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Abstract

A methodology to compute the error due to homogenization of an heterogeneous
stochastic problem is presented. The method is developed for the heat equation,
and in order to be applicable, it is required that the conductivity is statistically
invariant over the domain. Examples illustrate the behaviour of the bounds.

1 Introduction

In this paper a methodology to compute the error due to homogenization of an
heterogeneous stochastic problem is presented. By bounding the error, we mean
to bound the difference between the expectation of a quantity dependent of the
solution that is defined by the analyst and its estimation from the homogenized
problem. The computation of the bound is purely deterministic, however, it
involves the solution of another problem, called the dual problem.

All the theory regarding the bound is presented for a Poisson problem (heat
equation), though this method can be extended to much wider that fulfill some
characteristics listed in this work.

The main features of the bound are its simplicity and low computational
cost. On the other hand, under some circumstances, the interval defined by
the bound can be very wide. An example is shown and an explanation to this
behaviour is given in the Appendix.

The paper is organized as follows. In section 2, the problem is defined and
the required notation is introduced. In section 3, the bounds are derived. The
following section, presents a couple of simplifications which make the compu-
tation of the error bound very efficient. Section 5 presents two test cases to
validate the presented bounds.
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2 Problem and notation

2.1 Stochastic problem

The problem is defined on a domain Ω×Θ, where Ω ⊆ R2 is the spatial domain
and Θ is the stochastic domain. The boundary of Ω is denoted by Γ, which can
be further divided in two subsets ΓD and ΓN . Deterministic Dirichlet boundary
conditions (temperatures) are prescribed on ΓD, while deterministic Neumann
boundary conditions (fluxes) are prescribed on ΓN . The conductivity k depends
on the spatial coordinate and also on the realization; however, it is statistically
invariant, ∫

Θ

k =
1

|Ω|

∫
Ω

k. (1)

With that notation, the partial differential equation reads,

−∇ · (k∇u) = f(x) ∀x ∈ Ω×Θ

−k∇u · n = g(x) ∀x ∈ ΓN ×Θ

u = h(x) ∀x ∈ ΓD ×Θ

where, f, g and h are known deterministic functions.
Through Green’s lemma, the problem can be rewritten in its weak form:

Find u ∈ H1∫
Ω×Θ

k∇u · ∇v =

∫
Ω×Θ

fv −
∫

ΓN×θ
vg ∀v ∈ H1

0 (2)

where

H1 =

{
u ∈ L2(Ω×Θ)|u = h(x) on ΓD × Ω and

∂u

∂xi
∈ L2(Ω×Θ)

}
and

H1
0 =

{
u ∈ L2(Ω×Θ)|u = 0 on ΓD × Ω and

∂u

∂xi
∈ L2(Ω×Θ)

}

We conclude this section introducing more notation. The left hand side of
(2) is a bilinear form, that will be denoted by

a(u, v) =

∫
Ω×Θ

k∇u · ∇v

and its induced norm (since it defines an inner product)

‖v‖a =
√
a(u, u)

; while the right hand side will be denoted by

L(v) =

∫
Ω×Θ

fv −
∫

ΓN×θ
vg
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2.2 Quantity of interest

The quantity of interest is the result of applying a certain functional to the
solution field. This functional must be expressed as the integral of a linear
operator J over a subset of Ω, therefore, the average temperature on a square
or the average flux on part of the boundary are examples of quantity of interest.
Due to the stochastic nature of the model, this paper is concerned with the
expectation of the quantity of interest. The quantity of interest will be denoted
by

qθ(u) =

∫
Ω′
J(u)

and its expectation will be denoted by

q(u) = E[q(u)] =

∫
Θ

∫
Ω′
J(u)

Now, we proceed to introduce the adjoint problem,

Find φ ∈ H1
0 ∫

Ω×Θ

k∇φ · ∇v = q(v) ∀v ∈ H1
0 (3)

Its relevance will be made clear in the following sections.

