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Abstract 

Influence of nucleation condition in phase field simulation is systematically investigated. Two-

dimensional multi-phase-field model for poly-crystalline material was used, and the transformation 

kinetics was compared with conventional Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. At 

first, the nucleation was set as the initial condition, and the nuclei arrangement was varied as on 

regular lattice points or randomly distributed. In such a model, the kinetics did not correspond well 

to JMAK plot. Time-dependent nucleation was then considered, and it revealed that the kinetic 

curve agrees well to JMAK plot. Finally, limitation was imposed on the setting of nucleation sites. 

As a result, it revealed that restriction in the nucleation site interfere the free growth and that the 

kinetics deviate from the ideal one. It is concluded that proper time-dependent condition with 

nucleation site set make better correspondence in the transformation kinetics with the JMAK plots.  

Keywords:  Phase transformation, Phase field model, Microstructure, JMAK model, Nucleation, 
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Introduction 

Phase field (PF) model has become a useful tool for simulating microstructure formation process of 

engineering materials, and various complex patterns, such as dendrite, cells, lamella, and poly-

crystals, have been regenerated successfully [e.g. Provatas and Elder (2010)]. The model has a basis 

on the thermodynamics, and free-energy minimization is ensured for growing process of the 

precipitated phase. Nucleation of the new phase is, however, out of the framework of the PF model, 

and nuclei are disposed as a computational condition. In solidification process, the melt is usually 

homogeneous and specific site-dependency in the melt is not found except the wall and surfaces. 

Randomness is then unavoidably introduced such that the nucleation site is scattered in the model 

using random numbers, but it brings uncertainty in the obtained results. For re-crystallization during 

hot-work process, recently, site-dependent nucleation is modeled based on the finite-element 

analysis using crystal-plastic theorem and sophisticated methods have been in great progress [e.g. 

Takaki et al.(2009], but the random nucleation model is still a major tool for PF simulations in 

general. On the contrary, macroscopic kinetics of phase transformation has long been studied. 

Johnson-Mehl, Avrami and Kolmogorov independently derived kinetic equation, currently known 

as JMAK equation, in which time evolution of the volume fraction is described using exponential 

term with empirical parameters. This equation is applied for various processes such as solidification, 

in-solid phase transformation and re-crystallization processes, and has been built in finite-element 

codes for engineering use. Phase field simulation exhibits microstructure in detail, while the total or 

averaged evolution of transformation area is not necessarily accorded with the kinetics [Jou and 

Lusk (1997), Li et al. (2007), Simmons et al. (2004), Alekseechkin (2011), Uehara (2014)] which is 

an outstanding problem for bridging the scale. Therefore, in this study, the comparison of the 

kinetics between PF simulation and JMAK algorithm is systematically demonstrated. A simple two-

dimensional model is used to pick out the dominative factors.  
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Phase Transformation Kinetics 

The conventional transformation kinetics known as JMAK form is summarized in this section.  

Assuming solidification process, solid region is initiated with nucleation, and it grows 

concentrically at a constant rate G.  Then a spherical region of the radius R = G t is formed at time t, 

and the volume is V = 4R
3
/3. When the frequency of the nucleation is N per unit time, the number 

of nuclei generated in the duration between t and t + d is N d, and the resulting volume of solid 

region is V = 4G
3
(t −)3

/3. Important notice is that every sphere is assumed to continue growing 

despite they collide to each other in reality. The volume calculated based on this assumption is 

termed extended volume Ve, which is represented by  
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where the second equality holds when both G and N are constant. Now, denoting the volume 

fraction of solid at time t by x(t), the liquid fraction is 1−x(t), and the solidification actually occurs 

in this region. Then the increment of the solid fraction is dx = (1−x(t)) dxe, where xe is the extended 

volume fraction. Substituting Eq. (1) into this relation,  
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is obtained. Generally, this formula is expanded as 1 exp( )nx At   , where exponent n is a 

parameter or named Avrami number, which is one of the fitting parameters. The theoretical value in 

the two-dimensional model is n = 3, which is used as a reference in this paper.  

