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Abstract 
It is difficult, or even unnecessary, to obtain all the modes of a large-scaled model. Thus, 
the modal truncation error is generally introduced and the quality of the responses may be 
adversely affected. Based on the Neumann series and the FFT technique, an accurate 
modal superposition method is presented to calculate the transient response of non-
classically damped systems. The presented method maintains original-space without 
having to involve the state-space formula. The method is convergent if and only if all the 
complex modes whose resonant frequencies are less than the maximal sampling 
frequency of the FFT must be available. Finally, the applicability of the method is 
investigated using a simple numerical example with non-classical damping. 
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Introduction 
The purpose of a transient response analysis is to calculate the behaviour of a structural 
or mechanical system subjected to a time-varying forces. The inclusion of damping in the 
dynamic analyses of structural or mechanical systems has become an integral part of 
many design methodologies, including predicting vibration levels, transient responses, 
transmissibility and design problems dominated by energy dissipation. 
 
In general, two different methods are used for the transient response analysis: direct 
transient response method (DTRM) and modal transient response method. The DTRM 
calculate dynamic responses by performing a direct numerical integration on complete 
coupled equations of motion at discrete times, typically with a fixed time step. In the 
most likely case for many engineering applications, the DTRM should be implemented 
for many time steps and large-scaled problems. Under such circumstance, it may be more 
effective by using reduced basis technique. Often the modes are used as the reduced basis 
vectors (known as the mode superposition method). The mode superposition method 
allows us to treat the equations of motion as a reduced-order form so that the step-by-step 
solution is less costly. It is should be noted that the quality of the responses depends on 
the number of modes involved. Although the accuracy of the calculated responses can be 
improved by increasing the number of modes, the convergence rate is very slow. Note 
that the eigenvalue solution is very computationally expensive, or even impossible, 
especially for large-scaled problems. Many approaches (Huang et al., 1997; Palmeri and 
Lombardo, 2011; D'Aveni and Muscolino, 2001; Besselink et al., 2013; Qu, 2007) were 
presented to deal with the modal truncation problems. However, these correction 
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approaches are only restricted to the case of undamped or proportionally damped systems. 
In general, proportional damping means that energy dissipation is almost uniformly 
distributed throughout the mechanical system. There is no any physical reason why the 
proportional damping must be satisfied. In practice, mechanical systems with 
significantly different levels of energy dissipation are frequently encountered in dynamic 
designs. As can be seen from experimental data, physical system produces complex 
modes and therefore no physical system is strictly proportionally damped system. To this 
end, the concern of this study is the non-classically damped system. Several 
approximation techniques are developed to efficiently calculate the responses of non-
classically damped systems. Among these approximation methods, the most common 
method is so-called the proportional approximation method (PAM), which is simply to 
ignore the off-diagonal (coupling) elements of the transformed damping matrix. It was 
shown that light damping, diagonal dominance of the transformed damping matrix and 
good separation of the normal modes (these conditions are once believed to produce 
small errors) are not sufficient conditions for the accuracy of the PAM. Although the 
PAM is a powerful approximate method, the results of the PAM are not always with 
acceptable accuracy. The accurate responses may be obtained by using the complex 
modal superposition method. Although these correction approaches used in undamped 
systems can be extended to non-proportionally damped systems based on the state-space 
formula, these state-space approaches are usually time-consuming since its size is two 
times the size of the original space and lack the physical insight provided by the 
superposition of the modes of the equation of motion in physical space. Note that the 
complex modes may be also efficiently calculated using the computational methods in the 
original space (Fischer, 2000; Holz et al., 2004; Adhikari, 2011; Rajakumar, 1993; Lee et 
al., 1998). Some of these original space based approaches have been programmed in 
famous softwares [see, e.g., Nastran (Komzsik, 2001)]. Some works (Li et al., 2014c; Li 
et al., 2014b; Li et al., 2013) were therefore developed to eliminate the complex modal 
truncation error of the frequency responses of damped systems without having to involve 
the state-space formula. It is shown (Li et al., 2014c) that the complex modal truncation 
error can be exactly expressed as a power-series expansion in terms of the available 
modes and system matrices and a hybrid expansion method (HEM) is presented to 
calculate the frequency responses of non-classically damped systems. Complex modes 
can be also recently shown to transform any viscously damped system with N DOF into 
N independent second-order equations [see, e.g., (Kawano et al., 2013; Morzfeld et al., 
2011; Ma et al., 2010) for details]. 
 
