
ICCM2014 
28-30th July, Cambridge, England 

1 
 

Adaptive Precise Integration BEM for Solving  
Transient Heat Conduction Problems 

Bo Yu, *Weian Yao, Qiang Gao 
State Key Laboratory of Structural Analysis for Industrial Equipment,  

Dalian University of Technology, China 

*Corresponding author: ywa@dlut.edu.cn 

Abstract 
A combined approach of boundary element method (BEM) and precise integration method (PIM) is 
presented for solving transient heat conduction problems with variable thermal conductivity. The 
boundary integral equation is derived by means of the Green's function for the Laplace equation. As 
a result, three domain integrals are involved in the integral equation. The radial integration method 
is used to transform the domain integrals into the boundary integrals. After discretization the solved 
domain by the BEM, a system of ordinary differential equations (ODEs) can be obtained. Adaptive 
PIM can solve efficiently ODEs and improve greatly the computational efficiency. Numerical 
examples show that the present approach can obtain satisfactory performance even for very large 
time step size. In addition, the results are independent of the time step size when the integral of free 
term can be analytically integrated, here, the free term is formed by boundary conditions and heat 
sources. 

Keywords:  Adaptive precise integration method, Radial integration method, Boundary element 
method, Transient heat conduction 

Introduction 

It is generally known that the finite difference method (FDM) is used to solve the transient heat 
conduction problems. However, the result of FDM is unstable when change the time step size. The 
precise integration method (PIM) [Zhong (1994)] can obtain stable and accurate results for different 
time step sizes. Particularly, the results are independent of the time step size when the free term can 
be divided into the functions of space and time and the time-related integral can be integrated 
analytically. Up to now, the PIM in conjunction with the finite element method (FEM) has been 
applied to conduct the transient heat transfer analysis [Cheng et al. (2004)], the transient forced 
vibration analysis of beams [Tang (2008)] and the sensitivity analysis and optimization problems 
[Xu et al. (2011)]. In addition, the method combining the PIM with meshless local Petrov–Galerkin 
method has been applied to the transient heat conduction problems [Li et al. (2011)]. 
 
Compared with FDM, FEM and the meshless method, BEM is very robust for solving the linear and 
homogeneous heat conduction problems [Song and Li (2003)]. However, BEM is still a challenge 
for solving nonlinear problems such as variable thermal conductivity problems. The main reason is 
that the fundamental solution of the problem obtains extremely difficult. Fortunately, we can use the 
fundamental solution of the linear problem to solve the nonlinear problem, whereas domain 
integrals are involved in resulting integral equations. 
 
Generally, there are mainly two methods which can transform the domain integrals into the 
boundary integrals. The first one is the dual reciprocity method (DRM) [Nardini and Brebbia 
(1983)]. The deficiency of the method is that the particular solutions may be difficult to obtain for 
some complicated problems. In addition, even for known heat sources term, the method still 
requires an approximation of the known function. The second one is the radial integration method 
(RIM) [Gao (2002)]. The RIM not only can transform any complicated domain integral into the 
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boundary without using particular solution, but also can remove various singularities appearing in 
domain integrals. The method combining the RIM with the BEM is called the radial integration 
boundary element method (RIBEM). 
 
The RIBEM has been widely applied to many fields including the crack analysis in functionally 
graded materials [Zhang (2011)], the heat transfer problems [AL-Jawary and Wrobel (2012); Yu et 
al. (2014a; 2014b; 2014c;)] and the viscous flow problems [Peng (2013)]. The RIBEM still exists a 
problem, which solved results are sensitive for different time step sizes when the problems are 
transient. The RIBEM and the PIM have been combined to solve transient heat conduction 
problems [Yu et al. (2014c)]. 
 
In this paper, an adaptive technique is introduced in the present method to improve the 
computational efficiency without affecting accuracy. First of all, we discretize the space domain by 
using the RIBEM to obtain a system of ordinary differential equations (ODEs) with respect to time, 
and then solve the ODEs by the PIM. Finally, two numerical examples are presented to validate the 
proposed method. 

Governing Equation 

Considering a two-dimensional bounded domain Ω  with heat source and a spatially variable heat 
conductivity, the governing equation for transient heat conduction problems in isotropic media can 
be expressed as 

 ( ) ( ) ( ) ( ), ,
,

i i

T t T t
k f t c

x x t
ρ

 ∂   ∂ ∂
+ = ∈Ω   ∂ ∂ ∂   

x x
x x x  (1) 

where ( )1 2,x x=x , ( ),T tx  is the temperature at point ∈Ωx  and at time t , ( )k x  is the thermal 
conductivity, ( ),f tx  is a known heat source, ρ  is the density and c  is the specific heat. The 
repeated subscript i  denotes the summation through its range which is 2 for two-dimensional 
problem. 
 