Fundamental Equation for Phase Field Simulation 

A poly-crystalline microstructure formation is considered in this study, and multi-phase-field model 

originally proposed by Steinbach et al. [Steinbach et al. (1996)] is used. Only the fundamental form 

is described here:  
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where i is the multi-phase field which is assigned for every grain of precipitated phase for i = 1 to 

N while i = 0 is assigned for the original phase, mij, fij, wij and aij are the parameters and n is the 

number of existing phase. The values of these parameters, of course, affect the transformation 

kinetics and should be discussed in detail. However, in this study, to focus on the fundamental 

characteristics of the pattern formation, constant values for every combination i and j are assumed, 

and standard values are used. Instead, the total number N of precipitated phase considered is the 

focused parameter in this study.  In the poly-crystalline model, the number of grains Ng is consistent 

with the number of multi-phase-field variable, i.e. Ng = N, to identify each grain as a different phase, 

but it is time-consuming since the number of combination increases. In this paper, N is taken as 16 

even for models with Ng larger than 16, since significant difference was not found in the 

preliminary calculation.  

Model and Conditions 

Phase field equation (3) is numerically solved using finite difference method. Two-dimensional 

square domain is divided by 400x400 lattice points, and periodic boundary condition is imposed on 

every directions. The whole domain is initially homogeneous original phase. Various nucleation 

conditions are applied, and three cases reported in this paper are listed in Table 1. Commonly the 

nucleus position ri = (xi, yi) is selected using random number and the phase field value of i is 

changed to 1, if it is still 0. If the position is already in precipitated phase, the nucleation procedure 
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is skipped. Firstly, in Case 1, nuclei are 

set as the initial condition; all nuclei are 

initially disposed on random position, 

while regular arrangement is also tested 

for comparison. Time-dependent 

nucleation is assumed in Case 2; nc nuclei 

are generated every tc time steps. Finally 

in Case 3, the nucleation site is limited on 

specific position; the case for square 

lattice is demonstrated in this paper. 

Volume fraction, or actually area fraction, 

is calculated by x(t) = Np / NT, where Np is 

the number of grids where the phase field 

value 0 representing the original phase is 0 and NT is the total number of grids (NT=160000). Time-

evolution curve of the volume fraction is compared with JMAK plot according to equation (4). The 

exponent is set as n = 3 as the two-dimensional ideal model, and the parameter A is determined so 

that the time for x = 0.5 coincides; i.e. A = − ln(1−x)/t
3 

= − ln(0.5)/th
3
, where th is the time when x 

reaches 0.5 in the PF simulation. 

 

Results and Discussion 

Case 1 --- Nucleation as Initial Condition 

Results for Case 1 are shown in Figs 1 and 2. Figure 1 shows the phase-field distributions at the 

early stage which represents the initial arrangement of nuclei, and the resultant polycrystalline 

structure just before the phase transformation completes in the whole model. The cases for total 

number of nuclei n = 16 and 100 are presented. The color indicates the identifying number of the 

multi-phase-field variable, where 0, i.e. the original phase, is shown in blue. As a matter of course, 

the growing domains collide to each other, and grain boundaries are formed; regularity of the 

obtained structure is dependent on the initial nuclei arrangement.  

 

Figures 2 (a) and (b) represent variation 

of the volume fraction for regular and 

random arrangement, respectively. In 

addition to n = 16 and 100, the cases for 

n= 36 and 64 are also plotted. Since the 

results for random arrangement are 

dependent on the random number 

generated on the computer, two trials for 

every condition are plotted. Fig. 2 (c) is 

comparison between the PF result and 

JMAK model which is fitted according to 

the above-mentioned procedure, where 

the average values of two trials for 

random case are exhibited. Overall, faster 

growth is observed for regular 

arrangement, because the distance 

between the nuclei is uniformly large, and 

hence free growth duration lasts long. 

Compared to JMAK plots, PF result 

(b) =16: randomn (c) =100: randomn(a) =16: regularn  
 

Figure 1. Variation of the phase-field distribution 

for Case 1.  

