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The effect of size and scale dependence on the behavior of truss models is investigated, by 
introducing higher order strain gradient terms and an internal length parameter (the gradient 
elasticity coefficient) into the constitutive stress-strain relation of the bar element of the truss 
model. Instead of an algebraic equation (1D classical elasticity stress-strain relation), a differential 
equation governs the response of the elastic bar element and extra boundary conditions are required 
at the nodes. The displacement fields are obtained by deriving the associated stiffness matrix 
directly from the governing differential equation of the gradient elastic bar element. 
Moreover by establishing a ratio between the micro-scale internal length and the macro-scale length 
of the bar elements the effect of changes in the truss bar element size and the microstructure internal 
length of the bar element material is revealed. A numerical example is presented as illustration.  
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1.   Introduction 
In developing new engineering structures the analysis of their mechanical properties and behavior is 
often based on qualitative analysis carried out to enable a reasonable evaluation of the feasibility 
before embarking on any elaborate expensive research. In this process, computational analysis and 
simulation play a major role in developing these new structures.  
 
Computationally, in order to study the nonlinear mechanical behavior of materials, a first choice is 
to use the standard Finite Element Method (FEM) with complex elements. While this method 
allows the computational stress analysis of a continuum with any boundary conditions and any 
loading, several problems and complications arise mainly due to the inclusion of a nonlinear 
constitutive law when updating the stiffness matrix of the finite element Argyris (1978, 1981, and 
1984). However, from a geometrical standpoint the simplest finite elements are one-dimensional or 
a line element which is the two-node bar element. One-dimensional models can be very accurate 
and very cost effective in the proper applications. Hence, in search of a less complicated and 
efficient computational tool for testing constitutive equations, a truss model can be used for the 
linear and nonlinear analysis of a continuum, since the bars of the truss are the simplest possible 
finite elements.  
 
In the nonlinear analysis of concrete, truss models have been used in Bazant et al. (1990) and 
Bazant (1997) and in Goel et al (1997) it was used for the analysis of steel structures. Akintayo et 
al. (1998, 2000), and Papadopoulos & Xenidis (1998, 1999) studied the response of concrete 
computationally using the plane truss model by considering coarse truss structures. Kiousis et al. 
(2010) using the model of Papadopoulos & Xenidis (1999) also studied concrete columns in 
compression. A random particulate model for fracture of aggregate and fiber composites was used 
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by Bazant et al. (1990) assuming the particles to be elastic and having only axial interaction as in a 
truss. In Salem (2004), a fine micro truss model was proposed for the analysis of reinforced 
concrete using isotropic truss members by a generalization of the strut and tie model. Nagarajan et 
al. (2010) studied the mesoscopic numerical analysis of reinforced concrete using a modification of 
the micro truss model of Salem (2004). Hence from these works it becomes apparent that the size of 
the truss bar element to be used could directly be related to the scale of interest and detailed analysis 
required in any simulation which may have an adverse effect on the result. 
 
In the investigation of new materials and structure, the ultimate goal of the engineer is to be able to 
obtain qualitative and reasonably quantitative analytic results. In order to achieve this, simple but 
effective models need be adopted to accommodate the micro deformation mechanisms of the 
structure. However, with the truss model increasing the fineness of the truss bars usually increases 
the computational cost. Therefore the effect of the size of the truss bar element and its relation to 
the scale of interest become a vital consideration in the simulation and analysis process.   
 
The interpretation of size and scale effects can be approached in different ways. Several theoretical 
models have been developed to interpret size effects such as the strain gradient theories of Aifantis, 
1999a and 1999b, Gao et al. 1997 and Fleck and Hutchinson 1997 with the formulation of the latter 
in Fleck and Hutchinson 2001. Other works include models with dislocation confined in thin films 
(Freund 1987, Thompson 1993 and Nix 1998); Theories on discrete dislocation dynamics include 
the works of Zbib and Aifantis 2003 and Needleman and Van der Giessen 2003. Atkins, 1999 and 
Bazant 1999 presented their study on fracture mechanics theories (especially for concrete) and 
statistical models was initially proposed by Irwin 1964 and later by Liu and Zenner 1995 and 
Seifried, 2004. 
 
