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Abstract 
The relations between the Poynting effect, in which a cylinder elongates or contracts 
axially under torsion, and the axial force-twist effect, in which the twist of a 
torsionally loaded cylinder is affected by the axial loading, are investigated using 
second-order elasticity for an elastic homogeneous cylinder. The explicit expressions 
for the two effects and their relations are presented. The relations show that under 
tension: (a) negative Poynting effect implies negative axial force-twist effect, (b) 
positive axial force-twist effect implies positive Poynting effect, whereas (c) the 
converse statements are not true. Further results show that (a) the Poisson ratio 
captures the difference between the two effects, and (b) reduced elastic coefficients, 
which uniquely characterize the effects, lead to universal relations between the effects 
and the applied loading. Both effects also exhibit a strong inverse power law 
dependence on the radius.  

Keywords: Axial force-twist effect, Poynting effect, torsion-axial loading, 
second-order elasticity 

 
Introduction 
Soft materials may exhibit complex nonlinear behavior such as the Poynting effect, in 
which a cylinder elongates or contracts axially under torsion. Poynting (1909) 
experimentally found that some metals exhibited the positive effect, i.e., they 
elongated axially under torsion. Recently, Janmey et al. (2007) found that networks of 
semiflexible biopolymers such as actin, collagen, fibrin and neurofilaments, exhibited 
the negative Poynting effect. 
 
Wang and Wu (2014) showed that in contrast to the Poynting effect, an axial 
force-twist effect may also exist. It refers to their theoretical result that the twist of a 
cylinder under combined torsion and axial loading can be affected by the axial 
loading. The axial force-twist effect can also be positive or negative. The former 
means that both the twists produced by the axial loading and torsion are in the same 
direction, while the latter means that the twists produced by them are in the opposite 
directions. Though Wang and Wu (2014) presented the solutions for the Poynting and 
axial force-twist effect, the relations between them were not investigated.  
 
This paper focuses on these relations, from which some fundamental conclusions can 
be drawn. The dependence of the two effects on the linear and nonlinear elastic 
constants is also studied. The organization of the paper is as follows. The derivation of 
the relations is first presented, followed by numerical results, a further discussion, and 
a set of conclusions. 
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Relations between the Poynting effect and the axial force-twist effect 
 
Figure 1 shows a cylinder of length L and radius R under combined axial loading P 
and torsion T. Here P represents either a tensile or compressive stress. The materials 
are nonlinear elastic, isotropic and homogeneous. The initial coordinates of a particle 
of the cylinder are chosen as (r, θ, z). The strain energy density of Murnaghan (1951) 
is adopted, i.e.: 
 

                2 3
1 2 1 1 2 3

2 22 2
2 3

l mW J J J mJ J nJλ m m+ +
= − + − + , (1) 

 
where λ and m are the second-order and l, m, n the third-order elastic constants, 
respectively, and J1, J2, and J3 are the strain invariants of the Lagrangian strain E. The 
detailed solutions of the stress and displacement fields are given in Wang and Wu 
(2014). For the purpose of deriving the relations between the effects, the results on the 
axial and circumferential displacements from the earlier paper are given below.  
 
The axial displacement uz under pure torsion loading can be written as: 
 

                                zu Dz= , (2) 

 
where D is the Poynting effect coefficient given by: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A homogeneous elastic cylinder with radius R and length L under 
combined torsion T and axial loading P. 
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Note that a change in the direction of T does not change the sign of D. The parameter 
CD is a reduced coefficient of the four elastic constants. It uniquely characterizes the 
quadratic relation between the Poynting effect and T. If a modified Poynting effect 

coefficient / DD D C=  is defined, then a universal relation between D  and T can 

be obtained: 
 

                           
2

2 6 .    
4

TD
Rπ

= −  (4) 

 
Furthermore, the circumferential displacement under combined axial loading P and 
torsion T is: 
 

                             L NLu u uθ θ θ= + , (5) 

where Luθ  represents the linear twist due to torsion T: 

                           4

2L T rzu
Rθ π µ

= , (6) 

and NLuθ  represents the nonlinear twist associated with the axial force-twist effect: 
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The axial force-twist effect coefficient can be defined as: 