Table 1. Simulation condition 

              

Case No. Arrange Timing 

1 Regular / 

Random 

Initial set 

2 Random 1 nucleus per 10 steps / 

1 nucleus per 2 steps / 

2 nuclei every step 

3 R2 lattice / 

R3 lattice 

Initial set  / 

1 nucleus per 10 steps / 

1 nucleus per 2 steps 
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shows faster growth in the case of regular arrangement for both n=16 and 100. For the random 

arrangement, on the contrary, PF result shows remarkable delay from JMAK plot, and the delay is 

significant in the latter stage. This tendency is more apparent in Fig. 2(d); all plots are re-drawn 

against normalized time t*, in which time is divided by the time when the volume fraction reached 

0.5. Note that JMAK plot is identical independent of the fitting parameter A.  

 

Case 2 --- Time-dependent Nucleation 

Results for time-dependent nucleation condition in Case 2 are shown in Figs 3 and 4. Here, three 

conditions are considered: a) one nucleus is generated every 10 steps, (b) one nucleus per 2 steps, 

and (c) 2 nuclei are generated every time step. Upper figures in Fig. 3 are the phase-field 

distributions at the 200th time step, and lower figures are those at the time step just before the 

transformation completes. Naturally, fine grains are formed when nucleation is more frequent, and 

coarse structure is formed when the nucleation rate is slower. Despite of this obvious difference in 

the microstructure, the kinetic curves correspond well to each other and also fit the JMAK plot. As 

shown in the magnified view in Fig. 4, a little discrepancy is found, but they are thought to be in the 

negligible range. Therefore, it is concluded that the time-dependency of the nucleation plays 

dominant role for transformation kinetics.  

 

Case 3 --- Restriction in Nucleation Site 

Finally, the effect of site-dependent nucleation is investigated. As shown in the result for Case 1, 

initial nuclei arrangement influences the transformation kinetics. In this section, the time-

dependency is also considered. Nucleation site is limited on the square lattice, while the actual 
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Figure 2. Variation of the volume fraction for Case 1.  
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position on the lattice is set at random. 

Two types of lattice (2x2 (denoted as R2) 

and 3x3 (R3)) are used. The nucleation 

rates are assumed as same as those in the 

previous section, while the case for 

nucleation at the initial condition is also 

used for comparison.  

Simulation results are shown in Figs 5 and 

6. In Fig. 5, variation of the phase field 

represents the grain growth from the 

nucleation sites on the R2 or R3 lattice. 

Before two grains on the lattice collide on 

the lattice, they grow freely, but after the 

collision, the growth direction is limited 

inside the lattice. This causes one-

dimensional grain growth, and hence 

deviation from JMAK plot becomes 

significant, as shown in the kinetic curve 

in Fig. 6. Especially when many nuclei are 

set as the initial condition, (see "R2 init"), 

there is no duration of free growth, and the 

resultant kinetics appears to be rather 

linear. As the nucleation rate becomes 

slower, the kinetics becomes closer to the 

ideal curve, which is apparent in Fig. 6(b). 

Also, the case for R3 lattice shows better 

correspondence to JMAK. This is because 

relative duration of free growth to the 

entire transformation is larger for R3. In 

other words, as the nucleation sites are 

strictly limited relative to the whole 
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  Figure 3. Distribution of phase field for Case2.           Figure 4. Time evolution for Case 2. 

(a) R2 lattice: initial set

(b) R2 lattice; 1 nucleus per 2 steps

(c) R2 lattice; 1 nucleus per 10 steps

(d) R3 lattice, 1 nucleus per 2 steps  

Figure 5. Distribution of phase field for Case 3. 
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domain, the kinetics deviates from the 

ideal kinetics.  

Conclusions 

Nucleation condition is determinative for 

microstructure formation, and the 

influence in the phase field simulation 

was systematically investigated. When 

the nuclei are set as the initial condition, 

the kinetics, i.e. the evolution of volume 

fraction of the transformed region, does 

not well corresponds to JMAK plot. 

When time-dependent nucleation condi-

tion was introduced, the kinetic curve 

revealed to agree well to JMAK curve. 

Restriction on the nucleation site was 

also determinative for deviation from 

ideal state. It is then concluded, in this 

paper, that proper time-dependent nuclea-

tion condition makes better correspond-

ence in the transformation kinetics with 

JMAK theory.  

The model considered here is, of course, 

too simple to be compared with realistic 

model or experimental results. Three-

dimensional model may have additional 

effects in the kinetics. Physical under-

standing and its modeling on nucleation 

process, as well as environmental conditions such as temperature and material composition, are also 

to be discussed. Nevertheless, fundamental feature of the transformation kinetics presented in this 

paper is considered to be valuable for further modeling and utilization of the phase field model.   
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Figure 6. Evolution of volume fraction for Case 3. 


