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Abstract 
A coupling analysis of thermal convection problems is performed in this work. By approximating 
the material derivative along the trajectory of fluid particle, the characteristic curve (CC) method 
can be considered. The most attractive advantage of this method is the symmetry of the linear 
system, which enables some classic symmetric linear iterative solvers, like the conjugate gradient 
(CG) method or the minimal residual method (MINRES), to be used to solve the interface problem 
of the domain decomposition system.  Applications to industrial problems are demonstrated to show 
the effectiveness of our approach. 
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1 Introduction  

It is well known that the Galerkin approach for Navier-Stokes equations faces the problem caused 
by the nonlinear convective term, which yields the difficulty to obtain a numerical solution, and that 
the difficulty even increases with the Reynolds number. A lot of researchers contributed to solve 
this; the stiffness matrix was generally non-symmetric and some product-type methods[1] such as 
GPBi-CG, Bi-CGSTAB, Bi-CGSTAB2 were utilized as the iterative solver for non-symmetric 
linear systems, like ADV_sFlow 0.5, which was one of our previous works.[2]-[4] In this research, 
based on the approximation of the material derivative along the trajectory of fluid particle, a 
characteristic curve (CC) method[5],[6] is employed to approximate the material derivate terms. The 
method is natural from the viewpoint of the simulation of physical phenomena; it is also 
advantageous as it renders the matrix of the linear system symmetric. When solving the interface 
problem of the Schur complement system, which is generated by the domain decomposition method 
(DDM), the symmetry enables the conjugate gradient (CG) method or the minimal residual method 
(MINRES) to be employed instead of product-type iteration solvers. Despite the fact that there is no 
sufficient theoretical proof to assure this convergence currently, the CG or MINRES method does 
show good convergence even in cooperation with several kinds of preconditioners[7] including the 
balancing domain decomposition (BDD) preconditioner[2],[5] in this research. 

For thermal convection problems, some research[8] has been shown in references. A number of 
researches[9]-[12] about the CC method were done in the case of a single processor. However, rare 
research is done on the implementation of this scheme in the domain decomposition system, in 
which better computation results can be expected as the computation capability is extended. The 
purpose of our work is to apply the CC method to the Navier-Stokes equations and the convection-
diffusion equation, and to enable the coupling analysis of these two kinds of applications.  

A new parallel coupling thermal convection solver[6] has been developed. Based on a CC method, 
the scheme can provide solvability for non-stationary thermal convection problems. The new solver 
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can reduce memory consumption compared with solvers of product-types. The computation speed 
is also improved, as is expected. The reliability and accuracy of numerical results have successfully 
been validated by comparing with the exact solution.[6] Comparisons of our numerical results with 
results of other recognized solvers or available benchmarks also convince us that the application of 
the characteristic curve method to thermal convection problems has been a success. Accompanied 
with several new features, the new solver is speedy and worthy to be expected. As one member of 
the ADVENTURE system (http://adventure.sys.t.u-tokyo.ac.jp/), it will be published as an updated 
version of ADV_sFlow on the homepage after the in-house testing.  

Finally, some practical applications are demonstrated for a vending machine[13]. Non-stationary 
thermal convection problems are solved to show the effectiveness of the above approach. 
In recent years, energy conservation has become an important topic in Japan. One focus of current 

research is the use of numerical analysis techniques to control cooling and heating systems in 
vending machines to improve their efficiencies and reduce their electric power consumptions. In 
this study, we report results of analyses using the ADVENTURE_sFlow parallel solver to study 
problems of thermal convection in mechanical components inside a vending machine. 

The rest of this paper is organized into several sections. In Section 2,  formulations related to 
thermal convection problems are introduced; the characteristic curve method, as well as the related 
finite element scheme is also demonstrated in this section. Models and various settings including 
boundary settings are described in Section 3 and Section 4, respectively. Section 5 shows numerical 
results obtained by using various models and boundary settings. Conclusions that can be drawn 
from current results are presented in Section 6.  

2 Formulations 

2.1 The thermal convection problem 
Let be a three-dimensional polyhedral domain with the boundary  Using the Boussinesq 

approximation to couple the Navier–Stokes equations to the convection–diffusion equation, the 
conservation equations of momentum and mass are as follows; 
 
                                                                                                                                             (1) 
 

 
Also, the thermal convection equation is given as 
                                                                                                                                             (2) 
 

In Eqs. (1) and (2), is the velocity [m/s]; is time [s]; is the kinematic viscosity 
coefficient [m2/s]; is the gauge pressure normalized by the density [m2/s2] (hereafter is shortly 
called pressure); is the gravity [m/s2]; is the thermal expansion coefficient [1/K];
is the temperature [K]; is the thermal diffusion coefficient [m2/s]; is the source term [K/s]; and

is the rate of strain tensor [1/s] defined by  
  
 
 
Though initial and boundary settings are described in details for different problems in Section 4, 
they are here written as follows; 
 

(3) 

(4) 

