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Abstract 
FDM (finite difference method) has advantages for direct code expansion to numerically solve 

PDE (partial differential equation).  In contrast to finite element method configured with 
nonhomogeneous element size based on interested region, a constant increment size of element or 
grid is used in existing FDM.  As a result, the calculation near boundary could be inaccurate and 
incomplete. Particularly, in electrokinetics, except for diffuse layer (about 10~104 Angstrom) near 
solid and fluid interface, calculation of the charge density distribution with having the same and 
fine space increments at another region is inefficient and could meet the catastrophic memory lack 
error. In this study, we provide a method how to make the nonhomogeneous space incremental FD 
grid and to configure PDE having complicated and mixed boundary conditions (e.g. Dirichlet and 
Neumann) with suggested simple matrices. The suggested FDM using the nonhomogeneous 
increment of fine grids near the boundaries and interfaces could increase the accuracy of solutions 
and efficiency of calculations.   

Keywords: Finite Difference Method, Partial Differential Equation, Nonhomogeneous Increment,  
Dirichlet and Neumann Boundary Conditions 

Introduction 

Solutions of electrokinetic problems are important to understand living bone remodeling 
processes by electromechanical transduction effects on osteocytes, osteoclasts and osteoblasts. 
Since this electromechanical transduction postulation about bone remodeling processes requires the 
existence of ionic interstitial bone fluid flow in bone tissues, the resulting streaming potential is 
being focused on bone mechanics as a remodeling stimulation on bone cells [Pienkowski and 
Pollack (1983); Zhang et al. (1997)].  The streaming potential is about coupled phenomenon 
described by elasticity of bone tissue, fluid mechanics of interstitial fluid flow through canaliculi 
and lacunae, and electricity of charged ions in bone fluid.   

In addition, the streaming potential that is an electrokinetic phenomenon is closely related to 
electrical charge on the wall of lacunocanalicular flow path. The streaming potential is very 
sensitively affected by the interface surface electrical potential of the canalicular wall [Ahn and 
Grodzinsky (2009)].  Since bone is a piezoelectric material [Bassett (1968)], the surface electrical 
potential of the canalicular wall is changed by the elasticity of bone tissue.  As a result, a full 
analysis including transient behavior of streaming potential can be achieved for the multi-physical 
study of bone tissue after firstly considering effects of its piezoelectricity on the just boundaries of 
the lacunocanalicular flow paths on the transient electrokinetics. 

To solve electrokinetic problems using FDM, except for diffuse layer (about 10~104 Angstrom) 
near solid and fluid interface, calculation of charge density distribution with having the same space 
increments at another region is inefficient. In this study, we provide a method how to make the 
nonhomogeneous space incremental FD grid and to configure PDE having complicated and mixed 
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boundary conditions with suggested simple matrices. The suggested method is verified using the 
existing closed solution in the electrokinetics [ref].  
 

Numerical Method 

Notation and Definition 

  For the formulation used in this study, we used the following notations and definitions. 
τ

kjif ,,                                                                   (1) 
where subscript i , j ,and k are the space incremental numbers; and superscript τ is the time 
incremental number.  1~1 += Li ; 1~1 += Mj ; 1~1 += Nk ; and 1~1 += Tτ where i, j, and k 
are the positive integer. f is a unknown quantity.  

Position 

  The position is described as ix , jy , and kz  in the Cartesian coordinate, ir , jθ , and kz  in the 
cylindrical coordinate, ir , jθ , and kφ  in the spherical coordinates. 

Variable Increment 

  The increment of the position or time is described by forward, backward and central difference.  
( ) 0ppp −=∆ ++  
( ) −− −=∆ ppp 0

                                                             (2) 
( ) ( )−+ −=∆ ppp 5.00

 
where p  means an arbitrary position, time, or value; superscripts + ,− , and 0 mean forward, 
backward, and central infinitesimal approaches, respectively.  In the Cartesian coordinate, time and 
spatial increments are represented by (3).   