The theory of gradient elasticity is a simple approach to include microstructure deformation in the 
analysis of a material/structure, since it becomes particularly useful for small volumes, where the 
internal length introduced by the gradient coefficients is comparable to the characteristic dimension 
of the system. Mindlin (1964) showed that by isolating a typical unit cell element from the grid of 
say a crystal lattice (local representative volume), the modeling of a continuum with micro 
deformation can be developed. Ben-Amoz (1976) by assuming a particulate composite material as 
consisting of the matrix and inclusion (unit cell) also showed it is possible to classify composite 
media by the degree of inhomogeneity with the ratio of the length of the local representation and the 
length of the unit cell. Hence a relation is established between the deformation within the local 
representative volume and the unit cell by using higher-order strain/stress gradients to represent the 
micro deformation within the macro structure/material. In line with this same concept, but in a 
different manner, the theory of gradient elasticity proposed by Aifantis (1984) included the higher 
order strain gradient directly into the constitutive relations and introduced an internal length 
parameter, which relates to the micro unit of the material. A recent review of this theory is given in 
Askes and Aifantis [2011].  
 
In recent years this theory has gained more increasing interest amongst researchers and the 
engineering community due to its ability to provide additional information, which the classical 
elasticity theory is incapable of providing. The failure of the classical elasticity theory to include 
higher order strain gradient contributions can lead to underestimates of stresses and inadequacy in 
capturing any scale and size dependent behavior in small-scale structures: since classical elasticity 
theory possesses no characteristic length (i.e. material parameter with internal length scale), which 
consider the interaction between macro and micro length scales in the constitutive response and the 
corresponding interpretation of associated scale and size effect.  
 
Many authors have studied the gradient theories using various computational methods. Amongst 
others include: In the framework of gradient plasticity Pamin and de Borst (1998) used the finite 
element method to simulate the crack spacing problem with a reinforced concrete model. Chang, et 
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al. (2002) applied higher-order strain/higher order stress gradient models derived from a discrete 
microstructure to fracture and related their constitutive equations to that of Aifantis (1984). By 
using the gradient elasticity theory of Aifantis (1984), Dessouky et al. (2003) presented a finite 
element model for the microstructure analysis of asphaltic materials. In a similar manner, Akarapu 
and Zbib (2006) also considered the analysis of plane cracks in elastic materials using the finite 
element methods. 
 
Motivated by this and using the constitutive stress-strain relation of the gradient elasticity model of 
Aifantis [1984], the gradient truss model was first studied in Akintayo (2011) and later presented in 
Akintayo et al. (2012). Subsequently, a more detailed study was presented in Akintayo 2014, in 
which different boundary conditions were imposed at the support of the bar element and the 
corresponding force-displacement relations were derived for a robust application in the proposed 
gradient truss model. It is shown that the gradient elastic bar element is able to support strain 
gradient along its length such that simulation of the micro-scale deformation is included and a 
means of relating the macrostructure bar length to the microstructure internal length is established. 
 
In this paper based on these findings, in a simple manner by using the gradient bar element stiffness 
expression and by considering the ratio between the size of the truss bar and the internal length of 
the material being simulated, the effect of changes in this ratio on the simulation is investigated. As 
an illustration, the gradient enhanced bar element is used to simulate a simple truss structure. 
Subsequently, by considering different bar length to internal length ratios, the response   of the truss 
structure to scale and size dependence behavior can be examined.  

