundary faces of the smoothing domain, gauN  is the 
number of the Gauss points used on the boundary face. nx  is the coordinate of the 

thn  Gauss point on the boundary face. 
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The stiffness matrix K  is yielded by: 
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Substituting Eq. (16) into Eq. (5) can produce a set of linear equations. In FS-
XFEM, f  is composed of three parts: ,  and u a bf f f . These three vectors can be 
obtained as follows: 
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4. Three-dimensional stress intensity factor calculation 

Several numerical techniques, in conjunction with finite-element (FE) analyses, 
have been developed to calculate fracture mechanics parameters. Three of these 
techniques are: (1) the virtual crack extension (VCE) method [Parks et al. (1974; 
1977); Hellen (1975; 1989)], (2) the virtual crack closure technique [Rybicki et al. 
(1977); Shivakumar et al.(1988); Raju et al. (1988); Buchholz (1984)], and (3) the J-
integral method [Rice (1968); Cherepanov (1967; 1969); Eshelby (1956); ]. Based on 
J-integral method, an interaction energy integral method is used to calculate stress 
intensity factor in this work. A cylindrical volume with the radius dr  surrounding a 
point C located on the crack front is shown in Fig. 3. If the crack surfaces are 
traction-free, the domain form of the interaction energy integral  )(sI  can be written 
as: 
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where  
 

auxauxaux: σuσuIεσP ⋅∇−⋅∇−=


 (19)  

 



10 
 

Here the superscript aux stands for auxiliary field. ε ,u  and σ  are the actual strain, 
displacement and stress field respectively.  

C

C
lξ

dr

cL

 
Figure. 3. A cylindrical volume surrounding a point C 

 
The main difficulty in the calculation of interaction energy integral lies in the 
evaluation of the gradients and higher order gradients of the auxiliary fields that 
appear in the integrand. As shown in Fig. 4, we define a local orthogonal coordinate 
system at a point s along the crack front such that the local 2x  axis is perpendicular to 
the plane of the crack, and the 1x  and 3x  axes lie in the plane of the crack and are 
normal and tangent respectively to the crack front. To illustrate a convenient 
procedure to evaluate these gradients, we consider a point p which lies in the local 

21 xx −  plane as shown in Fig. 4. The base vectors 1e , 2e  and 3e  as shown in the 
figure are constructed by keeping 1e and 2e  parallel to 1x  and 2x  and moving in the 
direction of 3x . r , θ  are local polar coordinates defined in the figure. The auxiliary 
fields expressed in this orthogonal curvilinear coordinate system are given as: 
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Figure 4. Local orthogonal coordinate system at a point s  along the crack front 
 
The weighting function q  is defined as follows: A set of elements having at least one 
node within a cylindrical volume of radius dr  around the crack front are selected. The 
value of cq  of node associated with the crack tip  C is defined: 
 



 <=

=
                 otherwise                 0

 and 0 if              3 d
CCC

l
c

rrx
q

ξ
 (23)  

 
where C

lξ  is a unit vector that is perpendicular to the crack front at the crack tip C and 
lies in the local tangent plane to the crack surface. 
  
Having defined the auxiliary fields, the interaction energy integral )(sI  defined by Eq. 
(18) takes the value 
 

( ) [ ] aux
IIIIII
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sI ++
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Here aux

IK , aux
IIK , and aux

IIIK  are the stress intensity factors associated with the 
auxiliary fields and IK , IIK , and IIIK  are the stress intensity factors associated with 
the actual fields. The process of evaluating the actual stress intensity factors involves 
making a judicious choice of the auxiliary stress intensity factors, and then evaluating 
the interaction energy integral. For example, Substituting 1aux

I =K , and 
0aux

III
aux
II == KK  into Eq. (24) yields: 
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Similarly, IIK  can be obtained by substituting 1aux

II =K  and 0aux
III

aux
I == KK  and IIIK  

by substituting 1aux
III =K  and 0aux

II
aux
I == KK . 

