
ICCM2014 

28-30
th

 July, Cambridge, England 

1 

 

Identification of a Position and Time Dependent Heat Flux Using the Kalman 

Filter and Improved Lumped Analysis in Heat Conduction 

*C.C. Pacheco¹, H.R.B. Orlande
1
, M.J. Colaço

1
, and G.S. Dulikravich

2
 

1
Department of Mechanical Engineering, Federal University of Rio de Janeiro, Brazil 

2
Department of Mechanical and Materials Engineering, FIU-MAIDROC Laboratory, Miami, USA 

*Corresponding author: cesar.pacheco@poli.ufrj.br 

Abstract 

This paper aims to estimate a position and time dependent heat flux with high magnitude in a heat 

conduction problem. The heat flux is applied on one side of a flat plate, while the inverse problem is 

solved by using temperature measurements taken on the opposite side. The proposed forward 

problem is a surrogate model, derived from the simplification of a complete model. The inverse 

problem is then solved with the Kalman Filter. The temperature at the surface of the plate is 

approximated by using the improved lumped analysis, where the temperature gradients across the 

thickness of the plate are accounted for in an approximate manner. The measurements are simulated 

with the complete model, while the inverse problem is solved with the surrogate model. The 

temperature estimates show a good agreement with reference values. 
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Introduction 

Despite the modern and reliable available techniques for measuring temperature and heat flux, some 

particular scenarios are still challenging. Situations involving complex geometries or hazardous 

environments might make direct measurements of these quantities impractical [Dennis and 

Dulikravich, 2001]. Thus, estimation of these unknowns by using inverse analysis with temperature 

and/or heat flux measurements taken at other regions of the body of interest should be considered as 

a possible solution. Situations of this type become increasingly common, for example, due to the 

recent development of powerful microprocessors, which dissipates high amounts of heat. 

Techniques for dealing with such thermal loads are available, but new methodologies for proper 

quantification and more efficient cooling of these thermal loads are desired. Some results on the 

estimation of a high magnitude boundary heat flux in a heat conduction problem can be found in the 

literature [Dennis and Dulikravich, 2001; Feng et al., 2011; Dennis and Dulikravich, 2012; Afrin et 

al., 2013; Orlande et al., 2013]. All of these works emphasize the difficulties of solving the inverse 

problem with an accurate mathematical model, which would be a three-dimensional nonlinear heat 

conduction problem, thus resulting in high computational times [Dennis and Dulikravich, 2012]. In 

this work, the proposed forward problem is obtained by simplification of a more general heat 

conduction problem which, together with the modeling of uncertainties of observations and 

unknowns as Gaussians, allows one to use the Kalman filter [Kalman, 1960; Chen, 2003; Kaipio 

and Somersalo, 2004; Grewal and Andrews, 2008]. The physical problem considered in this paper 

involves heat conduction in a flat plate, where the temperatures at both surfaces are approximated 

by the Improved Lumped System Analysis [Cotta and Mikhailov, 1997]. In this formulation, the 

temperature gradient across the plate is approximated by Hermite’s formulae. The use of the 

Kalman filter requires much less computational effort in comparison with techniques such as 

particle filters and is more readily adaptable to parallel processing. 
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Forward Problem 
 

The physical problem considered in this paper involves a high magnitude heat flux applied to the 

top surface of a flat plate, while temperature measurements are taken at the opposite side, as shown 

in Fig. 1. The dimensions of the flat plate are given by Tab. 1. 

 

 
Figure 1: Geometry of the physical problem 

 

Table 1: Dimensions of the flat plate 

 

Dimension Value [mm] 

a 120 

b 120 

c 3 
 

All other boundaries are thermally insulated. The heat flux is position-and-time dependent and the 

initial temperature distribution is considered to be uniform. Based on these assumptions, the 

resulting mathematical model [Ozisik, 1993], named “Complete Model”, is given by Eqs. (1.a)-(1.f). 
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Since high temperature variations are expected, the volumetric heat capacity and the thermal 

conductivity are supposed to vary with respect to the temperature according to [Orlande et al., 

2013]: 

    ( ) 1324.75 3557900  [J/m³]C T T        (2.a) 

    6 2( ) 12.45 0.014 2.517 10 T   [W/mK]Tk T T          (2.b) 

The Kalman filter cannot be used to solve the inverse problem related to the estimation of the 

applied heat flux using this mathematical model, since it is non-linear. Regarding other techniques, 

a similar inverse problem solved with the complete model, using the Metropolis-Hastings algorithm 

in a time range of 2.0 seconds with 5mmx y    , 0.5mmz  , 0.01st   and 510  states of the 

Markov Chain, led to 8 days of computational time [Orlande et al., 2013]. In order to reduce this 

extremely high computational cost, a surrogate model is proposed in this paper as described below. 
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Surrogate Model 

 

The first step to obtain the surrogate model is to linearize the thermal properties, evaluating Eqs. 

