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Abstract 

An improved XFEM (in short, iXFEM) is introduced. The core of iXFEM is an extra-

dof free and interpolating PU enrichment based on a (moving) least-squares. 

Compared with the current XFEM, iXFEM does not introduce extra dof in PU 

enrichment and is well-conditioned in geometrical refinement. Selected numerical 

examples are provided to demonstrate its numerical performance.  
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Introduction 

The extended finite element method (XFEM [Belytschko and Black (1999); Moes et 

al. (1999); Belytschko et al. (2001)]) is a numerical technique based on the 

generalized finite element method (GFEM [Duarte et al. (2000); Duarte et al. (2001); 

Simone et al. (2006); Duarte and Kim (2008); O’Hara et al. (2009); Strouboulis et al. 

(2000a; 2000b; 2001)]) and the partition of unity method (PUM [Babuška and 

Melenk (1996; 1997)]). Only local parts of the domain are enriched and the mesh 

generation does not need to consider the internal structure. It adds special enrichment 

functions to approximate discontinuous fields and has been used for general interface 

phenomena e.g. in the framework of multi-material problems [Sukumar et al. (2001)], 

solidification [Chessa et al. (2002)], shear bands [Areias and Belytschko (2006)], 

dislocations [Belytschko and Gracie (2007)], and multi-field problems [Zilian and 

Legay (2008)]. 

 

Recently, a new GFEM without extra dof has been proposed as an improvement on 

the existing GFEM [Tian (2013)]. Based on the extra-dof free PU approximation, we 

have developed an improved XFEM with two distinguished features: (1) extra-dof-

free; (b) well-conditioned in the so-called geometrical refinement, which means the 

size of enriched sub-domain is fixed during mesh refinement. This short paper is 

intended for a brief introduction to the improved version of XFEM and a comparison 

with the two existing counterparts: the originally standard XFEM and the corrected 

XFEM [Fries (2008)]. By standard XFEM we mean a XFEM without blending 

element treatment. The corrected XFEM is an improved version over the standard 

XFEM by eliminating the blending element issue using a neat ramp formulation. 

The extra-dof free and interpolating XFEM 

Extra-dof free PU enrichment 

Let  be a sub-domain where all nodes are enriched. Let  denote nodal patch i 

composed of nodes from , where r is the patch size. The patch size is either the 

size of nodal support combining m≥1 layer(s) of elements surrounding node i for a 
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structured or an non-uniform mesh or simply the radius of an influence circle at node 

i for a unstructured uniform mesh. Node i is called “patch star” of , the topological 

centre of a patch.  is the node set of , where index i is solely kept for 

the patch star and k  for non-patch star nodes on the patch. 

  

On the patch, we construct an interpolant of  using the nodal values at 

 as 
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where  Pr
i

kL x  is the shape function at k-th node of the node set, which also forms a 

partition of unity, ,  is the number of nodes on , and  is the 

conventional nodal unknown. Noted is that this approximation is local to patch . 

The approximation is called patch-wise local approximation. 

 

Using the patch-wise local approximation  as a local approximation at node i 

and substitute it for the nodal unknown  in the following standard FEM 

    
1

N
h

i i

i

u x N x u


  (0) 

we obtain a new PU approximation 
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where N and  are the same as those in the standard FEM (2). The difference is that 

in the new approximation (3) each ui now is associated with ni enrichment functions: 
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where 
Pr

k

iL (k = 1, 2, …i, …, ) are the local functions constructed on patch k with 

regard to node i, and index k can be understood as either the k-th node of the patch i 

or the k-th patch containing node i. Expanding and regrouping all the terms associated 

with ui we obtain 
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where , the number of nodes on patch i in (1), now really means the number of 

patches containing node i, but the two numbers are the same, and  denotes the new 

shape function, which is a summation of functions.  

 

The new PU approximation offers two unique features. One is that there is no extra 

dof; all nodal dofs are the conventional of the standard FE mesh. The other is that the 

new PU approximation interpolates as long as the patch-wise local approximation 

interpolates at its patch star, no matter it interpolates or not at the rest of nodes on the 

patch. Proof is immediate: if and only if  P
1

r
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i iL x is called a one-point interpolating condition.  
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In order to construct the one-point interpolating patch-wise local approximation, a 

selectively interpolating (moving) least squares approximation is employed. 

