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Abstract 

This paper presents active control of parametrically excited systems. Parametrically excited systems 

can exhibit complex dynamic behavior such as inherent instability. Active control can be used to 

first stabilize and then increase the stability regions of such systems, using velocity feedback. A 

beam subject to an axial load is considered, representing a parametrically excited system with 

periodic time-varying stiffness. For amplitudes that are well below the critical buckling load and for 

axial load excitation at twice the first natural frequency of the beam, the system becomes 

parametrically unstable. It is demonstrated, how the system can be stabilized using active control. 

Alternatively, parametric excitation can be exploited for energy harvesting. When the system is 

close to the transition curves or instability regions, due to the high amplitude level of vibrations, 

parametrically excited systems can harvest much more energy compared to the time-invariant 

systems. 
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Introduction 

Parametrically excited systems include a parameter(s) in their dynamic equations, which varies 

periodically in time. Parametric resonance is a dynamic instability associated with such systems. It 

involves interaction between the parametric excitation frequency and the natural frequency of the 

system, leading to negatively damped modes and unstable oscillations.  When the parametric 

excitation frequency is at about twice the natural frequency, the system exhibits instability, leading 

to large oscillations and potentially fatigue or failure. One example of parametrically excited 

systems is cable-stayed bridges, in which the tension of the cables can vary periodically due to the 

vibration of the deck, resulting in parametric resonance and instability [Reynolds et al. (2006)].  

Other examples of such systems are flexible risers or ships, in which the wave motion can be the 

source of parametric excitation [Ahmed et al. (2010)].  

Parametrically excited systems have been the subject of research investigation for decades 

[Cartmell (1990), Nayfeh and Mook (1995)]. The most simple and widely used equation of 

parametric excitation is the well-known Mathieu equation with linear, periodic, time varying 

stiffness coefficient. This rather simple single degree-of-freedom (DOF) mechanical system 

exhibits complex unstable behaviour but also interesting stability regions, as known from the 

inverted pendulum problem, depending on the amplitude and frequency parameters of the time 

periodic (harmonic) term. Parametrically excited systems exhibit combination resonances of 

summed or difference types. When subjected to an external forcing frequency, a periodically time-

varying system will be resonant when the external frequency equals the combination of natural 

frequency and parametric excitation frequency.  

Recent research emphasizes the potential for deliberately introducing parametric excitation to 

increase the capability of a system to suppress vibrations [Ecker (2010), Dohnal and Mace (2008)]. 

Parametric excitation can also be exploited for energy harvesting. Daqaq et al. [Daqaq et al. (2009)] 

investigated the problem of energy harvesting using a parametrically excited cantilever beam. The 

cantilever beam was excited vertically, perpendicular to the direction of the oscillatory 

displacement, at twice of its fundamental frequency. In 2011, the same parametrically excited 
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harvesting beam configuration was considered including higher modes and nonlinear effects of the 

piezoelectric patch [Abdelkefi et al. (2012)].  

This paper describes both active control of parametrically excited systems and their potential 

exploitation for energy harvesting. In active control, the problem is to suppress large amplitude of 

vibration or to extend the stability boundaries using velocity feedback control. A beam under axial 

load is considered, representing a parametrically excited system. For certain amplitudes and 

frequencies of the axial load, the system can exhibit parametric instability. Active control is used to 

stabilise the system. In addition, an investigation is carried out to determine the amount of energy 

that can be harvested from the beam with and without parametric excitation. It is shown that when 

the system is parametrically excited, it can harvest much more energy. 

Parametrically Excited Systems 

 

A vertical cantilever steel beam subjected to an axial time-harmonic load ( )P t  associated with the 

base acceleration is shown in Figure 1. A static compressive load is expected to reduce the first 

natural frequency. When the amplitude of the axial load reaches the critical buckling load, the beam 

can experience buckling instability and zero stiffness. If the axial load is harmonic, 

i.e. ( ) cosP t P t   , the bending stiffness of the beam varies periodically. For a specific amplitude 

of parametric excitation 0P  at a frequency   almost twice the first bending natural frequency 1 , 

the system becomes parametrically unstable. 