The initial condition is ( ) 0,0 =T Tx , where 0T  is a prescribed function. The boundary conditions are 
 ( ) ( ) 1, = ,T t T t ∈Γx x x  (2) 

 ( ) 2= ,i
i

Tk n q t
x
∂

− ∈Γ
∂

x x  (3) 

where Γ = ∂Ω , 1 2 =Γ ∪Γ Γ , 1 2 =Γ ∩Γ ∅ , in  is the i -th component of the outward normal vector n  to 
the boundary Γ , T  and q  are prescribed temperature history and heat flux on the boundary, 
respectively. 

Implementation of RIBEM 

Boundary-domain Integral Equation 

To derive the boundary integral equation, a weight function G  is introduced to Eq. (1) and the 
following domain integrals can be written as 

 ( ) d d d
i i

T TG k Gf c G
x x t

ρ
Ω Ω Ω

 ∂ ∂ ∂
Ω + Ω = Ω ∂ ∂ ∂ 

∫ ∫ ∫x  (4) 
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Using Gauss’ divergence theorem, the first domain integral can be manipulated as 

 
( ) ( ) ( ) ( ) ( ) ( )
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i i i i

i i i i
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x y x x y x x

x y x x y
x

 (5) 

If Green’s function ( ln / 2r π− ) is acted as the weight function G , the last domain integral in Eq. (5) 
can be written as 

 ( ) ( ) ( ) ( ),
d

i i

G
k T k T

x xΩ

 ∂ ∂
Ω = − ∂ ∂ 

∫
x y

x y y  (6) 

where ( , )r x y  is the distance between the source point y  and the field point x . Substituting the 
equation into Eqs. (4) and (5), it follows that 
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where ( , ) ( ) ( , ) /q t k T t= − ∂ ∂x x x n , ( ) ln ( )k k=x x , ( , ) ( ) ( , )T t k T t=x x x , ( , ) ( ( , ) / )( ( ) / )i iV G x k x= ∂ ∂ ∂ ∂x y x y x  
in which ( , )q tx  is the heat flux, ( , )T tx  and ( )k x  are the normalized temperature and thermal 
conductivity, respectively. Eq. (7) is valid only for internal points. For boundary points, a similar 
integral equation can be obtained by letting →Γy  as is done in the conventional BEM such as 
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where  

 ( ) ( )
1 ,

=
,

2

c ϕ
π

∈Ω



∈Γ

y
y y

y
 (9) 

( )ϕ y  is the interior angle at a point y  of the boundary Γ . Particularly, ( )=0.5c y  if y  is a smooth 
point on the boundary. 

Transformation of Domain Integrals to the Boundary by RIM 

In general, the heat source ( ),f tx  is a known function. In this circumstances, RIM [Gao (2002)] 
can be directly used to transform the first domain integral in Eq. (8) into the boundary as follows: 

 ( ) ( ) ( )1, ( , )d ( ) , , d ( )
,

ArG f t F t
r nΩ Γ

∂
Ω = Γ

∂∫ ∫x y x x z y z
z y

 (10) 
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where the radial integral AF  can be expressed as ( ) ( )( ),

0
, , , ( , ) d

rAF t G f t ξ ξ= ∫
z y

z y x y x . 

 
For the last two domain integrals in Eq. (8), the RIM formulation cannot be directly used because T  
and /T t∂ ∂  are unknown. To solve this problem, T  and /T t∂ ∂  are approximated by the 
combination of the radial basis functions (RBFs) and the polynomials in terms of global coordinates 
[Zhang (2011)]. Thus, T  and /T t∂ ∂  are respectively expressed as 

 1 1 2 2 3
1

( )
N

i i
i

T R a x a x aα φ
=

= + + +∑  (11) 

 1 1 2 2 3
1

( )
N

i i
i

T R b x b x b
t

β φ
=

∂
= + + +

∂ ∑


 (12) 

and the following equilibrium conditions have to be satisfied: 

 1, 2,
1 1 1

0
N N N

i i i i i
i i i

x xα α α
= = =

= = =∑ ∑ ∑  (13) 

 1, 2,
1 1 1

0
N N N

i i i i i
i i i

x xβ β β
= = =

= = =∑ ∑ ∑  (14) 

where N  is the total number of boundary and interior nodes, = ( ,  )iR r x x  is the distance from the i-th 
application point 1, 2, ( , )i i ix x=x  to the field point x  and ( )Rφ  is the RBF. In this paper, the 
compactly supported fourth-order spline RBF is adopted, i.e., 

 ( )

2 3 4

1 6 8 3 0

0

i
i i i i

i

R R R R d
R d d d

d R

φ

      
 − + − ≤ <     =       
 ≤

 (15) 

in which id  is radius of the supported region at the i-th point. 
 
