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Abstract

Application of feedback control in nonlinear sysgeis an area of active research.
Control algorithms utilising Lyapunov methods, Désiag Functions, backstepping
etc. are some of the approaches being exploreddbkek Linearisation, which
effectively renders the nonlinear system exacthedr through the application of
nonlinear feedback, is another approach that has leestigated. Many publications
presenting analytical, numerical and also experiaddimdings have emerged. Much of
this work addresses systems with smooth nonlinesyridften described by a polynomial
function. The underlying theory of feedback linsation is well-defined for such
systems and is readily available through classeds and also other publications. For
non-smooth systems, however, the applicabilityhef inethod is not quite as obvious.
The present work aims to demonstrate that at lesssome types of non-smooth
nonlinearity, the theory of feedback linearisatiaids soundly. Successful application
of the method in closed-loop control is demonstréiteough a numerical example.
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Nomenclature and abbreviations

@, Wy, w; — uncoupled natural frequencydn 3, ¢ DOFs
{s {5 {s — Viscous damping coefficients m g3, DOFs

a — distance from aerofoil mid-chord to rotatioaals, normalised blp
b — aerofoil semi-chord
c — distance from aerofoil mid-chord to aileron larime, normalised bly

Ka: Kz, Ke = structural stiffness iar, 5, DOFs
D,E,,E,,F — matrices relating to the augmented states ch¢hneelastic system

M,.C, K, —overall mass, damping and stiffness matriceseabelastic system
[po Tp — radius of gyration iy, £ normalised by

U,u* — air velocity, reduced air velocity( =U bk,)

X, — COM distance of wing+aileron from rotationalsaxormalised by
Xz — COM distance of aileron from hinge line, norread byb

COM — centre of mass

DOF(s) — degree(s) of freedom

LFS — linear flutter speed

UoL — University of Liverpool

WTAR — wind tunnel aerofoil rig



1 Introduction

Suppression of vibration is among the major comaiitens not only in the design and
manufacture of new systems, but also in improvirgtang and well-established
ones. A variety of active and passive control méshbave been explored. Active
control poses the advantage of being able to ileecontrol inputs based on observed
response, thus allowing greater control of thefpl@he modelling of nonlinearities in
the system being controlled is becoming increagingbortant, fuelled by the ever-
growing desire to increase effectiveness of exgstiontrol methods or develop new
ones altogether. In this work, the numerical itasbn considered is that of flutter
suppression in a 3-DOF pitch-plunge-flap aeroataststem.

There have been many publications in the literawealing with the control of
systems with smooth nonlinearities, including alstec systems. The application of
feedback linearisation on nonlinear aeroelastictesys with smooth structural
nonlinearities, mainly of the hardening type, wasestigated in (Platanitis and
Strganac 2004, Strganac, et al. 2000, Ko, et &9,19iffri, et al. in press, Jiffri, et al.
2013, Jiffri, et al. 2013, Jiffri, et al. 2013); thatheoretical and experimental aspects
have been addressed. Papers related to non-sma@bdéims are also available, albeit
in less abundance. A method for adaptive contrahvieedback linearisation of
systems containing a freeplay input was preseméBRecker, et al. 1991), which was
extended subsequently to include also a freeplagubTao and Kokotovic 1997).
The cases of partial feedback linearisation witkl anthout relative degree were
addressed subsequently in (Ma and Tao 2000). @dpears related to control of non-
smooth nonlinear systems include (Zheng, et al320&o0, et al. 2013).

The present work applies partial input-output fesdblinearisation on a 3-DOF
aeroservoelastic numerical model with a piece-wrszar stiffness in the pitch DOF,
with the aim of stabilising the linearised respotiseugh pole-placement. The model
employed is that developed by Edwards et al. (Edsyaet al. 1979), which includes
actuator dynamics and approximates unsteady balrawising two additional
augmented aerodynamic states. Other work in whied tmodel has been used
include (Conner, et al. 1997, Li, et al. 2010)the present work, the parameters of
the model are tuned to match the dynamics of timel winnel aerofoil rig (WTAR) at
the University of Liverpool.

This paper commences with a description of the ineal aeroelastic system.

Equations of motion are given, and are followed flsquency and time-domain

simulation results based on the WTAR parametergprdssions for input-output

linearisation of the plunge DOF are derived, inalgdthose for the zero-dynamics.
Numerical simulation results from the closed-loogpstem are then presented,
demonstrating successful control of the system withiecewise linear non-smooth
nonlinearity both when full knowledge of the nomlamity is assumed, and when there
IS uncertainty associated with the nonlinearity.

