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Abstract 
The present work proposes two methodologies using the Integral Transform Technique to solve the 
Poisson equation arising from the incompressible Navier-Stokes equations. The solution of this 
Poisson equation is very common in the formulations based on pressure-correction and are the main 
bottleneck of these approaches. The new formulation proposed in this work will allow the 
elimination of the pressure-velocity decomposition and also eliminate the sub-iterations of the usual 
pressure-correction methods. The results show a comparison in performance of both proposed 
approaches.  
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x , y , z   Classical cartesian coordinates   
L   Domain dimension in x  direction   
H   Domain dimension in y  direction   
t   Time   
v   Vectorial velocity   
u   Velocity component in x  direction   
v   Velocity component in y  direction   
f   Vectorial body force (in acceleration dimensions)   

xf   Body force component in x  direction   

yf   Body force component in y  direction   
p   Pressure   
p   Transformed pressure for CITT solution   
ρ   Fluid density   
µ   Dynamic viscosity   
ν   Kinematic viscosity   
n   Index for CITT   

maxn   Truncation order for CITT   
i , q , p   Indices for the position in mesh for x  direction  

maxi   Maximum mesh divisions in x  direction  
j , r , s   Indices for the position in mesh for y  direction  

maxj   Maximum mesh divisions in y  direction  
l   Index for the time step  

nX   Eigenfunctions for the CITT solution   

nλ   Eigenvalues for the CITT solution   
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nN   Norms of the eigenvalue problem   
y′ , y′′   Dummy integration variables   

1c , 2c   Integration constants   
V   Domain volume   
Λ   General function   
   Absolute error   

Introduction 
In numerical simulations of incompressible flows, the main difficulty is the velocity and pressure 
coupling by the incompressibility constraint. The projection methods were developed to overcome 
this problem. These methods can be classified into three classes [Germond et al (2006)], namely 
pressure-correction methods, velocity-correction methods, and consistent splitting methods. 
The most attractive feature of projection methods is that, at each time step, one only needs to solve 
a sequence of decoupled elliptic equations for the velocity and the pressure, making it very efficient 
for large scale numerical simulations. Although projection methods are widely used, many authors 
already drew attention to the fact that the decomposition used in this method is intrinsically second 
order accurate [Munz et al. (2003), Guermond et al. (2006)], preventing any approximation order 
higher than this. Pressure-correction schemes are time-marching techniques composed of two sub-
steps for each time step: the pressure is treated explicitly or ignored in the first sub-step and is 
corrected in the second one. The linear momentum equations play the major role in determining the 
velocity components. Thus, it is left to the continuity equation to determine pressure, even if this 
variable does not appear explicitly in this equation. The most common methodology to determine 
an equation for the pressure-correction is to combine both equations by taking the divergence of the 
momentum equations and substituting the continuity equation where necessary, effectively 
generating a Poisson type equation for pressure. This makes it possible to obtain an equation for the 
pressure-correction, using the continuity equation. At this point, it is worth to highlight that the 
pressure-correction method is an iterative strategy which generate more accurate values at each 
iteration. The pressure-correction equation is an extrapolation to improve mass conservation at each 
iteration. 
 
This procedure requires sub-iteration per time step, which is the major computational cost because 
at each sub-iteration, a Poisson equation for pressure must be solved. One could use Multigrid for 
the solution of the poisson equation to speed up the process, however, the sub-iteration are still 
required. 
 
In the realm of analytical methods, the Integral Transform Technique, also known as the Classical 
Integral Transform Technique (CITT) [Mikhailov and Ozisik (1984)], has been playing a big role. It 
deals with expansions of the sought solution in terms of infinite orthogonal basis of eigenfunctions, 
keeping the solution process always within a continuous domain. The resulting system is generally 
composed of a set of uncoupled differential equations which can be solved analytically. However, a 
truncation error is involved since the infinite series must be truncated to obtain numerical results. 
This error decreases as the number of summation terms (truncation order) is increased, and the 
solution converges to a final value. Due to the series representation nature of the Integral Transform 
Technique, the estimated error can be easily obtained, which results in better global error control of 
the solution. The disadvantage associated with this approach is the need of a more elaborate 
analytical manipulation. This effort can be greatly minimized with the use of symbolic computation 
[Wolfram (2003)]. 
 
