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Abstract

In this study, a combination of the lattice Boltzmamethod (LBM) and the phase-field method
(PFM) is used for the calculation of liquid-solidd-phase flows with solidification. PFM is used as
a numerical tool to capture interface topology denof solid and the flow of liquid is solved by
using LBM. The no-slip boundary condition at thequid-solid interface is satisfied by adding a
diffusive-forcing term in LBM formulation. Calculains of Poiseuille flows and flows past a
circular cylinder at different Reynolds numbers foom that the no-slip boundary condition is
effectively satisfied at the diffuse liquid-solidtérface. Then, the present method is applieddo th
calculation of two-dimensional anisotropic dendrgrowth of a binary alloy under melt convection.
Two cases have been studied. Initially, the sdidtationary, and then the solid is free to move
under the influence of the flow. The equations aftion are solved to track the translation and
rotation of the solid. Qualitative comparisons die tsolidification patterns reveal that the
microstructure dendritic growth is mainly affectedthe direction of the fluid flow. The results
obtained with the present method agree well withs¢hobtained with other available numerical
techniques.

Keywords: Liquid-solid two-phase flow, Phase-field methodattice Boltzmann method,
Solidification

Introduction

Dendrites are common structures in the solidifaratbf metals and alloys. They reproduce due to
unstable movement of a liquid-solid interface. Dand solidification is governed by complex
processes such as surface tension, heat trangpopu¢e materials) and/or concentration gradient
(for alloys). Due to the importance of this phenom® some numerical techniques using the
hase-field method (PFM) have been proposed tcctefédy capture the interface morphology

Karma&Rappel (1998); Ohno&Matsuura (2009)]. Otherportant aspect in solidification Is
convection. Convection plays a crucial role on @lygrowth, and its effects have been studied by
taking into account the effect of melt convecti@e¢kermann et al. (1999), Lu et al. (2003), Miller
et al. (2001), Medvened et al (2006)]. In ordesitaulate solidification under melt convection, the
aforementioned methods combine PFM to solve thesgh@ansformation process and an
appropriate method to solve the fluid flow, i.ee tholution of the Navier-Stokes equations or the
lattice Boltzmann method (LBM) [Chen&Doolen (1998)j this studies, the solid is assumed to be
stationary, so that the momentum equation for ¢te & not solved.

In this study a combination of PFM proposed by GiMatsuura [Ohno&Matsuura (2009)] and
LBM has been used for simulation of solidificatiofhe main advantage of this PF-LBM over
others is the(fossibility of choosinftf:; differentfdgivities in the solid and liquid parts, and tHere
allowing solidification involving diffusion in saii of a binarP/ alloy. Most importantly, the solid is
allowed to move freely, and the equations of motwa solved to calculate the translational and
rotational velocities. Additionally, LBM has beedapted for modeling the fluid flow due to its
computational advantages related to easy prograganmd suitability for parallel computing.
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First, the present method is applied to benchmarkilations with stationary diffuse interfaces.
Poiseuille flows and flows past a circular cylindee carried out to validate the no-slip boundary
condition at the liquid-solid interface. Then, adétions of isothermal dendritic solidification werd
melt convection of an Al-Cu aIIoP/ are carried olwvo cases are considered to study the effect of
melt convection. Initially, the solid part is codered to be stationary, and then the solid part is
allowed to move with the fluid flow. The analysitbe results is based on qualitative comparisons
of the differences in the solidification patterns.

Numerical Method

The present method uses the quantitative phase-fiséthod for dilute alloy solidification
[Ohno&Matsuura (2009)] and the lattice Boltzmann tmoed with discrete forcing term
[Chen&Doolen (1998)]. The interaction between salidl liquid parts is modeled by a diffuse force
proposed by Beckermann et al. [Beckermann et 889]]. A detailed explanation of the numerical
methods is given in the following.

