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Abstract 
This paper presents POD-based reduction approach for structural optimization design considering 
microscopic material nonlinear microstructures. This work introduces Reduced Order Model 
(ROM) to alleviate the heavy computational demand of nonlinear nested multiscale procedures, 
particularly in an optimization framework which requires multiple loops involving similar 
computations. The surrogate model constructed using Proper Orthogonal Decomposition (POD) and 
Diffuse Approximation reduces the computational effort for solving the microscopic boundary 
value problems. Multiscale analysis model (FE2) is applied to link structure and microstructures in 
the two scales. Maximum stiffness design of the macroscopic structure is realized using a discrete 
level-set topology optimization model. It is shown by means of numerical tests that the reduced 
multiscale model provides reasonable designs as compared to those obtained by the unreduced 
model while with a significantly reduced computational effort.  
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Introduction 

Optimization techniques for structural size, shape, topology designs have been widely developed 
and employed in engineering applications. One of its most prominent applications is designing 
lightweight structures for aircrafts. An increasing number of optimized structures, parts and 
components appear in the latest models of Airbus and Boeing. Most of present optimization 
algorithms are developed within frameworks of numerical analysis with the assumption that the 
considered structure is constituted by one-scale linear elastic materials. However, due to the fast 
development made in the field of material science, advanced fiber-reinforced composites are 
increasingly used in both aerospace and military applications. More advanced structural analysis 
models are required such that the structural influences from microscopic heterogeneities can be 
considered. As a response, multiscale incremental homogenization approaches or the so called FE2 
approach have been proposed and largely developed in the last decade [Feyel and Chaboche (2000), 
Kouznetsova et al. (2001)]. Generally speaking, this type of approach solves two nested boundary 
value problems, one at the macroscopic scale and another at the microscopic scale. The FE2 
approach is able to evaluate the macroscopic responses of heterogeneous material with an accurate 
account for micro characteristics and evolution of the morphology. The challenges of the FE2 
approach are due to high computational effort. Therefore, there is an increasing research demand of 
bridging structural optimization models and FE2-type analysis models. 
 
This paper introduces Reduced Order Model (ROM) to perform multiscale topological optimization 
design. The multiscale analysis model FE2 [Feyel and Chaboche (2000)] is applied to link the 
macroscopic structure and the corresponding RVE microstructures in the microscopic level. The 
optimization process requires multiple design loops involving similar or even repeated 
computations of the RVE which perfectly suits the ROM learning process. In the present work the 
considered RVE is assumed to be the same for all marcoscopic integration points. Maximum 
stiffness design of the macroscopic structure is performed using a discrete level-set topology 
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optimization model [Challis (2010)]. The reduction is performed in an adaptive non-intrusive 
manner which is an alternative to the intrusive approach [Yvonnet and He (2007)}]. The reduced 
basis is extracted using Proper Orthogonal Decomposition (POD) and the surrogate model is 
constructed using Diffuse Approximation [Nayroles et al. (1992)}, variant of Moving Least Squares 
[Lancaster and Salkauskas (1981)].  
 
The remainder of this paper is organized in the following manner: firstly the FE2 approach is briefly 
reviewed which links the macroscopic structure and microscopic microstructure RVE; secondly, the 
discrete level-set model for structural topology optimization design is presented; thirdly, a bi-level 
reduced surrogate model is developed for microscopic RVE solution using POD and Diffuse 
Approximation;  the presented model is then showcased by one numerical test example; finally, the 
paper ends with concluding comments and suggestions for future work.  
 

 
 

Figure 1.  Illustration of the selection of a typical 2D representative volume element (RVE). 
 

FE2 approach 

The FE2 approach [Feyel and Chaboche (2000)] is chosen here to bridge the macroscopic structure 
and the corresponding microscopic RVE to perform structural topology optimization. The key 
hypothesis of FE2 consists in the separation of macroscopic and microscopic scales. It is assumed  
that the microscopic length scale is large enough to be considered in the framework of continuum 
mechanics, and at the same time much smaller than the macroscopic length scale considered in 
terms of periodically ordered pattern [Kouznetsova et al. (2001)], as illustrated in Fig. 1. 
 