 

 
Figure 1: A parametrically excited system- a beam subject to a harmonic axial load 

 

Vibration of an axially loaded cantilever at its first mode can be described using a single degree-of-

freedom equation with the time-varying natural frequency. We add a damping term to obtain: 
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This is the well-known damped Mathieu Equation with a periodic time-varying stiffness.  

The cantilever beam considered in this paper is mounted vertically, therefore, accounting for the 

effect of gravity, the forcing term takes the following form: 

 
           0 1,  cosΩ cosΩP x t P x P x t m x g m x a t     
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where 0P  represents the weight of the beam and   1P t  is the force resulting from the acceleration 

of the base. We note that the load is not uniform over the length of the beam since the mass is 

distributed, thus the space average of the mass distribution is used: 
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The final form of the governing equation can be written as, 
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Stability Analysis 

We approximate the response with three terms in the Fourier series: 
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Taking derivatives, substituting into Eq. (1), and partitioning the sin
2

n t 
 
 

 and cos
2

n t 
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 

 terms, 

leads to a set of equations in terms of the coefficients nA   and nB . The transition curves (stability 

curves) are obtained from solving the determinant of the coefficient matrices.  
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which results in the two transition curves separating the stable from the  unstable regions, 
 

0
16

1

2

1

16
1 2

1

2

2

'

2

1

4















































 P

cr

P

P

P
 (7) 

Transition curves were computed for a steel cantilever beam which dimensions and properties are 

listed in  

Table 1. The natural frequency associated with the first bending mode accounting for the weight of 

the beam was found to be / 2 3.18P Pf     Hz, whereas the critical buckling load diminished by 

the average weight of the beam was calculated as '  2.91crP   N. 

 

Table 1: Beam dimensions and material properties 
 
property b , m d , m L , m E , GPa  , kg/m

3
  1  

value 0.0105 0.00144 0.583 186 7850 0.002 

 

The two transition curves are plotted using the analytical approximation in Figure 2. It can be seen 

that parametric instability occurs when the parametric excitation frequency is twice the first natural 
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frequency ( 2 )P  .  The effect of damping is to move the transition curves upwards, hence 

increasing the stable region, when comparing a damped system (black solid line) with an undamped 

system (grey dashed line). Considering higher order terms in the Fourier series, other transition 

curves can be obtained. 

 

Figure 2: Transition curves for the beam subject to axial load, where the area above the curve 

is unstable. The transition curves are shown with no damping and for a damping ratio of 

0.1%. 

 

For the beam example, the parametric amplitude is found analytically to be 0.0275 N, which is well 

below the critical buckling load 2.91N. For lower level of damping, a small axial perturbation can 

make the system unstable.  Numerical simulation using ode45 in Matlab also validates the 

analytical results. The time response for different amplitudes 1P   is shown in Figure 3 for 

1 0.1%  . The system is stable for amplitudes below 0.0275 N, Figure 3(a), and unstable above 

this amplitude, Figure 3(c). The response of the system exhibits a limit cycle oscillation, Figure 3 

(b), when excited at 0.0275N. In this case, the system is on the transition curve. 

 
  

(a) 1 0.01 NP   (b) 1 0.0275 NP   (c) 1 0.1 NP   

Figure 3: Time-response of the parametrically excited beam with 0.1% damping when excited 

at twice its natural frequency with different parametric amplitudes. 

 

Experiments 

In order to illustrate the described phenomenon a simple physical model was build. A steel 

cantilever beam was vertically mounted on the shaker table in a way that emulates a clamped 
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boundary condition. The shaker provided an axial excitation to the beam which was indirectly 

measured by placing an accelerometer on the shaker table. Transverse vibrations of the cantilever 

were recorded using a laser vibrometer. 

 

            
 

Figure 4: Schematic diagram of the experimental set-up 

 

Firstly, the natural frequency associated with the first bending mode of the vertically mounted 

cantilever was determined via an impact hammer test. Based on this result, the parameters of the 

beam were identified (Table 1). 

The transition curves were experimentally determined by sweeping through excitation frequencies 

close to the natural frequency associated with the first bending mode at different levels of the axial 

load and analysing the shape of the time histories of transverse vibrations. The system was qualified 

as stable if its response decayed exponentially with time and as unstable if the response was 

growing and experiencing a limit cycle oscillation. In order to ensure that all useful information is 

captured a very long time window was used (5 min) given the structure being very lightly damped. 