(2.a) and (2.b) at a reference temperature * 600T K . This gives rise to the constant thermal 

properties presented on Eq. (3). 

    * * * *( )    and    ( )T TC C T k k T       (3) 

The next step aims to reduce the number of dimensions of the model. This is achieved by 

calculating the mean temperature in the z direction, using the operator described in Eq. (4). 
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Application of this operator in Eq. (1.a) is straightforward, except for the diffusion term in the z-

direction, where the result is the heat flux at z = 0 and z = c surfaces of the plate. This result can be 

combined with the linearized versions of Eq. (1.d) and (1.e), as shown in Eq. (5). 
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Operation of the linearized versions of Eqs. (1.b), (1.c) and (1.f), is also straightforward. The final 

result is the following surrogate model, which is a linear two dimensional problem:  

    
2 2

* * *

2 2

( , , )
T T

T T T q x y t
C k k

t x y c

  
  

  
 in 

0 , 0

0

x a t

y b

  

 
     (6.a) 

    0
T

x





    in    0x   and x a      (6.b) 

    0
T

y





    in    0y   and y b      (6.c) 

    0T T     in    0t       (6.d) 

This model is much simpler to solve than the complete model. However, its solution leads to the 

mean temperature in the z-direction, but the desired quantity is the temperature at the z = 0 surface. 

The Improved Lumped Analysis [Cotta and Mikhailov, 1997] allows one to approximate this 

quantity by using the Hermite’s formulas for integrals given by: 
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These formulas are used to approximate the mean temperature in the z-direction and the integral of 

the temperature gradient in the z-direction, that is, 
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The final result is an approximation of the temperature at the 0z  surface given by: 
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Inverse Problem 

 

The inverse problem related to the estimation of the applied high intensity heat flux is solved in this 

paper by using a Bayesian approach. A probability density function (pdf) of the unknown state 

variables nx  given the set of observations 0:ny  is built with Bayes’ Theorem. Statistical inference 

techniques can be applied to this pdf, called “posterior”, to extract information about the unknowns 

[Chen, 2003]. This work uses the Kalman filter, which requires the forward problem to be cast in 

the form of the Evolution-Observed Model given by Eqs. (10.a) and (10.b), where nw  and nv  are 

zero mean Gaussian noise vectors, with covariance matrices nQ and nR , respectively. 

    1 1n n n n  x F x w      (10.a) 

    n n n n y H x v      (10.b) 

The state vector for this problem, given by Eq. (11), is composed by the mean temperature and heat 

flux values, represented by the vectors nT and nq , at each control volume of the discretization grid. 

Thus, considering a grid with I  volumes in the x  direction and J  volumes in the y  direction, the 

number of unknowns is 2IJ . 
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The nF  matrix for the evolution model, with size 2 2IJ IJ , is built with four matrices of 

size IJ IJ , as: 
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The nA  and nB  matrices result from the discretization of the forward surrogate problem with the 

explicit scheme of the finite volume method [Patankar, 1980; Versteeg and Malalasekera, 1995; 

Ferziger and Peric, 2002]. nA  accounts for the heat diffusion in the domain, and nB is given by Eq. 

(13). 
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
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The 0  and I  terms are the zero and identity matrices, where a random walk model was used for the 

evolution of the unknown local heat fluxes. Considering the state noise as uncorrelated and with a 

standard deviation q , this model can be described by Eq. (14), where ω  is a standard Gaussian 

vector. 
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    1n n q q q ω      (14) 

For the observation model, the matrix nH  is described by Eq. (15), where the diagonal matrix 

results from the Improved Lumped formulation: 
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The Kalman filter is applied to the solution of the present state estimation problem, (see Eqs. (16.a)-

(16.e)). If the hypotheses of linear problem and Gaussian noise are respected, this set of equations 

produces an unbiased and minimal variance recursive estimator [Chen, 2003; Grewal and Andrews, 