Selectively interpolating (moving) least squares approximation 

An approximation of the field function  on the patch i is constructed by, 
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is the normalized or shifted crack tip basis vector in two dimensions, and a is the 

vector of unknown coefficients. In order to construct a moving least-squares 

approximation passing the patch star, the discrete L2 error norm is defined by the 

following constrained form, 
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For implemental convenience, the patch star i is also included in the summation term, 

  is the Lagrange multiplier that is used to enforce the satisfaction of 
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Minimizing the L2 norm with regard to a and λ ( 0, 0)J J      a  leads to a 

Selectively interpolating moving least squares approximation: 
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where  is the first column of A
-1

,  is the first element of ,   is the 

Kronecker delta. It can be verified that the SIMLS shape function  interpolates 

at patch star i 
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while approximating at the non-patch star nodes. 

 

By letting 1kw  , the local approximation is reduced to a least-squares type which is 

termed the Selectively Interpolating Least-Squares (SILS) local approximation. The 

SILS local approximation simplifies the calculation of derivatives and therefore is 

much more computationally cheap.  

 

For both the SIMLS and the SILS, it can be verified that 
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which means that the local approximation interpolates at the patch star. It can be 

easily verified that using this kind of local approximation, iXFEM interpolates at all 

nodes although the local operation is in nature an approximation. 

 

Due to the limit of space, the rest details of the method are omitted here and will be 

presented in the conference. 

Selected numerical examples 

A crack tip benchmark problem is shown in Fig. 1. A square area with side-length of 

2a and a crack of a, where a = 0.5. The uniform mesh is used. The enriched sub-

domain is an area containing the crack tip while the rest of the domain is the standard 

FEM. The enriched sub-domain is the same in size during mesh refinement, which is 

respectively the half (Fig. 1(a)) and the one third (Fig. 1(b)) of the domain size. The 

patch size takes r=2h on ΩGFE. 10×10 Gaussian quadrature is only used on the 2×2 

elements directly neighbored to the crack-tip in Fig. 1(a) and subdivided 2×2 cells on 

the element containing the crack tip in Fig. 1(b). On the rest elements, 2×2 Gaussian 

quadrature is employed. Young’s modulus E = 1000 and the Poisson ratio v = 0.3 are 

assumed for plain strain. Along the outer boundary of the area, the displacements are 

prescribed to the following exact solution: 

 

 

2I

2I

2 1 cos 1 2 sin
2 2 2

2 1 sin 2 2 cos
2 2 2

K r
u v v

E

K r
v v v

E

 



 



 
    

 

 
    

 

 

where KI is taken as 1.253.  

 

The two patterns of crack layout, mesh aligned and mesh independent, are considered 

for convergence tests (Fig. 1). The SIMLS and the SILS are tested and compared. 

 

 
Figure 1. Crack tip benchmark problems. (a) mesh aligned crack; (b) mesh 

independent crack. 

app:ds:respectively
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Assessment on convergence in geometrical refinement 

Errors are measured by the L2 and energy norms defined respectively below 
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Convergences are tested in the case of the so-called geometrical refinement. The two 

kernels, the SIMLS and the SILS, are tested. The results are displayed in Fig. 2. It is 

shown that iXFEM delivers optimal convergence for the crack tip benchmark 

problem.  
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Figure 2. Convergences in geometrical refinement.  

(a) mesh aligned crack; (b) mesh independent crack. 