5. Numerical examples 

Two examples are presented in this work to test our method. One is a plate with 
a thorough edge crack under tension. The other problem is a cylinder with a penny-
shaped crack under remote tension. Strain energy and SIFs are obtained by FS-XFEM 
and compared with those of XFEM. 
5.1. A plate with a thorough edge crack under tension 

A plate with a thorough edge crack under tension is first analyzed as shown in 
Fig. 5. The mesh is plotted in Fig. 6. The dimension of plate is: the height  mm2=H  
the width mm1=W  and the thickness mm5.0=t  with the crack length mm3.0=a . 
The load MPa 1=σ  is applied on the top surface of the plate. All the degrees of 
freedom on the bottom surface are fixed. The material parameters are: Young's 
modulus MPa 1=E   and the Poisson's ratio 3.0=υ . 

H

W
T

a

σ

 

Figure 5. A plate with a thorough edge crack under tension 
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Figure 6. Mesh of the plate with a thorough edge crack 

 

5.1.1 Result 

Five types of meshes with linear tetrahedral elements ( 42513 ×× , 43518 ×× , 
43719 ×× , 46131 ×× , 48141 ×× ) are used in the model. A sample mesh is shown in 

Fig. 6. For comparison, the results are also computed using XFEM. The reference 
solution of strain energy is obtained using singular FEM with very fine mesh 
(2,179,458 nodes) in this study. The strain energy is defined as: 
 

1
2

TU d
Ω

= Ω∫ ε Dε  (26)  

 
The results of the strain energy produced by FS-XFEM and XFEM are plotted in Fig. 
7. From the figure, it can be seen that the numerical results obtained from FS-XFEM 
are closer to the reference solution than those of XFEM using the same mesh. This is 
due to integration of face-based smoothing technique into the XFEM. 
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Figure 7. Plate with a thorough edge crack under tension: the variation of strain 
energy given by XFEM and FS-XFEM with different node numbers 

 

5.1.2 Convergence rate of FS-XFEM 

The convergence property of FS-XFEM and XFEM is studied in this section. In order 
to investigate quantitatively the numerical results, an error indicator in energy norm is 
defined as follows: 
 

ref

refnum

U
UU

Ee

−
=  (27)  

 
where refU  denotes the strain energy of reference solution and numU  stands for the 
strain energy of numerical solution. The errors in strain energy norm against h  for 
this example is plotted in Fig. 8, where h  is the average distance between two 
adjacent nodes. From the figure, it can be seen that the error of FS-XFEM is smaller 
than that of XFEM with the same mesh. At the same time, FS-XFEM has higher 
convergence rate than XFEM for this example, which means that FS-XFEM can 
converge to the reference solution at a higher rate. 
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Fig. 8. Convergence rate of XFEM and ES-XFEM for a plate with a thorough crack 
under tension 

5.1.3 Condition number 

Another important property of numerical methods is the condition number of the 
global stiffness matrix, )(Kcond . The condition number of the global stiffness matrix 
can affect the number of iterations needed to obtain a converged solution in the 
manner of )(Kcondniter ∝ , when an iteration solver is used to solve the algebraic 
system equation. The condition number of FS-XFEM and XFEM for thist example 
against node numbers is listed in Table 1. As it can be seen, FS-XFEM has bigger 
condition number than XFEM with the same mesh. But the difference is not quite big. 
 
Table 1. Condition numbers of FS-XFEM and XFEM for the first example with 

different mesh densities  
Mesh 13×25×4 18×35×4 31×61×4 41×81×4 

XFEM 1.3212e+006 1.8420e+006 1.4312e+007 1.7578e+007 
FS-XFEM 1.5427e+006 2.0628e+006 1.7675e+007 2.8165e+007 

 

5.1.4 Efficiency of FS-XFEM 

In the assessment of numerical methods, the time cost of different numerical methods 
should also be taken into consideration. As shown in Table 2, the time consumption 
for FS-XFEM and XFEM with different meshes is compared. From the table, it is 
clear that the FS-XFEM takes more time to solve the equation than XFEM for the 
same mesh. This is in agreement with the condition number comparison between FS-
XFEM and XFEM. However, after taking the results accuracy into account and 
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considering the efficiency, the present FS-XFEM is found to perform much better 
than XFEM for the results in energy error norms as shown in Fig. 9. From the figure, 
it is clear that within the same computation time, the results of FS-XFEM are more 
accurate than XFEM.  
 