Brief Review of the Classical Elasticity Bar Element and its Local Stiffness Matrix 
Consider the generic truss element shown in Figure 1(a). The force and displacement components 
are linked by the element stiffness relations 
 
      f Ku                                 (1) 
which written out in full is 
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               (2) 

 
There are several ways to construct the stiffness matrix K in terms of the bar length lo, modulus of 
elasticity E and bar cross-sectional area A. The most straightforward technique is the unit 
displacement method. 
By viewing the truss element in Figure 1(a) as a spring in Figure 1(b), we can set the element 
stiffness k =Ks ijij , with  
 

   AE
ks lo

                  (3) 

 
Consequently the force-displacement equation is 
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where F is the internal axial force and d the relative axial displacement, which physically denote the 
bar elongation. 
 
 
 
 
 
 
 
                                       

    
(a)                                 (b) 

 
 
 
 
 
 
 

     
          (c)                                (d) 

 
    
Fig.1.(a). Generic 2-node truss bar element referred to its local coordinate system  x ,y  with 
nodal forces fij and displacements uij. (b) Interpretation of a Generic truss element as 
equivalent spring (c) Equilibrium for infinitesimally small truss element. (d) Kinematics for 
infinitesimally small truss element. 
 
 
By assuming the displacement is of equal magnitude and direction at each node as well as within 
the element (i.e. constant along the bar), the strain takes the form  
 

 u uj idu L
dx l lo o




                    (5)  

and on the basis of the one dimensional Hooke’s law the stress-strain relation is  
 

E                   (6) 
 
where  is the stress,  is the strain and E is the Elastic or Young Modulus.  
 
The elastic 2-node bar element of Fig. 1a is prismatic, weightless, and isotropic; the Poisson’s effect 
is not considered and the axial load is applied at the centroid. Then equilibrium in the x-direction 
for the infinitesimally small length of the truss bar element, shown in Fig 1c. gives 
 

 dN
qx dx

 

                 
(7) 

 
The normal constant stress σ of a one-dimensional truss is the force F applied on the truss per unit 
cross-sectional area; 
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F

E
A

                   (8) 

 
By considering the infinitesimal element Fig. 1c and denoting the infinitesimal elongation, by du, 
the relationship between the strain and the displacement is obtained as 

du
dx

                  (9) 

 
 

and the governing differential equation for truss members reads: 
 

2

2
d uq EAx
dx



                   
(10) 

 
which in terms of the force applied per unit cross-sectional area can be rewritten as 
 

du
N EA

dx
                (11) 

 
The element stiffness is given by Eq. 3 and since equilibrium suggests that fi = -fj, hence the force-
displacement relation for the bar is given by 
 

       

1 1
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f ulj jo
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Kf u

              (12) 

where fe, Ke and ue are the force, stiffness and displacement matrices respectively. 
However, in plane classical elasticity structural analysis, the simple local stiffness matrix of an 
isolated bar, with respect to reference axes (x,y), is usually split into the elastic or material stiffness 
ke and the geometric stiffness kg and is written as  
 

2 2

2 2

e g

c c c c c cx x y y x yEA N
l lo c c c c c cx y y x y x

 

          
      


k k k

            (13)

  
Where (lo , l) are the undeformed and deformed length of the bar, and (cx , cy) are direction cosines 
of the bar.  

Gradient Elastic Bar  
 

Consider an elastic bar length lo shown in Fig. 2, with modulus of elasticity E, and a cross-
sectional area of A, fixed at one end and subject to an axial tensile force F at the right end x =  lo. 
The one-dimensional gradient elasticity stress-strain constitutive equation presented in Aifantis 
1984 and used in Altan & Aifantis 1997, Akintayo 2011, Akintayo et al. 2012 is given by  
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               (14) 

 
 
 
 
 
 
  
 
 

 
`Fig.2. A bar under axial tensile load F 

 
 
where σx is the stress and εx = du/dx is the strain, while c is the gradient elastic coefficient (c≡ℓ2 i.e. 
a microstructure-dependent internal length).  
From the stress-strain relation of Eq. 14, in relation to the force applied per unit cross-sectional area 
of Eq. 8, the following is obtained:  