The present work proposes two methodologies using the Integral Transform Technique to solve the 
Poisson equation arising from the incompressible Navier-Stokes equations. The two proposed 
methodologies are: The single transformation and the double transformation. The new proposed 
formulation will allow the elimination of the pressure-velocity decomposition and also eliminate the 
sub-iterations of the usual pressure-correction methods. 
 
Just a few works were concerned in mixing the Integral Transform Technique with other discrete 
schemes. Among these works, one could mention the work [Chalhub et al (2013)] that a new 
methodology  for solving unsteady convective heat transfer problems via the generalized integral 
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transform technique was developed. The proposed scheme was based on writing the unknown 
potential in term of eigenfunction expansions; however, rather than transforming advection terms, 
an upwind approximation is used prior to the integral transformation. In the works [Guedes et al. 
(1994a; 1994b)], the authors analyzed the unsteady forced convection in laminar flow between 
parallel plates. This problem is solved using a hybrid scheme that combines the Generalized 
Integral Transform Technique with second-order finite differences. At [Cotta and Gerk (1994)], the 
integral transform method is employed in conjunction with second-order-accurate explicit finite-
differences schemes, to handle accurately a class of parabolic-hyperbolic problems. In the work 
[Castelloes and Cotta (2006)], the solution is obtained using partial integral transformation strategy 
to solve the problem and the work of [Naveira et al. (2009)] showed a hybrid numeric-analytical 
solution for unsteady forced laminar convection between parallel plates.  

Problem Formulation 

In order to solve a fluid flow problem, the conservation laws of physics are needed: the mass 
conservation, also known as the continuity equation and the momentum conservation. In addition to 
these equations, a constitutive equation is required, which the Newton’s law of viscosity will be 
used. The flow is also considered to be incompressible, in other words, the fluid has a constant 
density.  
Combining these equations [Kundu (1990)], one can arrive at the incompressible Navier-Stokes 
equations1:   

 21 for and 0v v v p v f x V t
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∇ + ∈ ≥

∂
 (1) 

 0 forv x V∇⋅ = ∈  (2) 
in which equation (1) is the momentum conservation equation and equation (2) is the mass 
conservation equation, also called the incompressibility constraint.  
Based on the projection methods for incompressible flows [Guermond et al. (2006)], to obtain the 
Poisson equation for pressure, one should apply the divergence operator on equation (1) and use the 
continuity equation (2): 

 ( )T21 forp f v v x V
ρ
∇ = ∇⋅ −∇ : ∇ ∈  (3) 

where ρ  is the fluid density, f  is the body force vector, v  is the velocity vector, p  is the pressure 
and V  is a general domain volume.  
Then, the continuity could be replaced at the Navier-Stokes equations (1) by the Poisson equation 
(3), resulting in the following system to be solved:   

 21 for and 0v v v p v f x V t
t

ν
ρ

∂
+ ⋅∇ = − ∇ + ∇ + ∈ ≥

∂
 (4) 

 ( )T21 forp f v v x V
ρ
∇ = ∇⋅ −∇ : ∇ ∈  (5) 

In this work, normal zero gradients for pressure at the boundaries will be used.  
 ( ) 0Vp n ∂∇ ⋅ =  (6) 
where V∂  is the boundary of the general domain volume.  
The problem can be simplified for cartesian domain:   

 
2 2

2 2

( ) ( ) [ ( ) ( )]p x y t p x y t h x y t g x y t
x y

ρ∂ , , ∂ , ,
+ = , , − , ,

∂ ∂
 (7) 

 
0

( ) ( )0 0
y y H

p x y t p x y t
y y= =

   ∂ , , ∂ , ,
= =   ∂ ∂   

 (8) 

                                                 
1Some authors refer to the Navier-Stokes equations as just the momentum equation. 
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0

( ) ( )0 0
x x L

p x y t p x y t
x x= =

∂ , , ∂ , ,   = =   ∂ ∂   
 (9) 

where:  

 
22

( ) 2u u v vg x y t
x y x y

 ∂ ∂ ∂ ∂ , , = + +   ∂ ∂ ∂ ∂   
 (10) 

 ( ) yx ffh x y t
x y

∂∂
, , = +

∂ ∂
 (11) 

 
The main goal of this work is to develop the integral transformation technique to solve the Poisson 
equation (7) showed above.  

