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DISCONTINUOUS GALERKIN FINITE VOLUME ELEMENT METHODS

FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

RUCHI SANDILYA ? AND SARVESH KUMAR?

Abstract. In this paper, we have discuss a one parameter family of discontinuous Galerkin

finite volume element methods for the approximation of the solution of distributed optimal

control problems governed by a class of second order linear elliptic equations. In order
to approximate the control problem, the method of variational discretization is used. By

following the analysis of Kumar et. al. [Numer. Meth. Part. Diff. Equns. 25 (2009), pp.

1402–1424], optimal order of convergence in L2-norm for state, costate and control variables
are derived. Moreover, optimal order of convergence in broken H1-norm are also derived

for state and costate variables. Several numerical experiments are presented to validate the

theoretical order of convergence.

Keywords: Optimal control; variational discretization; discontinuous Galerkin finite vol-
ume element methods; order of convergence; numerical experiments.

1. Introduction

This paper is concerned with the discontinuous Galerkin finite volume element (DGFVE)
approximation of the elliptic optimal control problem of the following type : Find y, u such
that

min
u∈Uad

1

2
‖y − yd‖2L2(Ω) +

λ

2
‖u‖2L2(Ω) , (1.1)

subject to

−∇.(K∇y) = Bu+ f inΩ, (1.2)

y = 0 onΓ. (1.3)

where, Ω ⊂ R2 is a convex, bounded and polygonal domain and Γ is the boundary of Ω, λ is
a positive number, f, yd ∈ L2(Ω) or H1(Ω), K = (kij(x))2×2 denotes a real valued, symmetric
and uniformly positive definite matrix in Ω, i.e., there exists a positive constant α0 such that

ξTKξ ≥ α0ξ
T ξ ∀ξ ∈ R2.

B is a bounded continuous linear operator and Uad is denoted by

Uad = [u ∈ L2(Ω) : a 6 u(x) 6 b, a.e. inΩ, a, b ∈ R].

The numerical solutions of such kind of elliptic problems have been investigated by many re-
searchers, since these problems have lots of applications in mathematical and physical problems.
Finite element methods extensively used for the approximation of the control problems and for
the error analysis of finite element methods (FEM) applied to elliptic control problems, we refer
to [3, 4, 5, 6, 7, 15] and references therein. In most of these papers, the state and costate vari-
ables are discretized by continuous linear elements and control variable by piecewise constant
or piecewise linear polynomials. More recently, Hinze given a new direction for approximat-
ing the control problem in which a new variational discretization approach is introduced for
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linear-quadratic optimal control problems whereas the control set is not discretized explicitly
and obtained improved convergence order for optimal control, for more details, kindly see [8].

Because of local conservative property of the finite volume element (FVE) methods, these
methods are very popular in computational fluid dynamics and (FVE) methods have also been
used to solve fluid optimal control problems. In [12], the author has used the optimize-then-
discretize approach and FVE discretizations to approximate elliptic optimal control problems.

It is well known the discontinuous Galerkin (DG) methods which was introduced by Arnold
in [1] does not demand the inter element continuity criteria and has some attractive features
such as: high order accuracy, localizabilty and suitable for parallel computing easily handle the
boundary conditions. Keeping in mind the advantages of FVE methods and DG methods, in
[16], Ye introduced discontinuous Galerkin finite volume element (DGFVE) methods for elliptic
problems. Later Kumar et. al. [9] have discussed a one parameter family of DGFVE methods
for the approximation of the elliptic problem. Recently, Kumar extended the analysis of [9] for
approximation of miscible displacement problems, see [10].

In this paper, in order to obtain an optimal system, first we apply Lagrange multiplier
method to the problem (1.1)-(1.3) and obtain an optimal system. Then we use DGFVE methods
to discretize the state and adjoint equation of the system. For the optimal condition, we
use variational discretization approach introduced in [8] to obtain the control.This paper is
organized as follows: While the Section 1 is introductory, Section 2 is devoted to the DGFVE
formulation for the optimal control problem. In Section 3, we discuss the convergence analysis
of DGFVE in different norms and finally in Section 4, we present some numerical experiments
to support the theoretical results obtained in Section 3.