The principal concept of the FE2 approach assumes that each macroscopic material point is 
attributed with a RVE so that the macroscopic stress and strain for the considered point can be 
estimated by averaging the corresponding stress and strain fields of the RVE. Thereafter, there is no 
need to specify the macroscopic constitutive behavior and we only need to define the constitutive 
behavior for each material phase of the RVE. Let x  and y  denote the position of a point at the 
macroscopic and microscopic scales, respectively. At the macroscopic scale, stress and strain fields 
are denoted by ( )Σ x  and ( )E x , which are evaluated as the average of the corresponding 
microscopic fields ( )σ x, y  and ( )ε x, y   over the RVE of region Ωx  corresponding to the material 
point x . The FE2 performs the following steps: 
 
• evaluate the macroscopic strain field ( )E x  with an initially defined elastic tensor 0C ; 
• define boundary conditions on the RVE at material point $x$ upon the value of ( )E x ; 
• evaluate the stress field ( )σ x, y  through periodic homogenization analysis on the RVE; 
• compute the macroscopic stress tensor ( )Σ x  at material point x  via averaging ( )σ x, y ; 
• update the structural displacement field ( )u x  using iterative Newton-Raphson method; 
• repeat above procedures until the macroscopic force equilibrium is achieved. 
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Figure 2.  Illustration of the implementation of FE2 in the framework of FEA. 
 

A schematic view of the FE2 algorithm is depicted in Fig. 2, where each Gauss integration point is 
attributed with an RVE within the context of finite element analysis (FEA). In case of nonlinear 
elasticity, the displacement solution at the macroscopic scale is solved using the iterative Newton-
Raphson method. 

Nonlinear structural design using level-set method 

In order to avoid defining a pseudo-relationship between the intermediate values and the considered 
RVE, we choose to use the discrete version of level-set topology optimization model [Challis 
(2010)] to straightforwardly link RVEs to the solid region of the structure. An initial level-set 
function 0( , )x tψ  is constructed as a signed distance function upon the discretized initial structural 
topology following 
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where ex  denotes the center of the eth element and eρ  is its pseudo-density. The initialized level-set 
function 0( , )e tψ x  is then be updated to ( , )e tψ x corresponding a new structural topology by solving 
the ``Hamilton-Jacobi'' evolution equation 
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where t is a pseudo-time defined corresponding to different optimization iterations. The normal 
velocity field vn determines geometric motion of the boundary of the structure and is chosen based 
on the shape derivative of the design objective. Within the context of multiscale analysis, the 
optimization objective corresponding to stiffness maximization or compliance minimization can be 
written in terms of ( )ψρ  
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where 1( , , )Nρ ρ= ρ  is the vector of the element pseudo-densities. In the following, we will 
denote ( )ψρ  by ρ  to alleviate the notation. The objective ( ( ))c ψρ  is twice of the strain energy. 
The macroscopic structural stiffness is maximized in terms of minimizing the global strain energy. 

( )V ρ  is the total number of solid elements and reqV  is the required number of solid elements. u  is 
the final converged displacement solution. ( , )R u ρ  stands for the force residual at the macroscopic 
scale 



4 
 

    
1

( , ) ( , ) d .
e

N
T

ext e e
e

ρ
Ω

=
= − Ω∑ ∫R u f B x yρ σ      (4) 

An augmented Lagrangian method is applied to convert the original constrained optimization 
problem Eq. (3) into an unconstrained problem as presented in [Belytschko et al. (2003)]. 

Bi-level reduced surrogate model 

A bi-level reduced surrogate model is constructed coupling the POD and Diffuse Approximation 
procedures. The first level of reduction is achieved by Proper Orthogonal Decomposition (POD), 
allowing to expand a displacement field as a linear combination of the truncated modes. Secondly, 
the surrogate model based on Diffuse Approximation is built to express the POD projection 
coefficients as functions of the average micro strain tensors.  
 