The coefficients iα , 1a , 2a  and 3a  in Eq. (11) can be determined by collocating the application 
point ix  in Eq. (11) at all nodes. A set of algebraic equations can be written in the matrix form as 

=αT φα , where T
1 2 1 2 3{ , , , , , , }N a a aα α α= α , T T T

1 2{ ,  ,  ,  ,  0,  0,  0} {{ } , }NT T Tα = =    

T T 0 . If no 
two nodes share the same coordinates, the matrix φ  is invertible and thereby 1

α
−= Tα φ . According 

to T T{{ } , }α =T T 0  , the matrix 1−φ  can be expressed in the block form as ( ) ( )1 2( 3) ( 3) 3
,

N N N+ × + ×

 
  
 φ φ . 

Then α  can be rewritten as 1= T α φ . Similarly, the coefficients in Eq. (12) can also be simply 

expressed as 1= T β φ , where T
1 2 1 2 3{ , , , , , , }N b b bβ β β= β , 1 2={ / ,  / ,  ,  / }NT t T t T t∂ ∂ ∂ ∂ ∂ ∂T   

 . 
 
Substituting Eqs. (11) and (12) into the last two domain integrals in Eq. (8), then transforming it 
into the boundary integrals by RIM, a pure boundary integral equation can be obtained as follows 
[Yu et al. (2014b)]: 

 ( ) ( ) ( ) ( ) ( ) ( ), 1, d d dAG rc T G q T F
rΓ Γ Γ

∂ ∂
= − Γ − Γ + Γ + −

∂ ∂∫ ∫ ∫ y y

x y
y y x y x x V T C T

n n


     (16) 
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where yV  and yC  are the boundary integral terms corresponding to the last two domain integrals in 
Eq. (8). 

System of Differential Equations 

Assuming that the boundary Γ  is discretized into bN  linear elements and the region is distributed 
IN  internal nodes, the total number of nodes is = +b IN N N . Eq. (16) can be conveniently expressed 

in the following matrix form: 
 b b b b b b b b onα = − + + − ΓC T G Q H T f V T C T     (17) 

 I I b I b I I I in= − + + − ΩT G Q H T f V T C T     (18) 
where 

( ) ( ) ( ){ }1 2= , , , 
bNk c c cαC diag y y y , { }T

1 2= ,  , , 
bb Nk T n k T n k T n− ∂ ∂ − ∂ ∂ − ∂ ∂Q  , { }T

1 2= , , , 
bb NT T TT   

 , 

{ }T

1 2= , , , 
II I I NT T TT   

 , { }T

1 2, , ,
bb Nf f f=f  , { }T

1 2, , ,
II I I Nf f f=f  . The matrices bG , bH , IG  and IH  

correspond to the coefficients of boundary integrals and bf , bV , bC , If , IV  and IC  refer to the 
coefficients of domain integrals term. 
 
After the application of boundary conditions and elimination the unknown heat flux quantity, a 
system of ordinary differential equations is obtained only relation to temperature as follows [Yu et 
al. (2014b)]: 
 ( )= ( ) ( )u u ut t t+T B T F

   (19) 

Adaptive Precise Integration Method 

The general solution of Eq. (19) can be written as 

 1 0
( ) ( ) exp( ( )) ( )d

t

u k u k u kt t t tξ ξ ξ
∆

+ = + ∆ − +∫T ET B F   (20) 

where =exp( )u t∆E B  and kt k t= ∆ . The matrix E  can be rewritten as =[exp( / )]m
u t m∆E B , where m is 

an integer. Now, 2Mm =  is selected, where M is an integer. The following truncated Taylor series 
expansion can be used: 

 2exp( ) ( ) / 2! ( ) / !p
u u u u apη η η η≈ + + + + = +B I B B B I E  (21) 

where /t mη = ∆ , I  is the identity matrix. How to compute the matrix E  has been detailedly shown 
in literature [Zhong (1994)]. 
 
The main factor of influence computation efficiency is how to select a optimal M  and p. Because 
the most of the computational cost of PTI is the times of the matrix multiplications ( TMM ), where 
TMM= 1M p+ − . The optimal selection of TMM is shown in literature [Chen et al. (2004)] for 
different prescribed error tolerance. In addition, in Eq. (20), the function ( )kt ξ+F  is formed by the 
known temperature boundary conditions, heat flux boundary conditions or heat sources. In this 
article, the term 

0
exp( ( )) ( )d

t

u kt tξ ξ ξ
∆

∆ − +∫ B F  in Eq. (20) is analytically integrated for all numerical 

example. 
 