2. Discontinuous Galerkin Finite Volume Element Formulation

We assume that our optimal control problem admits a unique control u, since Uad is
bounded, convex and closed. For the subsequent standard existence, uniqueness and first-
order optimality results we refer to [14]. We can then write the first-order optimality condition
in the following form:

(λu+B∗p, v − u) ≥ 0 ∀v ∈ Uad, (2.1)

where the function p is called adjoint state (or costate) associated with u and solution of the
adjoint equation

−∇.(K∇p) = y − yd, inΩ (2.2)

p = 0, onΓ. (2.3)

Let τh be a regular, quasi-uniform triangulation of Ω̄ into closed triangles T with h = max
T∈τh

(hT ),

where hT is the diameter of the triangle T . The dual partition τ∗h of τh is constructed as follows:
divide each triangle T ∈ τh into three triangles by joining the barycenter B and the vertices of T
as shown in Figure 1. Let τ∗h consists of all these triangles T ∗i . We define the finite dimensional
Trial (Vh) and test space (Wh) associated with τh and τ∗h , respectively as follows:

Vh = {vh ∈ L2(Ω) : vh|T ∈ P1(T ) ∀T ∈ τh}
Wh = {wh ∈ L2(Ω) : wh|T∗ ∈ P0(T ∗) ∀T ∗ ∈ τ∗h}.

where Pm(T ) or Pm(T ∗) denotes the space of all polynomials of degree less than or equal to m
defined on T or T ∗, respectively. Let V (h) = Vh +H2(Ω) ∩H1

0 (Ω). To connect the trial space
and test space, we define a transfer operator γ : V (h) −→Wh as:

γv|T∗ =
1

he

∫
e

v|T∗ds, T ∗ ∈ τ∗h ,

where e is an edge in T , T ∗ is the dual element in τ∗h containing e, and he is the length of the
edge e.
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Figure 1. A triangular partition and its dual

Multiply (1.2) and (2.2) by γvh, integrate over the control volumes and an application of Gauss
divergence methods leads the following DGFVE formulation: Find (yh, ph, uh) ∈ Vh×Vh×Uad
such that

Ah(yh, wh) = (Buh + f, γwh) ∀wh ∈ Vh, (2.4)

Ah(ph, qh) = (yh − yd, γqh) ∀qh ∈ Vh, (2.5)

(λuh +B∗ph, v − uh) ≥ 0 ∀v ∈ Uad, (2.6)

where the bilnear form Ah(·, ·) defined as

Ah(Φh,Ψh) = −
∑
T∈τh

3∑
j=1

∫
Aj+1BAj

(K∇Φh.n)γΨhds+ θ
∑
e∈Γ

∫
e

[γΦh].〈K∇Ψh〉ds

−
∑
e∈Γ

∫
e

[γΨh].〈K∇Φh〉ds+
∑
e∈Γ

∫
e

α

hβe
[Φh].[Ψh]ds ∀Φh,Ψh ∈ Vh.

Here, the symbols [·] and 〈·〉 used for jump and average respectively and θ ∈ [−1, 1], α and β
are penalty parameters, for more details kindly see [9]. Let yh(u) and ph(y) be the solutions of

Ah(yh(u), wh) = (Bu+ f, γwh) ∀wh ∈ Vh, (2.7)

and
Ah(ph(y), qh) = (y − yd, γqh) ∀qh ∈ Vh, (2.8)

respectively. A norm |||.||| on V(h) is defined by

|||v|||2 = |v|21,h +
∑
e∈Γ

1

hβe

∫
e

[v]2ds,

where |v|21,h =
∑
T∈τh

|∇v|20,T . Using the coercivity and boundedness of the bilinear form Ah(·, ·)

which is proved in [9, pp. 1410–1413] and noting that yh = yh(uh) and ph = ph(yh) we have
the following result.

Lemma 2.1. Let yh(u) and ph(y) be the solutions of (2.7) and (2.8) respectively. Then the
following results hold :

|||ph(y)− ph||| ≤ C ‖y − yh‖ and |||yh(u)− yh||| ≤ C ‖u− uh‖ .

The result easily follows by using (Theorem 2.3, [9]) and Cauchy-Schwarz inequality.