                
4

NL

HL

u CH
u

Pθ

θ

−= = ,   
2

2

4 6 8
(3 2 )HC n mλ m λm m

m λ m
+ + +

+
= . (8) 

CH is a reduced coefficient which characterizes the relation between H and P. It is 
similar in form to CD. By defining the modified axial force-twist effect coefficient

/ HH H C= , a universal linear relation between H  and P can be obtained: 
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                               .
4
PH = −   (9) 

It can be seen from Eq. (7) that the axial force-twist effect only exists under combined 
axial loading and torsion, i.e., 0P ≠  and 0T ≠ . Eq. (8) implies that if H is positive, 

NLuθ  has the same direction as Luθ  and the axial force twist effect is positive; 

otherwise, it's negative. Because H depends on P and not T, two further observations 
can be made from Eq. (8): 
 
(1) Change of the direction of T does not change the sign of H.  
(2) Change of the sign of P changes the sign of H. 
 
Eqs. (3) and (8) show that materials with different elastic constants can have the same 
Poynting effect or the axial force-twist effect, provided the reduced coefficients of 
these materials are the same. Another observation of Eq. (3) is that for a particular m, if 

m and n are chosen in a way that makes ( 4 ) / 3 (4 8 ) / 2,n mm m+ = +  or 

8 6 0m nm + − = , then λ has no influence on the Poynting effect. A similar conclusion 

can be made for H on the basis of Eq. (8).  If m and n are chosen such that 

( 6 ) / 3 (4 8 ) / 2n mm m+ = + , or 6 6 0m nm + − = , then λ has no influence on the axial 

force-twist effect. 
 
The relation between H and D in dimensionless form can be obtained easily from Eqs. 
(3) and (8): 
 

                      2 2 6 2

2
/ 4 / 4 3 2
H D

P T R
λ

µ π µ λ µ
= −

+
. (10) 

Since / (2 2 )ν λ λ µ= + , the above equation can be rewritten as: 

                       2 2 6 2

2
/ 4 / 4 1
H D

P T R
ν

µ π µ ν
= −

+
.  (11) 

 
The term on the left-hand side represents the axial force-twist effect coefficient 
normalized by the axial loading, while the first term on the right-hand side represents 
the Poynting effect normalized by the torsion. An explicit relationship between the 
axial force-twist effect and the Poynting effect is thus established.  
 
Since ν is positive generally, several conclusions can be drawn from Eq. (11), 
assuming that the axial loading P is tensile: 
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(a) If D < 0, then necessarily H < 0,  
(b) If H > 0, then necessarily D > 0. 
(c) If H and D have different signs, then necessarily H < 0 and D > 0. 
 
It should be emphasized that the converses of (a) and (b) are not true, i.e., H < 0 does 
not necessarily imply D < 0, and D > 0 does not necessarily imply H > 0. A further 
observation is that the sign of H will change if the sign of P changes. Thus for the 
case of compressive axial loading, the above three conclusions should be changed to: 
 
(d) If D < 0, then necessarily H > 0,  
(e) If H < 0, then necessarily D > 0. 
(f) If H and D have the same sign, then necessarily H > 0 and D > 0. 
 
The Poisson ratio plays a key role since the difference between the normalized H and 
the normalized D is the term 2ν/(1+ν). This difference reaches its maximum when 
ν = 0.5, i.e., the material is incompressible. 
 
Finally, the size dependence of the Poynting effect can be judged from Eq. (3) to be 
inversely proportional to the sixth power of the cylinder radius. For the axial 
force-twist effect, Eq. (7) shows that the maximum circumferential displacement (r = 
R) is inversely proportional to the third power of the cylinder radius. Hence, the 
Poynting effect is relatively more important than the axial force-twist effect for small 
cylinders, and the reverse holds for large cylinders. 
 
Numerical results 
 
This section focuses on the influence of the elastic constants on the Poynting effect 
and the axial force-twist effect. The elastic constants of the soft materials were 
adapted from Wang and Wu (2013, 2014) for poly(acrylic acid) (PAA) gels and 
capillary muscles, respectively, and Catheline et al. (2003) for an agar-gelatin. The 
geometry of the cylinder is fixed as R = 0.002 m and L = 0.01 m. The applied axial 
loading and torsion may vary for different figures. 
 
