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Abstract 

Based on the recently developed Finite Integration Method (FIM) for solving one-dimensional 

ordinary and partial differential equations, this paper extends the technique to higher dimensional 

partial differential equations.  The main idea is to extend the first order finite integration matrices 

constructed by using either Ordinary Linear Approach (OLA) (uniform distribution of nodes) or 

Radial Basis Function (RBF) interpolation (uniform/random distributions of nodes) to higher order 

integration matrices. Illustrative two-dimensional numerical examples are given in two-dimension 

to compare the FIM (FIM-OLA and FIM-RBF) with the Finite Difference Method and Point 

Collocation Method to demonstrate its superior accuracy and efficiency. 
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Introduction 

Mathematical models in terms of partial differential equations (PDEs) have commonly been used to 

describe a wide variety of physical phenomena such as sound, heat, electrostatics, electrodynamics, 

fluid flow, and elasticity.  Under various boundary conditions, it is very rare that these models can 

be solved in closed form solutions.  Numerical methods are unavoidable for seeking approximate 

solutions to simulate the dynamic and characteristics of the models.  Due to the advance of 

computational methods, these kinds of numerical approximation can usually be achieved 

inexpensively to high accuracy together with a reliable bound on the error between the analytical 

solution and its numerical approximation. There are many numerical techniques available for 

solving differential equations [Lambert (1991), Hairer (1993)] including the Finite Element Method 

(FEM) and Boundary Element Method (BEM). In the last decade, the development of the Radial 

Basis Functions (RBFs) as a truly meshless method has drawn attention from many researchers.  In 

particular, the use of multiquadric radial basis function (MQ-RBF) [Hardy (1971), Goldberg and 

Chen (1997), Hon and Mao (1997), Atluri (2002), Liu (2003), ] has shown the superior convergence 

of the method in comparing with FEM and BEM. Numerical results indicated that these meshless 

methods provide a similar optimal accuracy for solving both  elliptic and parabolic equations in 2D. 

Recently, Wen et al (2013) and Li et al (2013) developed a Finite Integration Method (FIM) for 

solving differential equation in 1D and demonstrated its applications to nonlocal elasticity 

problems. It has been shown that the FIM gives higher degree of accuracy than the Finite 

Difference Method (FDM) and Point Collocation Method (PCM). In this paper, the FIM is further 

extended to solve multi-dimensional partial differential equations. Two-dimensional partial 

differential equations are given in illustrative examples.  Similar to the FDM and the PCM, a finite 

number of points, known as field points, are distributed in the computational domain. The field 

points are generated either uniformly (grid) along the independent coordinate or randomly in the 

domain. The integration matrix of the first order is obtained by the direct integration with either 

OLA approximation. Based on these first order integration matrices, any finite integration matrix 

http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Electrostatics
http://en.wikipedia.org/wiki/Electrodynamics
http://en.wikipedia.org/wiki/Fluid_flow
http://en.wikipedia.org/wiki/Elasticity_%28physics%29
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with multi-layer integration can easily be obtained. To compare with other numerical methods, the 
PCM and analytical solution are used.  

FIM for one-dimensional problems  

Numerical quadrature rule based on Ordinary 

Linear Approach (OLA) is the simplest 

computational scheme for integration [see Wen 

et al (2013)]. Starting from one-dimension 

problem, an integral of a given function u(x) can 

be written as  


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Applying the linear interpolation technique to 

Eq. (1), we have 
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where, using trapezoidal rule,  
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and ( 1),   / ( 1),   1,2,..,ix i b N i N        

are nodal points in [0, b], and bxx N  ,01 . 