Proper Orthogonal Decomposition of RVE displacement field 
 
We consider a D-dimensional (D = 2 or 3) RVE of N points subjected to a time-dependent loading 

( ) ( )t t=E ε  during a time interval [ ]0,I T=  discretized by M instants { }1 2,, , Mt t t . Let DN
i ∈u   

denote the DN -dimensional nodal displacement vector recorded at the instant it  . The reduced 
order displacement vector  ( )R DNt ∈u   may be written 
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iφ ∈  are constant vectors and coefficients ( ( ))i tα ε  
are scalar functions of pseudo-time t. iφ  are the eigenvectors of the eigenvalue problem 
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where uC  is the covariance matrix 
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The size of the truncated basis m is chosen in consideration of the projection error   induced by the 
POD procedure 

    1

1

1 ,
m

ii
M

jj

λ
δ

λ
=

=

= − <∑
∑

      (8) 

where δ  is a prescribed tolerance. 
 
Diffuse Approximation of the projection coefficients 
 
The surrogate model of the projection coefficients , 1, ,i i mα =  , with respect to average stain ε  
in Eq. (15) is constructed using the method of Diffuse Approximation 

    ( ) ,Tα = p aε      (9) 

where [ ]1 2, , Tp p=p   is the polynomial basis vector. In 2D case, the polynomial basis vector 
expressed in terms of the average strain in 2D case is 

    [ ]11 22 121, , , , ,Tε ε ε=p       (10) 
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Figure 3.  Illustration of the approximation procedure of the surrogate model. 
 

The vector of coefficients [ ]1 2, , Ta a=a   are the minimizers of functional defined by 
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in which kw  are the weights of  Euclidean distance defined following [Breitkopf et al. (2004)]. 
 
Bi-level reduced model 
 
An illustrative flowchart of the approximation procedure is given in Fig. 3. With a given admissible 
value of average micro strain *ε , the corresponding approximated POD projection coefficients 
from 1α  to mα  are locally interpolated using Diffuse Approximation. Thereafter, we have the 
reduced order solution of the displacement filed 

    

*
0 ( ),R α= +u u Φ ε      (14) 

where { }1, , mφ φ=Φ   is the reduced basis obtained through POD of RVE displacement fields.  
 
The surrogate model is applied to replace full FEA in microscopic analysis. Computations during 
the first time step of the first optimization iteration are performed using full FEA to initialize the 
surrogate model. The surrogate model is then used to replace full FEA in solving the micro problem 
in the following computations when there are enough neighboring points to perform the 
approximation. When there is no enough points within the local influence zone, the micro problem 
is solved using full FEA and the results are used to update the POD basis Φ  and enrich the 
surrogate. 

Numerical example 

The benchmark cantilever problem is considered with anisotropic material defined at microscopic 
scale. As illustrated in Fig. 4, the macroscopic structure is discretized into 32 20×  four-node plane 
strain elements where each element has four Gauss integration points. Each Gauss point in the 
macroscopic structure corresponds to a considered RVE in the microscopic scale. The material 
property of the solid phase in the RVE is assumed to be isotropic with a nonlinear elastic 
constitutive behavior as shown in Fig. 4. Conventional unreduced FE2 approach requires 32 20 4× ×  
independent RVE analysis in the microscopic scale for one time evaluation at the macroscopic scale. 
For the sake of simplicity, the initial elastic stiffness matrix have been kept during the Newton-
Raphson iterative resolution procedure. In order to perform sensitivity analysis, tangent stiffness 
matrix is evaluated using the perturbation method at the converged moment of each design iteration. 
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Figure 4.  Illustration of the test example.  
 

 
 

Figure 5.  Resultant tractions of the first 7 POD modes after the optimization. 
 