Fig. 2 plots the H = 0 and D = 0 contours in the m−ν space, for m = −2420 kPa and n 
= −2350 kPa. The axial loading P is chosen as positive. It can be seen that the m−ν 
space is partitioned into three regions: Region I with H > 0 and D > 0, Region II with 
H < 0 and D < 0 and Region III with H < 0 and D > 0. 
 
Several interesting phenomena can be observed, in agreement with the conclusions (a) 
to (c) stated above. First, negative Poynting effect (D < 0) implies negative axial 
force-twist effect (H < 0) as shown in Region II. However, the converse is not true, 
i.e., negative axial force-twist effect (H < 0) does not imply negative Poynting effect 
(D < 0) necessarily, as shown in the small Region III. Secondly, positive axial 
force-twist effect implies positive Poynting effect (i.e., H > 0 means D > 0, as shown  
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Figure 2. Contours of the Poynting effect coefficient D = 0 (dashed line) and axial 
force-twist effect coefficient H = 0 (solid line) in m−ν space for a homogeneous 
elastic cylinder. The contours partition the space into three regions.  
 
 
in Region I). However, the converse is not true. Positive Poynting effect does not 
imply positive axial force-twist effect (i.e., D > 0 does not necessarily imply H > 0 as 
shown in region III). Moreover, when the two effects differ in sign, the Poynting 
effect must be positive and the axial force-twist effect must be negative (as shown in 
Region III). Region III, where the two effects have different signs, is generally small, 
suggesting that only careful choices in the material parameters can lead to different 
signs for the two effects.  
 
Fig. 3 plots H and D against the Poisson ratio ν. The material parameters are based on 
those of polymers with m = 10.3 kPa, m = −24.2 kPa and n = −23.5 kPa. The loadings 
are P = 10 kPa and T = 300 kPa·m3. It can be seen that when ν increases, both H and 
D decrease from positive to negative monotonically. Thus, the Poisson ratio can be an 
important parameter in controlling the two effects. Secondly, the magnitudes of H and 
D are of the order of 10-1, suggesting that the nonlinear effects can be significant. 
Note that ν1 and ν2 are the particular Poisson ratios which make H = 0 and D = 0, 
respectively. This figure further shows that (a) if H > 0, then D > 0, as shown when 
ν < ν1, (b) if D < 0, then H < 0, as shown when ν > ν2, and (c) if H and D have 
different signs, then H < 0 and D > 0, as shown when ν1 < ν < ν2.  
 
Fig. 4 shows how the linear elastic constants m and ν affect the Poynting effect and 
the axial force-twist effect. The parameters are m = −360 kPa, n = 20 kPa, P = 10 kPa 
and T = 1000 kPa·m3. It can be seen that there exists a m1 for which H is independent 
of ν. Similarly, there exists a m2 for which D is independent of ν. As mentioned above,  
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Figure 3. Dependence of H and D on the Poisson ratio ν, with m = 10.3 kPa, m = 
−24.2 kPa, and n = −23.5 kPa. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Dependence of H and D on the shear modulus m for different Poisson 
ratiosν =0.1, 0.3, 0.4 and 0.49, with m = −360 kPa and n = 20 kPa. 
 
 

m1 and m2 can be determined from the equations 1 1( 6 ) / 3 (4 8 ) / 2n mm m+ = +  and

2 2( 4 ) / 3 (4 8 ) / 2n mm m+ = + , respectively, yielding m1 = 363.3 kPa and m2 = 272.5 

kPa. A further observation is that the negative H and D values appear to have upper 
bounds, while the positive values are unbounded. More generally, however, D or H 
may either have a positive or negative bound, depending on the values of m and n.    
 
Fig. 5 shows how the nonlinear elastic constant m can significantly influence both 

effects. Here H and D are plotted against m for 62 10 ,m = ± ×  610±  and 0 kPa. The 

other elastic parameters are λ = 60 kPa and n = −23.5 kPa. The loadings are P = 0.01 
kPa and T = 10 kPa·m3. For this set of parameters, increasing m will decrease the 
magnitudes of the coefficients. Secondly, both effects are positive for negative m and 
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negative for positive m. Changing the sign of m will change the sign of both H and D. 
Thirdly, decreasing the magnitude of m will also decrease the magnitudes of H and D. 
The magnitudes can reach the order of 10-2 to 10-1 when m is small; thus the nonlinear 
behavior can be significant when the material is very soft with a small m.  
 