2.3 Homogenized problems

In this section, we proceed to introduce two more problems. Both problems
are deterministic since k is substituted by k̄ obtained through homogenization.
Since the following problems are easier to solve, their solution is going to be
used to compute the quantity of interest and the error due to the substitution
will be bounded. The problem reads

Find ū ∈ H̄1∫
Ω

k̄∇u · ∇v =

∫
Ω

fv −
∫

ΓN

vg ∀v ∈ H̄1
0 (4)

where

H̄1 =

{
u ∈ L2(Ω)|u = h(x) on ΓD and

∂u

∂xi
∈ L2(Ω)

}
and

H̄1
0 =

{
u ∈ L2(Ω)|u = 0 on ΓD and

∂u

∂xi
∈ L2(Ω)

}

We will denote the approximation of the solution of this problem (obtained
by finite elements, for instance) by uh. And the error field, u − uh will be
denoted by e. The second problem reads:
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Find φ̄ ∈ H̄1
0 ∫

Ω

k̄∇φ̄ · ∇v = q(v) ∀v ∈ H̄1
0 (5)

The approximation of its solution will be denoted by φh, while its associated
error field, φ− φh, will be denoted by eφ.

3 Derivation of the error bounds

In this section, we proceed to bound the following quantity,

q(u)− q(uh)

with an upper and lower bound. The computation of those bounds will not
involve the solution of a stochastic problem.

We start by using using equation (3) and the fact that a is linear with respect
to its second argument,

q(u)− q(uh) = a(φ, e)

To this expression, we add and subtract a(φh, e) to obtain

q(u)− q(uh) = a(eφ, e) + a(φh, e) (6)

Now, we make use of the following result related to the residue,

R(v) = L(v)− a(uh, v) = L(v) + [a(u, v)− a(u, v)]− a(uh, v) = a(e, v)

which allows us to rewrite (6)

q(u)− q(uh) = R(φh) + a(eφ, e)

It is relevant to emphasize that R(φh) is a deterministic quantity, since

R(φh) = L(φh)︸ ︷︷ ︸
deterministic

−
∫

Ω

∫
Θ

k∇uh · ∇φh = L(φh)− E[k]

∫
Ω

∇uh · ∇φh︸ ︷︷ ︸
deterministic

since k is statistically invariant.
Since the bilinear form a(·, ·) defines an inner product, we can use the

Cauchy-Schwarz inequality to obtain,

R(φh)− ‖eφ‖a‖e‖a ≤ q(u)− q(uh) ≤ R(φh) + ‖eφ‖a‖e‖a

Now, we proceed to bound the norms of the errors since they are not computable.
In order to do that, we introduce an inner product, its induced norm,

< u, v >k−1=

∫
Ω×Θ

k−1uv ‖u‖k−1 =
√
< u, u >k−1

and a vectorial field Q̂ that fulfills,

∇ · Q̂ = f(x) ∀x ∈ Ω

Q̂ = g(x) ∀x ∈ ΓN
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In other words, a flux field that fulfills the prescribed flux boundary conditions.
Notice that all the terms in those two equations are deterministic. In [1] several
techniques to compute a field with such characteristics are compared.

The aim is to prove that,

‖e‖a ≤ ‖Q̂+ k∇uh‖k−1 = η (7)

Firstly, we turn our attention to the following equalities,

−
∫

Ω×Θ

Q̂ · ∇v = L(v) ∀v ∈ H1
0∫

Ω×Θ

k∇u · ∇v = L(v) ∀v ∈ H1
0

and to their difference,

0 =

∫
Ω×Θ

(Q̂+ k∇u) · ∇v ∀v ∈ H1
0

Setting v = −u+ uh, we obtain that

< Q̂+ k∇u,−k∇u+ k∇uh >k−1= 0

in other words, Q̂+k∇u is orthogonal to−k∇u+k∇uh in the k−1-inner product.
This allows us to use the Pythagoras theorem to obtain the desired result

‖Q̂+ k∇uh‖2k−1 = ‖Q̂+ k∇u− k∇u+ k∇uh‖2k−1 =

= ‖Q̂+ k∇u‖2k−1 + ‖ − k∇u+ k∇uh‖2k−1 = ‖Q̂+ k∇u‖2k−1 + ‖e‖2a ≥ ‖e‖2a
In a similar manner, the result can be extended to ‖eφ‖k−1. The bounds can
be summarized in the following equation