Ω .∂Ω

1 2 3( , , )Tu u u u= t ν
p p

1 2 3( , , )Tg g g g= β T
a S

ijD







×Ω=⋅∇

×Ω−=∇+⋅∇−∇⋅+
∂
∂

).,0(0

),,0()()(2)(

tinu

tinTTgpuDvuu
t
u

rβ

(0, ).T u T a T S in t
t

∂
+ ⋅∇ − ∆ = Ω×

∂

( ) 1 , 1,2,3.
2

ji
ij

j i

uuD u i j
x x

 ∂∂
≡ + =  ∂ ∂ 

),,0(on tuu u ×Γ=
∧

),,0(on tTT T ×Γ=
∧



3 
 

 
(5) 

 
(6) 

 
(7) 

where 
 
with the Kronecker delta     and n is the unit normal vector.    is the total time [s];     is the initial 
velocity [m/s];     is the initial temperature [K];     is the boundary velocity [m/s]; and       is the 
boundary temperature [K].  and    are the velocity specified boundary and the temperature 
specified boundary, respectively. 

As the weak form, the following system is considered; 

(8) 

(9) 

(10) 

                          

Here,           denotes the space of square summable functions in,      and             is the space of 
functions in           with derivatives up to the first order. 
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(12) 

(13) 

 

where           denotes the     -  inner product over     . 

2.2 The characteristic curve method 

 
Figure1. Trajectory of a fluid particle 

 
Let be a function of position and be the time increment. With the definitions of 

, it is assumed that  and the fluid field velocity  A fluid 
particle’s position at can be approximated by 

                           (14) 
where is an approximation of the position function ( t=tn-1 ) used by 
the Euler scheme[12] (see Fig. 1). With this approximation, the material derivative term can be 
written as 
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Here, the notation  designates the composition of functions, denotes the velocity at , and
is a known value, which denotes the velocity at . 

2.3 Finite element scheme  

Let and be the piecewise linear finite element spaces for test functions of the 
convection-diffusion equation and Navier-Stokes equations, respectively, and represents a 
triangulation (  is the diameter). With the following bilinear forms; 

                   (16) 

the scheme for coupling analysis can be written as  

   
STEP 1: Find      by 

                (17.a) 

STEP 2: Find               by 

           (17.b) 

Here, is a parameter of the stabilization term, which is used to smooth away the potential 
oscillation caused by P1/P1 elements. (・,・)K denotes the element wise inner product. In each non-
stationary loop, STEP 1 and STEP 2 are performed. It keeps running until the maximum non-
stationary loop number is reached. 

3 Computational Models   
In this study, we consider a simplified model for a vending machine depicted in from Fig. 2 to Fig. 4. 

Here, we have omitted the portions containing the cooling and heating systems and have retained only the 
columnar racks of canned beverages, the thermal barrier walls surrounding these racks, and the tilted ramp 
along which the cans slide inside the machine. The left panel of Fig. 2 depicts a side view of the model, 
while the right panel depicts a front view of the cross-sectional area indicated by the red line in the left 
panel. Below, we refer to components 1, 2, and 3 as x, y, and z, respectively.  

The model used in the present analysis is a trapezoidal box with a height of 0.9 [m], a depth of 0.5676 
[m], and a width of 0.1461 [m]. Air flows in from the slanted lower surface of the box and flows out 
through the upper surface. The cans that constitute the merchandise are 0.064 [m] in diameter and 0.114 
[m] high. The separation between the cans and the thermal barrier walls is 0.01 [m] in the x direction. The 
cans and the intermediate board are separated from the thermal barrier walls by 0.014 [m] in the y 
direction. However, the number of cans depends on each model, and Fig. 2 and Fig. 4 are representative 
examples. Fig. 4(a), Fig. 4(b), and Fig.4(c) are models that have different number of cans. 
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Figure 2. A side view of the model      Figure 3. A front view of the model 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Side views of models which have different number of cans  (a)full; (b)stairs; (c)stairs 

4 Computational Conditions  

4.1 Material properties 
Table 1 lists the material properties used in the present analysis. In the winter case (Win.), an 

eddy viscosity constant is used for the first trial. 
 

Table 1. Material properties 
S[K/s] ν[m2/s] Tr [K] β[1/K] [m2/s] 

0 

1.05×10-3 

(Win.) 
1.583×10-5 

(Sum.) 

300.15(Win.) 
278.15(Sum.) 0. 0034 2. 207×10-5 

 

4.2 Initial conditions and boundary conditions 
The initial conditions are a uniform velocity of 0 [m/s] and a uniform temperature of 5[°C]. The 

boundary conditions have two types, which are  Winter Condition 1 and Summer Condition 2. In 
Winter Condition 1, the airflow entry surface (the lower surface) is set as follows; 

ux = uy = 0, uz = 0. 1 [m/s], 
 

T = 55 +273.15 [K]. 
 
At the airflow exit, 
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 [m·K/s]. 

 
At wall surfaces, the cans and the partitions within the machine, 
 

ux = uy = uz = 0 [m/s], 
 

 [m·K/s]. 