The experimental results compared to theoretical transition curves as derived in the previous section 

are presented in Figure 5. Both are in a good agreement confirming the validity of the theoretical 

approach adopted. In Figure 6 we present chosen velocity response time histories and their Fourier 

transforms for the stable and the unstable case. The influence of nonlinearities is evident in the 

response at the unstable state since the response growth is limited.  
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Figure 5: Transition curves – comparison between the experiment and the theory 

 

 

 
Figure 6: Response time histories and their Fourier transforms: (a) stable; (b) unstable 

Active control  

To stabilize the parametric instability as well as to increase the stability region, a velocity feedback 

and pole placement is considered. The system with control has the following form in state-space, 
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where ( )u t is the control force and is a single-input.  
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Simulation: Velocity feedback 

The amplitude of axial load is chosen to be 1 0.075P  N and 2 P   .  The open-loop response is 

7unstable as shown with the blue-dashed line in Figure 5.  The control law is considered to be: 
 ( ) ( )u t hx t   (9)  

where h is the velocity feedback gain.  The system is stabilized using the velocity feedback gain of 

1h   as shown with the red solid line in Figure . 

 
Figure 7 – Simulation: Time response - velocity feedback control; open-loop: grey dashed 

line, closed-loop: black solid line 

Experiment: Velocity feedback 

Experiment is carried out to implement the velocity feedback control and stabilize the system. The 

parameters of the axial load are chosen so that the open-loop system has parametric instability. A 

piezoelectric actuator is attached to the beam. The velocity of the beam at the other end is measured 

using LMS data acquisition and the velocity is fed back to the amplifier of the piezo with a 

feedback gain of 100.  

The open-loop and closed-loop time responses are measured as shown in Figure 7. When the 

controller is switched on, the response decays due to the increase of the damping. This clearly 

demonstrates that using active control, the system is stabilized.  

 

 
Figure 7 : Experiments: Active control of a parametrically excited beam  
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Exploitation: Energy Harvesting 

Parametric resonance can be exploited in parametrically excited systems to harvest more vibration 

energy due to large amplitudes of vibrations compared to linear time-invariant systems.  A 

piezoelectric is attached to the parametrically excited beam, as shown in Figure 8, which is shunted 

to a resistor for energy harvesting. The “electrical damping”, used to harvest energy is assumed to 

be 0.1 Ns/m .  

 
Figure 8 : Energy harvesting from a parametrically excited beam 

 

 

Numerical simulation is carried out to investigate the amount of energy that can be harvested when 

the beam is subjected to the axial load with an amplitude, close to the parametric instability, for 

example 1 0.0272P  N and 12  . The harvested energy is calculated using Eq. (10) for the 

duration of 80 s with an initial displacement of 0.01m.   

 

                       

80
2

0

0.1 ( ) 3.4E q t dt  J     (10) 

 

Figure 9(a) shows that the harvested energy is maximum when the excitation frequency is almost 

twice the first bending frequency. In addition, the amount of energy increases when the excitation 

amplitude increases as shown in Figure 8(b) when 12   . The amount of harvested energy from 

the parametrically excited beam with 1 0.0272P  N  is 3.4E  J, while the harvested energy from 

the time-invariant system is 1.78E  J. This dynamic behaviour can be exploited for the design of 

energy harvesters. 
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(a) (b) 

Figure 9 : Harvested energy-(a) for different frequency ratio when 0272.01 P N (b) for 

different parametric amplitude when 12  
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Conclusions 

In this paper, control and exploitation of parametrically excited systems was presented. A beam 

subject to axial load was considered as a parametrically excited system. For an amplitude well 

below the critical buckling load, the beam experienced parametric resonance. Parametric instability 

was controlled using active vibration control. Velocity feedback control was considered to stabilize 

the system and assign stable poles. In addition, it was demonstrated that parametric excitation could 

be exploited to increase the amount of harvested energy.  Practical implementation of the energy 

harvesting will be considered as part of future work.  
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