( ) τττ ttt −=∆ ++ 1     ( ) 1−−
−=∆ τττ ttt     ( ) ( )110 5.0 −+ −=∆ τττ ttt  

( ) iii xxx −=∆ +
+

1     ( ) 1−
− −=∆ iii xxx     ( ) ( )11

0 5.0 −+ −=∆ iii xxx                   (3) 

( ) jjj yyy −=∆ +
+

1    ( ) 1−
− −=∆ jjj yyy    ( ) ( )11

0 5.0 −+ −=∆ jjj yyy  

( ) kkk zzz −=∆ +
+

1    ( ) 1−
− −=∆ kkk zzz     ( ) ( )11

0 5.0 −+ −=∆ kkk zzz  

First Order Derivatives 

  The first order derivatives of time and space are described by (4). 
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Second order derivatives 

  The second order derivatives are described by (5).
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  Thus, the second order derivatives of time and space are described by (6). 
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Laplacian  

  In the Cartesian coordinate, Laplacian of a quantity is described by (7). 
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Boundary Conditions 

  The Boundary conditions are defined on the interface locating at 1, L + 1, M + 1, and N + 1. 
  Dirichlet boundary condition ( 0=φ  at interface) could be formed as (8). 

x coordinate : 0,,1 =τ
kjf  or 0,,1 =+

τ
kjLf  or 0,,1,,1 == +

ττ
kjLkj ff  

y coordinate : 0,1, =τ
kif  or 0,1, =+

τ
kMif  or 0,1,,1, == +

ττ
kMiki ff   (8) 

z coordinate : 01,, =τ
jif  or 01,, =+

τ
Njif  or 01,,1,, == +

ττ
Njiji ff  

  Neumann boundary condition ( 0/ =∆∆ xφ  at interface) could be formed as (9). 
x coordinate : ττ
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kjkj ff ,,2,,1 = and ττ
kjLkjL ff ,,,,1 =+  

y coordinate : ττ
kiki ff ,2,,1, =  or ττ

kMikMi ff ,,,1, =+  or ττ
kiki ff ,2,,1, =  and ττ

kMikMi ff ,,,1, =+   (9) 

z coordinate : ττ
2,,1,, jiji ff =  or ττ

NjiNji ff ,,1,, =+  or ττ
2,,1,, jiji ff = and ττ

NjiNji ff ,,1,, =+  

Formation of Matrix 

  For example,  
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  The matrix (10) is a square matrix composed of ( ) ( )11 +×+ LL . To obtain the elements of the first 
row, the history at ( )−∆ 1x is required as well as 0x .  However, 0x  is not yet defined.  Thus, the 
elements of the first row are all zero.  Since 2+Lx  is not defined for ( )++∆ 1Lx ,  the elements of  the 

(L+1)th column of the matrix are all zero.  As a result, the matrix 
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order derivatives from the second and to Lth rows.  In addition, the first and (L + 1) rows are formed 
by boundary conditions. 
 

Formation of Matrix with Boundary Conditions 

  When a matrix A  has Neumann boundary condition at node 1, Dirichlet boundary condition at 
node L + 1, and the second order derivatives of the matrix A is the same as a matrix B, (11) can be 
written. 
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   As a matrix form of (11) can be (12) 
                                                         BAM =⋅                                                (12) 
where M has a following form. 
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  Therefore, (12) can be represented by (13) 
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Verification  

  Verification of theoretical approach was accomplished by comparing with the reference method 
[Bazant et al. (2004)].   As shown in Fig. 1, an external electrical potential is applied to the isolated 
ironic fluid. 
 

 
Figure 1. Electrolyte system affected by external electric field which induces the electric potential 

               distribution of ϕ(y) with surface potential ϕL = −1.0 V and ϕR = +1.0 V 

 

Analytical Method 

  The governing equation for the charge density can be represented by (14). 