On the other hand, Summer Condition 2 are different from Winter Condition 1 in terms of 
temperature profile of entering air flow; 

T = -2~4.5 [℃]. 
 
In Summer Condition 2, we vary the temperature of the air flowing into the machine over the range 
–2 to 4.5 [°C]. This is because, in actual vending machines, the cooling system is calibrated over 
time to reduce power consumption. The temperature profile used in this analysis is plotted in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Temperature profile of entering airflow 

4.3 Other parameters 
Numbers of elements, numbers of nodal points and degrees of freedom are 598,916, 148,757 and 
743, 785, respectively in the winter case. On the hand, they are, respectively, 744,585, 176,105 and 
1,114,655 in the summer case. The time increment, numbers of time steps and the total time are 0.1 
[s], 2,000 and 200 [s] in the winter case. They are, respectively, 0.1 [s], 24,000  and 2,400 [s] in the 
summer case. As the solver for (17.b), the CG method with the BDD preconditioner was used for 
the interface problem in the summer case, while the CG method with the Jacobi preconditioner was 
used for (17.a) and for (17.b) in the winter case. Using Core i7 920 (2.66 [GHz]) with 4 cores, it 
took about 5 hours by 5 PCs in the winter case and about 88 hours by 3 PCs in the summer case.  
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5 Results  

5.1 Results of Winter Condition 1 
Figures 6(a) and 6(b) depict the temperature distributions after 10 and 100 [s ] predicted by the 

model in Fig.2. Figures 7(a) and 7(b) plot the corresponding velocity vectors. 
 

        
                 
 
 
 
 
 
 
 

 
 
(a) after 10 [s];                                 (b) after 100 [s]; 

Figure 6. Temperature distribution 
 
 

 
         

                 
 
 
 
 
 
 
 
 

 
 
(a) after 10 [s];                                 (b) after 100 [s]; 

Figure 7. Velocity vectors 
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Figure 8 plots the temporal evolution of the temperature at the three points indicated in Fig. 8(a). 
Table 2 lists the coordinates of these three points. 

   
         
 
 
 
 
   
 
 
 
 
 
 
 

(a) points;                            (b) variation; 
Figure 8. Temporal temperature variation 

 
 

Table 2. Coordinates of points plotted in Figure 8 
 x[m] y[m] z[m] 

Can 1 0.1960 0.0738 0.4158 
Can 2 0.1960 0.0738 0.4801 
Can 3 0.1960 0.0738 0.5397 

Upper space 0.1960 0.0738 0.8580 
 
The computational results reveal that the temperature in the lower portion of the machine begins 

to rise first with the temperature in the upper portion of the machine gradually following. The flow 
achieves steady-state conditions at a surprisingly early time of 25 [s] because of the eddy viscosity 
constant, for which further study is required.  

5.2 Results of Summer Condition 2 
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) after 30 [s];                              (b) after 390 [s]; 
Figure 9. Temperature distribution  
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Table 3. Coordinates of three points for the temporal temperature variation 
 x [m] y [m] z [m] 
Point 1 0.136 0.073 0.321 
Point 2 0.368 0.073 0.341 
Point 3 0.524 0.073 0.361 

 
 

 
 
 
 
 
 
 
 
 
 
       

(a) monitored;                            (b) streamline diagram; 
Figure 10. Three points for the temporal temperature variation   

 
 

 
 

 
 
 
 
 
 

 
 
Figure 11. Temporal temperature variation at the three points depicted in Figure10(a) 
 
Figure 11 indicates that the temperature variation inside the vending machine follows that of the 

airflow into the machine. The airflow appears to be poor only in the region on the right side of the 
machine. To investigate this, we consider the streamline diagram of Fig. 10 (b), which indicates a 
counter flow along the surfaces of the cans in this region. The question of why such a counter flow 
arises entails many uncertainties and requires further study. 
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5.3 Summer case results of another models 
 

   
                 
 
 
 
 
 
 
 
 
 

(a) full;                         (b) stairs;                            (c) stairs; 
                         Figure 12. Temperature distribution after 100 [s] 

 
 

   
                
 
 
 
 
 
 
 
  

(a) full;                            (b) stairs;                         (c) stairs; 
Figure 13. The temporal velocity variation of stream diagram after 100 [s]  
 

Here, we consider another summer cases. Namely, different number of cans are considered for 
each column. Case (a) is a fully occupied case and Case (b) and Case (c) consider stairs. In all 
cases, many cans produce high temperature because cans become obstacles of the air flow. It is 
specially noted that Case (b) relatively shows high temperature, compared with Case  (c).  

6 Conclusions 
A coupling analysis of thermal convection problems is performed in this work. By approximating the 

material derivative along the trajectory of fluid particle, the characteristic curve (CC) method can be 
considered. The most attractive advantage of this method is the symmetry of the linear system, which 
enables some classic symmetric linear iterative solvers, like the conjugate gradient (CG) method or the 
minimal residual method (MINRES), to be used to solve the interface problem of the domain 
decomposition system.  Applications to industrial problems are demonstrated to show the effectiveness of 
our approach. 
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