This paper presents an accurate method to calculate the transient response of non-
classically damped systems based on the Neumann series and the FFT technique. The 
method maintains original-space without having to involve the state-space formula so 
that it is efficient in computational effort and storage capacity. The method is convergent 
if and only if all the complex modes whose resonant frequencies are less than the 
maximal sampling frequency of the FFT must be available. Finally, it will be shown by a 
numerical example that, the proposed method can show a good agreement with the exact 
responses. 
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Transient response analysis 
The equation of motion of an N DOF linear damped system with zero initial condition 
appears as the following matrix form 

 ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f   (1) 

Here M, C and K are real mass, viscous damping and stiffness matrices, respectively. x(t) 
( )tx  ( )tx  and f(t) are displacement, velocity, acceleration and force, respectively. In this 

paper, assume that K is a positive definite symmetric matrix, M and C are symmetric 
matrices. 
 
The time domain equation of motion may be cast into a frequency domain form by using 
the Fourier transform technique 

 ( )2 +i ( ) ( )ω ω ω ω− + =M C K X F  (2) 

where 

 [ ]( )= ( )F tωF f  and [ ]( )= ( )F tωX x  (3) 

Here F[ ] denote the Fourier transform and ω is the circular (angle) frequency. The form 
can be given under the assumption that the complex input forcing can be interpolated by 
trigonometric polynomials. In practice, we usually need to find the frequency spectra of 
excitation by using the Fourier transform. 
 
The transient response can be then obtained by using the inverse Fourier transform, that 
is 

 [ ]1( )= ( )t F ω−x X  (4) 

In practice, a general analytical loading function cannot be easily obtained. It means that 
the discrete Fourier transform and inverse discrete Fourier transform algorithms given 
below should be used. 
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Here NFT is a number of sample points. xn are the elements of discrete time displacements 
and Xk are the elements of frequency spectrums of the discrete time series {xn}. Note the 
forcing samples should be obtained using the discrete Fourier transform [Equation (3)] 
and the transient response [Equation (4)] can be obtained by using inverse discrete 
Fourier transform once the frequency spectrums are calculated by solving Equation (2). 
The inverse Fourier transform procedure is defined using a positive sign in the 
exponential term and can be efficiently calculated using the inverse fast Fourier 
transform (IFFT) algorithm, which has been developed into a mature technology applied 
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successfully to calculate the displacement both in the frequency and time domain [for 
detail discussions on this aspect can be found in (Barkanov et al., 2003; Brigham, 1988; 
Duhamel and Vetterli, 1990)]. 

Accurate calculation of frequency spectrums 
The eigenvalue problem can be written in matrix form as 

 ( )2    1,  2,  , 2j j j j Nλ λ+ + = ∀ = …M C K φ 0  (6) 

Here λj and φj denote the jth eigenvalue and eigenvector (complex mode shape). Suppose 
these eigenvalues are ordered following increasing magnitude of imaginary parts. 
Assume these eigenvalues are distinct, the frequency spectrums can be calculated using 
the complex mode superposition method as 

 ( )
2

1

( )
( )

i

TN
j j

j j j

ω
ω

ω λ θ=

=
−∑

φ F φ
X  with ( )2T

i i i jλ θ+ =φ M C φ  (7) 

Note the parameter θj can be chosen to be unity by normalizing eigenvectors. The method 
requires that all the modes should be available to obtain an exact response. Often only a 
few lower modes are considered in practical analysis. Suppose the lower L pairs of 
complex modes are available, the frequency spectrums are usually calculated in the 
following way with a modal truncation error involved 

 MDM MDM( )= ( ) ( )ω ω ω+X X E  (8) 
in which 
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Equation (10) is known as the mode displacement method (MDM). Although the MDM 
is an efficient approximate method, the results of the MDM are not always with 
acceptable accuracy since the modal truncation error given by Equation (11) is introduced. 
Sometimes, the MDM will lead to misleading results [see, e.g., in (Li et al., 2014c; Li et 
al., 2014a)]. Recently, some reduced basis techniques were developed for the frequency 
response analysis [see e.g., (Hetmaniuk et al., 2012; Freund, 2003; Bai and Su, 2005; 
Hetmaniuk et al., 2013; Rumpler et al., 2014) for details].  
 
Next, we present an accurate mode superposition method to calculate the frequency 
spectrums. 