Finally, true temperature ( , )T tx  can be computed by using ( )( , ) ( , ) /T t T t k=x x x . 
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Numerical Examples 

To check the convergence of the proposed method, the root mean square (RMS) error is given by 

 2 2
, , ,

1 1
( ) /

N N

numerical i exact i exact i
i i

RMS T T T
= =

= −∑ ∑  (22) 

where ,numerical iT  and ,exact iT  are the numerical solution and the exact solution of the i-th node, 
respectively. For comparison, two examples are also computed by using the RIBEM, which use the 
finite difference technique to simulate the derivative of temperature with respect to time (it will be 
abbreviated to RIBEM-FD) [Yu et al. (2014b)]. 
 
Example 1: In this example, a square plate 2[1,2]Ω =  is considered with 1 2( )k x x= +x , =1ρ  and 

1c = . The initial condition and the heat source are 2 2
0 1 2= +T x x  and 1 2( , ) 6( ) 10cos(10 )f t x x t= − + +x , 

respectively. The boundary conditions are given by 2
1 1( ,1, ) 1 sin(10 )T x t x t= + + , 

2
2 2(2, , ) 4 sin(10 )T x t x t= + + , 2

1 1( , 2, ) 4 sin(10 )T x t x t= + + , 2
2 2(1, , ) 1 sin(10 )T x t x t= + + . The exact 

solution of the problem is 2 2
1 2( , ) sin(10 )T t x x t= + +x . The plate is discretized into 20 equally space 

linear boundary elements and distributed uniformly 16 internal nodes. 
 

Table 1. The value of TMM  for different pε  

t∆  
TMM  

510pε
−=  

TMM  
610pε
−=  

TMM  
710pε
−=  

TMM  
810pε
−=  

TMM  
910pε
−=  

TMM  
1010pε
−=  

TMM  
1110pε
−=  

TMM  
1210pε
−=  

0.2 15 15 16 16 16 16 17 18 
5 19 19 20 20 20 20 21 22 

 
Table 1 shows the optimal value of TMM  for different time step sizes and computational error 
tolerance. Comparison with the general selection TMM=23 , the adaptive PTI improves the 
computational efficiency greatly. For different time step size, it can be seen from Figure 1 that the 
RMS errors of the PIBEM are highly coincident, but the errors of the RIBEM-FD emerge a big 
fluctuation. 
 

 
 

Figure 1. RMS error of temperature with 510pε
−=  for example 1. 
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Example 2: In this example, we consider a concave geometry with 1( ) exp( )k x=x , 1cρ = =  and 
0 1t< ≤ . The initial temperature and the heat source are 0 0T =  and ( , ) 10f x t = , respectively. The 
time-dependent temperature condition is (0, , ) 60T y t t=  for the left boundary and the other 
boundaries are insulated. The geometry and computational model of the BEM can be seen in Figure 
2 with 36 boundary elements and 13 internal nodes. The problem is also computed using the FEM 
software ANSYS, which the results are considered as the reference solutions exactT  in Eq. (22). The 
solved domain is uniformly discretized into 832 4-noded elements. Table 2 shows the optimal value 
of TMM  for different time step sizes and computational error tolerance. It can be seen from Figure 
3 that the solutions of PIBEM are very stable and accurate than the solutions of RIBEM-FD for the 
different time step size. 
 

Table 2. The value of TMM  for different pε  

t∆  
TMM  

510pε
−=  

TMM  
610pε
−=  

TMM  
710pε
−=  

TMM  
810pε
−=  

TMM  
910pε
−=  

TMM  
1010pε
−=  

TMM  
1110pε
−=  

TMM  
1210pε
−=  

0.001 9 9 10 10 10 10 11 12 
0.2 17 17 18 18 18 18 19 20 

 

 
 

Figure 2. Computational model of the BEM for example 2. 
 

 
 

Figure 3. RMS error of temperature with 510pε
−=  for example 2. 
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Conclusions 

In this paper, the adaptive PIM is introduced into the RIBEM for solving the transient heat 
conduction problems with variable thermal conductivity. For the RIBEM-FD, the sensitive results 
are caused by the finite difference method to solve the derivative of temperature with respect to 
time. The PIBEM can perfectly solve the problem. Numerical examples show the PIBEM with 
adaptive technique can obtain the stable and accurate results for a big time step size and improve 
efficiency, whereas only in the case of a small time step the RIBEM-FD can obtain accurate results.  
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