3

3
du d uEA c F
dx dx

 
   
 

   
        

   (15)
 
 

  
 

and from the equilibrium condition of Eq. 11 the corresponding governing differential equation for 
the gradient elastic case takes the form 
 

 
2 4

02 4
d u d uEA c qxdx dx

 
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             (16) 

 
The solution of Eq. 16 is easily obtained as  
 

1 2 3 4cosh( ) sinh( ) cosh( ) sinh( )x x x xu C C x C C
c c c c

   
        

               
 (17) 

 
where C1, C2, C3 and C4 are constants to be determined from the boundary conditions. 
 

Boundary Conditions and Determination of Constants 
In order to solve for the constants C1, C2, C3 and C4, classical and extra non-classical boundary 
conditions need be determined. The following classical boundary condition is used  

 0 ;       

duu EA Fx lo dx x lo                            
 (18) 

A general discussion of the extra boundary conditions for gradient elastic bar was provided in 
Akintayo (2011, 2012a). Hence this is not recapitulated, or expanded upon here, as it is out of the 
scope of the present paper. We proceed instead, with the consideration of the following simple case 
where zero strain is imposed at the free end and zero strain gradient at the fixed end given below 

 

l

F 

y,uy 

x, ux 
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3 2

0; ; 0 ; 00 3 2
0

du d u du d uu EA c Fx dx dxdx dxx lox l xo

 
           

                        (19) 

Using these boundary conditions, the constants C1-C4 are determined as follows: 

   0; ;1 2 3 4 2
1

lo
cF Fe cC C C C
lEA o
ce EA

   
 
  
 
 

                         (20) 

Displacement, Strain and Axial Force 
With the obtained constants the displacement and axial force within the assumed gradient elasticity 
framework are obtained as     
  

         sinh sech ; cosh sech ;
sinh sech

Fx F c F F EAugx l x lo ou F
EA EA EA EA x lc c c c ox c

c c


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                       (21) 

It is easily seen that the axial displacement, strain and force expressions contain the classical term 
and the gradient elastic contribution (the micro-scale deformation) which includes the internal 
length c. Hence, at the free end of a bar x = lo, the following relations are obtained for the 
displacement and axial force: 
 

  tanh ; 0;
tanh

Fl F c EAulo ou F lEA EA c ol co c


               

                                 (22)   

In Eq. (22) the classical displacement and strain values can be retrieved in the absence of the 
gradient elastic contribution. 
 

Gradient Elastic Bar Element Stiffness 
In this section, the gradient elastic bar element stiffness is derived. With this the simulation of a bar 
with a gradient enhanced bar element can be analysed. From Eq. 4 and Eq. 22, the corresponding 
gradient elastic bar stiffness is obtained as  
 
            

tanh

EAgki lol co c


    

              (23) 

 
It is readily seen that unlike the classical case for the gradient elasticity case the bar stiffness does 
not only depend on the conventional geometric and material properties of the bar, but also on the 
introduced micro-scale parameter √c of the underlying microstructure. From Eq. 23 in the absence 
of the gradient elastic contribution the classical bar element stiffness is retrieved. By considering 
the following arbitrary properties of the bar element: Area A = 1cm2, Elastic Modulus E=100MPa; 
bar length lo=10cm, the stiffness values for the classical case and the gradient elastic cases are given 
in Table 1 for different bar length and internal length ratios lo /√c. The different bar stiffness are 
represented as kc (classical elastic case) and kg

1 - kg
5 (gradient elastic cases) and  are given in 

Table 1 for the changes in lo/√c from 20 to 4.  
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Table 1. The following properties are used arbitrarily to obtain the bar stiffness kc (classical 
elastic case) and kg

1 - kg
5 (gradient elastic cases): A = 1cm, E=100MPa and lo=10cm 

 

