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Abstract

Rolling contacts are usual in various technical systems and yield usually non-holonomic constraints. A new regular-
ization method motivated by physical considerations is investigated in the present paper. The convergence of the
spring-damper regularization for the so called principal damping, which is motivated by the critical damping in the
linear case, is proven. The solutions of the DAEs and the corresponding ODEs converge if a certain condition on the
regularization parameters is fulfilled. A rolling disc on the flat plane and a skate on an inclined plane are analyzed as
numerical examples. It is demonstrated firstly that the optimal choice of the regularization parameters corresponds
to the principle damping and secondly that the sufficient convergence condition obtained in the proof is valid for the
numeric simulations.

1. Introduction

In most cases the constraint equations on velocity level enforcing a rolling motion cannot be integrated, yielding non-
holonomic constraint equations. Usually the nonholonomic constraints can be incorporated into the equations of motion
by the method of Lagrange multipliers. This formulation leads to index-2 differential algebraic problems. In the present
paper we investigate a new viscoelastic idealization of nonholonomic constraints, that is motivated by physical consid-
erations. Pure rolling is equal to a sticking state, with a kinematically repositioned contact point. Usually sticking is
modeled by introducing an elasticity in the contact as demonstrated by [3]. Here the constraint is enforced by the elastic
and dissipative terms, that help to avoid numerical oscillations in the contact. In an earlier work [2] applied this kind of
viscoelastic formulation to a tangential contact law, extending the classical laws of friction, like the Coulomb model, to
distributed contacts, in order to circumvent the problem of indeterminacy in the sticking state. However a description of
a contact law by means of viscoelastic forces is sensible only if it approximates the idealized rigid formulation in case of
infinitely stiff chosen viscoelastic parameters. Thus the objective of this work is to show the convergency of the viscoelastic
description to the idealized nonholonomic rigid description in a mathematical sense.

2. Statement of problem

Consider the general multibody system with m nonholonomic constraint equations, as given in definition 1.

Definition 1 (Differential algebraic initial value problem). Let I = [t0, te] be a closed interval. Then the equations of
motion can be described by the following differential algebraic initial value problem

M(q)q̈ = F (q, q̇, t)−GT(q)Λ, (1)

0 = G(q)q̇ (2)

with the consistent initial conditions q(t0) = q0, q̇(t0) = q̇0. Furthermore holds M(q) ∈ Rn×n is symmetric and positive
definite. The functions G(q) ∈ Rm×n and F (q, q̇, t) ∈ Rn are sufficiently smooth, the matrix G(q) is assumed to have full
rank m.

Usually deformations occur in a contact area due to local deformations of asperities and the elasticity of the bodies
itself. A sensible physical description of a contact should take these effects into account. Thus the constraint forces, that
enforce the constraint equation, are replaced by applied forces in form of a viscoelastic force element, which leads to the
viscoelastic description of the given multibody system as stated in definition 2.

Definition 2 (Viscoelastic description). Let I = [t0, te] be a closed interval. Then for t ∈ I and for a fixed εf ∈ (0, ε0]
the equation of motion of the viscoelastic description is given by

M(q)q̈ = F (q, q̇, t)−GT(q)Λ, (3)

ż = G(q)q̇ (4)

along with the initial conditions q(t0) = q0, q̇(t0) = q̇0 and z(t0) = z0, where the Lagrange multiplier Λ is replaced by

Λ = c
εf
z + d

εκf
ż. (5)

The functions G(q) ∈ Rm×n and F (q, q̇, t) ∈ Rn are sufficiently smooth, the matrix G(q) is assumed to have full rank m.



The parameter κ is chosen as 1
2 , inspired by the critical damping in the linear case. The given forms of the underlying

systems are not suitable, in order to obtain an estimate of the distance between the corresponding solutions. However by
applying appropriate transformations, they can be transformed to a standard singular perturbation form. Transforming
the systems given in definition 1 and definition 2 to autonomous systems and introducing the new variable θ according to

√
εΛ̇ = θ + h(y,Λ) + S(Λ), (6)

where S(Λ) = Λ and h(y,Λ) = c(dc )
1

1−κ (Ġy2 + GM−1F − GM−1GTΛ). The equivalent systems in standard singular
perturbation form can be obtained.

ẏ = f(y,Λ),
√
εΛ̇ = θ + h(y,Λ) + S(Λ) := g1(y, θ,Λ),
√
εθ̇ = h(y,Λ)− dS

dΛ (θ + h(y,Λ) + S(Λ)) := g2(y, θ,Λ).

Setting ε = 0 leads to the reduced problem in form of differential algebraic equations

ẏ = f(y,Λ),

0 = θ + h(y,Λ) + S(Λ) := g1(y, θ,Λ),

0 = h(y,Λ)− dS
dΛ (θ + h(y,Λ) + S(Λ)) := g2(y, θ,Λ).

with the column matrices λ = [Λ, θ], g = [g1, g2] and f(y, λ) = [y2,M
−1(F − GT)Λ, 1] the problems can be written

conveniently. The differential algebraic equation can be represented in the following form:

Definition 3 (Differential algebraic equation).

ẏ = f(y, λ),

0 = g(y, λ), (7)

y(0) = y0
0 .

The viscoelastic approximation reads as:

Definition 4 (Viscoelastic description in singular perturbation standard form).