Fig. 6 plots H and D versus m for the same sets of m, with λ = 35700 kPa and n 
= −23500 kPa. The loadings are P = 0.01 kPa and T = 10 kPa·m3. The nonlinear 
effects are different from those shown in Fig. 5. For m positive, both H and D 
decrease to a negative maximum and subsequently decrease slowly to zero with 
increasing m. However, for m negative, they decrease monotonically to zero with m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Dependence of H and D on the shear modulus m for m = −2×106, −106, 0, 
106, 2×106 kPa, with λ = 60 kPa and n = −23.5 kPa. The loadings P = 0.01 kPa 
and T = 10 kPa·m3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Dependence of H and D on the shear modulus m for m = −2×106, −106, 0, 
106, 2×106 kPa, with λ = 35700 kPa and n = −23500 kPa. The loadings P = 0.01 
kPa and T = 10 kPa·m3. 
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Discussion 
 
Many biological materials, from soft to hard, are subjected to complex loading in their 
physiological environment. A few examples are described here. Arterial walls 
associated with human brain aneurysms were subjected to combined extension, 
torsion and inflation in finite element studies, in order to mimic the real physiological 
conditions (Tóth et al., 2005). The behavior of lumbar spinal units under torsion, 
compression and flexion/extension were also experimentally studied (Haberl et al., 
2004). It is also well-known that articular cartilage is subjected to combined 
compression and shear during normal activities (Mansour, 2003). Fatigue tests were 
conducted on cylindrical bovine cortical bone specimens under axial, torsional and 
combined axial-torsional loadings (Vashishth et al., 2001). Finite extension and 
torsion were applied on capillary muscles in order to characterize their behavior under 
physiological conditions (Criscione et al., 1999).  
 
Because of the prevalence of combined loadings, the Poynting effect and the axial 
force-twist effect may be highly relevant. In particular, large stresses may be 
generated by both effects if the specimen is confined in one way or another, i.e., the 
additional axial and rotational displacements are restrained. These large stresses can, 
for instance, alter the overall force balance and the cytoskeleton structure of cells, or 
the movement of a human red blood cell through narrow capillaries. The diameter of a 
human red blood cell is 7.0-8.5 mm, while that of narrow capillaries is smaller than 3 
mm (Bao and Suresh, 2003).  
 
The effects can also be utilized in the design of devices such as actuators and sensors. 
One can imagine a bio-inspired polymer actuator based on the axial force-twist effect, 
i.e., a torsionally loaded cylinder may generate an additional output twist, if subjected 
to an input axial force. By carefully selecting the elastic parameters of the materials 
and the structural dimensions, the amount of twist can be increased significantly and 
the desired output can be achieved. 
 
Conclusions 
 
Explicitly expressions for the Poynting effect, the axial force-twist effect and their 
relation are presented in this paper. The dependence of the relation on elastic 
constants is investigated.  
 
The results show that under a tensile stress P, (a) negative Poynting effect implies 
negative axial force-twist effect, (b) positive axial force-twist effect implies positive 
Poynting effect, and (c) if the two effects differ in sign, the Poynting effect must be 
positive and the axial force-twist effect negative. The loadings P and T' are such that 
(d) changing the direction of T will not change the sign of both effects, and (e) 
changing the direction of P will change the direction of the axial force-twist effect. 
Moreover, the Poynting and axial force-twist effects exhibit a very significant size 
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dependence, respectively of the inverse sixth and third power of the cylinder radius.  
 
Reduced elastic coefficients characterize universal relations between the effects and 
the applied loadings. The elastic constants m, ν and m have significant influence on 
the magnitude and direction of the Poynting and axial force-twist effects. For certain 
combinations of elastic constants, changing the sign of m can directly change the sign 
of the two effects. The two effects may have a positive or negative bound, depending 
on the elastic constants. From the perspective of material design, the elastic constants 
are thus of vital importance.  
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