2008; Orlande et al., 2012]. Also, the covariance matrix of the estimates error nP  allows the 

construction of confidence interval for better analysis of the obtained results. 
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Results 

 

In this work, the experimental measurements were simulated with the complete model, using a fine 

grid with 768 768 64  volumes and time step 410t s   to ensure numerical convergence. The 

inverse problem was solved with 24 24 volumes and a time step 0.01t s  . This was done so that 

the simulated measurements are free of inverse crime [Kaipio and Somersalo, 2004]. The initial 

temperature was considered as 300K . The observation noise was assumed as Gaussian, 

uncorrelated, with zero mean and constant standard deviation, y . In a real situation, these 

measurements could be obtained with modern infrared cameras, which presents standard deviations 

of the order of 0.01 C [Orlande et al., 2013]. For testing the performance of the Kalman filter, a 

relatively high value ( 1y C   ) was selected. The proposed heat flux is described by Eq. (17) and 

Tab. 2. The size of the region of application of the heat flux is selected so that it does not 

necessarily coincide with the control volume size. 
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( , , )
0 otherwise

q x x x y y y t t
q x y t
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Table 2: Parameters of the proposed heat flux 

 

Quantity Value Quantity Value Quantity Value 

1x  60mm  
1y  60mm  

0q  710 W/m²  

2x  72mm  
2y  72mm  

1t  0.4s  

 

The comparison between the projection of the exact temperature field on the coarse grid and the 

estimated values at time 2.0st   is presented in Figs. 2.a-2.b. The agreement between these values 
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is excellent, once the region where the heating occurs is adequately identified and the estimated 

temperatures are very close to the exact values. No signs of correlation were detected in the 

obtained residuals. The largest residual was in the heated region and its vicinity, but its value was 

approximately 0.45°C. Thus, both the largest residual and the standard deviation of the 

experimental measurements have the same order of magnitude ( 1 C ), and the temperature 

estimates can be considered as good [Ozisik and Orlande, 2000]. 

 

 
(a) Exact 

 

 
(b) Estimated 

Figure 2: Comparison of the exact and estimated temperature field at time t = 2.0s . 

 

The same comparison made for the temperature is presented for the heat flux in Figs. 4.a-4.d, where 

the projections of the exact heat flux values in the coarse grid is presented in Fig. 4.a, while the 

estimated values at times t = 1.0s, 1.5s and 2.0s are presented in Figs. 4.b, 4.c and 4.d, respectively. 

 

 
(a) Exact 

 

 
(b) t=1.0s. 
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(c) t=1.5s 

 

 
(d) t=2.0s 

Figure 3: Comparison between the exact heat flux and the estimates at different times. 

 

The results show that the region where the heating occurs is very well identified. However, some 

quantitative differences can be observed between the reference values and the estimates. For better 

understanding of these differences, the evolutions in time of the exact and estimated values are 

presented in Figs. 5.a-5.b for the point ( , ) (62.5;62.5)mmx y  , located inside the heated region. 

 

 
(a) Temperature 

 

 
(b) Heat Flux 

Figure 4: Evolution of the reference and estimated values with time at (x, y) = (62.5;62.5)mm . 

 

For these results, the 99% confidence intervals show again the good quality of the temperature 

estimates. However, since the heating occurs on the opposite side from where the measurements are 

obtained, a time of approximately0.2s  is elapsed before the filter shows any change in the heat flux 

estimates resulting from the applied heat flux. This is due to the time required for the diffusion of 

heat through the thickness of the plate. Also, in the vicinity of 2.0st  , the estimates show a 

decreasing behavior as a result of the modeling errors of the surrogate model at high temperatures. 
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On the other hand, it is possible to extract information about the order of magnitude of the heat flux 

and its region of application. 

 

Conclusions 

 

The proposed inverse problem, for which nonlinear and three dimensional models would be needed, 

could be reasonably well solved with simplified models, allowing for the use of fast and 

computationally efficient algorithms, such as the Kalman Filter. The temperature estimates present 

very good agreement with reference values. For the estimation of the heat flux, although the effect 

of the modeling errors of the surrogate model is noticeable, the heating location is adequately 

identified and the obtained estimates have the same order of magnitude as the exact values. 

Improvement of these results relies in accounting for modeling errors in the solution of the inverse 

problem. 
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