 

 Assessment on accuracy of stress intensity factors 

Comparisons are based on the crack configuration of Fig. 1(b). The SILS 

approximation is adopted as it is the same accurate as the SIMLS (refer to Fig. 2) but 

is more computationally efficient. The patch size takes r=2h. iXFEM and XFEM use 

the same size of enriched domain. iXFEM is compared with the standard XFEM and 

the corrected XFEM proposed by Fries [Fries (2008)]. 7×7 Gaussian quadrature is 

used on the enriched elements and 2×2 on the rest. The embedded direct solver of 

Matlab® is used for linear systems. This circumvents bad conditioning in XFEM, but 

the solver complains the singularity of the linear system in the corrected XFEM. The 

normalized KI values for each method are shown in Table 1. 
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Table 1. Normalized KI values 

element size (h) iXFEM XFEM corrected XFEM 

dof KI dof KI dof KI 

1/9 220 1.0075 344 1.0068 344 1.0045 

1/15 540 1.0022 828 1.0007 828 1.0010 

1/21 1004 1.0010 1520 1.0000 1520 1.0002 

1/27 1612 1.0006 2420 0.9993 2420 0.9999 

1/33 2364 1.0004 3528 0.9990 3528 0.9999 

1/39 3260 0.9999 4844 0.9991 4844 0.9998 

1/45 4300 0.9996 6368 0.9990 6368 0.9998 

1/51 5484 0.9997 8100 0.9990 8100 0.9998 

 

Assessment on conditioning properties 

The conditioning is studied for the above same example by computing the maximum 

and the minimum eigenvalues of the global stiffness matrix before essential boundary 

treatment (the rigid body modes are included). The results are listed in Table 2. The 

eigenvalues of the standard FEM (crack and enrichment) are provided for reference. 

An eigenvalue less than 10
-15

 is taken to be zero. The variation of the condition 

number versus mesh size h is plotted in Fig. 3 for the standard XFEM, FEM and 

iXFEM.  

 

Table 2. Conditioning properties 

(the eigenvalues of the standard FEM are provided for reference) 

  iXFEM XFEM 

element 

size (h) 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

1/9 6.61E+03 3.40 3 6.19E+03 1.14E-03 3 

1/15 5.77E+03 1.47 3 6.44E+03 3.63E-05 3 

1/21 5.60E+03 0.813 3 6.52E+03 2.93E-06 3 

1/27 5.63E+03 0.517 3 6.57E+03 4.72E-07 3 

1/33 5.66E+03 0.358 3 6.60E+03 1.15E-07 3 

1/39 5.67E+03 0.263 3 6.62E+03 3.64E-08 3 

1/45 5.68E+03 0.201 3 6.64E+03 1.34E-08 3 

1/51 5.69E+03 0.159 3 6.65E+03 5.70E-09 3 

  corrected XFEM FEM 
element 

size (h) 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

max 

eigenvalue 

min 

eigenvalue 

# of zero 

eigenvalues 

1/9 6.10E+03 2.41E-06 7 5.18E+03 51.7 3 

1/15 6.36E+03 4.17E-08 7 5.30E+03 22.7 3 

1/21 6.44E+03 3.77E-09 7 5.34E+03 12.1 3 

1/27 6.49E+03 6.83E-10 7 5.36E+03 7.50 3 

1/33 6.53E+03 1.81E-10 7 5.37E+03 5.10 3 

1/39 6.56E+03 6.11E-11 7 5.37E+03 3.69 3 

1/45 6.58E+03 2.44E-11 7 5.37E+03 2.79 3 

1/51 6.60E+03 1.10E-11 7 5.38E+03 2.19 3 
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Figure 3. Variation of condition number versus mesh size.  

 

The following conclusions can be drawn: (a) iXFEM offers the similar stability as the 

standard FEM (Fig.3) and it is much better conditioned than the current XFEM. The 

condition number of the global stiffness matrix in iXFEM grows with h
-1.8

, where h is 

the mesh size, whereas the condition number in XFEM grows with h
-7

; For reference, 

the condition number in the standard FEM grows with h
-1.9

 in the same tests. (b) the 

corrected XFEM contains four spurious zero eigenvalues in stiffness matrices, which 

signals singularity of the stiffness matrix. The minimum nonzero eigenvalue is also 

generally smaller than that in XFEM. 

 

Assessment on expenses on equation solving 

The computational expense of the three methods is compared in terms of the number 

of dofs to be solved and the number of convergence iterations in a linear solve. The 

reason we choose an iterative solver for comparison is that subspace iterative methods 

are de-facto solvers in large scale problems and a direct solver is hardly scalable for 

problems at scale.  