Single Transformation (ST) 

In order to establish the transformation pair, the pressure field is written as function of an 
orthogonal eigenfunctions obtained from the following auxiliary eigenvalue problem known as the 
Helmholtz classical problem [Mikhailov and Osizik (1984)], where ( )nX x  are the eigenfunctions 
and nλ  are the eigenvalues.   

 
2

2
2

d ( ) ( ) 0
d

n
n n

X x X x
x

λ+ =  (12) 

 (0) 0 ( ) 0X X L′ ′= =  (13) 
which has the following solution:   
 ( )( ) cosn nX x xλ=  (14) 

 for 1 2 3n
n n …

L
πλ = = , , ,  (15) 

 
It should be noted that for these boundary conditions, one needs also to account for non-trivial 
solutions corresponding to 0 0λ = .   
 0 1X =  (16) 
 0 0λ =  (17) 
 
Now, the transformation pair can be defined:   

 
0

Transformation ( ) ( ) ( ) d
L

nn y t p x y t X x xp⇒ , = , ,∫  (18) 

 0
1

( ) ( )
Inversion ( ) ( ) n n

n n

X x y tpp x y t p y t
N

∞

=

,
⇒ , , = , +∑  (19) 

where the norm nN  is defined by:  

 2

0
d for 0

2
L

n n
LN X x n= = ≠∫  (20) 

The final solution is given by two portions of the pressure: the average pressure in x  direction avgp  
and the modified pressure modp :  
 avg mod( ) ( ) ( )p x y t p y t p x y t, , = , + , ,  (21) 
where avgp  comes from the solution of the eigenproblem when 0λ =  and modp  comes from the 
solution when 0λ ≠ , in other words:  
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 avg 0( ) ( )p y t p y t, = ,  (22) 

 mod
1

( ) ( )
( ) n n

n n

X x y tpp x y t
N

∞

=

,
, , = ∑  (23) 

 

Solution for modp  ( 0λ ≠ ) 

The integral transformation of the governing differential equation is derived by applying the 

operator 
0

( ) d
L

nX x•∫  on equation (7), obtaining the following transformed Poisson equation:   

 
2

2
2

( )
( ) ( ) ( )n

nn n n
y tp y t y t y tp ghy

λ ρ ρ
∂ ,

− , = , − ,
∂

 (24) 

 
0

( )
0n

y

y tp
y =

∂ , 
= ∂ 

 (25) 

 
( )

0n

y H

y tp
y =

∂ , 
= ∂ 

 (26) 

where the transformation of the parameters g  and h  are given by:  

 
0

( ) ( ) d
L

nn y t g x y t X xg , = , ,∫  (27) 

 
0

( ) ( ) d
L

n ny t h x y t X xh , = , ,∫  (28) 

 
The equation (24) has an analytical solution that is shown bellow:  

 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

( )

0

2

0

2

0 0

( )

1 cosh csch ( ) ( ) d
2

1 1 coth 1 ( ) ( ) d
4

1 1( ) ( ) d ( ) ( ) d
2 2

n
n n

n
n

n n
n

n
yHy H y

nn n n
n

yHy
nn n

n

y yy yy
n nn n

n n

y tp

ee y H e y t y t ygh

ee H y t y t yg h

e ey t y t y e y t y t yg gh h

λ
λ λ

λ
λ

λ λ
λ

ρλ λ
λ

ρλ
λ

ρ ρ
λ λ









−
− +

′ ′−

, =

− , − , +

+ − , − , +


′ ′ ′ ′ ′ ′, − , + , − , 



∫

∫

∫ ∫

 (29) 

 
To find the actual solution for modified pressure modp , the inversion formula is used, equation (22). 
By observing equations (29), (27) and (28), one can notice that there are integrals of the discrete 
variables u , v , xf  and yf . In order to compute these integrals, the following integral separation is 
proposed:  

 
max

10
1

( )d ( )dq

q

iL x

x y x yx
q

u v f f x u v f f x
−=

Λ , , , = Λ , , ,∑∫ ∫  (30) 

where Λ  is a general function of u , v , xf  and yf .  
 
