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Abstract 

In this study, a combination of the lattice Boltzmann method (LBM) and the phase-field method 
(PFM) is used for the calculation of liquid-solid two-phase flows with solidification. PFM is used as 
a numerical tool to capture interface topology changes of solid and the flow of liquid is solved by 
using LBM. The no-slip boundary condition at the liquid-solid interface is satisfied by adding a 
diffusive-forcing term in LBM formulation. Calculations of Poiseuille flows and flows past a 
circular cylinder at different Reynolds numbers confirm that the no-slip boundary condition is 
effectively satisfied at the diffuse liquid-solid interface. Then, the present method is applied to the 
calculation of two-dimensional anisotropic dendritic growth of a binary alloy under melt convection. 
Two cases have been studied. Initially, the solid is stationary, and then the solid is free to move 
under the influence of the flow. The equations of motion are solved to track the translation and 
rotation of the solid. Qualitative comparisons of the solidification patterns reveal that the 
microstructure dendritic growth is mainly affected in the direction of the fluid flow. The results 
obtained with the present method agree well with those obtained with other available numerical 
techniques.  
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Introduction 

Dendrites are common structures in the solidification of metals and alloys. They reproduce due to 
unstable movement of a liquid-solid interface. Dendritic solidification is governed by complex 
processes such as surface tension, heat transport (for pure materials) and/or concentration gradient 
(for alloys). Due to the importance of this phenomenon, some numerical techniques using the 
phase-field method (PFM) have been proposed to effectively capture the interface morphology 
[Karma&Rappel (1998); Ohno&Matsuura (2009)]. Other important aspect in solidification is 
convection. Convection plays a crucial role on crystal growth, and its effects have been studied by 
taking into account the effect of melt convection [Beckermann et al. (1999), Lu et al. (2003), Miller 
et al. (2001), Medvened et al (2006)]. In order to simulate solidification under melt convection, the 
aforementioned methods combine PFM to solve the phase transformation process and an 
appropriate method to solve the fluid flow, i.e. the solution of the Navier-Stokes equations or the 
lattice Boltzmann method (LBM) [Chen&Doolen (1998)]. In this studies, the solid is assumed to be 
stationary, so that the momentum equation for the solid is not solved. 
 
In this study a combination of PFM proposed by Ohno&Matsuura [Ohno&Matsuura (2009)] and 
LBM has been used for simulation of solidification. The main advantage of this PF-LBM over 
others is the possibility of choosing different diffusivities in the solid and liquid parts, and therefore 
allowing solidification involving diffusion in solid of a binary alloy. Most importantly, the solid is 
allowed to move freely, and the equations of motion are solved to calculate the translational and 
rotational velocities. Additionally, LBM has been adopted for modeling the fluid flow due to its 
computational advantages related to easy programming and suitability for parallel computing.  
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First, the present method is applied to benchmark simulations with stationary diffuse interfaces. 
Poiseuille flows and flows past a circular cylinder are carried out to validate the no-slip boundary 
condition at the liquid-solid interface. Then, calculations of isothermal dendritic solidification under 
melt convection of an Al-Cu alloy are carried out. Two cases are considered to study the effect of 
melt convection. Initially, the solid part is considered to be stationary, and then the solid part is 
allowed to move with the fluid flow. The analysis of the results is based on qualitative comparisons 
of the differences in the solidification patterns. 

Numerical Method 

The present method uses the quantitative phase-field method for dilute alloy solidification 
[Ohno&Matsuura (2009)] and the lattice Boltzmann method with discrete forcing term 
[Chen&Doolen (1998)]. The interaction between solid and liquid parts is modeled by a diffuse force 
proposed by Beckermann et al. [Beckermann et al. (1999)]. A detailed explanation of the numerical 
methods is given in the following. 

Phase-field method 

The time evolution of the phase field, φ, is given by [Ohno&Matsuura (2009)] 

 ( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )ugfaaaaaa xssyyssxsts φλ−φ−φ∂θθ∂+φ∂θθ∂−φ∇θ⋅∇=φ∂θ '''' *22  (1) 

where as(θ) is a function to represent crystalline anisotropy, φ=-1 for liquid and φ=+1 for solid, 
as’(θ) = das/dθ, f(φ) and g(φ) are interpolating functions associated with the double-well and 
chemical potential, respectively, λ* is a dimensionless parameter that controls the coupling between 
the phase field and the concentration field represented by the dimensionless supersaturation, u. 
 