Table 2. Time cost of FS-XFEM and XFEM for the first example with different 

mesh densities 
Mesh 13×25×4 18×35×4 31×61×4 41×81×4 

XFEM 0.321761s 1.185841s 12.08005s 29.681937s 
FS-XFEM 0.67652s 2.579944s 34.70061s 104.7701s 
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Figure 9. Comparison of computational efficiency of FS-XFEM and XFEM in 
terms of energy norm for a plate with a thorough crack under tension 

 

5.2. A cylinder with a penny-shaped crack under remote tension 

From the first example, it is seen that the FS-XFEM is powerful to simulate a straight 
crack in three-dimension. In order to extend the applicability of the proposed method, 
a cylinder with a penny-shaped crack under remote tension is studied. The crack is in 
the middle of the cylinder, with the radius (of the penny) mm 3.0=a  shown in Fig. 
10. The remote tension is applied on the top surface of the cylinder. The bottom 
surface of the cylinder is fixed. The geometrical details are as follows: mm 12=H  
and mm 3=R . With the ratio 1.0/ =Ra , this problem can be considered as a crack 
in an infinite body. The solution of stress intensity factor is given by [Anderson 
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(1995)]: aKI πσ
π
2

= . This is an axisymmetric problem. Due to the symmetry, only 

one quarter of the model is simulated with appropriate boundary condition shown in 
Fig. 11. In this model, symmetrical boundary condition are prescribed on both of the 
two side surfaces of the quarter-cylinder. 

2a

R

σ

H

 

Figure 10. A cylinder with a penny-shaped crack under remote tension 

Crack front

Crack surface

 
Figure 11. The mesh used for a cylinder with a penny-shaped crack under remote 

tension 
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The strain energy for this problem by FS-XFEM and XFEM is plotted in Fig. 12. The 
reference solution for strain energy is obtained by singular FEM with very fine mesh 
(1,443,082 nodes). It can be seen that FS-XFEM can produce more accurate results 
than XFEM with the same mesh. The stress intensity factor (SIF) is also obtained by 
FS-XFEM and XFEM. The SIFs with error are tabulated in Table 3. From the table, it 
is noticed that numerical solutions of SIFs using FS-XFEM are closer to the reference 
solutions than XFEM for the same mesh. This confirms that face-based smoothing 
technique has a strong value to integrate to XFEM.  
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Figure 12.   The variation of strain energy with number of nodes for a cylinder 
with a penny-shaped crack under remote tension 

 
Table 3. )mmMPa(IK (with error) of FS-XFEM and XFEM for a cylinder with 

a penny-shaped crack under remote tension with different mesh densities 
Mesh 1352 

 

2500 

 

4968 

 

6016 

 

9306 

 
XFEM 0.6097 

(1.34%) 

0.6114 

(1.07%) 

0.6118 

(1%) 

0.612 

(0.97%) 

0.6121 

(0.95%) 

FS-XFEM 0.6121 

(0.95%) 

0.6137 

(0.70%) 

0.6140 

(0.65%) 

0.6143 

(0.6%) 

0.6144 

(0.58%) 
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6. Conclusion 

In this work, the face-based smoothing technique is combined into extended finite 
element method (XFEM) to develop face-based smoothed extended finite element 
method (FS-XFEM) for three-dimensional fracture problems. Two numerical 
examples are used to test the accuracy, efficiency and convergence rate of FS-XFEM. 
Through the numerical results some conclusions can be drawn as follows:  
1. There are no additional parameters involved in the FS-XFEM, hence, the 

implementation of FS-XFEM using tetrahedral element that can be generated by 
many commercial software is quite straightforward. 

2. Due to the properly softening effects provided by the face-based smoothing 
technique, the proposed FS-XFEM possesses a close-to-exact stiffness of the 
continuous system. Hence, it can provide more accurate results than XFEM using 
the same tetrahedron mesh in terms of strain energy and stress intensity factors. 

3. The convergence rate and computational efficiency of FS-XFEM have been 
improved significantly compared with XFEM. FS-XFEM also possesses some 
advantages compared to XFEM. For example, in the calculation of the stiffness 
matrix, no singular term appears in the integrand. Mapping, which increases the 
complexity of the calculation, is not needed. 
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