Note that Eq. (2) can be written in a matrix form 

as 
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and )(  ),( iiii xuuxUU   are the values of 

integration and the integral function respectively 

at each nodes. Thereafter, consider a multi-

integral for one-dimensional problem 
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Figure 1. Uniform distribution of collocation 

points. 
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The above multi-integral can also be written in a 

matrix form as 

uAuAU
2)2()2(     (8) 

where 
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and the elements of matrix )2(
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For two-dimensional problems, let us consider a 

uniform distribution of collocation points as 

shown in Fig. 1. Similar to Eq. (1), we define 


x

x dyuyxU
0
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and the total number of point is  

ijNk  )1(1 , where i and j denote the 

number of column and the number of row 

respectively.  This numbering system is called 

the global number system. We can also express 

each nodal value of integration in Eq. (11) in a 

matrix form as 

uAU xx                 (12) 

where integral nodal value 
T

xMxxx UUUU ],...,,[ 21 , nodal value 

 1 2, ,...,
T

Mu u uu and M is the total number of 

collocation points ( 21 NNM   for grid shown 

in Fig. 1). For a rectangular domain, the first 

order integration matrix 

  
2

000

............

000

0...0

N

x























A

A

A

A              (13) 

in which, A is integration matrix for one-

dimension given in Eq. (5) with dimension 

11 NN  . Similarly, the integration along y axis 

is  
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which can be written in the matrix form as 

uAU 'y               (15) 

in the local system for the collocation points, 

where jiNk  )1(2 . The first order 

integration matrix in the local system is 
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in which A is the integration matrix for one-

dimension integral given in Eq. (5) with 

dimension 22 NN  . By a simple re-

arrangement of the number of the nodes, Eq. 

(15) can be rewritten, in the global system, as 
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For the multi-integration in two-dimensional problem in a rectangular domain, we consider the 

following integral with respect to coordinate x 
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and use the same procedure for one-dimension, one has 
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or in a matrix form 
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Similarly, one has multi-integration ),(
)2(

yxU y  with respect to coordinate y 
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This method can be extended to the higher order integrations, i.e.   
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Applying ordinary linear interpolation technique again for integral function ),()( yxU m , we have 
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Again, it can also be written, in a matrix form, as 
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In addition, this method can be extended to multi-layers integration with two coordinates x and y as 

follow: 
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and the nodal values of the above integration are obtained in the matrix form as  
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FIM with radial basis functions 

For uniform distribution of nodes (grid), the multi-layer integrations at each node can be obtained 

quite easily in a matrix form. However, in general case, if the nodes distribution is random, the 

algorithm OLA discussed in the Section above is not valid. In this case, interpolation schemes have 

to be introduced. Recently, the radial basis functions interpolation schemes and moving least square 

method are very popular meshless methods.  For example, the MQ-RBF was introduced by Hardy 

(1971) for the interpolation of topographical surfaces in the early stage of radial bases function 

application. Note that )(xu in the domain   can be interpolated over a number of randomly 

distributed nodes   Miyx iii ,...,2,1,, x , as  

   
 


M

i

ii

M

i

Q

q

qqiii uPRu
11 1

)()()()(),()( xβxPαxRxxxx    ,x                      (30) 



5 

 

where  1 1 2 2( ) ( , ), ( , ),..., ( , )M MR R RR x x x x x x x  is a set of radial basis functions centred at 

 yx,x , 
1 2[ , , , ]T
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1 2[ , , , ]T
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is shape function. Therefore, the integration matrices of the first order are 
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where   dydx iyiixi )(   ,)( xx  .  

The FIM for multi-dimensional problems 

The FIM is readily extendable to solving higher dimensional problems. For illustration, consider the 

following two-dimensional partial differential equation  
2 2

1 2 32 2
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where  is a boundary operator, ),(  and  ),(),,(),,(),,( 321 yxhyxbyxyxyx  are given functions. 

u is generally referred as potential, which represents the transversal displacement of a membrane. Ω 

and ∂Ω are simple connected domain and its boundary respectively.  Integrating twice in Eq. (31) 

with respect to coordinates x and y respectively, one has 
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where )( and )(),(),( 1010 xgxgyfyf  are unknown one-dimensional functions. Using the technique of 

integration by part, we have 
2 2

1 1 2 2
1 22 2

3 0 1 0 1

2 2

( , ) ( ) ( ) ( ) ( ).

u u dx u dxdx dydy u u dx u dydy dxdx
x x y y

udxdxdydy b x y dxdxdydy xf y f y yg x g x

   
 



      
        

      

    

     

   

(33) 