The time evolution of the supersaturation, u, is given by  

 ( )[ ]( ) ( )[ ] ( )[ ] JU ⋅∇−φ∂−++−∇φ∇=∇⋅+∂φ−−+ 2/)(112/)(11 hukjuqDuuhkk tATlt  (2) 

where k is the partition coefficient, h(φ) and q(φ) are interpolating functions, U is the fluid velocity, 
Dl is the liquid diffusivity, jAT is the antitrapping current term, and J is a function to include noise 
fluctuations [Echebarria (2010)]. 
 

Lattice Boltzmann method 

The lattice Boltzmann equation with single relaxation time, τ, and discrete forcing term, Gi, is given 
by 
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where fi is the particle velocity distribution in the ith direction, x is the position vector, ci the 
discrete particle velocity, t the time, δt the time step size, fi

eq is the equilibrium distribution function. 
The fluid density, ρ, and velocity U are given by 
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where Q is the number of discrete velocities. In this study, the two-dimensional nine-velocity 
(D2Q9) model is used in the calculations of the discrete velocity. The discrete forcing term, Gi, with 
second-order accuracy is given by 

 G
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where Wi is the weighting function related to fi
eq and c the lattice velocity (c=δx/δt=1). G is an 

external force. 
 
In the present study, effects of the gravity and other external forces are neglected. Therefore, the 
only force acting on the fluid flow is the one related to drag. A dissipative drag force is used to 
impose the no-slip boundary condition at the diffuse liquid-solid interface. It is given by 
[Beckermann et al. (1999)] 
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where ν is the kinematic viscosity, g is a dimensionless constant, i.e. g = 2.757 and US is the solid 
velocity. The motion of the solid part is calculated by solving the following equations [Glowinski et 
al. (2001)]: 
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where MS is the mass of the solid, UT  is the translational velocity of the solid, IS is the tensor for the 
moment of inertia, ωS is the angular velocity, GS and TS are the total force and torque acting on the 
solid, respectively. They are given by  
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where ∆V is the volume of the computational cell and XS is the center of mass of the solid. The 
velocity US is given by US = UT + ωS × (x-XS). The location of the phase field is updated with an 
advection equation. The advection term is discretized with the WENO fifth-order scheme.  
 
The basic solution of the present method is illustrated as follows: 

1. Solve Eqs. (1) - (2) with the explicit Euler method. 
2. Solve the lattice Boltzmann equation, Eq. (3), with discrete forcing term, Eqs. (6) and (7), 

and obtain U. 
3. If necessary, calculate the motion of the solid with Eqs. (8), (9), (10) and (11) and update the 

location of the phase field with an advection equation. 

Validation 

Initially, calculations of Poiseuille flow and flows past a circular cylinder at different Reynolds 
numbers are carried out to validate the no-slip boundary conditions. The phase field does not  
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Figure 1. Velocity profile of Poiseuille flow 

 
Table 1 Comparison of drag coefficient for steady flows past a circular cylinder 

Re 10 20 40 
IB-FDLBM [Rojas et al. (2011)] 2.95 2.135 1.58 
Present method 3.16 2.31 1.75 

 
Table 2 Properties of Al-Cu alloy 

Diffusivity in liquid Dl [m2/s] 3.0×10-9 
Diffusivity in solid Ds [m2/s] 3.0×10-13 
Partition coefficient k 0.14 

 
change in these calculations and it is only used to distingue the fluid and the solid, e.g. walls or 
boundaries. For Poiseuille flows, the computational domain is long enough so that the predicted 
velocity profile corresponds to the fully developed flow. The phase field is set at φ=-1 at the flow 
region and φ = 1 at the top and bottom walls. Figure 1 shows a comparison of the theoretical 
velocity profile and the one predicted with the present method. As can be seen, both velocity 
profiles agree well. Moreover, the no-slip boundary condition at the top and bottom walls is 
effectively satisfied.  
 