2 Model description

In this section, a detailed description of the akstic model employed in this work
is given. Thereupon, numerical simulation resulexfgrmed using aeroelastic
parameters pertaining to the WTAR at the Universttiziverpool will be presented.
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2.1 Equations of motion

The aeroelastic model of Edwards et al. (Edwards,ale 1979) featuring
approximation of the unsteady aerodynamic loadsutin the use of augmented
states is employed in the present work. This modesists of a total of 8 states in the
first-order state-space representation. Six ofdlage structural states, namely plunge
(normalised with respect to the semi-cholgl pitch, aileron flap (¢, a, S

respectively) and their time-derivatives, ¢, [ respectively). The remaining two are
the augmented aerodynamic states mentioned abque,(). Equations of motion
for the model are given as

x=Ax+Bu, where u=g,. ,x={x % - x} ={q v q}
A . A AT T
a={¢ a B, v=q={¢ a B, a.={x x}. (1)
Osg  leg Opag Orsy 0
A=|-MK, ME MD |, B=MG | G ={0
E, E, F (U rra

and the definition of all quantities appearing witthe above equation may be found
in (Edwards, et al. 1979, Li, et al. 2010). Theuhn the above equation is the
desired flap angle of the aileron.

This particular model is chosen as it models theadyics of the actuator, the means
through which the input will be applied. As will lseen later, the existence of a non-
smooth nonlinearity in the system will necessit@teon-smooth input during closed-
loop control. Since such an input cannot be acldiaaepractice, modelling of the
actuator dynamics is necessary to produce a nuah@niadel that is representative of
reality. This becomes an even more important isgben implementing feedback
linearisation in practice, as using a control ldwattis based on a model without
actuator dynamics will give rise to a discrepaneyween the required non-smooth
input and the actual smooth input provided by ttteator. It is expected that such a
discrepancy will degrade controller performance.

The nonlinear case of the above model may be seadgressed in the affine form

x=f(x)+g(x)u, (2)

where, in the present cagdx) =B and the use of different symbols is aimed at
maintaining conventionally accepted notation inlthear and affine nonlinear cases.

2.2 Aeodastic Parameters of the WTAR

From previous experiments and related numericalulsiions performed on the
WTAR at UoL (Papatheou, et al. 24-26 June, 2018)pelastic parameters that
describe well the aerofoil behaviour were extracldeese are given in Table 1, along



with estimates for the parameters describing flgpadhics (not found during the
experiments).

Table 1 — Parameters of the UoL wind tunnel aerofbrig, used in the present numerical model

Parameter Value | Parameter Value Parameter Value
w, (rad/s)  35.354 c 0.5428 | w; (rad/s) 100

r, 0.4 b (m) 0.175 s 0.079057

X, 0.09 H 69.0 Xz 0.0125
@, (rad/s)  22.948 s 0.002 ¢p 0.002

a -0.33333 ¢, 0.015

This format of parameters is widely used in theréiture, and is defined in
(Theodorsen 1935) in addition to the papers retmémearlier.

2.3 Frequency domain results for the linear system

For the linear case of the aeroelastic system, raag plot the variation of the
eigenvalues with respect to reduced air speedaFspeed range &f* = 0.1 — 3.0,
the resulting plot is shown in Fig. 1.
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Fig. 1 — Normalised eigenvalues of structural modesgarying with airspeed

The linear flutter speed (LFS) is located at thempahere the normalised real part of
an eigenvalue becomes positive. It is evident fieign 1 that this occurs with the
plunge mode. The reduced LFS in the present systéound to beJ* = 2.793 (this
translates to an absolute airspeed of 17.28 m/s).

2.4 Nonlinear time-domain response with piece-wise linear stiffnessin pitch

A symmetric piece-wise linear nonlinearity is nomtroduced into the pitch DOF.
The parameters describing the nonlinearity arerginelable 2.



Table 2 — Nonlinearity parameters for piece-wise tiear pitch stiffness

Parameter Description Value
g initial (lower) stiffness region 1
” on either side ofr =0
K, =(1-1)K,, whereK,
P/ (ll<0a) (eisga) 0.6
is the initial (lower) stiffness
< stiffness in the outer regiong(>g,), ,

chosen to be equal to linear pitch stiffnéss

The resulting pitch moment profile is depicted bg solid line in Fig. 2.
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Fig. 2 — Pitch moment profile in the presence of pce-wise linear stiffness

For the purpose of applying feedback linearisationyill be necessary to define a
target linear system, i.e. the desired system tme@onlinearity has been eliminated.
This is especially relevant if the feedback linsation cancels out only the nonlinear
terms and not the entire open loop dynamics. NByutae target linear system may
be chosen as a system whose pitch stiffness id amjtize slope of the outer regions
in the nonlinear case. The pitch moment profil¢his case is shown by the dash-dot
line in Fig. 2. It is now possible to define al@ thonlinear moment, i.e. the moment
which, when added to the linear moment producesigenonlinear moment profile.
This non-smooth nonlinear moment profile is showrhe dashed line in Fig. 2.