Then, to compute the integrals analytically, a Taylor expansion is used to expand the variables u , 
v , xf  and yf  in each subdomain:  
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Solution for avgp  ( 0λ = ) 

In order to obtain the transformed differential equation for 0λ = , a very similar process is done. 
The transformed equation is given bellow:   

 
2

0
0 02

( )
( ) ( )

y tp y t y tghy
ρ ρ

∂ ,
= , − ,

∂
 (31) 

 0

0

( )
0

y

y tp
y =

∂ , 
= ∂ 

 (32) 

 0( )
0

y H

y tp
y =

∂ , 
= ∂ 

 (33) 

where:  

 0 0
( ) ( )d

L
y t g x y t xg , = , ,∫  (34) 

 0 0
( ) ( )d

L
y t h x y t xh , = , ,∫  (35) 

The previous equation admits analytical solution of the following form:  

 ( )0 1 20 00 0
( ) ( ) ( ) d d

y y
y t y t y t y y c y cp ghρ

′′
′ ′ ′ ′′, = , − , + +∫ ∫  (36) 

applying the boundary conditions, one arrives to the following system of equations:  
 1 0c =  (37) 

 ( )0 100
0 ( ) ( ) d

H
y t y t y cghρ= , − , +∫  (38) 

which tells that 1c  must be zero and the integral also must be zero:  

 ( )0 00
( ) ( ) d 0

H
y t y t yghρ , − , =∫  (39) 

 
Equation (9) is know as the Poisson-Neumann compatibility condition [Abdallah (1987; 1988); 
Pozrikidis (2001)]. Knowing these information, the solution of the transformed differential equation 
is achieved:  

 ( )00 00 0
( ) ( ) ( ) d d

y y
y t y t y t y yp g hρ

′′
′ ′ ′ ′′, = − , + ,∫ ∫  (40) 

 
Then the same integral separation (equation (19)) and Taylor series expansions are used to derive 
analytically the coefficients 0h  and 0g :  

Double Transformation (DT) 

In a very similar manner from previous formulation, one first establishes the transformation pair. In 
order to obtain that for this approach, two eigenvalue problems are defined. The eigenvalue problem 
associated with the x  direction is given by: Eigenvalue problem associated with the problem in x  
direction  

 
2

2
2

d ( ) ( ) 0
d

n
n n

X x X x
x

λ+ =  (41) 

 (0) 0 ( ) 0X X L′ ′= =  (42) 
which has the following solution:  
 ( )( ) cosn nX x xλ=  (43) 
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 for 1 2 3n
n n …

L
πλ = = , , ,  (44) 

 
The problem associated with the y  direction is given by:  

 
2

2
2

d ( ) ( ) 0
d

n
m n

Y y Y y
y

β+ =  (45) 

 (0) 0 ( ) 0Y Y H′ ′= =  (46) 
which has the following solution:  
 ( )( ) cosn mY x yβ=  (47) 

 for 1 2 3m
m m …

H
πβ = = , , ,  (48) 

 
The transformation pair can be defined:  

 
0 0

Transformation ( ) ( ) ( ) ( ) d d
H L

n mn m t p x y t X x Y x x yp ,⇒ = , ,∫ ∫  (49) 

 
0 0

( ) ( ) ( )
Inversion ( )

NyNx
n mn

n m n m

y t X x Y ypp x y t
∞ ∞

= =

,
⇒ , , =∑∑  (50) 

where the norms Nxn  and Nym  are defined by:  