Flows past a circular cylinder are calculated using a square computational domain. The dimensions 
are 1600 and 1600 lattice points in the x and y directions, respectively. The left boundary condition 
is inlet flow at U0, and the right, top and bottom walls are outflow boundary conditions. A circular 
cylinder is located at the center of the domain and the phase field is φ = 1, in the fluid flow φ = -1. 
Table 1 shows a comparison of the drag coefficient with other numerical results in literature [Rojas 
et al. (2011)]. The results obtained with the present method slightly differ from the results obtained 
by using an immersed boundary method. This is because in the present calculation the interface has 
a finite width and better agreements are expected as the interface width approaches cero. 

Simulation of dendrites 

In this section, numerical simulations are carried out to analyze the effect of melt convection on 
isothermal dendritic growth of an undercooled Al-Cu alloy. Some physical properties of an Al-Cu 
alloy are given in Table 2. Two cases are analyzed. In Case 1, the solid part of the alloy is 
stationary, i.e. US = 0. In case 2, the solid part is allowed to move within the fluid flow, i.e. free 
motion. The computational domain is shown in Fig. 2. The computational domain sizes, W×H, are 
1001×1001 and 2001×1001 lattice points for Cases 1 and 2, respectively. The computational 
domain of Case 2 is larger in the x-axis because the solid part is moving along this direction. A seed 
is located at (501,501) and its diameter occupies six lattice spacings. A uniform inflow at U0 comes 
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from the left boundary. The right boundary is continuous outflow condition and the top and bottom 
walls are slip boundaries. In this study, U0 = 0.01, τ = 1, and u = 0.4. 
 
The phase field distributions at two different instants, t1 and t2 are shown in Figs. 3 and 4. Figure 3 
illustrates the case when the solid part is stationary. In the absence of melt convection, dendritic 
growth is symmetric in all directions [Ohno&Matsuura (2009)]. On the contrary, the effect of melt 
convection breaks the symmetrical growth morphology. As can be seen, the upstream facing parts 
of the alloy grow faster than those downstream orientated. These patterns agree well with other 
qualitative results obtained by using other numerical methods [Beckermann et al. (1999), Lu et al. 
(2003), Miller et al. (2001), Medvened et al (2004)]. 
 
Figure 3 shows the phase field distribution of Case 2 at t1 and t2. The solid part has been displaced 
from its initial position with US. Despite dendritic growth seems to be symmetrical, a detailed 
examination revels that the rear tip grows slightly faster than the front and normal tips. This 
behavior is because the fluid flow enhances dendritic growth along its direction. As can be seen, the 
motion of the solid part is mainly related to the translational velocity of the solid. The effect of the 
rotational velocity is very small in this case. Therefore, calculations of dendritic growth in a shear 
flow are carried out to evaluate the rotation of the solid. The computational domain size is W×H = 
1001×1001. The dimensionless velocities at top and bottom walls are -0.02 and +0.02, respectively. 
Periodic boundary conditions are set along the x-axis. Figures 5 (a) and (b) show the distribution of 
φ at t1 and t2. As can be seen, the simultaneous growth and rotation of the solid is effectively 
predicted. Dendritic growth is favorable along the preferable directions, and the fluid flow slightly 
modifies the growth in the direction perpendicular to the preferable directions.    
  

 
Figure 2. Computational domain for simulation of dendrites 

φ 
-1 +1 

   
                                                          (a) t1                              (b) t2 

Figure 3. Phase field distribution, φ, at US = 0 
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                                       (a) t1                                                                    (b) t2 

Figure 4. Phase field distribution, φ, at free motion  

     
                                                          (a) t1                              (b) t2 

Figure 5. Phase field distribution, φ, of dendritic growth in a shear flow 

Conclusions 

A combination of the phase-field method and the lattice Boltzmann method was used for 
simulations of dendrites. Two cases were studied to analyze the effect of melt convection on 
dendritic growth. First, the solid part of the alloy was stationary and then it was allowed to move 
freely within the fluid flow. As a result, the following conclusions were obtained: (1) melt 
convection strongly affects the morphology of dendritic growth; it accelerates growth along its 
direction and (2) the motion of the solids affects dendritic growth in all directions, specially the 
direction of the fluid flow 
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