Cases 
Bar Stiffness 
Values for  
lo/√c=20 

Bar Stiffness 
Values for 
lo/√c =10 

Bar Stiffness 
Values for  
lo/√c=6.7 

Bar Stiffness 
Values for 
lo/√c = 5 

Bar Stiffness 
Values for 
lo/√c=4 

kc 10 10 10 10 10 
kg

1a 10.526 11.111 11.765 12.4997 17.6259 
 
 
This numerical example reveals that as the bar length to internal length ratio lo/√c changes from 20 
to 4 i.e. the bar length becomes comparable to the internal length the simulation gives higher 
stiffness values. Moreover since the simulation values of the displacement at the nodes of a truss 
model depend on the stiffness of the bar, hence from Table 1, for any particular specimen size, bar 
elements sizes comparable to its material micro-scale characteristic length should give lower 
displacement values. Consequently, it is implied that the simulation result of a specimen of 
particular size for any scale of interest will be different for different bar element sizes used. Smaller 
bars will be stiffer than those with larger ones, hence finer truss models would give lower 
displacement values than coarse models.  Thus it is required first that the specimen size and a 
particular reference scale of interest be identified in order to choose the appropriate bar length that 
will adequately simulate the material or structure. 

Numerical Example  
In this numerical example, the gradient truss model is applied to the truss structure of Fig 3 simply 
supported. The vertical and horizontal bar length lo = 10cm and the diagonal bars length lo2 = 
102cm, and all bars have the same Young’s modulus E =100 Mpa. 

   
 
  
 
 
 
 
 
 
 
Fig. 3. (a). Loaded Seventeen element truss structure (b) Numbering of nodes and elements.  
 
 
 
Nodal coordinate  
{{0,0},{0,10},{10,0},{10,10},{20,0},{20,10},{30,0},{30,10},{40,0},{40,10}} 
 
Applied node forces 
{{0,0},{0,0},{0,-3},{0,0},{0,-3},{0,0},{0,-6},{0,0},{0,0},{0,0}} 

Boundary Conditions 
u = {0,0, 0,0, 0,-0.10, 0,-0.10, 0,-0.15, 0,-0.15, 0,-0.10, 0,-0.10, 0,0, 0,0} 
 
 For the gradient truss model the gradient elastic coefficient values considered are c = 0.5cm (lo/ 
√c = 20); 1.0cm (lo/√c = 10); 1.5cm (lo/√c = 6.7); 2.0cm ((lo/√c = 5); 2.5cm (lo/√c = 4), c = 3.0cm 
(lo/√c = 3.3); 3.5cm (lo/√c = 2.85); 4.0 cm (lo/√c = 2.5); 5.0cm ((lo/√c =2); 6.0cm (lo/√c = 1.7).The 
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cross-sectional area is taken as the same for all the bars: A = 1cm2. We proceed to obtain the 
element stiffness matrix in global coordinates.  
 
By using the Direct Stiffness Method, a simple Mathematica program is used for this analysis. It 
comprises of three major processing stages: (1) the pre-processing, (2) processing, and (3) post 
processing. 
 
The pre-processing stage is implemented by the driver program which puts the data structure in 
place by defining the model and directly setting the data structures.  
The processing stage involves three major stages and the in-built Mathematica function LinearSolve 
is used: Firstly the master stiffness matrix is assembled with a subroutine element stiffness module; 
secondly, the master stiffness matrix and the node force vector are modified for the displacement 
boundary conditions; thirdly, the solution of the modified displacement equations is then obtained. 
Once these three processing stages are executed and the displacements made available the post 
processing stage follows. 
 
At the post processing stage, through a Ku matrix multiplication, the forces are recovered to include 
the reactions. The internal (axial) forces in the truss elements are computed, and then the deflected 
shapes can be plotted.  
 
Below the deflected shapes indicating the displacement are given for the classical and gradient 
elastic cases.  
 
