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Abstract：This paper presents a theoretical analysis for the non-deterministic 
time-dependent non-linear behavior of shallow concrete-filled steel tubular (CFST) 
arches with interval parameters under a sustained uniform load. The change ranges of 
the final shrinkage strain and final creep coefficients of concrete core are derived 
from experimental results. The virtual work method is used to establish the 
differential equations of equilibrium for the time-dependent behavior and buckling 
analyses of shallow CFST arches, and the age-adjusted effective modulus method is 
adopted to model the creep behavior of the concrete core. Analytical solutions of the 
interval time-dependent displacements and internal forces of shallow CFST arches are 
derived. The lower and upper bounds of structural responses are determined. 
Comparisons of the interval analytical solutions with the interval finite element 
results show that the analytical solutions of the present study are accurate.  
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1. Introduction 
Applications of concrete filled steel tubular (CFST) arches are increasing in 
engineering structures, particularly in bridge constructions. The visco-elastic effects 
of creep and shrinkage of concrete core are inevitable in the long term for CFST 
arches. When a CFST arch is subjected to a sustained load, the creep of the concrete 
core will lead to the increase of its deformations with time and the deformations may 
be significant, while the shrinkage strain may also develop even when the arch is not 
subjected to any load [B.C. Chen 2000]. Hence, an investigation of significant effects 
of creep and shrinkage of the concrete core on the time-dependent structural behavior 
of CFST arches is much needed.  
 
However, it is noted that the creep coefficient obtained from tests vary significantly 
from one experiment to another. Very different predictions of the time-dependent 
behavior of CFST columns have been reported in different studies. This shows that 
the uncertainties of creep and shrinkage of the concrete core do exist. To predict the 
long-term behavior of CFST columns reasonably, these uncertainties have to be 
considered.  
 
In this paper, intervals are adopted to represent the uncertainties. This paper, therefore, 
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aims to investigate the interval time-dependent non-linear behavior and buckling of 
shallow CFST arches under a uniform radial load, to derive analytical solutions for 
their time-dependent non-linear deformations, internal forces and buckling, and to 
determine their structural life time prior to the buckling. To investigate the effects of 
the creep and shrinkage of concrete core, it is important to use an efficient and 
accurate method to describe the creep and shrinkage of concrete. [Pi et al. (2002), Pi 
et al. (2007)] It is known that a number of methods have been proposed and used for 
the creep and shrinkage of the concrete. Among these methods, the age-adjusted 
effective modulus method recommended by ACI Committee-209 and Australia 
design code for the concrete structures AS3600 are commonly considered to be 
efficient and accurate in evaluating the time-dependent behavior of the concrete and it 
could conveniently be incorporated into the structural analysis [ACI Committee 209 
1982]. Algebraic formulas used in this method can be effective and practicable in 
modeling creep and shrink-age of concrete core, so the age-adjusted effective 
modulus method is used in this investigation. 
 
2. Interval nonlinear elastic analysis of long-term behavior of shallow CFST 

arches 
To predict the long-term performance, interval constitutive model considering creep 
and shrinkage of the CFST column needs to be established. The basic assumptions 
adopted for the interval long-term linear elastic analysis of CFST columns in this 
paper are: (1) deformations of CFST arch are elastic and satisfy the Euler-Bernoulli 
hypothesis, i.e. the cross-section remains plane and perpendicular to the arch axis 
during deformation; (2) the dimensions of the cross-section are much smaller than the 
length and radius of the arch so that the arches are sufficiently slender; and (3) the 
cohesion and adhesion of two different material components are fully bonded. 
To account for the non-linearity resulted from creep and shrinkage of the concrete 
core, the derivation of the differential equations of equilibrium for shallow CFST 
arches need to consider non-linear longitudinal normal strain-displacement 
relationship and the non-linear longitudinal normal strain ε of an arbitrary point in the 
cross-section of shallow CFST arches can then be expressed as [Pi et al 2002] 

21+ ( )
2

yvw v v
R

ε
′′

′= − −


                                (1) 

According to the third assumption, the deformations of each component should be 
compatible with each other, so their membrane strains and also the strains at the 
interface are identical. However, due to different Young’s moduli and the effects of 

creep and shrinkage in concrete core, the stress ss  in the steel tube and the stress 

cs  in the concrete core are different and they are given by 

( ) (c ec sh ecE Es ε ε= + = u′ )shε+                     (2) 

and  

s sEs ε=                            (3) 
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where Eec is the age-adjusted effective modulus of concrete, shε is the shrinkage strain 

of concrete and can be given by AS3600 [AS3600 2001]  
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where t is the loading time, shfinalε is the final shrinkage strain of concrete when t →∞. 