 2

0
d for 0Nx 2

L
n n

LX x n= = ≠∫  (51) 

 2

0
d for 0Ny

2
H

mm
HY x m= = ≠∫  (52) 

it is also known that 0Nx L=  and 0Ny H=   

Applying the operator 
0 0

( ) d d
H L

n mX Y x y•∫ ∫  on the Poisson equation, the following transformed 

Poisson equation (algebraic) is obtained:  
 2 2( ) ( ) ( ) ( )n m n m n mn my t y t y tp ghλ β ρ, ,,− + , = , − ,  (53) 
where the transformation of the parameters g  and h  are given by:  

 
0 0

( ) ( ) d d
H L

n mn m t g x y t X Y x yg , = , ,∫ ∫  (54) 

 
0 0

( ) ( ) d d
H L

n mn m t h x y t X Y x yh , = , ,∫ ∫  (55) 

 
Which has a direct solution shown bellow:  

 2 2

( )
( ) n m n m

n m
n m

g htp
ρ

λ β
, ,

,

−
=

+
 (56) 

In order to obtain the final solution, the inversion formula needs to be applied, obtaining:  

 2 2
0 0

( ) ( ) ( )( )
NyNx

n m n m n m

n m nn m m

g X x Y yhp x y t
ρ

λ β

∞ ∞
, ,

= =

−
, , =

+∑∑  (57) 

which can also be rewritten in the form:  
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0 00 0 0 0
2 2

1 10 00 0

2 2
1 1

( ) ( )( ) ( )( )
Ny Ny NyNx Nx Nx

( ) ( ) ( )
NyNx

m nm nm n

m n nm nm

n m n m n m

n m nn m m

g gp Y y X xh hp x y t

g X x Y yh

ρ ρ
β λ

ρ
λ β

∞ ∞
, ,, , ,

= =

∞ ∞
, ,

= =

− −
, , = + + +

−
+

+

∑ ∑

∑∑
 (58) 

where 0 0p ,  is an arbitrary constant, which will be considered to be zero.  
The greatest advantage of this approach is that it requires a lot less analytical effort and the final 
solution is more simple and compact. But the final solution has a double summation that can 
increase computational cost. In order to minimize this cost, one can use a reordering scheme, 
switching from the double summation to a single one.  

 
1 1 1n m k

∞ ∞ ∞

= = =

⇒∑∑ ∑  (59) 

 
This can be done knowing the sum terms with higher magnitude and putting them in the beginning 
of the sum. This is achieved by taking ( )n m,  pairs that promote lowers 2 2( )n mλ β+ . By doing that, 
one can arrive at the expression: 

 

0 00 0
2 2

1 10 0

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 ( )( ) ( ) ( )

( ) ( )( ) ( )( )
Ny NyNx Nx

( ) ( ) ( )
NyNx

m nm nm n

m n nm nm

n k m k n k m k n k m k

k n kn k m k m k

g gY y X xh hp x y t

g X x Y yh

ρ ρ
β λ

ρ

λ β

∞ ∞
, ,, ,

= =

∞
, ,

=

− −
, , = + +

−
+

+

∑ ∑

∑
 (60) 

Discrete Derivatives 

In order to solve the pressure problem, the discrete derivatives of u , v , xf  and yf  must be 
calculated. In this work, a second order central differencing scheme is used inside the domain and 
second-order the backward/forward (depending of the boundary) differencing scheme is used at the 
boundaries.  

Results 

For all cases presented in this chapter, 1L = , 1H = , and 1ρ =  were used. The chosen source term 
of the Poisson equation (4) satisfies the compatibility condition (9) and it is of the following form:  

 [ ] 4 3 2 4 3 277( ( ) ( ))
60i i i i j j j ji j

x x x x y y y yh x y t g x y t ρρ  
 ,  

 = + + + − + + +, , − , ,  
 

 (61) 

 
A comparison of computational cost is done for both techniques presented in this work. In order to 
compare the CITT performance, a fixed mesh is used and many truncation orders for the 
summations are computed, so only the CITT error is captured. The CITT error is calculated using 
the following formula:  
 CITT

max max max( ) abs[ ( ) ( 5)]i j i j i jn p n p n, , ,= − +  (62) 
 