 

The conjugate gradient method is used to solve the linear system of the methods. The 

convergence tolerance is set to 10
-10

 for iXFEM and 10
-8

 for the XFEMs. The 

standard conjugate gradient method without preconditioning is used for iXFEM and 

the SSOR preconditioned conjugate gradient method, which is also an embedded 

solver of Matlab®, is used for XFEM and the corrected XFEM to circumvent bad 

conditioning. The data are listed in Table 3. 
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Although a better pre-conditioner or an alternative robust solver definitely can be 

found for the XFEMs, we still can safely conclude that the standard XFEM and the 

corrected XFEM obviously suffer from very slow convergence due to bad 

conditioning; iXFEM, in contrast, not only computes a smaller size of linear system 

but also converges remarkably easily. The latter observation is as expected and 

should be understandable. 

 

Table 3. The number of dofs to be solved and convergence iterations 

h iXFEM  

(w/o preconditioning) 
(error tolerance: 10

-10
) 

XFEM 

(preconditioned) 
(error tolerance: 10

-8
) 

corrected XFEM 

(preconditioned) 
(error tolerance: 10

-8
) 

dofs iterations dofs iterations dofs iterations 
1/9 220 70 344 276 344 447 

1/15 540 93 828 1068 828 2337 

1/21 1004 111 1520 2389 1520 5796 

1/27 1612 130 2420 4395 2420 10000* 

1/33 2364 149 3528 6801 3528 10000* 

* the maximum number of iterations is reached but convergence is not yet observed 

 

Crack growth simulation in a double cantilever beam 

In this section, iXFEM is compared to the standard and the corrected XFEMs for 

crack growth simulation. The dimensions of the double cantilever beam (see Fig. 4) 

are 6cm × 2cm and an initial pre-crack with length of a = 2cm is considered. Plane 

stress conditions are assumed with Young’s modulus E = 1000 and the Poisson ratio v 

= 0.3. The crack is given a small perturbation at the tip of length ∆a=0.1cm in with 

initial angle dθ=5.71° as shown in Fig. 3. A structured mesh (60 × 180) is used and 

the crack advances 0.1cm at each step. The stress intensity factors are computed using 

the interaction integral method. The evolution of the crack paths are shown in Fig. 5. 

The crack path obtained using iXFEM for a fine mesh of 150 × 450 is provided as the 

reference solution. 

 

 
Figure 4. Geometry for the double cantilever beam 
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Figure 5. Double cantilever beam: comparison of crack path after 11 steps using the 

standard XFEM and iXFEM for dθ=5.71°. 

 

Due to the limit of space, the rest of numerical examples are to be presented in the 

conference.  

Conclusions 

An improved XFEM, in short iXFEM, has been briefly introduced. iXFEM has been 

compared with the standard XFEM and the corrected XFEM in terms of 

convergences, accuracy, conditioning properties, and the expenses on equation 

solving. The following conclusions are drawn: 

(1) The iXFEM offers the similarly excellent accuracy as the standard XFEM and the 

corrected XFEM provided that the blending element issue is dealt with properly 

and the enriched domain is the same in size. 

(2) iXFEM shows remarkable improvement on conditioning. The condition number 

of the global stiffness matrix in iXFEM grows with h
-1.8

, where h is the mesh size, 

while the existing XFEM grows with h
-7

. In the corrected XFEM, four spurious 

zero eigenvalues are detected, which means the singularity of global stiffness 

matrix. For reference, the condition number in the standard FEM grows with h
-1.9

 

in the same tests. iXFEM shows the similar conditioning as the standard FEM. 

Due to the good conditioning, iXFEM is robust to deliver optimal convergences 

in geometrical refinement. 

(3) iXFEM is computationally efficient. The shape function of iXFEM involves a 

matrix inversion operation. This increases computational expenses to a certain 

extent. On the other hand, for the same size of enriched domain, iXFEM uses less 

dofs and convergence iteration is also much faster compared with the standard 

and the corrected XFEMs. 
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