Theorem. Suppose the damped system (1) only has distinct eigenvalues and the sample 
frequencies ω satisfy the convergence condition 

 2 1Lω λ +<  (11) 
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Then the frequency spectrums can be given by 

 ( ) ( ) ( )ω ω ω= +X X E   (12) 
where 
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Proof. The frequency responses can be exactly expressed as the lower available modes 
and system matrices in terms of Neumann series expansion (Li et al., 2014c) 
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In practice, a few terms in power-series expressed by the second term on the right-hand 
of Equation (17) are considered for suitable accuracy requirements. Suppose the first h 
power-series terms are retained, the frequency response can be expressed as 

 ( ) ( )
2 2

1

1 1 1

( ) ( )
( ) ( )= i ( )

i

T TL h L
rj j j j

r r
j r j j jj j

ω ω
ω ω ω ω

θ λθ ω λ
−

= = =

 
≈ + + 

−   
∑ ∑ ∑

φ F φ φ F φ
X X E  (17) 

The series-truncation error of Equation (18) is introduced and given by 
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Here we introduce an important property between system matrices and complex modes 
(Li et al., 2014c) 
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Substituting Equation (20) into Equation (19) yields 
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If the convergence condition (12) is satisfied, one obtains 

   2 1,  2 2,  ...,  2j j L L Nω λ< ∀ = + +  (21) 
Then the series-truncation error can be given by Equation (15) by using the theory of the 
geometric sequence, and the theorem is proved. 
 

Remark 1. The method is convergent if and only if all the complex modes whose 
eigenvalues are less than the maximal sampling frequency of the FFT are available. 
Equation (14) can be used in the dynamic analysis of practical problems since the number 
h of correct terms is usually very small. Since the power-series expansion is truncated, 
the series-truncation error given by Equation (15) is introduced. When the convergence 
condition is satisfied, the errors can be decreased with the number h is increased. By 
comparing Equations (11) and (15), it is clearly shown that the frequency response 
obtained by Equation (14) can improve the accuracy of the response calculated by MDM 
if the sample frequency is at 0-|λL+1| rad/s. 
 
Remark 2. One of the most robust approaches to obtain these vectors Er(ω) (known as 
the Krylov vectors) is to firstly compute a matrix factorization (e.g., LDLT factorization) 
of the sparse stiffness matrix K. Note it only need to be obtained once for different 
sample frequencies. Then vectors Er(ω) can be determined by an iteration process in 
terms of forward and backward substitutions. In general, the computational cost of 
forward and backward substitutions is much smaller than the matrix factorization. 
 

Criteria. The number h for any simple frequency ω can be determined if the following 
inequality is satisfied. 

 ( ) ( 1)     1h h hε+ − < ∀ >S S  (22) 
in which 

 ( )
2

1

1

( )
( )= i ( )

TL
h j j

h h
j j j

h
ω

ω ω
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−

=

 
+ 

  
∑

φ F φ
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Here the parameter ε is the given accuracy tolerance. 

Numerical Example 
To illustrate this new method, we consider a simple there DOF damped system with the 
mass, damping and stiffness matrices given by  

2

4

1 0 0
0 10 0
0 0 10

 
 =  
 
 

M , 3

5 0 1
10 0 1 1

1 1 3

− 
 = × − 
 − − 

C , 8

2 0 2
10 0 2 2

2 2 9

− 
 = × − 
 − − 

K  

The complex eigenvalues are obtained as: −0.2475±222.46i, −5.0526±1421.4i and 
−2499.8±13920i. The excitation point is located at the first DOF and the force is shown 
in Figure 1. The time step is chosen as ∆t=0.005 seconds, which means that the 
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maximum simple frequency is 400π rad/s. In view of the convergence condition (12), the 
first pair of complex modes must be included to calculate the transient responses. The 
MDM is also considered to calculate the responses by using the first pair of complex 
modes. Figure 2 shows the responses at the first DOF (here NFT=512). In this case, the 
responses calculated by the MDM is misleading and meaningless. The proposed method 
can show a good agreement with the exact responses by considering a few numbers of the 
correction terms. 

 

   Figure 1. Applied force.                              Figure 2. Transient response. 

Conclusions 
This paper consider the transient response analysis of non-classically damped systems. 
When the mode superposition method is used to calculate transient response, the modal 
truncation error is generally introduced since it is difficult, or even unnecessary, to obtain 
all the modes of a large-scaled model. An accurate modal superposition method is 
presented to calculate the transient response of non-classically damped systems based on 
the Neumann series and the FFT technique. The method maintains original-space without 
having to involve the state-space formula. The method can converge to exact results if 
and only if all the complex modes whose resonant frequencies are less than the maximal 
sampling frequency of the FFT must be available. The applicability of the method is 
investigated using a simple numerical example with non-classical damping. It is shown 
that, the responses calculated by the MDM is misleading and meaningless and the 
proposed method can show a good agreement with the exact responses. 
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