 
Classical Elastic Case 
 
 

 
 

 
   
  
    
  Fig. 4. Classical Elastic deformed configuration of truss structure. 
 

Gradient Elastic Cases 
For the truss structure of Fig. 3 the global stiffness matrices for Cases 1 – 10 and the deformation 
configurations are shown in Fig. 5. 
 
Here also it can be observed that as the lo/√c ratio changes from 20 to 1.7 (i.e. the bar length 
becomes comparable to the internal length), the structure increases in stiffness significantly and the 
displacement values are much less than the classical ones. 
 
Consequently, the truss model simulation result of a specimen of a particular size can be related to 
the particular scale of interest by identifying a ratio between a characteristic length scale of the 
specimen and the truss bar length to be used. This result is indicative that finer truss models of a 
particular specimen size would give lower displacement values than coarse models of the same 
specimen.  
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(a)                                                                          (b) 

 
 
 
 
 
 
  

 

     
(c)                                                                         (d) 

 

 

 
 
 
                             
                                    

(e)          (f) 
 

      
 
 
 
 

                                   

(g)          (h) 

  

                       
 

                                   

(i)          (j) 
 
Fig. 5. Gradient Elastic deformed configuration of structure. (a). (lo / √c = 20); (b). (lo / √c = 
10); (c). (lo / √c = 6.7); (d). ((lo / √c = 5; (e). (lo / √c = 4); (f). (lo / √c = 3.3); (g). lo / √c = 2.85); (h). 
(lo / √c = 2.5); (i). ((lo / √c =2); (j). (lo / √c = 1.7).
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1.03425, 
-10.4393 

0,-7.145 

1.51444, -
10.2916 

0.184688,0 

3.8415,  
-1.32975 

2.51175, 
-8.99647 

0.184688, 
-7.66672 

0,0 

4.06706, 
-1.04475 

3.02231, 
-7.65463 

1.04475, 
-10.53011 

0,-7.20688 

1.52981, -
10.3808 

0.186562,0 

3.8805,  
-1.34325 

2.53725, 
-9.07409 

0.186562, 
-7.73084 

0,0 

4.04662, 
-1.0395 

3.00712, 
-7.62144 

1.0395, 
-10.4847 

0,-7.17594 

1.52212,  
-10.3362 

0.185625,0 

3.861,  
-1.3365 

2.5245, 
-9.03528 

0.185625, 
-7.69878 

0,0 

3.9853, 
-1.02375 

2.9615,-7.522 

1.0237, 
-10.349 

0,-7.0831 

1.4991,-10.2023 

0.18281,0 

3.8025,  
-1.31625 

2.48625, 
-8.9188 

0.1828, 
-7.6026 

0,0 

3.9649, 
-10185 

2.9464, 
-7.4887 

1.0185, 
-10.3032 

0,-7.0522 

1.4914, 10.1577 

0.18187,0 

3.783,  
-1.3095 

2.4735, 
-8.8800 

0.181875, 
-7.5705 



ICCM2014 
28-30th July, Cambridge, England 

Conclusion 
 
In this exploratory study size and scale dependent behaviour of truss models was examined using 
the gradient elasticity theory. With the introduction of a characteristic internal length parameter of a 
specimen at a defined scale, a ratio can be established with the truss bar element length. 
 
It is shown that the simulation result of a truss structure of fixed size differ according to the ratio of 
the truss bar element length to the internal length of the material. The simulation results with the bar 
length comparable to the chosen internal length are shown to be stiffer. Hence smaller bars will be 
stiffer than larger ones and finer truss models comparable to the characteristic length scale will give 
lower displacement values at the nodes than coarser models.  
 
Consequently, in order to adequately simulate a material or structure, a particular characteristic 
length scale of interest need be identified in relation to the specimen to be simulated and thus the 
appropriate corresponding truss bar element size can be identified and used.  
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