ζl = R(φh)− ηηφ ≤ q(u)− q(uh) ≤ R(φh) + ηηφ = ζu

Finally, we show that η is a also deterministic quantity. By expanding its square,

‖Q̂+ k∇uh‖2k−1 =

∫
Ω×Θ

k−1Q̂ · Q̂+

∫
Ω×Θ

k∇uh · ∇uh + 2

∫
Ω×Θ

Q̂ · ∇uh

= E[k−1]

∫
Ω

Q̂ · Q̂+ E[k]

∫
Ω

∇uh · ∇uh + 2

∫
Ω

Q̂ · ∇uh (8)

it becomes explicit that it is only a sum of integrals over the spatial domain.
Before concluding this section, it is worth to mention this error bound can

be extended to other problems, such as linear elasticity. The results required
that the bilinear form to define an inner product, in order to be able to use the
Cauchy-Schwarz inequality.

3.1 Deterministic heterogeneous problem

We would like to emphasize that the derivations exposed in the previous could
be session could be repeated to compare the solution of an heterogeneous de-
terministic problem and the solution of it homogenized counterpart. However,
in this case, an integral would have to be performed over the heterogeneous
domain which may involve the generation of an integration mesh, while for
stochastic problem, since the material properties are statistically invariant, the
integral is performed over an homogeneous domain, which greatly reduces the
computational costs.
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4 Simplifications

In this section, we intend to show how under some assumptions, it becomes very
efficient to compute the error bound proposed. Our first assumption considers
that the homogenized problems were solved through the finite element method
with a mesh that is fine enough to assume Q̂ = −k̄∇uh. We will be also
assuming that the Dirichlet boundary conditions are homogeneous. Given that,
the finite element method would produce the following two system of equations,
for the primal and the dual problem:

[A][u] = [l]

[A][φ] = [q]

Now, the computation of R(φh) reduces to

R(φh) = [l]
T
[φh]− E[k]

k̄
[u]T [A][φh]

and the three integrals that define η2 are reduced to,

E[k−1]k̄[u]T [A][u] +
E[k]

k̄
[u]T [A][u]− 2[u]T [A][u]

5 Numerical results

In this section, two numerical examples are presented to illustrate the behaviour
of the bound.

5.1 Low conductivity contrast

The domain of consideration is a L-shape (figure 5.1) made of matrix of conduc-
tivity km = 1 and filled with 75 circular particles of radius 0.05 and conductivity
ki = 0.6, resulting in approximate volume fraction of 0.196. The centers of the
particles follow an uniform random variable inside, thus, the particles are not
allowed to intersect with each other or with the boundaries of the domain. The
functions f, g and h are defined as follows,

f(x) = 0 ∀x ∈ Ω

g(x) =


−10(y + 1) ∀x ∈ {1} × [−1, 1]

−10(x+ 1) ∀x ∈ [−1, 1]× {1}
0 ∀x ∈ {−1} × [0, 1] ∪ [0, 1]× {−1}

h(x) = 0 ∀x ∈ [−1, 0]× {0} ∪ {0} × [−1, 0]

On the other hand, an approximation of the solution is obtained in a domain
with an homogeneous conductivity. The homogeneous conductivity k̄ is ob-
tained through the rule of mixture (which in this case, is the same as the E[k])
which gives a value of We define our quantity of interest to be the average
temperature on ω = {1} × [−1, 1] ∪ [−1, 1]× {1},

qθ(u) =
1

|ω|

∫
ω

u

6



x

y

(−1, 0)

(−1, 1) (1, 1)

(1,−1)(0, 1)

Figure 1: Domain

To validate the bounds a reference quantity of interest will be computed through
Monte Carlo using 64 realizations.

Figure 5.1 and 5.1 show the temperature and the gradient field for the ho-
mogenized domain and for a random realization.