The mesh error for the x -mesh and the y -mesh is calculated using the following formulations 
respectively:  
 1024 max 1024 max 2 1024 max( ) abs[ ( ) ( )]x

i i in p n p n, , ,= −  (63) 

 1024 max 1024 max 1024 2 max( ) abs[ ( ) ( )]y
j j jn p n p n, , ,= −  (64) 
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The codes were compiled and ran using GFORTRAN and the flags -O3 and -fopenmp and in a 8 
core CPU machine.  
In order to illustrate the convergence of the solution with the variation of x∆ , figure 1 shows a 
graphic of the maximum absolute error with the variation of the mesh size x∆ . As one can observe 
the convergence order is about 2, which was expected since all approximation made in the 
mathematical formulation were of this order.  
Figure 2 shows the convergence of the absolute error with y∆ . Although it seems to have a higher 
convergence order for the poorer refined meshes, the order stabilizes at 2 when more refined 
meshes are implemented.  
 

 
Figure 1. Convergence for the mesh in x -direction, max 15n =  and using max 1024j = . 

 

 
Figure 2. Convergence for the mesh in y -direction, max 15n =  and using max 1024i = . 
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In order to illustrate the problem, tables 1 and 2 show the value of the pressure for different points 
of the domain. It is clear that both methodologies converge to the same value, even though the 
values are not fully converged with six digits accuracy. One can see that the mesh convergence is 
very similar for both methodologies.  

 

Table 1. Convergence of the mesh for some points of the domain for 0 25y = .  and max 30n = . 

 
max maxi j×   0 25x = .   0 75x = .    

 ST  DT  ST  DT   
16×16  0.0801190  0.0793513  -0.0799973  -0.0809956   
32×32  0.0811750  0.0810473  -0.0807687  -0.0811251   
64×64  0.0814272  0.0814572  -0.0809571  -0.0811557   

128×128  0.0814885  0.0815574  -0.0810034  -0.0811630   
 
 

Table 2. Convergence of the mesh for some points of the domain for 0 75y = .  and max 30n = . 

 
max maxi j×   0 25x = .   0 75x = .    

 ST  DT  ST  DT   
16×16  0.183004  0.186430  -0.185268  -0.181505   
32×32  0.186532  0.187220  -0.184883  -0.183862   
64×64  0.187368  0.187422  -0.184825  -0.184438   

128×128  0.187571  0.187473  -0.184815  -0.184580   
 
Figure 3 shows a comparison of the computational cost of both methodologies for a mesh of 
32 32× . One can clearly see that the Double Transformation (DT) needs more time to obtain the 
same error. This effect is due to the introduction of a double summation needed to solve the 
problem by the DT which requires a bigger effort to compute the solution. Even with the 
implementation of the reordering scheme, it is not enough to beat the computational cost of the ST. 
The same effect can be seen on figure 4, which shows the computational cost for a mesh of 
128 128× . 
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Figure 3. Comparison of the computational cost of CITT using single transformation and 

CITT using double transformation for a mesh max 32i =  and max 32j = . 

 
 

 
Figure 4. Comparison of the computational cost of CITT using single transformation and 

CITT using double transformation for a mesh max 128i =  and max 128j = . 
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Conclusion 

This work presented results of the solution of the Poisson equation arising from the incompressible 
Navier-Stokes equations. The main motivation of the proposed work is the implementation of this 
semi-analytical formulation for the Poisson equation in the momentum equation and thus solve it 
using a numerical technique for initial value problem.  
 
The solution of the Poisson equation using this semi-analytical approach was accomplished using 
two different schemes: CITT single transformation (ST) and CITT double transformation (DT). 
Both techniques presented a very similar convergence behavior and results, showing that the 
formulations proposed are consistent. The comparison between both schemes showed that the 
double transformation has poorer performance in comparison with the single transformation 
scheme. Even though the performance of the double transformations was not so good, this 
formulation has a simpler analytical solution, which might be more interesting when implementing 
the pressure solution in the momentum equation, and so being possible a fully explicit time 
marching method for time.  
 