Phase-field method
The time evolution of the phase fielg,is given by [Ohno&Matsuura (2009)]

a,(6)°0,0= 0l (6) D)~ 0,[a. (0)a, (60, 9]+ 0, [a.(B)a. (B)o,dl - (@) -N (o

whereag(0) is a function to represent crystalline anisotropy-1 for liquid andg=+1 for solid,
as(0) = daddo, f(p) and g(g) are interpolating functions associated with tleulde-well and
chemical potential, respectively* is a dimensionless parameter that controls thgpliog between
the phase field and the concentration field represkby the dimensionless supersaturation,

The time evolution of the supersaturatianis given by
L+ k - (2= K)n@](0.u+U mu)/2=0[D,a(@)0u - j, ]+ [L+ - Ko h@/2-00  (2)

wherek is the partition coefficienty(@) andq(g) are interpolating functiong is the fluid velocity,
D, is the liquid diffusivity,jar is the antitrapping current term, adds a function to include noise
fluctuations [Echebarria (2010)].

Lattice Boltzmann method
The lattice Boltzmann equation with single relagatiime,t, and discrete forcing terr;, is given
by
f, (X +cot,t +ot) = f,(x,t) —E[ f. (x,t) = £.59(x )] + G, (x,t)dt 3
T

wherefi is the particle velocity distribution in thiéh direction,x is the position vectorg the
discrete particle velocity,the time,dt the time step siz&™ is the equilibrium distribution function.
The fluid densityp, and velocityJ are given by
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where Q is the number of discrete velocities. In this stuthe two-dimensional nine-velocity
(D2Q9) model is used in the calculations of thewdite velocity. The discrete forcing ter@, with
second-order accuracy is given by

G :pVVi|:30'_2u+9(C' Hj)“"}u@ (6)
c c

where W is the weighting function related 5 andc the lattice velocity ¢=dx/6t=1). G is an

external force.

In the present study, effects of the gravity anteotexternal forces are neglected. Therefore, the
only force acting on the fluid flow is the one teld to drag. A dissipative drag force is used to
impose the no-slip boundary condition at the dgfusquid-solid interface. It is given by
[Beckermann et al. (1999)]

G(x,t) = 2pvg[“7“’j (Us-U) W

wherev is the kinematic viscosityg is a dimensionless constant, ge= 2.757 andJs is the solid
velocity. The motion of the solid part is calcuthtey solving the following equations [Glowinski et
al. (2001)]:

du

M, ST =G, ®
dw

l's dts =Ts 9)

whereMs is the mass of the solitlr is the translational velocity of the solid,is the tensor for the
moment of inertiags is the angular velocityGs andTs are the total force and torque acting on the
solid, respectively. They are given by

Gg =) G(x,1)AV (10)
Ts == (X = Xg)xG(x,t)AV (11)

whereAV is the volume of the computational cell akdis the center of mass of the solid. The
velocity Us is given byUs = Ut + uxs X (X-Xs). The location of the phase field is updated veith
advection equation. The advection term is disceetiwith the WENO fifth-order scheme.

The basic solution of the present method is ilatsd as follows:
1. Solve Egs. (1) - (2) with the explicit Euler method
2. Solve the lattice Boltzmann equation, Eq. (3), wdtkcrete forcing term, Eqgs. (6) and (7),
and obtairy.
3. If necessary, calculate the motion of the solichvidgs. (8), (9), (10) and (11) and update the
location of the phase field with an advection et

Validation

Initially, calculations of Poiseuille flow and flavpast a circular cylinder at different Reynolds
numbers are carried out to validate the no-slipngiauy conditions. The phase field does not
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Figure 1. Velocity profile of Poiseuille flow

Table 1 Comparison of drag coefficient for steadyléws past a circular cylinder

Re 10 20 40
IB-FDLBM [Rojas et al. (2011)] 2.95 2.135 1.58
Present method 3.16 2.31 1.75
Table 2 Properties of Al-Cu alloy
Diffusivity in liquid D [m%s] 3.0x10°
Diffusivity in solid Ds[m?s] 3.0x10"
Partition coefficient k 0.14

change in these calculations and it is only usedistingue the fluid and the solid, e.g. walls or
boundaries. For Poiseuille flows, the computaticsh@nain is long enough so that the predicted
velocity profile corresponds to the fully developiémlv. The phase field is set gt-1 at the flow
region andg = 1 at the top and bottom walls. Figure 1 showsomparison of the theoretical
velocity profile and the one predicted with the gt method. As can be seen, both velocity
profiles agree well. Moreover, the no-slip boundaogndition at the top and bottom walls is
effectively satisfied.