The external loading force is set to 1.5 N and the considered volume ratio constraint is set to 32%. 
The tolerance error in Eq. (8) is set as in the previous case of 610δ −= . The extracted POD modes 
vary adaptively during the optimization procedure and the size of the reduced basis is 6 after the 
first iterations and then increase to 7 during the following iterations until the end. The resultant 
tractions of the first 7 of the final POD modes are shown in Fig. 5 together with their associated 
normalized eigenvalues.  
 
The structural topological evolution in the macroscopic scale is given in Fig. 6. The convergence 
histories of the strain energy and the volume ratio are demonstrated in Figs. 7(a) and (b), 
respectively. During the loading phase of the first optimization iteration, the periodic 
homogenizations of the RVE in the microscopic scale are performed using full FEA. Since the 
second optimization iteration, both FEA and the surrogate model are used for the microscopic 
analysis. Fig. 7(c) gives the percentage of FEA usage in each optimization iteration. It can be seen 
that less than 4% microscopic analysis require full FEA except a jump from 2% in iteration 20 to 
17% in iteration 21. It can be seen that a branch of the structure splits in iteration 21. Such a severe 
topological variation results in a large variation of the structural physical response and hence the 
surrogate built according to the previous calculations is no longer accurate enough. Therefore, an 
increased number of full FEA is required to recompute the set of the reduced basis. The surrogate 
model is updated thereafter and the usage ratio of FEA drops back below 4% and decreases to 0% 
in the following iterations as the structural topology converges, meaning that all computations are 
performed with the surrogate. 
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Figure 6.  Structural topology variations during the optimization process. 
 

 
 

Figure 7.  Optimization history: (a) convergence history of the strain energy, 
(b) convergence history of the volume ratio, (c) the ratio of FEA usage in each iteration. 

 
The same optimization design has also been performed without using the surrogate. The unreduced 
FE2 approach gives an exactly the same optimization design result as the reduced model where the 
relative errors of the objective are less than 510−  . Generally speaking, it requires around two hours 
of computing for each optimization iteration on a HP Z420 Workstation when using the unreduced 
sequential FE2. In contrast, the reduced FE2 approach requires only ten minutes of computing on 
average for each design iteration apart from the first design iteration. More saving in computation 
can be expected using the reduced approach when larger scale problems are considered. 
 
Fig. 8 depicts the equivalent strain distributions in the microscopic scale at selected points where 
the nodal displacements are scaled 20 times for the purpose of illustration. One may note that the 
existence of the holes in the RVE concentrates much higher strains and hence stresses in the 
microscopic scale than the homogenized macroscopic values. The micro strain distributions clearly 
manifest the difference of the loading status in different structural branches. The micro strain 
distributions at points b and c are quite similar because they are located in the same branch of the 
structure. The higher stress concentration may lead to the initial material failure or crack at the 
micro scale which cannot be detected when using the conventional one scale fracture analysis. 

Conclusions 

In this work, we have proposed a reduced multiscale model for macroscopic structural design 
considering microscopic material nonlinear microstructures. Several established techniques have 
been applied: the structural design is realized using a discrete level-set topology optimization model, 
the multiscale analysis is performed using the FE2 approach, and the surrogate model is constructed 



8 
 

using POD and Diffuse Approximation. The surrogate model is constructed in an on-line manner: 
initially built during the first optimization design iteration is then updated in the following design 
iterations. It has been observed that the surrogate model can significantly reduce the computational 
cost, particularly when multiple loops involving similar computations are required. Further 
improvement of the proposed model could be the employment of the advanced models of any of the 
applied techniques, such as considering nucleation in level-set topology optimization in order to 
avoid an artificially defined initial topology, considering the size effect in multiscale analysis, and 
other possible strategies to perform model reduction either in an intrusive manner or non-intrusive 
manner using different approaches to construct the surrogate. 
 

 
 

Figure 8.  Equivalent strain distribution at selected points. 
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