The nonlinear system is now simulated at a redwedocity U* =2.0 with plunge
and pitch initial values of =0.01, a = 3 respectively, and with all other states set
to zero. The resulting structural responses are/shio Fig. 3.
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Fig. 3 — Structural states of nonlinear system adt*=2.0

It is evident that the response settles into an L®@Rich occurs at an airspeed which
is less than the LF®* = 2.793, which is expected as the initial stiffnéssthe
nonlinear case is lower than that of the lineatesys



3 Feedback linearisation

This section presents the application of feedbaokatisation on the nonlinear
aeroelastic system described by eq. (2). Feedhae&risation (Isidori 1995, Khalil
2002) is a process whereby a nonlinear system ndered linear through the
application of nonlinear feedback and a co-orditi@esformation. The system in (2)
is first expressed as

v 0
f(x)={Pg+®v+Aq,+Qf,+, g(x)=|E], )
EQq+ENv+Fq, 0
where
Y=-MK, ®=-MT, Q=-M7",
(4)

E=M;G, A=MD,

The nonlinear force vector arising from the piedsenlinearity, as illustrated in Fig.
2 above, is expressed as

fy=-A0K g for |a]<g,
f, =-A0K g, for |a|>g,, a>0 (5)

nl

f, =A0K g, for |a]>g,, a<0
where

MK, =Kee, 6={0 g, 4", K, =(1-2)K, (6)

olsoq)

and wheree, is the second column of a 3x3 identity matrix. Tfeedback

linearisation method requires that the outputs a@metinuously differentiable, and
therefore smooth. The non-smooth nature of theimeality would result in non-
smooth — but continuous — forces/accelerations. édaw the resulting changes in the
system states (both displacement and velocity)belsmooth, as they are obtained as
time-integrals of the accelerations (which are rwaus, albeit non-smooth). Thus,
all the states of the system are continuously iiffgable, satisfying the condition for
feedback linearisability.

3.1 Plunge output linearisation

The classical input-output linearisation approaesidéri 1995, Khalil 2002) is now
followed to apply feedback linearisation by coning the plunge displacement. The
co-ordinates of the linear system are obtained as

Z=y=X, Zzzy:)'(lz)(4 (7)



using equation (1). Here, the outpytis chosen as the plunge displaceménrtx; .
The partially linearised system may then be obthaee

(Bl g2 vt e ==t & a7 @

with v being an artificial input associated with the &nsed system. Since there

remains an un-linearised set of 6 states, it iessry to examine the zero-dynamics to
ensure their stability when designing a controlierpressions for the remaining linear

co-ordinates are first required to complete thesi@mation. These are chosen as

Z; =X, Z4:X3+£2X4_§(f(5 25:53(4_51(@

_ _ _ 9)
26_53)(5_52)(6’ Z;=Xp Zg= Xy
completing the 8x8 transformation from nonlinealinear co-ordinates as
z=T,X. (10)
The resulting zero-dynamics are found as
P 0
Z(3:8)ZD = sz (4:6,4:6[T N A] (Tz_xl)(l;s,s;g) 2 Z(3:8)ZD + sz(4:6,4:69fnl (23) (11)
-1 0
i [El E. FP}(TZX )(1:8,3:8) ]
where
1 0 0-Y§ 000
Plz{o 0 —gz—; ? 0 O}, R={0 0O 0O 0O (12)
s 0 00 O O0O0DO

The zero-dynamics are checked to verify stabilitythee internal dynamics of the
partially linearised system. A stability investigat of the zero-dynamics yields that
there exist 3 equilibrium points — one zero-equilitn and two non-zero equilibria.
The eigenvalues pertaining to the trivial equilioni point are found to have negative
real parts, viz.,

-4.31592 + 98.20627 -0.84754 + 16.22586 -37.91684 + 0.00000
-4.31592 - 98.20627 -0.84754 - 16.22586  -3.79316 + 0.00000

demonstrating stability of this equilibrium point.