The following table summarizes the results

q(uh) ζl ≤ q(u)− q(uh) ≤ ζu ζl + q(uh) ≤ q(u) ≤ ζu + q(uh)
22.10 -1.20 0.46 1.20 20.90 22.56 23.30

It can be observed that the bounds for q(u) − q(uh) are symmetric, since φh

belongs to the test space of the uh.

5.2 High conductivity contrast

In this section, we are going to repeat the previous numerical example with a
high contrast between the conductivity of the matrix and the inclusion. The
conductivity of the matrix remains the same km = 1, however, the conductivity
of the inclusion is set to ki = 0.1. The following table summarizes the results:

q(uh) ζl ≤ q(u)− q(uh) ≤ ζu ζl + q(uh) ≤ q(u) ≤ ζu + q(uh)
25.88 -42.71 5.33 42.71 -16.83 31.22 68.59

The purpose of this numerical example was to show that the interval described
by the bounds grows in length very fast when there is a high contrast between
the material conductivities, making it unusable. In the appendix an explanation
for this behaviour is given.

6 Conclusions

An bound on the error due to homogenization of an heterogeneous stochastic
problem was presented in this paper. The bounds can help to asses the validity
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Figure 2: Left: Temperature field for a realization Right: Temperature field for
the homogenized field
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Figure 3: Left: Gradient in the X direction for a realization Right: Gradient in
the X direction the homogenized field
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of the approach. The computational cost, in some circumstances, is very low,
specially, when compared to the deterministic approach, since it only involves
an integral over an homogeneous domain.

On the other hand, the numerical examples have highlighted one of the
limitations of this work. The error bounds do not behave well, when there
exists a huge contrast between the conductivities of the several materials. This
will be explored in future works.

That is not the only limitation of this work. The bounds presented are only
valid for the expectation. For some analysis, the analyst might also be interested
on how the quantities are spread around the expectation. Also, the bound does
not take into account the effect of the shape of the particles. The authors have
extended the present work to deal with the last two limitations, a bound on the
variance, and a bound on the expectation that takes into account the particle
shapes. Both ideas will be the object of upcoming publications.
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APPENDIX

In this section, we intend to explain the behaviour shown in section (5.2). In
order to do so, we start by finding the homogenized conductivity that minimizes
η and ηφ under the following considerations:

• The Dirichlet boundary conditions are homogeneous.

• ū is the solution of the homogenized problem for a conductivity k̄

• Q̂ is chosen to be the flux of ū, in short, Q̂ = −k̄∇ū

Under those considerations, if the conductivity is changed to k̄′, the solution
field becomes k̄

k̄′
u. Applying the assumptions to eq. (8) gives[

E(k)

k̄′2
− 2

k̄′
+ E(k−1)

]
k̄2

∫
Ω

∇ū2

an expression that can be minimized with respect of k̄′. By taking its deriva-
tive with respect to k̄′, we find that this expression reaches a minimum for
k̄′ = E(k), which means that the best bound is obtained, under the stated
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assumptions, when rule of mixture is applied. Substituting this value in the
previous expression [

E(k−1)− 1

E(k)

]
k̄2

∫
Ω

∇ū2 (9)

If the expectation of the conductivity has the following form,

E(k) =

N∑
i=1

αiki where

N∑
i=1

αi = 1

then, the expectation of its reciprocal is

E(k−1) =

N∑
i=1

αi
ki

Bringing this into the expression inside brackets of equation (9), we obtain

E(k−1)− 1

E(k)
=

N∑
i=1

αi
ki
− 1∑N

i=1 αiki

which is the difference between the reciprocal of the weighted harmonic mean
and the reciprocal of the weighted arithmetic mean of ki (i = 1...N). By the
generalized mean inequality, it is known that this term will be always equal or
greater than 0, having the equality only when k1 = k2 = ... = kN . The greater
the contrast between the conductivities, the further the expression is from 0.
Figure 4 represents the difference between reciprocal of the means for N = 2.
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Figure 4: Difference between the reciprocals of the harmonic and the arithmetic
mean for k2 = 1 and N = 2.
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