φεκρκρ
ρ 22221
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ff ερψ /2 −=∇  
φ  is the external electrical potential generated by external electric field.  For the external electrical 
potential, 02 =∇ φ .  Thus, (14) is reduced to Debye-Falkenhagen equation (15). 
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  Based on (15), distributions of the electric charge density, ρf , change distributions and magnitudes 
of internal electric potential, ψ . 
  If fρ  is a function of the only x-coordinate,  
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where  is the total potential that is a summation of the external and internal potentials. 
  As assumed to be two plates, the one-dimensional boundary condition is represented by (17). 
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  A general solution of (17) in the Laplace domain (s-domain) can be obtained by (18) [Bazant et al. 
(2004)].  
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Table 1. Symbols 

Symbols                        Definitions 

fρ    charge density 

ψ   internal potential due to charge 

density distribution 

φ   external potential due to external 

electric field 

D   diffusion coefficient 

  κ   inverse of Debye length 

fε   dielectric permittivity 

h   half channel height 

sλ   effective thickness for the compact 

part of the double layer 

V   external potential imposed by 

the external circuit 

Numerical Method 

  The governing equation for the charge density can be discretized by (19). 

  
1221212

11 +++
+

∇=+∇−
∆
− t

f
t
f

t
f

t
f

t
f

tD
φεκρκρ

ρρ

                 (19)
 

  
122122 11 ++ ∇+

∆
=






 +∇−

∆
t

f
t
f

t
f tDtD

φεκρρκ  

When fρ  is a function of the only x-coordinate,  

  12121
11 +++
+













∂
∂

=+












∂
∂

−
∆

− t
f

t
f

t
f

t
f

t
f

tD
φεκρκρ

ρρ
2

2

2

2

xx
        (20) 

Boundary condition 

  The boundary conditions can be represented by (21). 
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  At the interface, the internal potential should be 0 to satisfy  ψL+1 = ψ1 = 0.  Then, (21) turns out 
to be (22). 
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  The governing equation (20) can be described by (23). 
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  The boundary conditions (22) can be represented by (24). 
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  After combining the boundary conditions to the governing equation, the final form can be obtained 
as (25). 

(25)

 

 Table 2. Properties used in this study    

  Symbols                            Values  
D    ][100.1 17 m−×  
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  Utilizing the data in Tab. 2, transient behaviors of the charge density in the space are calculated 
and compared in Fig. 2 from the closed form solution and the numerical method proposed in this 
study.  In general, the results from the analytic and numerical methods are in agreement for each 
time as shown in Tab. 3.  In transient analyses, the behavior from the numerical method has a 
time-delay of 0.01 sec than that from the analysis.  However, two behaviors from the numerical 
method and analysis in steady state are almost identical in time and space.  

Table 3. Defined variances* for comparisons of numerical solutions on analytic results  

  Time [sec]   Values [dimensionless]  
0.1   2105042.4 −×  

  0.2   2101764.4 −×  
0.5   2104787.3 −×  
1.0   2105344.2 −×  
Steady State  3103630.2 −×  

*Defined variance: ∑
=
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Figure 2.  Comparisons of the analytic solutions on the numerical results (upper : total charge 
                 distribution and  lower : magnified left side) 



9 
 

Conclusion 

  In electrokinetics, accurate prediction of the temporal and spatial charge density distributions near 
the ironic fluid and piezoelectric solid interface become important from the multi-physical point of 
view.  Since the interested region for the changes of charge density distribution is the order of 10 
Angstrom just near the interface, a very fine FD grid is required.  When a constant fine space 
increment is applied for electrokinetic problems to obtain an accurate solution using FDM, the 
calculation process is inefficient.   
  In this study, FDM using the nonhomogeneous space increment is formulated and applied to an 
electrokinetic problem.  A very fine FD grid is used for the interested diffuse layer just near the 
interface.  At the same time, coarse FD grids are applied to the other ironic fluid path that is the 
order of several nanometers.  In addition, a governing equation matrix is combined with a boundary 
condition matrix to construct an integrated equation matrix.  As a result, PDE problems having 
mixed boundary conditions could be easily formulated and numerically solved by the proposed 
FDM using the simple matrix method.  
  In addition, the formulated FDM using the simple matrix method becomes a fully implicit form for 
space.  Therefore, effects of amount of space increment on solution procedures could be minimized.  
The proposed method could be useful for obtaining transient solutions in electrokinetic problems 
particularly for bone remodeling, which electrical potentials are being changed temporally and 
spatially by the piezoelectricity of bone matrix. 
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