Flows past a circular cylinder are calculated usigjuare computational domain. The dimensions
are 1600 and 1600 lattice points in thandy directions, respectively. The left boundary coioait

is inlet flow atUo, and the right, top and bottom walls are outflosuibdary conditions. A circular
cylinder is located at the center of the domain #redphase field ig= 1, in the fluid flowe = -1.
Table 1 shows a comparison of the drag coeffiomtit other numerical results in literature [Rojas
et al. (2011)]. The results obtained with the pnéseethod slightly differ from the results obtained
by using an immersed boundary method. This is lmrauthe present calculation the interface has
a finite width and better agreements are expecdteinterface width approaches cero.

Simulation of dendrites

In this section, numerical simulations are carred to analyze the effect of melt convection on
isothermal dendritic growth of an undercooled Al-@8lloy. Some physical properties of an Al-Cu
alloy are given in Table 2. Two cases are analyzedCase 1, the solid part of the alloy is
stationary, i.eUs = 0. In case 2, the solid part is allowed to maowthin the fluid flow, i.e. free
motion. The computational domain is shown in FigTBe computational domain sizé§xH, are
1001x1001 and 2001x1001 lattice points for Casesnd 2, respectively. The computational
domain of Case 2 is larger in thexis because the solid part is moving along thisction. A seed
is located at (501,501) and its diameter occupietattice spacings. A uniform inflow aio comes
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from the left boundary. The right boundary is contus outflow condition and the top and bottom
walls are slip boundaries. In this studlys, = 0.01,T1 =1, andu = 0.4.

The phase field distributions at two different arss,t; andt> are shown in Figs. 3 and 4. Figure 3

illustrates the case when the solid part is statipnin the absence of melt convection, dendritic
growth is symmetric in all directions [Ohno&Matsaui2009)]. On the contrary, the effect of melt

convection breaks the symmetrical growth morphology can be seen, the upstream facing parts
of the alloy grow faster than those downstreamnteited. These patterns agree well with other
gualitative results obtained by using other nunaénuethods [Beckermann et al. (1999), Lu et al.
(2003), Miller et al. (2001), Medvened et al (2004)

Figure 3 shows the phase field distribution of Casdt: andt.. The solid part has been displaced
from its initial position withUs. Despite dendritic growth seems to be symmetriaatietailed
examination revels that the rear tip grows slighHtigter than the front and normal tips. This
behavior is because the fluid flow enhances dandyibwth along its direction. As can be seen, the
motion of the solid part is mainly related to tihenslational velocity of the solid. The effect bt
rotational velocity is very small in this case. Téfere, calculations of dendritic growth in a shear
flow are carried out to evaluate the rotation & Holid. The computational domain sizaAN8H =
1001x1001. The dimensionless velocities at toplasttbm walls are -0.02 and +0.02, respectively.
Periodic boundary conditions are set alongxais. Figures 5 (a) and (b) show the distributedn

@ att; andt.. As can be seen, the simultaneous growth andiootaif the solid is effectively
predicted. Dendritic growth is favorable along tireferable directions, and the fluid flow slightly
modifies the growth in the direction perpendicutathe preferable directions.
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Figure 2. Computational domain for simulation of dendrites
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Figure 3. Phase field distribution,@, at Us= 0
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Figure 4. Phase field distribution,, at free motion
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Figure 5. Phase field distribution,¢, of dendritic growth in a shear flow

Conclusions

A combination of the phase-field method and thdidat Boltzmann method was used for

simulations of dendrites. Two cases were studiecrtalyze the effect of melt convection on

dendritic growth. First, the solid part of the gllwas stationary and then it was allowed to move
freely within the fluid flow. As a result, the follving conclusions were obtained: (1) melt
convection strongly affects the morphology of démdigrowth; it accelerates growth along its

direction and (2) the motion of the solids affedendritic growth in all directions, specially the

direction of the fluid flow
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