We emphasis that throughout the article C is a generic positive constant (also appeared in
Lemma 2.1) which is independent of the mesh size h but may depend on the bounds of f, u, y, p
and size of the domain Ω.
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3. Convergence Analysis

3.1. Convergence in L2-norm.

Theorem 3.1. Assume that K ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈ (H2(Ω) ∩
H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad be the exact solutions and (yh, ph, uh) ∈ Vh×Vh×Uad be the

solutions of (2.5)-(2.6). Then there exists an h0 > 0 such that for all 0 < h ≤ h0

‖u− uh‖ ≤ Ch. (3.1)

Moreover, if K ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω), then there exists an h0 > 0 such that for all
0 < h ≤ h0

‖u− uh‖ ≤ Ch2. (3.2)

The above theorem can be proved by using the variational inequalities (2.1) and (2.6) with
the functions u and uh, using (Lemma 2.4, Theorem 3.2, [9]) and Lemma 2.1. For more details,
we refer to [11].

Now, using triangle inequality, (Theorem 3.2, [9]), Lemma 2.1 and Theorem 3.1, we have
the following theorem.

Theorem 3.2. Assume that K ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈ (H2(Ω) ∩
H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad be the exact solutions and (yh, ph, uh) ∈ Vh×Vh×Uad be the

solutions of (2.5)-(2.6). Then there exists an h0 > 0 such that for all 0 < h ≤ h0

‖y − yh‖ ≤ Ch, ‖p− ph‖ ≤ Ch. (3.3)

Moreover, if K ∈ W 2,∞(Ω) and u, f, yd ∈ H1(Ω), then there exists an h0 > 0 such that for all
0 < h ≤ h0

‖y − yh‖ ≤ Ch2, ‖p− ph‖ ≤ Ch2. (3.4)

Following the proof lines of (Theorem 3.1, [9]) and using Theorem 3.1, Theorem 3.2 together
with Lemma 2.1, we can derive the following error estimates in the H1-norm. For a detailed
proof, we refer to [11].

3.2. Convergence in broken H1-norm.

Theorem 3.3. Assume that K ∈ W 1,∞(Ω) and u, f, yd ∈ L2(Ω). Let (y, p, u) ∈ (H2(Ω) ∩
H1

0 (Ω))× (H2(Ω)∩H1
0 (Ω))×Uad be the exact solutions and (yh, ph, uh) ∈ Vh×Vh×Uad be the

solutions of (2.5)-(2.6). Then there exists an h0 > 0 such that for all 0 < h ≤ h0

|||y − yh||| ≤ Ch, |||p− ph||| ≤ Ch. (3.5)

4. Numerical Experiments

In this section, we present two numerical examples in order to discuss the performance of
the DGFVE for the approximation of the elliptic optimal control problem (1.1)-(1.3). The
method holds true for any value of θ ∈ [−1, 1] but in particular, for the numerical experiments
we take θ = -1,0,1, as these values of θ leads to different interesting schemes in the context of
discontinuous finite element methods, kindly see [13]. We will investigate the order of conver-
gence of state, costate and control variables in L2-norm and order of convergence of state and
costate variables in the broken norm |||.|||.

Example 1. We consider the following elliptic control problem with Dirichlet boundary
value condition:

min
u∈Uad

1

2
‖y − yd‖2L2(Ω) +

1

2
‖u‖2L2(Ω) ,

−4y = u inΩ,
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y = 0 inΓ,

u ≥ 0,

where Ω = [(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1], Γ denotes the boundary of Ω. The exact
state y is sin(πx1)sin(πx2), yd = (4π4 + 1)sin(πx1)sin(πx2), p = −2π2sin(πx1)sin(πx2) and
u = max(0,−p).
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Figure 2. Order of convergence in broken H1-norm for state and costate
variables for Example 1.

|||y − yh|||

θ=-1 θ=0 θ=1

0.3719918 0.37650518 0.38334068
0.2460884 0.24772621 0.25033399
0.1839629 0.18473849 0.18600306
0.1469065 0.14733895 0.14805334
0.1222834 0.12255207 0.12299930

|||p− ph|||

θ=-1 θ=0 θ=1

7.21776447 7.24618657 7.29030071
4.82156990 4.83286579 4.85124495
3.61641018 3.62227458 3.63199956
2.89231763 2.89585972 2.90178678
2.40948560 2.41184101 2.41580092

Table 1. Numerical results of broken H1 error for θ=1, θ=-1 and θ=0 with
β=1 for Example 1.

In the next example we take desired state yd to be zero and include desired control u0.
Example 2. We consider the following problem

min
u∈Uad

1

2
‖y − yd‖2L2(Ω) +

1

2
‖u− u0‖2L2(Ω) ,

−4y = u+ f inΩ,

y = 0 inΓ,

u ≥ 1 inΩ.