The proposed schemes are very good for smooth pressure fields, but it might have some 
convergence problems with discontinuous pressure fields, which arise in phase-change problems, 
due to the Gibbs phenomenon in series truncation. This issue must be further investigated in order 
to compute the real impact of the implementation of the proposed formulations in these type of 
problems.  
 

Acknowledgments  

The authors would like to acknowledge the financial support provided by, CAPES, CNPq, FAPERJ, 
Lemann Foundation, Universidade Federal Fluminense. 

References 

Guermond, J. L., Minev, P., and Shen, J., 2006. “An overview of projection methods for incompressible flows”. Comput. 
Methods Appl. Mech. Engrg., 195, p. 6045. 

Munz, C.-D., Roller, S., Klein, R., and Geratz, K., 2003. “The extension of incompressible flow solvers to the weakly 
compressible regime”. Computers & Fluids, 32(2), Feb., pp. 173–196. 

Mikhailov, M. D., and Ozisik, M. N., 1984. Unified Analysis and Solutions of Heat and Mass Diffusion. John Wiley & 
Sons, New York. 

Wolfram, S., 2003. The Mathematica Book, 5th ed. Wolfram Media/Cambridge University Press, New 
York/Champaign, IL. 

Chalhub, D. J. M. N., Sphaier, L. A., and de B. Alves, L. S., 2013. “Integral transform solution of convective heat 
transfer problems using upwind approximations”. Numerical Heat Transfer - Part B, 

63, pp. 167–187. 
Guedes, R. O. C., and Ozisik, M. N., 1994. “Transient heat transfer in simultaneously developing channel flow with 

step change in inlet temperature”. International Journal Heat and Mass Transfer, 
37, pp. 2699–2706. 
Guedes, R. O. C., and Ozisik, M. N., 1994. “Hybrid approach for solving unsteady laminar forced convection inside 

ducts with periodically varying inlet temperature”. Int. J. Heat and Fluid Flow, 
15, pp. 116–121. 
Cotta, R. M., and Gerk, J. E. V., 1994. “Mixed finite-difference/integral transform approach for parabolic-hyperbolic 

problems in transient forced convection”. Numerical Heat Transfer - Part B, 25, pp. 442–448. 
Castellões, F. V., and Cotta, R. M., 2006. “Analysis of transient and periodic convection in microchannels via integral 

transforms”. Progress in Computational Fluid Dynamics, 6, pp. 321–326. 
Naveira, C. P., Lachi, M., Cotta, R. M., and Padet, J., 2009. “Hybrid formulation and solution for transient conjugated 

conduction-external convection”. International Journal of Heat and Mass Transfer, 52(1-2), pp. 112–123. 
Kundu, P. K., 1990. Fluid Mechanics. Academic Press, San Diego, CA. 
Abdallah, S., 1987. “Numerical solutions for the pressure poisson equation with neumann boundary conditions using a 

non-staggered grid, i”. Journal of computational physics, 70(1), p. 182–192. 



13 
 

Abdallah, S., and Dreyer, J., 1988. “Dirichlet and neumann boundary conditions for the pressure poisson equation of 
incompressible flow”. Journal for Numerical Methods in Fluids, 8(December 1987), p. 1029–1036. 

Pozrikidis, C., 2001. “A note on the regularization of the discrete poisson-neumann problem”. Journal of Computational 
Physics, 172(2), Sept., p. 917–923. 


	Eliminating the Pressure-Velocity Coupling from the Incompressible Navier-Stokes Equations Using Integral Transforms
	Daniel J. N. M. Chalhub, Leandro A. Sphaier, and Leonardo S. de B. Alves*
	Abstract
	Keywords:  Incompressible Navier-Stokes, Pressure Correction, Integral Transformation, Poisson Equation

	Introduction
	Problem Formulation
	Single Transformation (ST)
	Double Transformation (DT)
	Discrete Derivatives
	Results
	Conclusion
	Acknowledgments
	References