ẏ = f(y, λ),
√
ελ̇ = g(y, λ), (8)

y(0) = y0
0 +
√
εy0

1 +
√
ε

2
y0

2 + ... , λ(0) = λ0
0 +
√
ελ0

1 +
√
ε

2
λ0

2 + ... .

3. Proof of convergency

In the underlying form, standard singular perturbation approaches can be used in order to obtain an estimate of the
distance of the solution of the problems given in definition 3 and definition 4.
In order to construct a solution of the initial value problem eq. (8) in form of an infinite asymptotic power series expansion
the following theorem by Hairer and Wanner [1] can be applied.

Theorem 1. Let f and g be sufficiently smooth functions. Consider the initial value problem given in eq. (8)

ẏ = f(y, λ),
√
ελ̇ = g(y, λ),

y(0) = y0
0 +
√
εy0

1 +
√
ε

2
y0

2 + ... , λ(0) = λ0
0 +
√
ελ0

1 +
√
ε

2
λ0

2 + ... .

Introducing the time scale τ = t√
ε

enables the construction of the solutions in form of an infinite asymptotic series

expansion according to

y(t) =

∞∑
j=0

√
ε
j
yj(t) +

√
ε

∞∑
j=0

√
ε
j
ηj(τ), λ(t) =

∞∑
j=0

√
ε
j
λj(t) +

∞∑
j=0

√
ε
j
ζj(τ). (9)

The functions ηj(τ) and ζj(τ) satisfy the conditions

‖ηj(τ)‖ ≤ Kje
−κjτ , ‖ζj(τ)‖ ≤ Cje−κjτ .



The proof of this theorem is given in [1]. Instead of the infinite power series expansion, the truncated power series
expansion will be used instead. Special interest is devoted to the series truncated at N = 0 since the resulting zeroth
approximation corresponds to the differential algebraic equation. Thus the target is to find an estimation of the error
made when using the truncated series expansion instead of the full series expansion. This question is answered by the
following theorem from Hairer and Wanner [1].

Theorem 2. Let f and g be sufficiently smooth functions. Consider the viscoelastic formulation in form of initial value
problem (8). Suppose that the logarithmic norm µ(gλ) < −1 holds in an ε independent neighborhood of the solution y0(t),
λ0(t) of the differential algebraic equation (7) with the initial condition y0(0) = y0

0, satisfying the constraint equation, on
the interval 0 < t < T . If the initial values y0

0 and λ0
0 lie in this neighborhood, then the initial value problem (8) has a

unique solution for ε sufficiently small and for 0 < t < T , which is of the form

y(t) = ytr(t) +O(
√
ε
N+1

) =

N∑
j=0

√
ε
j
yj(t) +

√
ε

N∑
j=0

√
ε
j
ηj(

t√
ε
) +O(

√
ε
N+1

), (10)

λ(t) = λtr(t) +O(
√
ε
N+1

) =

N∑
j=0

√
ε
j
λj(t) +

N∑
j=0

√
ε
j
ζj(

t√
ε
) +O(

√
ε
N+1

). (11)

The coefficient functions ηj(τ) and ζj(τ) satisfy ‖ηj(τ)‖ ≤ Kje
−κjτ and ‖ζj(τ)‖ ≤ Cje

−κjτ . The error between the
solution of the differential algebraic equation (7), which corresponds to the truncated series at N = 0, and the viscoelastic
formulation (8) can be estimated above according to

‖y − y0‖ ≤M1

√
ε, ‖λ− λ0‖ ≤M2

√
ε.

The proof of this theorem is given in Hairer and Wanner [1]. Thus the solution of the viscoelastic contact formulation
is in an O(

√
ε) vincinity of the solution of the differential algebraic equation. The request that the logarithmic norm

µ(gλ) < −1 leads to the following condition on the eigenvalues of the matrix −GM−1GT:

λ−GM
−1GT

max ≤ − 2c
d2 , (12)

where λ−GM
−1GT

max denotes the maximum eigenvalue of the matrix −GM−1GT.

4. Numerical experiments

In order to confirm the theoretical results, numerical experiments were carried out. Therefore a classical mechanical
system of a skate sliding down an inclined plane under the influence of gravity is considered. The model is shown in fig. 1.
Mathematically the constraint equation is given by the demand, that the velocity of the contact point is always parallel

Figure 1: disk rolling on a flat support

to the skid, which can be expressed in the following fashion

v · t = 0,
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(a) Condition λ−GM−1GT

max ≤ − 2c
d2

fulfilled.
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(b) Condition λ−GM−1GT

max ≤ − 2c
d2

hurt.

Figure 2: Deviations of the solutions of differential algebraic equation and viscoelastic formulation in case (12) is fulfilled
(left) and not fulfilled (right), where the deviation grows exponentially fast.

where v denotes the velocity of the contact point and t the vector perpendicular to the skid. This finally results in the
scalar constraint equation

0 =
[
− sinϕ cosϕ 0

]︸ ︷︷ ︸
G(q)

u̇1

u̇2

ϕ̇


︸ ︷︷ ︸
q̇

.

5. Discussion and conclusion

Convergency of the viscoelastic description of contact forces is proven for nonholonomic constraints in general form. The
proof is performed for the principal damping exponent. The solutions of the DAE and the corresponding ODE converge
if the condition

µ(GM−1GT) > 2c
d2

is fulfilled. Numerical experiments were made to verfiy the statement of the proof. They confirm the optimum performance
for this choice of the viscoelastic parameters. In the future the described approach will enable a consistent modelling of
sticking, sliding and rolling contacts in multibody dynamics.
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