Eec can be calculated by 
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where 0t  is the age at loading, 0( , )tc t is the aging coefficient and 0( , )tϕ t  is the 

creep coefficient that can be expressed as 
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where finalϕ  is the final creep coefficient when t →∞. The aging coefficient 0( , )tc t  

can be expressed as 
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with  
,71.33
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The differential equations for the long-term analysis of a CFST arch can be obtained 
using a virtual work method. When the virtual work principle is used for the 
long-term equilibrium of the CFST arch, it can be stated as requiring that the 
functional 
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where the axial compressive force N is given by 
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and the bending moment is given by 
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in the axial direction: 
0N ′ =                              (15) 

in the radial direction: 
2 0M NRv NR qR′′ ′′− + + − =                    (16) 

and leads to the static boundary conditions for pin-ended arches as 
0M =  at q = ±Θ  

From Eq.(15), the axial compressive force N is constant along the arch axis. 
Substituting the constant axial compressive force N and the expression for M given 
by Eq.(14) into Eq.(16) leads to 
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where I
eµ  is a time-dependent dimensionless axial force parameter defined by 
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and P is a dimensionless load defined by 
I
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By using the kinematic boundary conditions and the static boundary conditions and 
the kinematic boundary conditions , the solutions of Eq.(17) can be obtained as 
For Pin-ended： 
The radial displacement can be expressed as  
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And the axial displacement can be expressed as: 
Lower bound of axial displacement: 
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Upper bound of axial displacement: 
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For Fixed: 
The radial displacement can be expressed as  
Lower bound of radial displacement: 

2 2
2

( )[ cos( ) cos( )] 1= { [( ) ( ) ]}
sin( ) 2

e e e
e e

ee

Pv
µ µ q µ

µ q µ
µµ

Θ − Θ
+ − Θ

Θ
        (23) 

Upper bound of radial displacement 
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And the axial displacement can be expressed as: 
Lower bound of axial displacement: 
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Upper bound of axial displacement: 
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3. Interval finite element analyses 
For interval buckling analysis, buckling load and equilibrium paths are sought by 
solving the equilibrium equation at each load increment. The equilibrium equation 
can be expressed as: 

I I
TK u P∆ = ∆                         (28) 

At each load increment, perturbation method was employed to calculate the global 
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stiffness matrix. In the following, the effects of the beam axial force and bending are 
included. The creep coefficient and final shrinkage strain are considered as interval 
parameters. Using the first-order Taylor expansion and the interval arithmetic 
operations [Rao et al. 1997], the interval stiffness coefficients of the beam-column 
element can be obtained as 
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where i denotes the number of elements, =
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easily observed that the stiffness is the function of the creep coefficient and final 
shrinkage strain.  
 
The interval global stiffness matrix of the structure is assembled using the following 
equation 
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Then the interval static equation of equilibrium in the interval finite element system 
becomes 
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To overcome the computational difficulties caused by the singularity of the tangent 
stiffness matrix at the limit points on the equilibrium path, the interval 
incremental-iterative solution is introduced for this study.  
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The incremental-iterative equilibrium equation at time t and iterative step i can be 
expressed as   

[ ] ( )t I t I t t t
T i i rK U P u P−∆∆ = ∆ + ∆                   (33) 

where the subscript i denotes the iterative cycle, the superscript t denotes the load step, 

( )t P u∆  is the incremental external forces at time t and t t
rP−∆ ∆  is the unbalance 

forces at time t t−∆ . 
 
4. Model validation and discussions 
4.1 Determination of intervals for the final shrinkage strain and creep coefficient 
the interval of the final shrinkage strain and creep coefficient of their concrete cores 

can be derived from other researchers’[Uy.B 2001] test results as shfinalε  = [43.5, 340] 

and finalϕ  = [0.5, 1.7] respectively, which are used in this study. It can be expected 

that the results obtained by the interval models proposed in this paper will contain 
these experimental results; in other words, the experimental results will fall into the 
interval bounds produced by the proposed models. 
 
The creep coefficients determined by Uy [Uy.B 2001] is adopted to compare with the 
results obtained by the interval analytical model developed in this paper, which are 
illustrated in Figs. 1. Similarly, the total shrinkage strain determined by Uy is 
compared with the results given by the proposed interval model in Fig. 2. It can be 
easily seen that the results produced by the proposed model contain these 
experimental results as predicated. The bounds can be further updated if more 
experimental results available. These bounds will be useful for the future 
experimental investigations and design.     

 

 
Fig.1 Comparison of creep coefficient 
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Fig.2 Comparison of shrinkage strain 

 
The typical long-term nonlinear responses of pin-ended and fixed shallow CFST 
arches under a sustained uniform radial load are compared in Figs. 3 with their linear 
counter parts as the variations of the dimensionless central radial displacements 

,15/c cv v  and the dimensionless axial displacements is /2 /2,15/w wq q  at the quarter 

point with time t, where the Young’s moduli of the steel and concrete were assumed 
as Es=200 GP and Ec=30 GPa. .A circular cross-section with outer and inner radii: 
R=250 mm and r=240 mm was used in the investigation. The span of the arch was 
L=15 m and the rise-to-span ratio of the pin-ended and fixed CFST arch were 
f/L=1/12, respectively. 

 
Figure 3 Interval radial displacements 

 
5. Conclusions 
This paper presents a theoretical study on the uncertain long-term and buckling 
analysis of shallow concrete-filled steel tubular arches subjected to a sustained 
uniform radial load. An interval analytical model based on the algebraically tractable 
age-adjusted effective modulus method is proposed to describe the time-dependent 
behavior of concrete in CFST arches. Non-linear analytical solutions for the 
time-dependent displacements and internal actions were derived. It has been found 
that creep and shrinkage of concrete core have significant effects on the 
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time-dependent non-linear deformations, internal forces and buckling behavior of 
shallow CFST arches.  
 
An interval finite element was developed to describe the long-term behavior and 
analysis buckling. The buckling load or buckling time can be evaluated using this 
model. The result is compared with analytical results; it could be found it shows a 
good agreement.In the future, the proposed models will be further developed to 
analyze other types of CFST structures accounting for the uncertainties in their 
material and geometric properties. 
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