In this example we have,
Ω = [(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1], u0 = 1 − sin(πx1/2) − sin(πx2/2) + s, yd = 0,
p = Z(x1, x2), f = 4π4Z − u, where Z = sin(πx1)sin(πx2) and

s =

{
0.5 if x1 + x2 > 1.0
0.0 if x1 + x2 ≤ 1.0

. The exact solution of this problem is y = 2π2Z, u = max(u0 − p, 1).
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Figure 3. Order of convergence in L2-norm for state and costate and control
variables for Example 1.

‖y − yh‖

Dof θ=-1 θ=0 θ=1

384 0.02657497 0.02999063 0.03437191
864 0.01172431 0.01344455 0.01568472

1536 0.00654811 0.00756756 0.00890502
2400 0.00416848 0.00483938 0.00572336
3456 0.00288324 0.00335721 0.00398345

‖p− ph‖

Dof θ=-1 θ=0 θ=1

384 0.30726316 0.33952145 0.38187541
864 0.13500845 0.15109265 0.17258162

1536 0.07535372 0.08485681 0.09766827
2400 0.04797144 0.05421803 0.06268522
3456 0.03318749 0.03759811 0.04359833

‖u− uh‖

Dof θ=-1 θ=0 θ=1

384 0.30968478 0.34176897 0.38392985
864 0.13604558 0.15206116 0.17347429

1536 0.07586822 0.08533866 0.09811434
2400 0.04825989 0.05448858 0.06293629
3456 0.03336438 0.03776417 0.04375267

Table 2. Numerical results of L2 error for θ=1, θ=-1 and θ=0 with β=1 for
Example 1.

The errors in broken H1-norm for the DGFVEM solution of state and costate variables are
presented in Tables 1 and 3 for examples 1 and 2, respectively whereas the errors in L2-norm
for the DGFVEM solution of state, costate and control variables for examples 1 and 2 are
presented in Tables 2 and 4 respectively.
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Figure 4. Order of convergence in broken H1-norm for state and costate
variables for Example 2.

|||y − yh|||

Dof θ=-1 θ=0 θ=1

384 7.21797574 7.24658386 7.29098777
864 4.82162819 4.83298774 4.85147100

1536 3.61643379 3.62232663 3.63209930
2400 2.89232940 2.89588651 2.90183911
3456 2.40949230 2.41185655 2.41583166

|||p− ph|||

Dof θ=-1 θ=0 θ=1

384 0.37204143 0.37657411 0.38343755
864 0.24610328 0.24774803 0.25036647

1536 0.18396914 0.18474788 0.18601743
2400 0.14690967 0.14734380 0.14806087
3456 0.12228530 0.12255488 0.12300372

Table 3. Numerical results of broken H1 error for θ=1, θ=-1 and θ=0 with
β=1 for Example 2.

‖y − yh‖

Dof θ=-1 θ=0 θ=1

384 0.30825840 0.34069258 0.38326672
864 0.13545263 0.15162708 0.17323066

1536 0.07560241 0.08515929 0.09803949
2400 0.04812983 0.05441189 0.06292457
3456 0.03329703 0.03773274 0.04376519

‖p− ph‖

Dof θ=-1 θ=0 θ=1

384 0.02663156 0.03005540 0.03444685
864 0.01174998 0.01347458 0.01572027

1536 0.00656257 0.00758466 0.00892548
2400 0.00417772 0.00485037 0.00573660
3456 0.00288965 0.00336485 0.00399269

‖u− uh‖

Dof θ=-1 θ=0 θ=1

1.0e− 003 ∗

384 0.20013750 0.17824991 0.15447196
864 0.06389361 0.05698655 0.04942176

1536 0.02785402 0.02484840 0.02154210
2400 0.01452166 0.01295391 0.01122471
3456 0.00849969 0.00758109 0.00656606

Table 4. Numerical results of L2 error for θ=1, θ=-1 and θ=0 with β=1 for
Example 2.

Figures 2, 3 (for Example 1) and 4, 5 (for Example 2) indicate that the computed orders of
convergence match the theoretical orders of convergence in L2-norm and broken H1-norm.
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Figure 5. Order of convergence in L2-norm for state and costate and control
variables for Example 2.
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[3] E. Casas and F. Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic

control problem, Control and Cybernetics (2002), 31:695–712.
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