By using integration matrix mentioned in the previous sections, we have  
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Integral functions ),( ),( 10 yfyf )(0 xg  and 

)(1 xg can be interpolated in terms of the nodal 

values in the following procedure: 
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(1) Determine the regions of functions )(yf  

and )(xg , i.e. ],[ 1 ryy , ],[ 1 pxx , and uniformly 

distributed points in these regions as shown in 

Fig. 2; 

(2) Determine one-dimensional shape function 

matrices yx ΨΨ  and  

      By using linear interpolation, one has 
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Therefore, the matrices of shape function are 

pnn

M

i
xx

xx

xx

xx

nn

ni

nn

in

x

                                                 1-                           1  columm         

1 row

 

..................

..................

0000

..................

..................

1

1

1








































Ψ

                (38) 

and 

rmm

M

i
yy

yy

yy

yy

mm

mi

mm

im

y

                                                     1-                                1  columm         

 

1 row

 

..................

..................

0000

..................

..................

1

1

1








































Ψ

                (39) 

in which )( and  )( yx ii   are shape functions 

in one dimensional case as shown in Fig. 2. In 

Eq. (34), we have M nodal unknowns of u , 2q 

unknowns of 0f , 1f  and 2r unknowns of 0g , 1g . 

 

For a rectangular plate with uniform distribution 

of nodes )( 21 NN  , obviously one has rp 22   

nodes located on the boundary. By selecting 

11  Np  and 12  Nr  for uniform 

distribution of node, there are  21 NN   

)2(2 21  NN  linear system of equations to 

determine all unknowns, i.e. u , 
0f , 

1f ,
0g , and 

1g . In fact, the number of boundary points to 

determine four one-dimensional integral 

functions is arbitrary. The number of points (L) 

on the boundary should be greater than or equal 

to )(2 rp  . If )(2 rpL  , the standard 

Gaussian solver can be used directly. Otherwise, 

the Singular Value Decomposition [Press et al 

(1992)] scheme should be introduced.  

         

             

Figure 2. Interpolations for one dimensional 

function  )(yf  and ).(xg  

Numerical example 

Consider the following partial differential equation  

        

2 2

2 2
(1 ) (1 ) 4 (1 )(1 ),     ( , ) ,

( , ) 0,                                                              ( , ) ,

u u
x x y y xy x y x y

x y

u x y x y

 
       

 

 

                        (41) 

where [0,1] [0,1]  . The analytical solution is given by )1)(1(),(* yxxyyxu  . The 

average relative error is defined as 

       
*

* *

max*
1 max

1 1
,    (0.5,0.5)

16

M
i i

i

u u
u u

M u





                            (42) 
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             Figure 3. Distributions of nodes. 

 

Uniformly distributed nodes is shown in Fig.3. 

For radial basis functions approach in Eq. (30), 

three radial basis functions are considered, i.e.  

(1) MQ function: 22)( rcrR  ; 

(2) Linear function (LF): rrR )( ;  

(3) Thin-Plate Splines (TPS): rrrR ln)( 2 .  

       In this example, we chose NNN  21  

and Nrp  . The shape parameter c of MQ is 

selected as c = 1 / N. For the RBF approach, 

single integration matrix in Eq. (70) is used. The 

average errors   for various number of 

collocation point are shown 

 in Table 1. Among these algorithms, the 

accuracy of OLA is the lowest and PSF of radial 

basis function is the highest.  
 

Table 1. Average errors (ε). 

N OLA MQF LF TPS 

10 0.019110 0.013707 0.017554 0.012985 

20 0.005689 0.005365 0.006462 0.004496 

30 0.013820 0.003083 0.003671 0.002373 

Conclusion 

In this paper, the Finite Integration Method (FIM) with Ordinary Linear Approach and Radial Basis 

Functions interpolation was extended to solve multi-dimensional differential equations. Compared 

with the Point Collocation Method (PCM) and the Finite Difference Method, the proposed FIM 

performs much superior in accuracy and stability. For the FIM with Radial Basis Functions 

interpolation, the use of randomly distributed nodes in the domain allows solving problems under 

irregular domains.  
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