3.2 Linearised response with pole-placement implemented

A desired natural frequenoygk and damping ratiq’ng may be set for the controlled
DOF ¢ by choosing the artificial input as

V=-0,2,-2{, &2, (13)

For this simulation, target values are chosem;gs 1H2,Zn{ = 0.1. The resulting

closed-loop response, for the same initial cond#tias the open-loop case, is shown
in Fig. 4.
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Fig. 4 — Closed-loop response of systemldt=2.0

It is evident from the first subplot that the targatural frequency of 1 Hz is achieved
in the plunge motion, as expected. The pitch moticonfined to the internal
dynamics settles down to the stable zero equilibyias seen in the middle plot. The
flap motion, given by the final subplot, is plottatbngside the commanded input in
Fig. 5, where the difference between the two islodted.
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Fig. 5 — Comparing commanded and actual flap angldg*=2.0

Closer inspection of the input reveals non-smodthnges corresponding to the
switching points between the two stiffness regimesthe pitch DOF. This is

expected, as the input is designed to cancel teemsydynamics which include the
non-smooth nonlinear forcing terms. Since the dyinamf the actuator are accounted
for in the model and consequently in the computatibthe non-smooth input, there
will be no degradation on closed-loop responsendufeedback linearisation, and
exact pole placement will be achieved in the absehmonlinearity parameter errors.

4  Adaptive feedback linearisation

In real situations, complete cancellation of thalmearity will not be achievable. This
could be due to a variety of reasons such as inatecmeasurement of the nonlinearity,
incorrect assumption of the form of the nonlingarégtc. Adaptive Feedback
Linearisation is a method that may be used to gieeaasymptotic closed-loop



stability in the presence of a discrepancy betwbenactual nonlinearity parameters
and those assumed in the design of the contrdller.assumed nonlinearity parameters
are updated at every time step according to antigddaw, which has the effect of
driving the closed-loop controlled responses tozer

The previous numerical simulation is continued. Tri@usion of uncertainty/error in
the description of the piece-wise linear stiffnessuld ideally require a few
nonlinearity parameters (to describe the innerauér stiffness and the range of the
inner stiffness), but in this work we assume symmeknowledge of the inner

stiffness; only the stiffness paramet€f is considered uncertain. Since the zero-

dynamics have an asymptotically stable equilibriaamg the nonlinearity is linearly
parameterisable, the conditions for Adaptive Feeklhanearisation are satisfied. A
40% error inK, is now assumed. Thu¥, =1.4K,. Commencing with a scalar

guadratic Lyapunov function

V=7,PR,tKE R =K oK, PO, (14)

a !

it can be shown that a parameter update law
71— T T T
Ky =1"(2,,) B/Pz,, (15)

can be derived, which asymptotically drives theset®loop controlled response to
zero by ensuring tha¥ is a decreasing function. Inclusion of this upd&tes
translates to an increase in the dimension ofttite sector. In (15),

r(a)=-e.e,q for |a|<g,
r(a)=-eeg,q, for |a|>g,,a>0 (16)

r(a)=ee,q, for |a|>g,,a<0

and B, =[O 1]T Is the input matrix of the partially linearisedssym (equation (8)).

The entries in the arbitrary matriR are chosen judiciously so as to ensure rapid
convergence oK, . For the same initial conditions as before and dame pole-

placement requirement from the exact linearisatt@se above, the close-loop
responses for the structural DOFs are given in@ig.

0.01

*******************

; | |
| | [
| o R <
hd O\W WANYRA v; ! \'8/
l l <
0.0 10 10 20
time (s) time (s)

Fig. 6 —Closed-loop response of system with Adaptive Feeklbmearisation at*=2.0

It can be seen that the closed-loop response isaciesized by higher frequency
harmonics as compared with the exact linearisatese. Furthermore, the response

9



takes longer to settle, although it eventually geci zero. The pitch response is
again driven to the zero equilibrium. A noticeatllference between the controlled
response in this case and in the case of exachde&dinearisation is that the pole-
placement objective is not achieved here. Thixpeeted, as the adaptive law does
not take into account this objective, and merelgrgatees the convergence of the
response to the origin.

5 Conclusions

This work has presented the application of parteddback linearisation on a
dynamical system having a piece-wise linear strattistiffness nonlinearity.
Although the nonlinear forces and the required is@re non-smooth, the structural
states themselves are smooth and continuouslyreli@ble, thereby satisfying the
requirements for feedback linearisability. The momeoth nature of the inputs
necessitates modelling of the actuator dynamicsgssto replicate the situation one
would encounter in practice, namely that a reali@ct is only capable of applying
smooth inputs. Numerical simulation results frora 8ddegree of freedom aeroelastic
model demonstrate successful linearisation of thege response, whilst driving the
uncontrolled pitch response to zero, as expectu the zero dynamics. The final
section presents a simple case of nonlinearityrpeter uncertainty and application
of the associated adaptive algorithm during feeklbimearisation; it is shown from
numerical results that the system responses acessfally driven to zero.
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